JP7385625B2 - 複合粒子及び樹脂組成物 - Google Patents

複合粒子及び樹脂組成物 Download PDF

Info

Publication number
JP7385625B2
JP7385625B2 JP2021096841A JP2021096841A JP7385625B2 JP 7385625 B2 JP7385625 B2 JP 7385625B2 JP 2021096841 A JP2021096841 A JP 2021096841A JP 2021096841 A JP2021096841 A JP 2021096841A JP 7385625 B2 JP7385625 B2 JP 7385625B2
Authority
JP
Japan
Prior art keywords
cellulose
resin
mass
fine cellulose
composite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021096841A
Other languages
English (en)
Other versions
JP2021155750A (ja
JP2021155750A5 (ja
Inventor
博文 小野
一文 河原
洋文 内村
貴章 三好
正広 大賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2021155750A publication Critical patent/JP2021155750A/ja
Publication of JP2021155750A5 publication Critical patent/JP2021155750A5/ja
Application granted granted Critical
Publication of JP7385625B2 publication Critical patent/JP7385625B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

本発明の一態様は、微細セルロースと熱可塑性樹脂とを含む複合粒子、これを含む樹脂組成物、及びこれらの製造方法に関する。
近年、自動車、電化製品等の分野において、製品軽量化のために部品を金属から樹脂へ代替することが積極的になされている。このような用途において、樹脂単体では機械特性及び寸法安定性が不十分であることが多く、ガラス繊維、炭素繊維、タルク、クレイ等の各種無機材料がフィラーとして添加されるのが一般的である。しかし、これらのフィラーは比重が大きいため得られる樹脂成形体の重量が大きくなるという課題がある。
これに対しセルロースは、アラミド繊維に匹敵する高い弾性率と、ガラス繊維よりも低い線膨張係数とを有することが知られている。また、真密度が1.56g/cm3と、低く、一般的なフィラーとして使用されるガラス(密度2.4~2.6g/cm3)及びタルク(密度2.7g/cm3)と比較し圧倒的に軽い材料である。そして、天然資源として地球上に大量に存在し、かつ、カーボンニュートラルの観点から環境調和型材料とされ、熱可塑性樹脂のフィラーとして期待されている。
中でも、近年、セルロース繊維を高レベルで叩解及び粉砕して、繊維径1μm以下まで微細化(フィブリル化)させた微細セルロースがフィラーとして注目を浴びている。
特許文献1~4には、セルロースを高度に微細化し繊維径をナノサイズにした微細セルロースを熱可塑性樹脂中に分散させる技術が記載されている。
また、セルロースは、水中で分散している状態では、比較的安定な分散状態を維持するが、水を除去する等すると、セルロース同士の強固な凝集力により、良好な分散を得ることが困難である。そのため、これまでセルロースを熱可塑性樹脂中に分散させる技術として、例えば特許文献5には、粉末状セルロースに親油性処理を施して可塑剤に均一分散させた混合物を得たのち、ポリオレフィンと溶融混練する技術が記載されている。また、特許文献6には、樹脂と、特殊な液体中で膨潤させた植物繊維と、有機液体とを混合する技術が記載されている。さらに特許文献7には、セルロース分散液を特定粒子径の樹脂粉末と予め混合して得た混合分散液から水を分離し、セルロース/樹脂混合物を得たのち、該混合物を溶融混練する技術が記載されている。
国際公開第2011/058678号 国際公開第2016/199923号 特表平9-505329号公報 特開2008-001728号公報 特開2016-104874号公報 国際公開第2013/133093号 特開2008-297364号公報
樹脂中に微細セルロースを配合するためには、微細セルロースを乾燥し粉末化する必要がある。しかし、乾燥の過程で微細セルロースは表面水酸基による水素結合によって強固な凝集体となる。この時、樹脂中で微細セルロースは分散がしにくく、一部が凝集物として不均一に存在することとなる。
このように微細セルロースの樹脂組成物中での分散性が不均一であると、同等量の微細セルロースが完全に分散した樹脂組成物と比較して機械的特性及び熱寸法安定性は劣ることとなる。したがって、同等の機械的特性及び熱寸法安定性を発現させるためには、微細セルロースの添加量が増えるため好ましくない。
また、樹脂組成物中に凝集物が存在すると、このような樹脂組成物で形成された成形体は、凝集物を起点に破壊されやすくなる。すなわち、凝集物は、成形体の部位による機械的強度の違いを招くため、凝集物を含む成形体の機械的特性は、非常にバラツキが大きなものとなる。この場合、成形体が、部分的に強度欠陥を有するものとなり、実製品としての信頼性を大幅に毀損してしまうこととなる。そのため、微細セルロースはその優れた特性を持ちつつも、実際には、実用に供されていないのが実情である。
一方、セルロース材料中には、ヘミセルロースやリグニンといった不純物が残留しており、これらは、一般的な樹脂の加工方法である押出機での加工時に受ける熱により変質し、着色の要因となることが知られている。セルロース自体も押出加工時の熱と系内の水分とで加水分解等の種々の副反応を引き起こして糖化反応等を誘起し、それが押出機内の熱により熱劣化を促進させ、着色要因となるばかりでなく、押し出されたペレットや成形された成形品から、糖が焦げた甘い匂いがするという課題があった。セルロースは上述の通り、軽量ゆえ、特に自動車用途での樹脂の補強材としての期待が高まっている。しかしながら、自動車をはじめとした内装用途部品は、人の五感(特に視覚、嗅覚)にさらされるため、要求が厳しく、これら部品については、樹脂中のセルロースの分散性を犠牲にすることなく、セルロースが加熱時に生じさせる着色や着臭を如何に抑制するかが、大きな課題となっている。
また、樹脂中にセルロースを配合するためには、セルロースを予め乾燥し粉末化する必要があるが、セルロースは水と分離する過程で微分散状態から強固な凝集体となり、再分散しにくいといった特徴があり、樹脂組成物中で、乾燥後の粒子が維持された形態で存在することとなる。この凝集力は、セルロースが持つ水酸基による水素結合により発現されており非常に強固であるため、樹脂組成物中のセルロースを均一な分散径にコントロールすることが困難であるといわれている。例えば、TEMPO酸化触媒等を用いて、セルロースの基本フィブリルレベルにまで微細化した後、樹脂と配合する技術があるが、これはセルロースが微細になりすぎて、摺動性向上への寄与が小さくなるという課題がある。さらに、二軸押出機といった比較的強いせん断を与えることが可能な設備を用いて、樹脂との混練時にセルロースに強いせん断等を与えて微細にする技術もあるが、この技術では均一な分散状態を得ることが困難で、充分な摺動性を付与するに至っていない。
特許文献5~7に記載される技術では、分散性向上や耐熱性向上にあたり、セルロース材料自体に種々の処理を行う工程を追加する必要が生じ、結果的にコストアップを招き、経済的観点からも好ましくはない。性能面からも、低融点の樹脂であれば、いくらかは改善の方向ではあるが、当該セルロース材料を融点の高い樹脂に適用した際には、いまだ充分に解決されるに至ってはいない。すなわち、分散性向上と、着色や臭気の抑制とを両立できておらず、現時点において、分散性に優れ、かつ着色や臭気が抑制されたセルロース含有樹脂組成物を、汎用的に適用可能な製造方法で得る技術は存在していない。
また、乾燥の過程で微細セルロースは表面水酸基による水素結合によって強固な凝集体となる。この時、樹脂中で微細セルロースは分散がしにくく、一部が凝集物として不均一に存在することとなる。
したがって、本開示の一態様は、成形体に充分な機械的特性を与えつつ、実用に耐えうる充分な物性安定性を与える、微細セルロースを含む複合粒子、及び当該複合粒子を含む樹脂組成物を提供することを目的とする。
また本開示の一態様は、微細セルロースが乾燥状態であっても再分散性に優れ、かつ、着色が極めて少なく、臭気をも抑制されたセルロース強化樹脂組成物を、汎用的に適用可能な方法で製造する製造方法を提供することを目的とする。
本発明は以下の態様を包含する。
[1] 微細セルロースと熱可塑性樹脂とを含む複合粒子であって、
前記複合粒子中の微細セルロースの比率が10質量%以上95質量%以下であり、
分散液中の微細セルロース濃度が1質量%となるように前記複合粒子をジメチルスルホキシド中に分散させて得た分散液の、液温25℃及び剪断速度10s-1における粘度η10が、10mPa・s以上である、複合粒子。
[2] 前記分散液の、液温25℃における、剪断速度100s-1での粘度η100に対する剪断速度10s-1での粘度η10の比η10/η100であるチキソトロピーインデックス(TI)が、2以上である、上記態様1に記載の複合粒子。
[3] メジアン粒径が1μm以上5000μm以下である、上記態様1又は2に記載の複合粒子。
[4] 前記熱可塑性樹脂がジメチルスルホキシドに可溶である、上記態様1~3のいずれかに記載の複合粒子。
[5] 前記熱可塑性樹脂がセルロース誘導体である、上記態様4に記載の複合粒子。
[6] 前記セルロース誘導体の重量平均分子量Mwが10万以下である、上記態様5に記載の複合粒子。
[7] 前記微細セルロースが、数平均径2nm以上1000nm未満を有する、上記態様1~6のいずれかに記載の複合粒子。
[8] 前記微細セルロースが、数平均径2nm以上500nm未満を有する、上記態様1~6のいずれかに記載の複合粒子。
[9] 前記微細セルロースが、数平均径10nm以上100nm未満を有する、上記態様1~6のいずれかに記載の複合粒子。
[10] 前記微細セルロースが、重量平均分子量(Mw)100000以上、及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)6以下を有する、上記態様1~9のいずれかに記載の複合粒子。
[11] 前記微細セルロースが、アルカリ可溶多糖類の平均含有率12質量%以下、及び、結晶化度60%以上を有する、上記態様1~10のいずれかに記載の複合粒子。
[12] 前記微細セルロースのアルカリ可溶多糖類の平均含有率が8質量パーセント以下である、上記態様1~11のいずれかに記載の複合粒子。
[13] 前記微細セルロースの一部が化学修飾されており、かつ前記微細セルロースがI型結晶構造を有する、上記態様1~12のいずれかに記載の複合粒子。
[14] 前記化学修飾がアセチル化である、上記態様13に記載の複合粒子。
[15] 上記態様1~14のいずれかに記載の複合粒子の製造方法であって、
微細セルロースの水分散体と熱可塑性樹脂の粒子とを混合し、次いで乾燥させて、複合粒子を回収する、粉末化工程を含む、方法。
[16] 前記微細セルロースの水分散体を、
有機溶媒中でセルロースの解繊処理を行って微細セルロース分散体を得る解繊工程、及び
前記微細セルロース分散体中の有機溶媒を水に置換する精製工程、
によって調製する、上記態様15に記載の製造方法。
[17] 前記解繊工程と同時に、又は前記解繊工程の後かつ前記精製工程の前に、微細セルロースの化学修飾を行う化学修飾工程を更に含む、上記態様16に記載の方法。
[18] 上記態様1~14のいずれかに記載の複合粒子の製造方法であって、
微細セルロースの有機溶媒分散体中に熱可塑性樹脂を添加して、有機溶媒中に微細セルロースが分散しかつ熱可塑性樹脂が溶解している微細セルロース/樹脂分散体を得る微細セルロース/樹脂分散体調製工程、
前記微細セルロース/樹脂分散体を前記熱可塑性樹脂の貧溶媒と混合し、微細セルロースと熱可塑性樹脂とを含む複合粒子を析出させることによって、複合粒子分散体を得る析出工程、
前記複合粒子分散体中の前記有機溶媒を水に置換して水分散体を得る精製工程、及び
前記水分散体を乾燥させて複合粒子を回収する粉末化工程、
を含む、方法。
[19] 前記微細セルロースの有機溶媒分散体を、有機溶媒中でセルロースを解繊処理する解繊工程によって調製する、上記態様18に記載の複合粒子の製造方法。
[20] 前記解繊工程と同時又は前記解繊工程の後に、微細セルロースの化学修飾を行う化学修飾工程を更に含む、上記態様19に記載の方法。
[21] 微細セルロースと熱可塑性樹脂とを含む複合粒子、及び、前記複合粒子中の熱可塑性樹脂とは異なる熱可塑性樹脂、を含む樹脂組成物の製造方法であって、
上記態様15~20のいずれかに記載の方法で複合粒子を形成する工程、及び
前記複合粒子と、前記複合粒子に含まれる熱可塑性樹脂とは異なる熱可塑性樹脂と、を混練する工程、
を含む、方法。
[22] 上記態様1~14のいずれかに記載の複合粒子とベース樹脂とを含む、樹脂組成物。
[23] 熱可塑性樹脂、
前記熱可塑性樹脂100質量部に対して0.1~40質量部の、繊維径が2nm以上1000nm未満である微細セルロース繊維、及び
前記微細セルロース繊維100質量部に対して1質量部~500質量部の、セルロース誘導体、
を含む、樹脂組成物。
[24] 前記微細セルロース繊維が、重量平均分子量(Mw)100000以上、及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)6以下を有する、上記態様23に記載の樹脂組成物。
[25] 前記微細セルロース繊維が、アルカリ可溶多糖類の平均含有率12質量%以下、及び結晶化度60%以上を有する、上記態様23又は24に記載の樹脂組成物。
[26] 前記ベース樹脂が、熱可塑性樹脂である、上記態様22に記載の樹脂組成物。
[27] 前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂及びこれらのいずれか2種以上の混合物からなる群より選択される、上記態様23~26のいずれかに記載の樹脂組成物。
[28] 前記熱可塑性樹脂が、ポリプロピレンであり、該ポリプロピレンのISO1133に準拠して230℃で測定されたメルトマスフローレイト(MFR)が、3g/10分以上30g/10分以下である、上記態様27に記載の樹脂組成物。
[29] 前記熱可塑性樹脂が、ポリアミド系樹脂であり、該ポリアミド系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95である、上記態様27に記載の樹脂組成物。
[30] 前記熱可塑性樹脂が、ポリエステル系樹脂であり、該ポリエステル系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95である、上記態様27に記載の樹脂組成物。
[31] 前記熱可塑性樹脂が、ポリアセタール系樹脂であり、該ポリアセタール系樹脂が、0.01~4モル%のコモノマー由来構造を含有するコポリアセタールである、上記態様27に記載の樹脂組成物。
[32] 前記熱可塑性樹脂が、融点140℃以上を有する結晶性熱可塑性樹脂である、上記態様23~31のいずれかに記載の樹脂組成物。
[33] 前記ベース樹脂が、熱硬化性樹脂又は光硬化性樹脂である、上記態様22に記載の樹脂組成物。
[34] 前記ベース樹脂が、ゴムである、上記態様22に記載の樹脂組成物。
[35] 上記態様22~32のいずれかに記載の樹脂組成物の製造方法であって、
上記態様1~12のいずれかに記載の前記複合粒子を、乾燥粉末又は水分散体の形態で、熱可塑性樹脂と溶融混練成型機の内部で混練し、次いで成形する工程を含む、方法。
[36] 熱可塑性樹脂と、
微細セルロースとセルロース誘導体で構成された複合粒子と、
を含む樹脂組成物の製造方法であって、
押出機において前記熱可塑性樹脂を溶融混練する第1の工程と、
第1の工程の溶融された樹脂に前記複合粒子を添加する第2の工程と、
を含む、方法。
[37] 前記微細セルロースが、重量平均分子量(Mw)100000以上、及び重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)6以下を有する、上記態様36に記載の方法。
[38] 前記微細セルロースが、アルカリ可溶多糖類の平均含有率12質量%以下、及び結晶化度60%以上を有する、上記態様36又は37に記載の方法。
[39] 前記方法が、
押出機において前記熱可塑性樹脂を溶融混練する第1の工程と、
第1の工程の溶融された樹脂に前記複合粒子を添加する第2の工程と、
を含む、上記態様35に記載の方法。
[40] 前記第1の工程は、押出機が備えるシリンダー内の溶融混練ゾーンで行われ、
前記第2の工程は、前記シリンダーに設けられた添加口から前記複合粒子を供給することにより行われる、上記態様36~39のいずれかに記載の方法。
[41] 前記添加口は、前記溶融混練ゾーンよりも下流に配置される、上記態様40に記載の方法。
[42] 前記シリンダーの全長(L1)に対し、前記シリンダーの出口から前記添加口までの長さ(L2)が1/2以下である、上記態様40又は41に記載の方法。
[43] 前記添加口よりも下流側のシリンダー内に、前記複合粒子を前記熱可塑性樹脂中で混練分散させるための反時計回りスクリューが1箇所以上設けられている、上記態様40~42のいずれかに記載の方法。
[44] 上記態様33に記載の樹脂組成物の製造方法であって、
複合粒子を熱硬化性樹脂と混合し、次いで成形し、次いで熱硬化処理を行う工程、又は
複合粒子を光硬化性樹脂と混合し、次いで成形し、次いで光硬化処理を行う工程、
を含む、方法。
[45] 上記態様34に記載の樹脂組成物の製造方法であって、
複合粒子をゴムと混合し、次いで成形し、次いで加硫を行う工程を含む、方法。
[46] 前記樹脂組成物の引張破断強度の変動係数(標準偏差/算術平均値)が、15%以下である、上記態様22~34のいずれかに記載の樹脂組成物。
[47] 前記樹脂組成物の引張降伏強度が、前記熱可塑性樹脂の引張降伏強度の1.05倍以上である、上記態様22~34及び46のいずれかに記載の樹脂組成物。
[48] 前記樹脂組成物の0℃~60℃の範囲での線膨張係数が80ppm/k以下である、上記態様22~34、46及び47のいずれかに記載の樹脂組成物。
[49] 上記態様22~34及び46~48のいずれかに記載の樹脂組成物より形成される、樹脂ペレット。
[50] 上記態様22~34及び46~48のいずれかに記載の樹脂組成物より形成される、樹脂成形体。
本開示の一態様に係る複合粒子及びこれを含む樹脂組成物は、成形体に充分な機械的特性を与えつつ、更には実用に耐えうる充分な物性安定性を与え得る。
また、本開示の一態様に係る樹脂組成物の製造方法によれば、微細セルロースが乾燥状態であっても再分散性に優れ、かつ、着色が極めて少なく、臭気をも抑制されたセルロース強化樹脂組成物を、汎用的に適用可能な方法で製造することができる。
図1は、微細セルロース繊維の例を示す顕微鏡画像である。 図2Aは、セルロースウィスカーの例を示す顕微鏡画像である。 図2Bは、セルロースウィスカーの例を示す顕微鏡画像である。 図3Aは、熱分解開始温度(TD)及び1%重量減少温度の測定法の説明図である。 図3Bは、熱分解開始温度(TD)及び1%重量減少温度の測定法の説明図である。 図4は、250℃重量減少率の測定法の説明図である。 図5は、IRインデックスの算出法の説明図である。 図6は、実施例及び比較例においてフェンダーの欠陥率の評価のために作製したフェンダーの形状を示す概略図である。 図7は、実施例及び比較例において実成形体の線膨張係数の変動係数を測定するために試験片を取り出した位置を示すフェンダーの図である。
本発明の例示の態様について以下具体的に説明するが、本発明はこれらの態様に限定されるものではない。
≪複合粒子≫
本発明の一態様は、微細セルロースと熱可塑性樹脂とを含む複合粒子を提供する。一態様において、複合粒子中の微細セルロースの比率は、10質量%以上95質量%以下である。複合粒子中の微細セルロースの比率の下限は、10質量%以上、好ましくは15質量%以上、より好ましくは20質量%以上であり、上限は95質量%以下、好ましくは90質量%以下、より好ましくは80質量%以下である。微細セルロースの比率が10質量%以上である場合、複合粒子を用いた樹脂組成物製造において、所定の微細セルロースを添加した際に樹脂組成物に含まれる複合粒子の熱可塑性樹脂量が多くなりすぎず、樹脂組成物自体の物性制御が困難とならず有利である。微細セルロースの比率が95質量%である場合、微細セルロース間の水素結合に由来する凝集が強力すぎず樹脂組成物中の微細セルロースの分散が良好で、機械強度及び寸法安定性を向上させることができ有利である。
一態様において、分散液中の微細セルロース濃度が1質量%となるように複合粒子をジメチルスルホキシド(本開示で、DMSOともいう。)中に分散させて得た分散液の、液温25℃及び剪断速度10s-1における粘度η10(本開示で、単に「粘度η10」ともいう。)は、10mPa・s以上であり、好ましくは15mPa・s以上、より好ましくは20mPa・s以上、更に好ましくは25mPa・s以上である。粘度η10が10mPa・s以上の複合粒子を用いて樹脂組成物を作製した場合、微細セルロースの樹脂組成物中での分散性が良好で、機械強度及び寸法安定性を向上させることができ有利である。一方、DMSO中での分散性に優れるほど粘度η10は上昇するため粘度η10の上限は特にない。粘度η10が高いほど樹脂組成物中での微細セルロースの分散性が向上し、良好な機械強度向上及び寸法安定性向上を達成できる。一態様において、熱可塑性樹脂の入手容易性の観点から、η10の上限は、2000mPa・s以下、又は1800mPa・s以下、又は1500mPa・s以下であってよい。
好ましい態様において、分散液中の微細セルロース濃度が1質量%となるように複合粒子をDMSO中に分散させて得た分散液の、液温25℃における、剪断速度100s-1での粘度η100に対する剪断速度10s-1での粘度η10の比η10/η100であるチキソトロピーインデックス(TI)は、2以上である。本来的に、微細セルロースが十分に分散した分散液は、剪断速度が大きくなるほど低粘度化する構造粘性を有している。TIが2以上であることは、複合粒子における微細セルロースの分散性が良好であることを表し、このような複合粒子を用いて樹脂組成物を作製した場合、樹脂組成物中の微細セルロースの分散性も良好であり、機械強度向上及び寸法安定性向上において有利である。TIは、より好ましくは3以上、更に好ましくは5以上、特に好ましくは7以上である。TIは、微細セルロースの分散性の観点では大きい方が好ましいが、複合粒子の製造容易性の観点から、例えば、50以下、又は40以下、又は30以下であってよい。
本開示の粘度(η10及びη100)の測定は、まず微細セルロースが1質量%となるように所定量の複合粒子をDMSO中に添加し、複合粒子を含むDMSO分散液100mlを調製する。分散条件は、分散液の撹拌等によって複合粒子がDMSO中に分散するように設定され、例えばマグネチックスターラーで300rpm以上の回転数で1分以上撹拌(より具体的な例はマグネチックスターラーで1200rpm、1時間撹拌)の条件とされる。液温が25℃であることを確認した後、撹拌中の分散液を一部分取し、レオメーターにて二重円筒ジオメトリで粘度測定を直ちに行う。なお装置は事前に25℃に温調する。測定条件としては、剪断速度を、100秒かけて100s-1から1s-1まで下降させた後、100秒かけて100s-1まで上昇させるサイクルを2回繰り返す。そして、最後に100s-1から1s-1まで100秒かけて下降させ、1sec毎に粘度データを取得する。そして、剪断速度Rs-1の時の粘度をηRとする(例えば10s-1の時はη10と表記する。)
本開示で、複合粒子のメジアン粒径は、レーザー回折式粒度分布測定装置又は画像解析式粒度分布測定装置で測定される値である。本開示のメジアン粒径の数値は、これら装置の少なくとも一方で得られる数値が当該数値であることを意図する。メジアン粒径の下限は1μm以上が好ましく、より好ましくは3μm以上、さらに好ましくは5μm以上、特に好ましくは10μm以上である。また、上限は5000μm以下が好ましく、より好ましくは3000μm以下、さらに好ましくは1000μm以下、特に好ましくは500μm以下である。メジアン粒径が1μm以上の場合、一次粒子の二次凝集を防ぐために、製造において特殊な手法を用いる必要が少なく、製造プロセス及びコストの観点で好ましい。一方、メジアン粒径が5000μm以下の場合、押出機等を用いた樹脂組成物製造において複合粒子とベース樹脂との混練が安定し、結果として微細セルロースの樹脂組成物中での分散性が良好になり好ましい。
<微細セルロース>
本開示の「微細セルロース」とは、数平均径が2nm以上1000nm未満であるセルロースを意味し、セルロースファイバー及びセルロースウィスカーを包含する。本開示で、微細セルロースの「長さ」(L)及び「径」(D)は、例えば、セルロースファイバー(本開示で、微細セルロース繊維ともいう。)においては繊維長及び繊維径に、また、セルロースウィスカーにおいては長径及び短径にそれぞれ相当する。微細セルロース(一態様において、セルロースウィスカー及びセルロースファイバーの各々)の数平均径は、一態様において、4nm以上、10nm以上、又は20nm以上、又は30nm以上であり、一態様において、500nm以下、又は500nm未満、又は450nm以下、又は400nm以下、又は350nm以下、又は300nm以下、又は100nm以下、又は100nm未満である。微細セルロースの数平均径が2nm未満である場合、結晶化度が著しく低く、また樹脂組成物中での分散性が悪いため、樹脂組成物の所望の引張破断強度及び熱安定性(具体的には、低い線熱膨張率、及び高温時の弾性保持)が得られない。一方、微細セルロースの数平均径が1000nm以上の場合、樹脂組成物中での微細セルロースの交絡点数が少なく、樹脂組成物の所望の引張破断強度及び熱安定性が得られない。微細セルロースの径を上述の範囲内にすることは、樹脂組成物を用いて形成された成形体の摺動性の向上の点で有利である。
本開示の一態様において、セルロースファイバーの繊維径は、好ましくは、4nm以上、又は10nm以上、又は20nm以上、又は30nm以上であり、好ましくは500nm以下、又は500nm未満、又は450nm以下、又は400nm以下、又は350nm以下、又は300nm以下、又は100nm以下、又は100nm未満である。
本開示の一態様において、セルロースウィスカーの短径は、好ましくは、4nm以上、又は10nm以上、20nm以上、又は30nm以上であり、好ましくは500nm以下、又は500nm未満、又は450nm以下、又は400nm以下、又は350nm以下、又は300nm以下、又は100nm以下、又は100nm未満である。
セルロースファイバーの繊維長(L)/繊維径(D)の比(L/D)は、一態様において30以上であり、好ましくは50以上、より好ましくは80以上、より好ましくは100以上、より好ましくは120以上、より好ましくは150以上、より好ましくは200以上、さらにより好ましくは300以上、最も好ましくは500以上であり、また好ましくは5000以下、より好ましくは4000以下、より好ましくは3000以下、更に好ましくは1000以下である。セルロースファイバーのL/Dが上述の範囲にあることは、樹脂組成物の引張破断強度及び熱安定性の向上の点で有利である。一態様において、セルロースファイバーのL/Dが1000以下であることは、樹脂組成物の溶融粘度を高くし過ぎない観点で有利である。
セルロースウィスカーの長径(L)/短径(D)の比(L/D)は、一態様において30未満であり、好ましくは25以下、より好ましくは20以下、より好ましくは15以下、より好ましくは10以下、更に好ましくは5以下である。セルロースウィスカーのL/Dは1以上、好ましくは1.1以上、より好ましくは1.2以上、更に好ましくは1.5以上である。セルロースウィスカーのL/D比が上述の範囲内にあることは、一態様において、樹脂組成物に適度な流動性を付与できる点で有利である。
一態様において、微細セルロースは、セルロースファイバー、セルロースウィスカー、又はこれらの混合物である。本開示の複合粒子による利点が顕著である点で、微細セルロースは、セルロースファイバーであるか、又はセルロースファイバーとセルロースウィスカーとの混合物である。上記混合物のセルロースファイバー/セルロースウィスカー比率(質量基準)は、好ましくは90/10~10/90、より好ましくは80/20~20/80、更に好ましくは70/30~30/70である。
一態様において、セルロースウィスカーは、セルロースファイバーと混合されることでセルロースファイバーの分散性を向上させ、その結果として樹脂組成物の力学的特性を向上させることができる。セルロースウィスカーは化学修飾されていても良く、化学修飾の態様はセルロースファイバーと同様であることができる。セルロースファイバーとセルロースウィスカーとを組合せる場合、セルロースファイバー100質量部に対するセルロースウィスカーの量は、好ましくは10~500質量部、より好ましくは20~300質量部、さらに好ましくは30~200質量部である。加工性と機械的特性とのバランスの観点から、セルロースウィスカーの量を上述の範囲内とすることが望ましい。
微細セルロース(例えば、セルロースウィスカー及びセルロースファイバーの各々)の数平均径、数平均長さ及びL/Dは、微細セルロースの水分散液を水溶性溶媒(例えば、水、エタノール、tert-ブタノール等)で0.01質量%~0.1質量%まで希釈し、高剪断ホモジナイザー(例えば、日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」、IKA製、商品名「ウルトラタラックスT18」)を用い、処理条件:回転数25,000rpm×5分間で分散させ、マイカ上にキャストし、風乾したものを測定サンプルとし、高分解能走査型顕微鏡(SEM)又は原子間力顕微鏡(AFM)で計測して求める。具体的には、少なくとも100本の微細セルロースが観測されるように倍率が調整された観察視野にて、無作為に選んだ100本の微細セルロースの長さ及び径を計測する(この値から個々の微細セルロースのL/Dを算出できる)。そして、得られた100個の径及び長さの平均値を微細セルロースの数平均径及び数平均長さとする。一態様においては、セルロースウィスカーとセルロースファイバーとを、比(L/D)が30未満のものをセルロースウィスカー、30以上のものをセルロースファイバーと分類することで互いに区別してよい。一態様において、微細セルロースがセルロースウィスカーとセルロースファイバーとの混合物である場合、L/Dが30以上のセルロースファイバー100本以上と、L/Dが30未満のセルロースウィスカー100本以上の、合計200本以上での測定を行う。
図1は、セルロースファイバーとしての微細セルロースの例を示す顕微鏡画像である。いずれのセルロースも繊維状の構造をなし、L/Dが30以上の高L/Dであることが判る。なお図2A及び図2Bは、セルロースウィスカーの例を示す顕微鏡画像である。図2Bは図2Aの部分拡大図である。いずれのセルロースも針状結晶粒子状の構造をなし、L/Dが30未満の低L/Dであることが判る。
樹脂組成物中又は複合粒子中の微細セルロース(例えば、セルロースウィスカー及びセルロースファイバーの各々)の長さ、径、及びL/D比は、固体である樹脂組成物又は複合粒子を測定サンプルとして、上述の測定方法により測定することで確認してもよい。樹脂組成物又は複合粒子から微細セルロースを水分散体として取り出す方法としては、熱可塑性樹脂が溶解する溶媒(例えば、ポリオレフィンに対しては1,2,4-トリクロロベンゼン又は1,2-ジクロロベンゼン、ポリアミドに対してはヘキサフルオロ-2-イソプロパノール、等が挙げられるが、樹脂溶解剤はこれらに限定されるものではない。)で熱可塑性樹脂を溶解させた後、ろ過や遠心分離を用いて微細セルロースを分離し、前記溶媒で充分に洗浄する。その後、溶媒を純水に置換した後、最終的に、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」、IKA製、商品名「ウルトラタラックスT18」)を用い、処理条件:回転数25,000rpm×5分間で分散させることで水分散体を取り出すことができる。
本実施形態の微細セルロースの数平均径は、比表面積から算出される比表面積相当径であってもよい。すなわち、一態様において、微細セルロースの比表面積相当径が本開示の範囲であってよい。本開示で、比表面積相当径とは、窒素吸着によるBET法で得られる比表面積から算出される径である。
比表面積相当径は、微細セルロースの水分散体をtBuOHで溶媒置換した後乾燥させて多孔質シートを作製し、当該多孔質シートの比表面積を窒素吸着によるBET法を用いて測定して得られる値である。微細セルロースを、セルロース間の融着が全く起こっていない理想状態であり、かつセルロース密度がd(g/cm3)、径がD(nm)である円柱と仮定したとき、比表面積と径は下記の式で表される。
比表面積(m2/g)=4000/(dD)
そして、セルロース密度を1.50g/cm3とすると、径は下記の式で表される。
D(nm)=2667/比表面積(m2/g)
典型的な態様において、微細セルロースは、結晶構造がセルロースI型及び/又はII型を有する。セルロースの結晶形としては、I型、II型、III型、IV型等が知られている。I型及びII型のセルロースは汎用されている一方、III型及びIV型のセルロースは実験室スケールでは得られているものの工業スケールでは汎用されていない。微細セルロースとしては、構造上の可動性が比較的高く、当該微細セルロースを樹脂に分散させることにより、線熱膨張率がより低く、引っ張り時及び曲げ変形時の強度及び伸びがより優れた樹脂組成物が得られることから、セルロースI型結晶又はセルロースII型結晶を含有する微細セルロースが好ましい。
結晶構造は、グラファイトで単色化したCuKα(λ=0.15418nm)を用いた広角X線回折より得られる回折プロファイルより同定することが可能である。セルロースI型は2θ=14~17°付近と2θ=22~23°付近の2箇所の位置にピークを有する。セルロースII型は2θ=10°~19°に1つのピークと、2θ=19°~25°に2つのピークとを有する。セルロースI型及びセルロースII型が混在する場合、2θ=10°~25°の範囲で最大6本のピークが観測される。
本実施形態の微細セルロース(特に、セルロースファイバー及びセルロースウィスカーの各々)の結晶化度は、好ましくは50%以上である。結晶化度がこの範囲にあると、微細セルロース(例えばセルロースファイバー)自体の力学物性(特に強度及び寸法安定性)が高まるため、微細セルロースを樹脂に分散してなる樹脂組成物の強度及び寸法安定性が高くなる傾向にある。本実施形態の微細セルロースの結晶化度は、より好ましくは55%以上、又は60%以上、又は65%以上、又は70%以上、又は80%以上である。微細セルロースの結晶化度は高いほど好ましい傾向にあるので、上限は特に限定されないが、生産上の観点から99%が好ましい上限である。
結晶化度は、微細セルロースがセルロースI型結晶(天然セルロース由来)である場合には、サンプルを広角X線回折により測定した際の回折パターン(2θ/deg.が10~30)からSegal法により、以下の式で求められる。
結晶化度(%)=[I(200)-I(amorphous)]/I(200)×100
(200):セルロースI型結晶における200面(2θ=22.5°)による回折ピーク強度
(amorphous):セルロースI型結晶におけるアモルファスによるハローピーク強度であって、200面の回折角度より4.5°低角度側(2θ=18.0°)のピーク強度
また結晶化度は、セルロースがセルロースII型結晶(再生セルロース由来)である場合には、広角X線回折において、セルロースII型結晶の(110)面ピークに帰属される2θ=12.6°における絶対ピーク強度h0 とこの面間隔におけるベースラインからのピーク強度h1 とから、下記式によって求められる。
結晶化度(%) =h1 /h0 ×100
微細セルロースの重合度(DP)は、100以上12000以下であることが好ましい。重合度はセルロース分子鎖を形成する無水グルコース単位の繰返し数である。微細セルロースの重合度が100以上であることで、微細セルロース自体の引張破断強度及び弾性率が向上し、樹脂組成物の高い引張破断強度及び熱安定性が発現するため好ましい。微細セルロースの重合度に特に上限はないが、12000を超える重合度のセルロースは実質的に入手が困難であり、工業的な利用が難しい傾向がある。取扱性及び工業的実施の観点から、微細セルロースの重合度は、150~8000が好ましい。重合度は、まず、銅エチレンジアミン溶液を用いたセルロース希薄溶液の極限粘度(JIS P 8215:1998)を求めた後、セルロースの極限粘度と重合度DPとが下記式(1)の関係であることを利用して、重合度DPとして求められる。
極限粘度[η]=K×DPa (1)
ここでK及びaは高分子の種類によって決まる定数であり、セルロースの場合、Kは5.7×10-3、aは1である。
一態様において、セルロースウィスカーの重合度は、好ましくは600以下、より好ましくは300以下であり、また好ましくは100以上、より好ましくは150以上である。
一態様において、微細セルロースの重量平均分子量(Mw)は100000以上であり、より好ましくは200000以上である。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)は6以下であり、好ましくは5.4以下である。重量平均分子量が大きいほどセルロース分子の末端基の数は少ないことを意味する。また、重量平均分子量と数平均分子量との比(Mw/Mn)は分子量分布の幅を表すものであることから、Mw/Mnが小さいほどセルロース分子の末端の数は少ないことを意味する。セルロース分子の末端は熱分解の起点となるため、微細セルロースのセルロース分子の重量平均分子量が大きいだけでなく、重量平均分子量が大きいと同時に分子量分布の幅が狭い場合に、特に高耐熱性の微細セルロース、及び微細セルロースと樹脂との樹脂複合体が得られる。繊維セルロースの重量平均分子量(Mw)は、セルロース原料の入手容易性の観点から、例えば600000以下、又は500000以下であってよい。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)は、繊維セルロースの製造容易性の観点から、例えば1.5以上、又は2以上であってよい。Mwは、目的に応じたMwを有するセルロース原料を選択すること、セルロース原料に対して物理的処理及び/又は化学的処理を適度な範囲で適切に行うこと、等によって上記範囲に制御できる。Mw/Mnもまた、目的に応じたMw/Mnを有するセルロース原料を選択すること、セルロース原料に対して物理的処理及び/又は化学的処理を適度な範囲で適切に行うこと、等によって上記範囲に制御できる。Mwの制御、及びMw/Mnの制御の両者において、上記物理的処理としては、マイクロフリュイダイザー、ボールミル、ディスクミル等の乾式粉砕若しくは湿式粉砕、擂潰機、ホモミキサー、高圧ホモジナイザー、超音波装置等による衝撃、せん断、ずり、摩擦等の機械的な力を加える物理的処理を例示でき、上記化学的処理としては、蒸解、漂白、酸処理、再生セルロース化等を例示できる。
ここでいうセルロースの重量平均分子量及び数平均分子量とは、セルロースを塩化リチウムが添加されたN,N-ジメチルアセトアミドに溶解させたうえで、N,N-ジメチルアセトアミドを溶媒としてゲルパーミエーションクロマトグラフィによって求めた値である。
本実施形態の微細セルロースは化学修飾されていてもよい(本開示では、化学修飾された微細セルロースを化学修飾微細セルロース、ともいう)。化学修飾は、微細セルロースの内部及び/又は表面のセルロース分子の水酸基に対して行われ、セルロース修飾化剤により水酸基が所望の官能基に置換される。例えば、微細セルロースの表面に存在する水酸基が酢酸エステル、硝酸エステル、硫酸エステル、リン酸エステル等にエステル化されたもの(エステル化微細セルロース)、メチルエーテルを代表とするアルキルエーテル、カルボキシメチルエーテルを代表とするカルボキシエーテル、シアノエチルエーテル等にエーテル化されたもの(エーテル化微細セルロース)、TEMPO(2,2,6,6-テトラメチルピペリジノオキシラジカル)酸化触媒によって6位の水酸基が酸化され、カルボキシル基(酸型、塩型を含む)となったもの(カルボキシル化微細セルロース)が挙げられる。化学修飾は、樹脂と微細セルロースとの親和性が増すことで樹脂組成物の引張破断強度及び/若しくは熱安定性が向上する点、並びに/又は、ミクロフィブリル同士の解繊が容易に行われる点、並びに/又は、微細セルロースの耐熱性が向上することで高耐熱性のエンジニアリングプラスチックのフィラーとして使用可能になる点、で有利である。かかる化学修飾としては、反応プロセスの簡略化の観点、および、微細セルロース自体の耐熱性向上の観点から、好ましくはエステル化、より好ましくはアセチル化である。化学修飾は微細セルロースの一部(例えば、内部、表面のいずれか)、又は全部(例えば、内部及び表面の両方)で生じてよいが、化学修飾を微細セルロースの一部のみで生じさせることで、微細セルロースにセルロース骨格を残存させることができる。例えば、微細セルロースの表面のみを化学修飾し、中心部にセルロース骨格(特にセルロースI型又はII型の結晶構造)を残存させることができる。微細セルロースの一部が化学修飾されており、かつ該微細セルロースが結晶構造(典型的にはI型及び/又はII型、好ましくはI型)を有する場合、セルロース由来の高い引張破断強度及び寸法安定性が保持されつつ、化学修飾による耐熱性の向上及び樹脂複合時の樹脂との親和性の向上、樹脂組成物の寸法安定性の向上を実現でき、より好ましい。化学修飾された微細セルロースにおける化学修飾基の存在は1HNMRで確認できる。
微細セルロースの熱分解開始温度(Td)は、特に限定されることはないが、加熱による微細セルロースの変色又は熱劣化が課題となる場合、熱分解開始温度は高い方が好ましい。熱分解開始温度(Td)は、好ましくは270℃以上、より好ましくは275℃以上、さらに好ましくは280℃以上、特に好ましくは285℃以上である。
本開示で、熱分解開始温度(Td)とは、図3A及び図3Bの説明図に示すように、熱重量(TG)分析における、横軸が温度、縦軸が重量残存率%のグラフから求めた値である(なお、図3Bは図3Aの拡大図である。)。微細セルロースの150℃(水分がほぼ除去された状態)での重量(重量減少量0wt%)を起点としてさらに昇温を続け、1wt%重量減少時の温度と2wt%重量減少時の温度とを通る直線を得る。この直線と、重量減少量0wt%の起点を通る水平線(ベースライン)とが交わる点の温度を熱分解開始温度(Td)と定義する。なお、TG分析は(1)サンプル乾燥工程、及びこれに連続的に続く(2)測定工程の2つの工程からなる。(1)サンプル乾燥工程では、サンプルを窒素フロー100ml/min中で、室温から150℃まで昇温速度:10℃/minで昇温し、150℃で1時間保持した後、30℃になるまで冷却する。つづいて、(2)測定工程では、窒素フロー100ml/min中で、30℃から450℃まで昇温速度:10℃/minで昇温する。また、測定サンプルとして前述した化学修飾微細セルロース多孔質シートから円形に切り抜いたものを使用し、アルミ試料パン中に10mg分重ねて入れて測定する。
1%重量減少温度は、上記熱分解開始温度(Td)の方法で昇温を続けた際の、150℃の重量を起点とした1重量%重量減少時の温度である。
本実施形態の微細セルロースの250℃重量減少率は、図4の説明図に示すように、熱重量(TG)分析において、微細セルロースを250℃、窒素フロー下で2時間保持した時の重量減少率である。なお、TG分析は(1)サンプル乾燥工程、及びこれに連続的に続く(2)測定工程の2つの工程からなる。(1)サンプル乾燥工程では、窒素フロー100ml/min中で、室温から150℃まで昇温速度:10℃/minで昇温し、150℃で1時間保持する。つづいて、(2)測定工程では、窒素フロー100ml/min中で、150℃から250℃まで昇温速度:10℃/minで昇温し、そのまま250℃で2時間保持する。また、測定サンプルとして前述した化学修飾微細セルロース多孔質シートから円形に切り抜いたものを使用し、アルミ試料パン中に10mg分重ねて入れて測定する。
微細セルロースのゼータ電位は、-5mV以下であることが好ましい。ゼータ電位がこの範囲にある場合、微細セルロース成分とベース樹脂とをコンパウンドした際に、微細セルロース成分とベース樹脂との過度の結合を生じることなく、良好な溶融流動性を保つことができる。ゼータ電位は、より好ましくは-10mV以下であり、さらに好ましくは-20mV以下であり、特に好ましくは-25mV以下であり、最も好ましくは-30mV以下である。この値が小さいほどコンパウンドの物性が優れるため下限は特に限定されるものではないが、製造容易性の観点から-10mV以上が好ましい。
なお、化学修飾されている微細セルロースにおいては、その特性が修飾基による影響を強く受けるため、-5mVを超えるゼータ電位であっても良好な溶融流動性を保つことができる。したがって、化学修飾されている微細セルロースのゼータ電位は上記範囲外であってもよい。
ゼータ電位は以下の方法で測定することができる。微細セルロース1質量%濃度の純水懸濁液を高剪断ホモジナイザー(例えば、日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」、IKA製、商品名「ウルトラタラックスT18」)を用い、処理条件:回転数25,000rpm×5分間で分散させて得た水分散体を、0.01~0.5質量%まで純水で希釈し、ゼータ電位計(例えばマルバーン社製、装置名ゼータサイザーナノZS)を使用し、25℃、pH7で測定する。
本実施形態の微細セルロースはリグニン等を含む酸不溶成分及び/又はヘミセルロース等を含むアルカリ可溶多糖類を含んでいても良い。酸不溶成分及びアルカリ可溶多糖類の含有量は微細セルロースの耐熱性及び樹脂組成物中の分散性に影響を及ぼすため、目的に応じて調整すれば良い。一般的に酸不溶成分及びアルカリ可溶多糖類の含有量が多いと、微細セルロースの耐熱性低下及びそれに伴う変色、微細セルロースの力学的特性の低下等を誘起する。したがって、例えば、ポリアミド樹脂のような高温で溶融混練する樹脂を用いて樹脂組成物を製造する場合、セルロース原料中の酸不溶成分及びアルカリ可溶多糖類の平均含有率は少ない方が好ましい場合がある。
微細セルロース中の酸不溶成分平均含有率(一態様においてリグニン平均含有率)は、好ましくは10質量%未満、より好ましくは8質量%以下、さらに好ましくは7質量%以下、さらにより好ましくは6質量%以下、最も好ましくは5質量%以下である。酸不溶成分平均含有率は、0質量%であってよいが、微細セルロースの製造容易性の観点から、例えば0.1質量%以上、又は0.5質量%以上、又は1質量%以上、又は2質量%以上、又は3質量%以上であってもよい。
酸不溶成分の定量は、非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載のクラーソン法を用いた酸不溶成分の定量として行う。なおこの方法は当業界においてリグニン量の測定方法として理解されている。硫酸溶液中でサンプルを撹拌してセルロース及びヘミセルロース等を溶解させた後、ガラスファイバーろ紙で濾過し、得られた残渣が酸不溶成分に該当する。この酸不溶成分重量より酸不溶成分含有率を算出し、そして、3サンプルについて算出した酸不溶成分含有率の数平均を酸不溶成分平均含有率とする。
微細セルロース中のアルカリ可溶多糖類平均含有率(一態様においてヘミセルロース平均含有率)は、好ましくは13質量%以下、より好ましくは12質量%以下、より好ましくは8質量%以下、さらに好ましくは5質量%以下である。アルカリ可溶多糖類平均含有率は、0質量%であってよいが、微細セルロースの製造容易性の観点から、例えば1質量%以上、又は3質量%以上、又は6質量%以上であってもよい。好ましい態様においては、微細セルロースが、アルカリ可溶多糖類の平均含有率として上記範囲の値を有し、かつ結晶化度として、本開示の範囲の値(特に好ましくは60%以上)を有する。
本開示におけるアルカリ可溶多糖類は、ヘミセルロースのほか、β-セルロース及びγ-セルロースも包含する。アルカリ可溶多糖類とは、植物(例えば木材)を溶媒抽出及び塩素処理して得られるホロセルロースのうちのアルカリ可溶多糖類として得られる成分(すなわちホロセルロースからα-セルロースを除いた成分)として当業者に理解される。アルカリ可溶分は、水酸基を含む多糖であり耐熱性が悪く、熱がかかった場合に分解すること、熱エージング時に黄変を引き起こすこと、セルロース繊維の強度低下の原因になること等の不都合を招来し得ることから、微細セルロース中のアルカリ可溶多糖類含有量は少ない方が好ましい。
アルカリ可溶多糖類含有率は非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載の手法より求めることができ、ホロセルロース含有率(Wise法)からαセルロース含有率を差し引くことで求められる。なおこの方法は当業界においてヘミセルロース量の測定方法として理解されている。1つのサンプルにつき3回アルカリ可溶多糖類含有率を算出し、算出したアルカリ可溶多糖類含有率の数平均をアルカリ可溶多糖類平均含有率とする。
本実施形態における微細セルロースの酸不溶成分平均含有率及びアルカリ可溶多糖類平均含有率は、微細セルロース製造に使用したセルロース原料の酸不溶成分平均含有率及びアルカリ可溶多糖類平均含有率から算出してもよい。
以下、微細セルロースの製造方法について例示する。
微細セルロースの原料となるセルロース繊維(セルロース原料とも言う)としては、天然セルロース及び再生セルロースを用いることができる。天然セルロースとしては、木材種(広葉樹又は針葉樹)から得られる木材パルプ、非木材種(綿、竹、麻、バガス、ケナフ、コットンリンター、サイザル、ワラ等)から得られる非木材パルプ、動物(例えばホヤ類)や藻類、微生物(例えば酢酸菌)、微生物産生物等を起源としたセルロース繊維集合体を使用できる。再生セルロースとしては、再生セルロース繊維(ビスコース、キュプラ、テンセル等)のカット糸等、セルロース誘導体繊維のカット糸等、エレクトロスピニング法により得られた再生セルロース又はセルロース誘導体の極細糸等を使用できる。これらの原料は必要に応じて、ビーターやリファイナー等の機械力による叩解、フィブリル化、微細化により繊維径、繊維長、フィブリル化度等を調整したり、薬品を用いて漂白、精製し、リグニンやヘミセルロース等のセルロース以外の含有率を調整したりすることができる。
パルプに残存するセルロース以外の成分として酸不溶成分及びアルカリ可溶多糖類を挙げることができるが、通常の態様において、これらの成分は微細セルロース製造後も残存する。そして、微細セルロースに含まれる酸不溶成分及びアルカリ可溶多糖類はいずれも樹脂組成物中の微細セルロースの分散性、耐熱性等に影響し、目的に応じて調整されてよい。上述のように、微細セルロースの耐熱性向上等が求められる場合、セルロース原料中の酸不溶成分及びアルカリ可溶多糖類の含有量は少なく、セルロース純度(α-セルロース含有率)が高い方が好ましい場合がある。このような場合、原料として、セルロースI型結晶の原料については、セルロース純度(α-セルロース含有率)80質量%以上であるセルロースを用いることが、樹脂組成物の変色抑制及び組成物物性保持の観点から好ましい。セルロース純度は、より好ましくは85質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上である。
セルロース純度は非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載のαセルロース含有率測定法より求めることができる。
セルロースII型結晶の原料については、前記αセルロース含有率測定法を使用すると低めのセルロース純度を示すことがある(元来、αセルロース含有率測定法はセルロースI型結晶の原料、例えば木材、の分析に開発された方法のため)。しかし、セルロースII型結晶の原料はセルロースI型結晶を原料にして加工・製造された製品(例えば、ビスコースレーヨン、キュプラ、リヨセル、マーセル化セルロース等)であるため、元来セルロース純度は高い。したがって、セルロースII型結晶の原料についてはセルロース純度が85質量%未満であっても、本実施形態の微細セルロースの原料として好ましい。
セルロース原料に剪断を与え、微細化することで微細セルロースが得られる。微細化に伴う微細セルロースの結晶化度低下を防ぐためには、液体中での剪断が好ましい。例えば、解繊溶媒中でビーター又はディスクレファイナー(ダブルディスクレファイナー)のような叩解装置でフィブリル化を高度に促進させた後、高圧ホモジナイザー、超高圧ホモジナイザー、グラインダー等による微細化処理を施す方法、粉砕等の強力な機械的解繊ではない方法(TEMPO酸化、有機溶媒中でのセルロース水酸基の化学修飾等)により解繊を行う方法、等が挙げられる。
解繊溶媒としては水、非プロトン性溶媒等が有用である。非プロトン性溶媒を含む解繊溶媒をセルロース原料(好ましくはセルロース純度80質量%以上のセルロース原料)に含浸させるとセルロースが短時間で膨潤する。この状態で、剪断エネルギーを与えることで微細化処理を施すことができる。水溶媒での微細化処理と比較し、非プロトン性溶媒での微細化は、低エネルギーで解繊できる点、及び、化学修飾を解繊と同時又は解繊後に続けて行える点でプロセス上簡便である点で、より好ましい。
非プロトン性溶媒として、例えば、アルキルスルホキシド類、アルキルアミド類、ピロリドン類等が挙げられる。これらの溶媒は、単独で又は二種以上組み合わせて使用できる。
アルキルスルホキシド類としては、例えば、ジメチルスルホキシド(DMSO)、メチルエチルスルホキシド、ジエチルスルホキシド等のジC1-4アルキルスルホキシド等が挙げられる。
アルキルアミド類としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド等のN,N-ジC1-4アルキルホルムアミド;N,N-ジメチルアセトアミド(DMAc)、N,N-ジエチルアセトアミド等のN,N-ジC1-4アルキルアセトアミド等が挙げられる。
ピロリドン類としては、例えば、2-ピロリドン、3-ピロリドン等のピロリドン;N-メチル-2-ピロリドン(NMP)等のN-C1-4アルキルピロリドン等が挙げられる。
これらの非プロトン性溶媒は、単独で又は二種以上組み合わせて使用できる。これらの非プロトン性溶媒(括弧内の数字はドナー数)のうち、DMSO(29.8)、DMF(26.6)、DMAc(27.8)、NMP(27.3)等、特に、DMSOを用いれば、熱分解開始温度が高い微細セルロースをより効率的に製造することができる。この作用機序は必ずしも明らかではないが、非プロトン性溶媒中でのセルロース原料の均質なミクロ膨潤に起因するものと推察される。
撹拌又は剪断エネルギーを付与する方法として、例えば、遊星ボールミル及びビーズミルのような衝突剪断が加わる装置、ディスクリファイナー及びグラインダーのようなセルロースのフィブリル化を誘因する回転剪断場が加わる装置、あるいは各種ニーダー及びプラネタリーミキサーのような混練、撹拌、及び分散の機能を高効率で実施可能な装置を用いることで得ることができる。より具体的には、離解機、叩解機、リファイナー、低圧ホモジナイザー、高圧ホモジナイザー、超高圧ホモジナイザー、ホモミキサー、グラインダー、マスコロイダー、カッターミル、ボールミル、ジェットミル、単軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等を挙げることができる。
セルロースウィスカーは、セルロース原料を加水分解しセルロースの非晶部分を溶解することで、高効率で得ることができる。
加水分解の方法は、特に制限されないが、酸加水分解、アルカリ酸化分解、熱水分解、スチームエクスプロージョン、マイクロ波分解等が挙げられる。これらの方法は、単独で使用してもよく、2種以上を併用してもよい。酸加水分解の方法では、例えば、セルロース原料を水系媒体に分散させた状態で、プロトン酸、カルボン酸、ルイス酸、ヘテロポリ酸等を適量加え、攪拌させながら加温することにより、容易に平均重合度を制御できる。この際の温度、圧力、時間等の反応条件は、セルロース種、セルロース濃度、酸種、酸濃度により異なるが、目的とする平均重合度が達成されるよう適宜調製されるものである。例えば、2質量%以下の鉱酸水溶液を使用し、100℃以上、加圧下で、10分間以上セルロースを処理するという条件が挙げられる。この条件のとき、酸等の触媒成分がセルロース内部まで浸透し、加水分解が促進され、使用する触媒成分量が少なくなり、その後の精製も容易になる。なお、加水分解時のセルロース原料の分散液には、水の他、本発明の効果を損なわない範囲において有機溶媒を少量含んでいてもよい。
微細セルロースを化学修飾する方法としては、特に限定されないが、例えば、微細化と同時に化学修飾剤を添加し、微細化と同時に化学修飾を行う方法、又は、微細化の後に化学修飾剤を添加して化学修飾を別途行う方法、又は、セルロース原料を化学修飾した後に微細化を行う方法が挙げられる。化学修飾において用いる溶媒は特に限定されないが、特に非プロトン性溶媒を使用する場合、セルロースのミクロフィブリル間隙に素早く浸透してセルロースが膨潤し、ミクロフィブリル同士が微解繊状態となる。この状態を作り出した後に化学修飾を行うことで、微細セルロースの全体で均質に化学修飾が進行し、結果として修飾度のバラつきが小さくなり、高い耐熱性を獲得できる。
化学修飾剤としては、セルロースの水酸基と反応する化合物を使用でき、エステル化剤、エーテル化剤、及びシリル化剤が挙げられる。特にエステル化剤が、耐熱性向上の観点から好ましい。エステル化剤としては、酸ハロゲン化物、酸無水物、及びカルボン酸ビニルエステルが好ましい。
酸ハロゲン化物は、下記式(1)で表される化合物からなる群より選択された少なくとも1種であってよい。
R1-C(=O)-X (1)
(式中、R1は炭素数1~24のアルキル基、炭素数1~24のアルキレン基、炭素数3~24のシクロアルキル基、又は炭素数6~24のアリール基を表し、XはCl、Br又はIである。)
酸ハロゲン化物の具体例としては、塩化アセチル、臭化アセチル、ヨウ化アセチル、塩化プロピオニル、臭化プロピオニル、ヨウ化プロピオニル、塩化ブチリル、臭化ブチリル、ヨウ化ブチリル、塩化ベンゾイル、臭化ベンゾイル、ヨウ化ベンゾイル等が挙げられるが、これらに限定されない。中でも、酸塩化物は反応性と取り扱い性の点から好適に採用できる。尚、酸ハロゲン化物の反応においては、触媒として働くと同時に副生物である酸性物質を中和する目的で、アルカリ性化合物を1種又は2種以上添加してもよい。アルカリ性化合物としては、具体的には:トリエチルアミン、トリメチルアミン等の3級アミン化合物;及びピリジン、ジメチルアミノピリジン等の含窒素芳香族化合物;が挙げられるが、これに限定されない。
酸無水物としては、任意の適切な酸無水物類を用いることができる。例えば、酢酸、プロピオン酸、(イソ)酪酸、吉草酸等の飽和脂肪族モノカルボン酸無水物;(メタ)アクリル酸、オレイン酸等の不飽和脂肪族モノカルボン酸無水物;シクロヘキサンカルボン酸、テトラヒドロ安息香酸等の脂環族モノカルボン酸無水物;安息香酸、4-メチル安息香酸等の芳香族モノカルボン酸無水物;二塩基カルボン酸無水物として、例えば、無水コハク酸、アジピン酸等の無水飽和脂肪族ジカルボン酸、無水マレイン酸、無水イタコン酸等の無水不飽和脂肪族ジカルボン酸無水物、無水1-シクロヘキセン-1,2-ジカルボン酸、無水ヘキサヒドロフタル酸、無水メチルテトラヒドロフタル酸等の無水脂環族ジカルボン酸、及び、無水フタル酸、無水ナフタル酸等の無水芳香族ジカルボン酸無水物等;3塩基以上の多塩基カルボン酸無水物類として、例えば、無水トリメリット酸、無水ピロメリット酸等の(無水)ポリカルボン酸等が挙げられる。尚、酸無水物の反応においては、触媒として、硫酸、塩酸、燐酸等の酸性化合物、又は金属塩化物、金属トリフラート等のルイス酸、又はトリエチルアミン、ピリジン等のアルカリ性化合物を1種又は2種以上添加してもよい。
カルボン酸ビニルエステルとしては、下記式(2):
R-COO-CH=CH2 …式(2)
{式中、Rは、炭素数1~24のアルキル基、炭素数1~24のアルキレン基、炭素数3~24のシクロアルキル基、又は炭素数6~24のアリール基である。}で表されるカルボン酸ビニルエステルが好ましい。カルボン酸ビニルエステルは、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、シクロヘキサンカルボン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、オクチル酸ビニルアジピン酸ジビニル、メタクリル酸ビニル、クロトン酸ビニル、ピバリン酸ビニル、オクチル酸ビニル、安息香酸ビニル、及び桂皮酸ビニルからなる群より選択された少なくとも1種であることがより好ましい。カルボン酸ビニルエステルによるエステル化反応のとき、触媒としてアルカリ金属水酸化物、アルカリ土類金属水酸化物、1~3級アミン、4級アンモニウム塩、イミダゾール及びその誘導体、ピリジン及びその誘導体、並びにアルコキシドからなる群より選ばれる1種又は2種以上を添加しても良い。
アルカリ金属水酸化物及びアルカリ土類金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化バリウム等が挙げられる。
1~3級アミンとは、1級アミン、2級アミン、及び3級アミンのことであり、具体例としては、エチレンジアミン、ジエチルアミン、プロリン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-プロパンジアミン、N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン、トリス(3-ジメチルアミノプロピル)アミン、N,N-ジメチルシクロヘキシルアミン、トリエチルアミン等が挙げられる。
イミダゾール及びその誘導体としては、1-メチルイミダゾール、3-アミノプロピルイミダゾール、カルボニルジイミダゾール等が挙げられる。
ピリジン及びその誘導体としては、N,N-ジメチル-4-アミノピリジン、ピコリン等が挙げられる。
アルコキシドとしては、ナトリウムメトキシド、ナトリウムエトキシド、カリウム-t-ブトキシド等が挙げられる。
これらエステル化剤の中でも、特に、無水酢酸、無水プロピオン酸、無水酪酸、酢酸ビニル、プロピオン酸ビニル、及び酪酸ビニルからなる群から選択された少なくとも一種、中でも無水酢酸及び酢酸ビニルが、反応効率の観点から好ましい。
化学修飾微細セルロースの反射型赤外吸収スペクトルにおいて、化学修飾基の種類により吸収バンドのピーク位置は変化する。ピーク位置の変化から、そのピークが何の吸収バンドに基づくものかは確定でき、修飾基の同定ができる。また、修飾基由来のピークとセルロース骨格由来のピークのピーク強度比から修飾化率を算出することができる。
例えば、修飾基がアシル基であれば、アシル基に基づくC=Oの吸収バンドのピークは1730cm-1に出現し、セルロース骨格鎖に基づくC-Oの吸収バンドのピークが1030cm-1に出現する(図5参照)。
セルロース骨格鎖に基づくC-Oの吸収バンドのピーク強度(高さ)に対する化学修飾基に基づく吸収バンドのピーク強度(アシル基に基づくC=Oの吸収バンドのピーク高さ)の比率(化学修飾基に基づく吸収バンドのピーク高さ/セルロース骨格鎖C-Oの吸収バンドのピーク高さ)で定義される修飾度(修飾化率)(IRインデックス1030)は好ましくは0.0024以上、0.50以下である。IRインデックス1030が0.0024以上であれば、熱分解開始温度が高い化学修飾微細セルロースを含む樹脂組成物を得ることができる。一方、0.50以下であると、化学修飾微細セルロース中に未修飾のセルロース骨格が残存するため、セルロース由来の高い引張破断強度及び寸法安定性と化学修飾由来の高い熱分解開始温度を兼ね備えた化学修飾微細セルロースを含む樹脂組成物を得ることができる。IRインデックス1030はより好ましくは0.012以上、さらに好ましくは0.024以上、よりさらに好ましくは0.048以上、特に好ましくは0.72以上、最も好ましくは0.1以上であり、より好ましくは0.44以下、さらに好ましくは0.37以下、特に好ましくは0.30以下、最も好ましくは0.25以下である。
IRインデックス1730及びIRインデックス1030の算出に用いる1730cm-1及び1030cm-1のピーク高さの読み取りは以下の様に行う。1730cm-1のピーク強度については、1550cm-1付近と1850cm-1付近の他のピークがない位置を直線で結んだベースラインを引き、1730cm-1におけるベースラインの高さを1730cm-1のピーク高さから差し引いた値を読み取るものとする。
1030cm-1のピーク強度については、820cm-1付近と1530cm-1付近の他のピークがない位置を直線で結んだベースラインを引き、1030cm-1におけるベースラインの高さを1030cm-1のピーク高さから差し引いた値を読み取るものとする。
IRインデックス1030は下記式に従って化学修飾微細セルロースの水酸基の平均置換度(セルロースの基本構成単位であるグルコース当たりの置換された水酸基の平均数。DSということもある。)に換算することができる。
DS=4.13×IRインデックス1030
平均置換度は0.01以上2.0以下が好ましい。DSが0.01以上であれば、熱分解開始温度が高い化学修飾微細セルロースを含む樹脂複合体を得ることができる。一方、2.0以下であると、化学修飾微細セルロース中に未修飾のセルロース骨格が残存するため、セルロース由来の高い引張強度及び寸法安定性と化学修飾由来の高い熱分解開始温度を兼ね備えた化学修飾微細セルロースを含む樹脂複合体を得ることができる。DSはより好ましくは0.05以上、さらに好ましくは0.1以上、特に好ましくは0.2以上、最も好ましくは0.3以上であって、より好ましくは1.8以下、さらに好ましくは1.5以下、特に好ましくは1.2以下、最も好ましくは1.0以下である。
微細セルロース又は化学修飾微細セルロースは水を用いてろ過や遠心分離によって洗浄、濃縮され、最終的に水スラリー又は乾燥体として複合粒子製造に供することができる。
<熱可塑性樹脂>
本実施形態の複合粒子に用いることができる熱可塑性樹脂について詳述する。
熱可塑性樹脂の具体例としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等の塩化ビニル系樹脂;ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール等のビニル系樹脂;ポリアセタール系樹脂;ポリフッ化ビニリデン等のフッ素樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン、スチレン-ブタジエンブロック共重合体、スチレン-イソプレンブロック共重合体等のポリスチレン系樹脂;ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、ABS樹脂等のニトリル系樹脂;ポリフェニレンエーテル樹脂;ポリアミド;ポリウレタン;ポリイミド;ポリアミドイミド;ポリメタクリル酸、ポリアクリル酸等のアクリル樹脂;ポリカーボネート;ポリフェニレンスルフィド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルニトリル;ポリエーテルケトン;ポリケトン;液晶ポリマー;シリコーン樹脂;アイオノマー;セルロース(木材パルプ、綿等の天然セルロース;ビスコースレーヨン、銅アンモニアレーヨン及びテンセル等の再生セルロース);ニトロセルロース、セルロースアセテート等のセルロース誘導体;熱可塑性エラストマー(例えば、エチレン-プロピレン共重合体(EPR)、エチレン-プロピレン-ジエン共重合体(EPDM)のようなオレフィン系エラストマー;スチレンとブタジエンとの共重合体からなるSBR等のスチレン系エラストマー;シリコン系エラストマー;ニトリル系エラストマー;ブタジエン系エラストマー;ウレタン系エラストマー;ナイロン系エラストマー;エステル系エラストマー;フッ素系エラストマー;及びそれらのエラストマーに反応部位(二重結合、無水カルボキシル基等)を導入した変性物等);並びにこれらの2種以上の混合物が挙げられる。
好ましい態様において、熱可塑性樹脂は、DMSOに可溶である。本開示で、DMSOに可溶であるとは、25℃のDMSO100gに対して0.1g以上溶解することを意味する。DMSOに可溶な熱可塑性樹脂は、本開示の粘度η10及びη100の増大に寄与する。DMSOに可溶である熱可塑性樹脂としては、セルロース誘導体(特にセルロースエステル)、ポリスチレン系樹脂、塩化ビニル系樹脂等が挙げられる。熱可塑性樹脂は、25℃のDMSO100gに対して、より好ましくは0.5g以上、更に好ましくは1.0g以上、特に好ましくは2.0g以上溶解する。DMSOに対する熱可塑性樹脂の溶解性は大きい方が好ましいが、樹脂組成物の機械強度を良好にする観点から、熱可塑性樹脂は、25℃のDMSO100gに対して、例えば100g以下、又は70g以下、又は50g以下の量で溶解する。
中でも、セルロース誘導体は、セルロース系物質であることから微細セルロースとの親和性が高い一方で、熱可塑性樹脂でもあることから、樹脂組成物中での微細セルロースの分散を安定化させることに寄与できるため、複合粒子に用いる熱可塑性樹脂として、より好ましい。一態様においては、セルロース誘導体の存在により、樹脂組成物においてベース樹脂中での微細セルロースの分散状態を向上、制御することによって、樹脂組成物の力学物性が向上する。また、一態様においては、セルロース誘導体の存在により、微細セルロースが熱可塑性樹脂中に可溶かつ再分散し得る特性を有することができる。
セルロースがナノメートルレベルまで微細化されている微細セルロースでは、表面積が著しく大きくなることによりセルロースの表面同士が水素結合に基づく相互作用を受けるようになる。この微細セルロースを乾燥粉末化すると極めて強い乾燥収縮が起こり、その収縮構造は不可逆的である。また、微細セルロースにおいてはセルロースの親水的性質が顕著に現れるため、当該微細セルロースにはベース樹脂のような異種媒体下で激しい凝集が生じる。セルロース誘導体が存在する場合、微細セルロースが乾燥状態でも再分散可能な状態となるため、ベース樹脂との溶融混練下において微細セルロースを樹脂中で再分散させることができる。樹脂中に高度に分散した微細セルロースは樹脂組成物の諸範の力学物性を向上させる。
フィラーと樹脂とを含む複合材の生産プロセスを考慮すると、フィラーとしての複合粒子が乾燥状態であることは極めて大きな意義を有するが、従来、特にナノメートルサイズ(すなわち1μm未満)の微細セルロースを再分散可能な乾燥体として得ることは困難であった。本開示の一態様に係る複合粒子においては、セルロース誘導体が、微細セルロースの表面と相互作用するとともに、ベース樹脂との親和性を示すバインダーとしても機能できるため、微細セルロースの樹脂中での高度な再分散が実現可能である。特に、微細セルロースの表面が化学修飾されていることは、セルロース誘導体と微細セルロースとの相互作用を強めるために有効である。
一態様において、セルロース誘導体は、微細セルロースの表面に結着している。
セルロース誘導体は、好ましくは、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースエステル、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、シアノエチルセルロース等のセルロースエーテル、及びヒドロキシプロピルメチルセルロースアセテート、ヒドロキシプロピルメチルセルロースアセテートサクシネート等のセルロースエーテルエステル(なお本開示で、セルロースエーテルエステルは、セルロースエーテル及びセルロースエステルの両者の概念に包含されることが意図される。)からなる群から選ばれる少なくとも1種類である。中でもセルロースエステルは、耐熱性の観点で優れており、好ましい。セルロース誘導体はセルロースの解繊に使用する溶媒に可溶であることが好ましい。また、セルロース誘導体は100℃~350℃の間で融点を有することが樹脂との混和性の観点で好ましい。中でもセルロースアセテートプロピオネート及びセルロースアセテートブチレートの様な、一つの誘導体中に2種類以上の置換基を有するセルロース誘導体の場合、融点を有する場合が多く、より好ましい。
セルロース誘導体の重量平均分子量(Mw)は、好ましくは、1000以上、又は5000以上、又は1万以上、又は2万以上であり、好ましくは、10万以下、又は8万以下、又は6万以下である。Mwは、サイズ排除クロマトグラフィーによる標準ポリスチレン換算で算出する方法で測定される値である。
セルロースエーテルが有するアルキル置換基は、好ましくは、炭素数1~18のアルキル基である。無水グルコース単位当たりのエーテル置換基は1種でも2種以上(すなわち混合エステル)でもよい。エーテル置換基の好適例は、メチル基、エチル基、及びプロピル基である。樹脂組成物の成形容易性、透明性及び曲げ弾性率の点で、エーテル置換基は好ましくはエチル基である。
セルロースエーテルの総置換度(セルロースメチルエチルエーテルのような共置換体の場合はメチル基置換度とエチル基置換度との総和)は、樹脂と微細セルロースとの相溶性の観点から、好ましくは1.5以上3.0以下、より好ましくは2.1以上2.95以下、さらに好ましくは2.6以上2.90以下である。
エーテル置換度は、1H-NMR(核磁気共鳴装置)にて測定される値である。
セルロースエーテルの重合度は、粘度を指標として、下記範囲が好ましい。すなわち、トルエン80質量部とエタノール20質量部との混合溶媒に5質量部のセルロースエーテルを溶解させて得られる溶液の粘度は、25℃の温度条件下において、下限が、1mPa・s以上であることが好ましく、3mPa・s以上がより好ましく、5mPa・s以上がさらに好ましく、8mPa・s以上がさらに好ましく、12mPa・s以上が特に好ましく、20mPa・s以上が最も好ましい。また、重合度の上限としては、500mPa・s以下が好ましく、350mPa・s以下がより好ましく、250mPa・s以下がさらに好ましく、110mPa・s以下がさらに好ましく、70mPa・s以下が特に好ましく、55mPa・s以下のものが最も好ましい。セルロースエーテルの重合度は、複合粒子中での微細セルロースの凝集抑制(これは複合粒子の分散液の粘度η10が高い値であることに反映される)によって、樹脂組成物中で微細セルロースを良好に微分散させて当該樹脂組成物の透明性及び曲げ弾性率を良好にする点で、上記下限以上であることが好ましく、微細セルロースとセルロース誘導体との界面の結着点の増加による、微細セルロースの分散安定性向上効果の点で、上記上限以下であることが好ましい。
セルロースエーテルは市販品であってもよく、市販品の置換度を所望の範囲に調整したもの等でもよい。市販品としては、例えば、The Dow Chemical CompanyからETHOCEL(商標)の名の下で入手可能なものが挙げられる。ETHOCEL(商標)Standard 4、ETHOCEL(商標)Standard 7、ETHOCEL(商標)Standard 10、ETHOCEL(商標)Standard 20、ETHOCEL(商標)Standard 45、またはETHOCEL(商標)Standard 100として、The Dow Chemical Companyから市販されている。
セルロースエステルが有するエステル置換基は、好ましくは、炭素数1~18のアシル基である。無水グルコース単位当たりのエステル置換基は1種でも2種以上(すなわち混合エステル)でもよい。エステル置換基の好適例は、アセチル基、プロピオニル基、及びブチリル基である。樹脂組成物の成形容易性、曲げ弾性率の点で、エステル置換基は好ましくはアセチル基である。
セルロースエステルは、重合度50~1000を有し、また好ましくは総置換度(エステル置換度1.5~2.6を有する。セルロースエステルの重合度は、複合粒子中での微細セルロースの凝集抑制(これは複合粒子の分散液の粘度η10が高い値であることに反映される)によって、樹脂組成物中で微細セルロースを良好に微分散させて当該樹脂組成物の透明性及び曲げ弾性率を良好にする点で、好ましくは80以上、より好ましくは100以上であり、微細セルロースとセルロース誘導体との界面の結着点の増加による、微細セルロースの分散安定性向上効果の点で、好ましくは700以下、より好ましくは500以下である。
なお、セルロースエステルの平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105~120頁、1962年)により測定できる。なお、溶媒はセルロースエステルの置換度等に応じて選択できる。例えば、メチレンクロライド/メタノール=9/1(質量比)の混合溶媒にセルロースエステルを溶解し、所定の濃度c(2.00g/L)の溶液を調製し、この溶液をオストワルド粘度計に注入し、25℃で粘度計の刻線間を溶液が通過する時間t(秒)を測定する。一方、上記混合溶媒単独についても上記と同様にして通過時間to(秒)を測定し、下記式(3)~(5)に従って、粘度平均重合度を算出できる。
ηrel=t/to(3)
[η]=(lnηrel)/c(4)
DP=[η]/(6×10-4)(5)
(式中、tは溶液の通過時間(秒)、toは溶媒の通過時間(秒)、cは溶液のセルロースエステル濃度(g/L)、ηrelは相対粘度、[η]は極限粘度、DPは平均重合度を示す)
セルロースエステルの総置換度(例えば、セルロースアセテートブチレートのような共置換体の場合はアセチル基置換度とブチリル基置換度との総和)は、樹脂と微細セルロースとの相溶性の観点から、好ましくは1.5以上3.0以下、より好ましくは2.1以上2.95以下、さらに好ましくは2.6以上2.90以下である。総置換度を上記範囲とすることにより、樹脂と微細セルロースとの親和性を高くでき、分散安定性向上効果が良好になる。
エステル置換度は、1H-NMR(核磁気共鳴装置)にて測定される値である。
セルロースエステルは市販品であってもよく、市販品の総置換度を所望の範囲に調整したもの等でもよい。市販品としては、セルロースジアセテート(ダイセル社製、製品名:L-30、L-70)、セルローストリアセテート(ダイセル社製、製品名:LT-105)、セルロースアセテートプロピオネート(イーストマンケミカル社製、製品名:CAP504-2.0)、セルロースアセテートブチレート(イーストマンケミカル社製、製品名:CAB321-0.1)等を例示できる。
セルロース誘導体と、微細セルロースにおける化学修飾との組合せは、好ましくは、セルロース誘導体がアセチル置換基を少なくとも有し、化学修飾がアセチル化である組合せであり、より好ましくは、セルロース誘導体がセルロースジアセテート(DAC)、セルローストリアセテート(TAC)、セルロースアセテートブチレート(CAB)、及びセルロースアセテートプロピオネート(CAP)から選択され、かつ化学修飾がアセチル化である組合せである。セルロース誘導体と微細セルロースとが類似のエステル置換基を有する場合、セルロース誘導体と微細セルロースとの疎水性及び互いの親和性が良好になる傾向があり、微細セルロースの樹脂組成物中での良好な分散の点で好ましい。
複合粒子100質量%に対する微細セルロースの比率は、フィラーとしての良好な作用を得る観点から、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上、特に好ましくは15質量%以上、最も好ましくは20質量%以上であり、熱可塑性樹脂(一態様においてセルロース誘導体)の使用による微細セルロースの分散向上効果を良好に得る観点から、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。
複合粒子中の熱可塑性樹脂(一態様においてセルロース誘導体)の比率の下限は、微細セルロースの分散向上効果を良好に得る観点から、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、上限は、微細セルロースの使用による良好なフィラー作用を得る観点から、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。
微細セルロース(一態様において微細セルロース繊維)100質量部に対するセルロース誘導体の量の下限は、好ましくは、1質量部以上、又は5質量部以上、又は10質量部以上、又は20質量部以上であり、上限は、好ましくは、500質量部以下、又は300質量部以下、又は200質量部以下である。樹脂組成物の引張破断強度と熱安定性を向上させ、かつ、性能のバラつきを低下させる観点から、微細セルロース(一態様において微細セルロース繊維)の量を上述の範囲内とすることが望ましい。
複合粒子における、微細セルロース/セルロース誘導体の比率(質量基準)は、好ましくは10/90~90/10、より好ましくは15/85~85/15、更に好ましくは20/80~80/20である。
≪複合粒子の製造≫
複合粒子を製造する方法として、特に限定されるものではないが、例えば、以下のような方法が挙げられる。これら方法によれば、スラリー又は乾燥体として複合粒子を回収することができる。
(1)微細セルロース(一態様において微細セルロース繊維)の水分散体(スラリー)と熱可塑性樹脂粒子(一態様においてセルロース誘導体粉末)とを混合し、次いで任意に乾燥(すなわち粉末化)して、複合粒子を回収する方法。
(2)微細セルロース(一態様において微細セルロース繊維)の有機溶媒分散体中に熱可塑性樹脂を添加して、微細セルロースが分散し、かつ、熱可塑性樹脂(一態様においてセルロース誘導体)が溶解している有機溶媒分散体(微細セルロース/樹脂分散体)を得る工程、
この有機溶媒分散体を熱可塑性樹脂(一態様においてセルロース誘導体)の貧溶媒と混合し、熱可塑性樹脂を析出(すなわち微細セルロースと熱可塑性樹脂とを含む複合粒子を析出)させることによって複合粒子分散体を得る工程、
任意に、複合粒子分散体の有機溶媒を水に置換する精製工程、及び
任意に、ろ過、遠心分離等による複合粒子の分離回収、純水での洗浄、及び/又は乾燥を行う工程、
を含む方法。
(3)微細セルロース(一態様において微細セルロース繊維)の製造過程において熱可塑性樹脂(一態様においてセルロース誘導体)を添加し溶解させた後、微細セルロース製造終了後に、上記(2)の方法と同様に析出工程以降を行う方法。
微細セルロースは、有機溶媒中でセルロースの解繊処理を行って微細セルロース分散体を得る解繊工程、及び任意に該微細セルロース分散体中の有機溶媒を水に置換する精製工程、によって好ましく調製できる。上記(3)の方法における熱可塑性樹脂の添加は、解繊前又は解繊中に行ってよい。
微細セルロースの化学修飾をする場合には、解繊工程と同時又は解繊工程の後(好ましくは精製工程の前)に、微細セルロースの化学修飾を行う化学修飾工程を設けることが好ましい。
熱可塑性樹脂(一態様においてセルロース誘導体)が溶解する有機溶媒としては、特に限定はされないが、ハロゲン化炭化水素、エステル類、ケトン類、エーテル類、アルコール類、アルキルスルホキシド類、アルキルアミド類、ピロリドン類等が好適である。溶媒は1種類の化合物であっても良いし、複数の化合物を混合した混合溶媒でも良い。具体的には、ハロゲン化炭化水素(例えば、ジクロロメタン等)、エステル類(例えば、酢酸メチル、メチルホルメート、エチルアセテート、アミルアセテート、ブチルアセテート等)、ケトン類(例えば、アセトン、メチルエチルケトン、シクロヘキサノン等)、エーテル類(例えば、ジオキサン、ジオキソラン、テトラヒドロフラン、ジエチルエーテル、メチル-t-ブチルエーテル等)、アルコール類(例えば、メタノール、エタノール、ヘキサフルオロイソプロパノール、レゾルシン等)、本開示で前述した非プロトン性溶媒(アルキルスルホキシド類、アルキルアミド類、ピロリドン類)等が挙げられる。
中でも、前述の非プロトン性溶媒は微細セルロース製造においても優れている。非プロトン性溶媒を用いて、微細セルロース製造と複合粒子製造とを連続的に実施することは、プロセス効率の点で好ましい。特に、熱可塑性樹脂がセルロース誘導体である場合には、DMSOを用いることが、セルロース原料の膨潤性に極めて優れ、かつ、セルロース誘導体の溶解性にも優れる点で好ましい。
熱可塑性樹脂の貧溶媒は、熱可塑性樹脂を溶解しない溶媒である。より好ましくは、熱可塑性樹脂を溶解させず、かつ熱可塑性樹脂が溶解する有機溶媒とは混和する溶媒である。熱可塑性樹脂(一態様においてセルロース誘導体)の貧溶媒としては、pH1~14の範囲の水、無機塩(例えば塩化ナトリウム、塩化カルシウム、ケイ酸ナトリウム等)を含む水、アルコール(例えばメタノール、エタノール、イソプロパノール、1-ヘキサノール等)、水/アルコール混合溶媒等が挙げられる。
セルロース原料の解繊及び/又は化学修飾とセルロース誘導体の添加とを有機溶媒中で同時又は連続して行う場合には、DMSO、DMF、DMAc、NMP等、特に、DMSOを用いることが好ましい。この場合、熱分解開始温度が高い微細セルロースをより効率的に製造することができる。この作用機序は必ずしも明らかではないが、非プロトン性溶媒中でのセルロース原料の均質なミクロ膨潤に起因するものと推察される。
微細セルロースとセルロース誘導体との複合化を促進するために必要な攪拌又は剪断の手法については、特に限定されるわけではないが、例えば、遊星ボールミル及びビーズミルのような衝突剪断が加わる装置、ディスクリファイナー及びグラインダーのようなセルロースのフィブリル化を誘因する回転剪断場が加わる装置、或いは各種ニーダー及びプラネタリーミキサーのような混練、撹拌、及び分散の機能を高効率で実施可能な装置を用いることができる。
複合粒子中の水分の割合は、複合粒子の総量に対し、好ましくは95質量%以下、より好ましくは0.01~95質量%、さらに好ましくは0.1~50質量%、特により好ましくは0.1~20質量%、最も好ましくは0.1~10質量%に制御することができる。乾燥操作は、複合粒子中の水分の割合が所望範囲となるように適宜恒温室等で実施すればよい。
従来、微細セルロースのスラリーを濃縮するプロセスは、例えば濾過操作を使用した場合は目詰まりによって、非常に長い時間を要する。したがって、複数回の洗浄を行う場合の生産性は著しく低かった。しかしながら、上述した熱可塑性樹脂の貧溶媒を用いて析出させた後に洗浄及び濃縮を実施する製造方法((2)及び(3))は、微細セルロースと熱可塑性樹脂が共に析出することにより濾過性が極めて改善され、濃縮工程の時間を著しく短縮することが可能である一方で、洗浄効率は従来と同等以上である。
≪樹脂組成物≫
本発明の一態様は、前述の複合粒子と、ベース樹脂とを含む樹脂組成物(樹脂コンポジット)を提供する。ベース樹脂としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂、ゴム等を用いることができる。典型的な態様においては、樹脂組成物中で複合粒子由来の熱可塑性樹脂がベース樹脂とともに(好ましくは当該熱可塑性樹脂とベース樹脂とが混和して)マトリクスを形成し、当該マトリクス中に微細セルロースが良好に微分散している。ベース樹脂が熱可塑性樹脂である場合の一態様において、ベース樹脂は、複合粒子に含まれる熱可塑性樹脂とは異なる樹脂である。なお本開示で「異なる樹脂」とは樹脂の成分組成及び/又は分子構造(例えば分子量)が異なる樹脂を意味する。
本発明の一態様はまた、熱可塑性樹脂(ベース樹脂として)、繊維径が2nm以上1000nm未満である微細セルロース、及びセルロース誘導体を含む樹脂組成物を提供する。特定の態様は、熱可塑性樹脂(ベース樹脂として)、該熱可塑性樹脂100質量部に対して0.1~40質量部の、繊維径が2nm以上1000nm未満である微細セルロース、及び該微細セルロース100質量部に対して1質量部~900質量部の、セルロース誘導体、を含む樹脂組成物を提供する。
<ベース樹脂>
[熱可塑性樹脂]
熱可塑性樹脂の具体例としては、特に制限されるものではないが、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等の塩化ビニル系樹脂;ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール等のビニル系樹脂;ポリアセタール系樹脂;ポリフッ化ビニリデン等のフッ素樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリスチレン、スチレン-ブタジエンブロック共重合体、スチレン-イソプレンブロック共重合体等のポリスチレン系樹脂;ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、ABS樹脂等のニトリル系樹脂;ポリフェニレンエーテル樹脂;ポリアミド;ポリウレタン;ポリイミド;ポリアミドイミド;ポリメタクリル酸、ポリアクリル酸等のアクリル樹脂;ポリカーボネート;ポリフェニレンスルフィド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルニトリル;ポリエーテルケトン;ポリケトン;液晶ポリマー;シリコーン樹脂;アイオノマー;セルロース(木材パルプ、綿等の天然セルロース;ビスコースレーヨン、銅アンモニアレーヨン及びテンセル等の再生セルロース);ニトロセルロース等のセルロース誘導体が挙げられる。これらの熱可塑性樹脂は、単独で使用してもよく、2種類以上をブレンドして用いてもよい。ブレンドする場合のブレンド比は各種用途に応じて適宜選択されればよい。
熱可塑性樹脂の中でも、100℃~350℃の範囲内に融点を有する結晶性樹脂、又は、100~250℃の範囲内にガラス転移温度を有する非晶性樹脂、例えばポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂及びこれらの2種以上の混合物が好ましく挙げられ、取り扱い性及びコストの観点からより好ましくはポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂等が挙げられる。熱可塑性樹脂(特に結晶性樹脂)の融点は、樹脂組成物の耐熱性を高める観点から、好ましくは、140℃以上、又は150℃以上、又は160℃以上、又は170℃以上、又は180℃以上、又は190℃以上、又は200℃以上、又は210℃以上、220℃以上、又は230℃以上、又は240℃以上、又は245℃以上、又は250℃以上である。
ここでいう結晶性樹脂の融点とは、示差走査熱量分析装置(DSC)を用いて、23℃から10℃/分の昇温速度で昇温していった際に現れる吸熱ピークのピークトップ温度を指し、吸熱ピークが2つ以上現れる場合は、最も高温側の吸熱ピークのピークトップ温度を指す。この時の吸熱ピークのエンタルピーは、10J/g以上であることが望ましく、より望ましくは20J/g以上である。また測定に際しては、サンプルを一度融点+20℃以上の温度条件まで加温し、樹脂を溶融させたのち、10℃/分の降温速度で23℃まで冷却したサンプルを用いることが望ましい。
ここでいう非晶性樹脂のガラス転移温度とは、動的粘弾性測定装置を用いて、23℃から2℃/分の昇温速度で昇温しながら、印加周波数10Hzで測定した際に、貯蔵弾性率が大きく低下し、損失弾性率が最大となるピークのピークトップの温度をいう。損失弾性率のピークが2つ以上現れる場合は、最も高温側のピークのピークトップ温度を指す。この際の測定頻度は、測定精度を高めるため、少なくとも20秒に1回以上の測定とすることが望ましい。また、測定用サンプルの調製方法については特に制限はないが、成形歪の影響をなくす観点から、熱プレス成形品の切り出し片を用いることが望ましく、切り出し片の大きさ(幅及び厚み)はできるだけ小さい方が熱伝導の観点より望ましい。
熱可塑性樹脂として好ましいポリオレフィン系樹脂は、オレフィン類(例えばα-オレフィン類)やアルケン類をモノマー単位として重合して得られる高分子である。ポリオレフィン系樹脂の具体例としては、低密度ポリエチレン(例えば線状低密度ポリエチレン)、高密度ポリエチレン、超低密度ポリエチレン、超高分子量ポリエチレン等に例示されるエチレン系(共)重合体、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体等に例示されるポリプロピレン系(共)重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-グリシジルメタクリレート共重合体等に代表されるエチレン等α-オレフィンの共重合体等が挙げられる。
ここで最も好ましいポリオレフィン系樹脂としては、ポリプロピレンが挙げられる。特に、ISO1133に準拠して230℃、荷重21.2Nで測定されたメルトマスフローレイト(MFR)が、3g/10分以上30g/10分以下であるポリプロピレンが好ましい。MFRの下限値は、より好ましくは5g/10分であり、さらにより好ましくは6g/10分であり、最も好ましくは8g/10分である。また、上限値は、より好ましくは25g/10分であり、さらにより好ましくは20g/10分であり、最も好ましくは18g/10分である。MFRは、組成物の靱性向上の観点から上記上限値を超えないことが望ましく、組成物の流動性の観点から上記下限値を超えないことが望ましい。
また、セルロースとの親和性を高めるため、酸変性されたポリオレフィン系樹脂も好適に使用可能である。この際の酸としては、マレイン酸、フマル酸、コハク酸、フタル酸及び、これらの無水物、並びにクエン酸等のポリカルボン酸から、適宜選択可能である。これらの中でも好ましいのは、変性率の高めやすさから、マレイン酸又はその無水物である。変性方法については特に制限はないが、過酸化物の存在下又は非存在下で融点以上に加熱して溶融混練する方法が一般的である。酸変性するポリオレフィン樹脂としては前出のポリオレフィン系樹脂はすべて使用可能であるが、ポリプロピレンが中でも好適に使用可能である。酸変性されたポリプロピレンは、単独で用いても構わないが、樹脂全体としての変性率を調整するため、変性されていないポリプロピレンと混合して使用することがより好ましい。この際のすべてのポリプロピレンに対する酸変性されたポリプロピレンの割合は、0.5質量%~50質量%である。より好ましい下限は、1質量%であり、更に好ましくは2質量%、更により好ましくは3質量%、特に好ましくは4質量%、最も好ましくは5質量%である。また、より好ましい上限は、45質量%であり、更に好ましくは40質量%、更により好ましくは35質量%、特に好ましくは30質量%、最も好ましくは20質量%である。樹脂とセルロースとの界面強度を維持するためには、下限以上が好ましく、樹脂としての延性を維持するためには、上限以下が好ましい。
酸変性されたポリプロピレンのISO1133に準拠して230℃、荷重21.2Nで測定されたメルトマスフローレイト(MFR)は、セルロース界面との親和性を高めるため、50g/10分以上であることが好ましい。より好ましい下限は100g/10分であり、更により好ましくは150g/10分、最も好ましくは200g/10分である。上限は特にないが、機械的強度の維持から500g/10分である。MFRをこの範囲内とすることにより、セルロースと樹脂との界面に存在しやすくなるという利点を享受できる。
熱可塑性樹脂として好ましいポリアミド系樹脂の例示としては、ラクタム類の重縮合反応により得られるポリアミド6、ポリアミド11、ポリアミド12や、1,6-ヘキサンジアミン、2-メチル-1,5-ペンタンジアミン、1,7-ヘプタンジアミン、2-メチル-1-6-ヘキサンジアミン、1,8-オクタンジアミン、2-メチル-1,7-ヘプタンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、m-キシリレンジアミン等のジアミン類と、ブタン二酸、ペンタン二酸、ヘキサン二酸、ヘプタン二酸、オクタン二酸、ノナン二酸、デカン二酸、ベンゼン-1,2-ジカルボン酸、ベンゼン-1,3-ジカルボン酸、ベンゼン-1,4ジカルボン酸等、シクロヘキサン-1,3-ジカルボン酸、シクロヘキサン-1,4-ジカルボン酸等のジカルボン酸類との共重合体として得られるポリアミド6,6、ポリアミド6,10、ポリアミド6,11、ポリアミド6,12、ポリアミド6,T、ポリアミド6,I、ポリアミド9,T、ポリアミド10,T、ポリアミド2M5,T、ポリアミドMXD,6、ポリアミド6、C、ポリアミド2M5,C及び、これらがそれぞれ共重合された共重合体、一例としてポリアミド6,T/6,I等の共重合体が挙げられる。
これらポリアミド系樹脂の中でも、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6,6、ポリアミド6,10、ポリアミド6,11、ポリアミド6,12といった脂肪族ポリアミドや、ポリアミド6,C、ポリアミド2M5,Cといった脂環式ポリアミドがより好ましい。
ポリアミド系樹脂の末端カルボキシル基濃度には特に制限はないが、下限値は、20μモル/gであると好ましく、より好ましくは30μモル/gである。また、その末端カルボキシル基濃度の上限値は、150μモル/gであると好ましく、より好ましくは100μモル/gであり、更に好ましくは80μモル/gである。
ポリアミド系樹脂において、全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])は、0.30~0.95であることがより好ましい。カルボキシル末端基比率下限は、より好ましくは0.35であり、さらにより好ましくは0.40であり、最も好ましくは0.45である。またカルボキシル末端基比率上限は、より好ましくは0.90であり、さらにより好ましくは0.85であり、最も好ましくは0.80である。上記カルボキシル末端基比率は、微細セルロースの組成物中への分散性の観点から0.30以上とすることが望ましく、得られる組成物の色調の観点から0.95以下とすることが望ましい。
ポリアミド系樹脂の末端基濃度の調整方法としては、公知の方法を用いることができる。例えば、ポリアミドの重合時に所定の末端基濃度となるように、ジアミン化合物、モノアミン化合物、ジカルボン酸化合物、モノカルボン酸化合物、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル、モノアルコール等の末端基と反応する末端調整剤を重合液に添加する方法が挙げられる。
末端アミノ基と反応する末端調整剤としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;及びこれらから任意に選ばれる複数の混合物が挙げられる。これらの中でも、反応性、封止末端の安定性、価格等の点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸及び安息香酸からなる群より選ばれる1種以上の末端調整剤が好ましく、酢酸が最も好ましい。
末端カルボキシル基と反応する末端調整剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン及びこれらの任意の混合物が挙げられる。これらの中でも、反応性、沸点、封止末端の安定性、価格等の点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン及びアニリンからなる群より選ばれる1種以上の末端調整剤が好ましい。
これら、アミノ末端基及びカルボキシル末端基の濃度は、1H-NMRにより、各末端基に対応する特性シグナルの積分値から求めるのが精度、簡便さの点で好ましい。それらの末端基の濃度を求める方法として、具体的に、特開平7-228775号公報に記載された方法が推奨される。この方法を用いる場合、測定溶媒としては、重トリフルオロ酢酸が有用である。また、1H-NMRの積算回数は、十分な分解能を有する機器で測定した際においても、少なくとも300スキャンは必要である。そのほか、特開2003-055549号公報に記載されているような滴定による測定方法によっても末端基の濃度を測定できる。ただし、混在する添加剤、潤滑剤等の影響をなるべく少なくするためには、1H-NMRによる定量がより好ましい。
ポリアミド系樹脂は、濃硫酸中30℃の条件下で測定した固有粘度[η]が、0.6~2.0dL/gであることが好ましく、0.7~1.4dL/gであることがより好ましく、0.7~1.2dL/gであることが更に好ましく、0.7~1.0dL/gであることが特に好ましい。好ましい範囲、その中でも特に好ましい範囲の固有粘度を有する上記ポリアミドを使用すると、樹脂組成物の射出成形時の金型内流動性を大幅に高め、成形片の外観を向上させるという効用を与えることができる。
本開示において、「固有粘度」とは、一般的に極限粘度と呼ばれている粘度と同義である。この粘度を求める具体的な方法は、96%濃硫酸中、30℃の温度条件下で、濃度の異なるいくつかの測定溶媒のηsp/cを測定し、そのそれぞれのηsp/cと濃度(c)との関係式を導き出し、濃度をゼロに外挿する方法である。このゼロに外挿した値が固有粘度である。
これらの詳細は、例えば、Polymer Process Engineering(Prentice-Hall,Inc 1994)の291ページ~294ページ等に記載されている。
このとき濃度の異なるいくつかの測定溶媒の点数は、少なくとも4点とすることが精度の観点より望ましい。このとき、推奨される異なる粘度測定溶液の濃度は、好ましくは、0.05g/dL、0.1g/dL、0.2g/dL、0.4g/dLの少なくとも4点である。
熱可塑性樹脂として好ましいポリエステル系樹脂としては、ポリエチレンテレフタレート(以下、単にPETと称することもある)、ポリブチレンサクシネート(脂肪族多価カルボン酸と脂肪族ポリオールとからなるポリエステル樹脂(以下、単位PBSと称することもある)、ポリブチレンサクシネートアジペート(以下、単にPBSAと称することもある)、ポリブチレンアジペートテレフタレート(以下、単にPBATと称することもある)、ポリヒドロキシアルカン酸(3-ヒドロキシアルカン酸からなるポリエステル樹脂。以下、単にPHAと称することもある)、ポリ乳酸(以下、単にPLAと称することもある)、ポリブチレンテレフタレート(以下、単にPBTと称することもある)、ポリエチレンナフタレート(以下、単にPENと称することもある)、ポリアリレート(以下、単にPARと称することもある)、ポリカーボネート(以下、単にPCと称することもある)等から選ばれる1種又は2種以上を用いることができる。
これらの中でより好ましいポリエステル系樹脂は、PET、PBS、PBSA、PBT、PENが挙げられ、更に好ましくは、PBS、PBSA、PBTが挙げられる。
また、ポリエステル系樹脂は、重合時のモノマー比率や末端安定化剤の添加の有無や量によって、末端基を自由に変えることが可能であるが、該ポリエステル系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95であることがより好ましい。カルボキシル末端基比率下限は、より好ましくは0.35であり、さらにより好ましくは、0.40であり、最も好ましくは0.45である。また、カルボキシル末端基比率上限は、より好ましくは0.90であり、さらにより好ましくは、0.85であり、最も好ましくは0.80である。上記カルボキシル末端基比率は、微細セルロースの組成物中への分散性の観点から0.30以上とすることが望ましく、得られる組成物の色調の観点から0.95以下とすることが望ましい。
熱可塑性樹脂として好ましいポリアセタール系樹脂には、ホルムアルデヒドを原料とするホモポリアセタールと、トリオキサンを主モノマーとし、1,3-ジオキソランをコモノマー成分として含むコポリアセタールが一般的であり、両者とも使用可能であるが、加工時の熱安定性の観点から、コポリアセタールが好ましく使用できる。特に、コモノマー成分(例えば1,3-ジオキソラン)由来構造の量としては0.01~4モル%の範囲内がより好ましい。コモノマー成分由来構造の量の好ましい下限量は、0.05モル%であり、より好ましくは0.1モル%であり、さらにより好ましくは0.2モル%である。また好ましい上限量は、3.5モル%であり、さらに好ましくは3.0モル%であり、さらにより好ましくは2.5モル%、最も好ましくは2.3モル%である。
押出加工や成形加工時の熱安定性の観点から、下限は上述の範囲内とすることが望ましく、機械的強度の観点より、上限は上述の範囲内とすることが望ましい。
[熱硬化性樹脂]
熱硬化性樹脂の具体例としては、特に制限されるものではないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールM型エポキシ樹脂、ビスフェノールP型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂等のノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、アリールアルキレン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、フェノキシ型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂、エポキシ変性のポリブタジエンゴム誘導体、CTBN変性エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、フェニル-1,3-ジグリシジルエーテル、ビフェニル-4,4’-ジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、エチレングリコールまたはプロピレングリコールのジグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリス(2,3-エポキシプロピル)イソシアヌレート、トリグリシジルトリス(2-ヒドロキシエチル)イソシアヌレート、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂等のノボラック型フェノール樹脂、未変性のレゾールフェノール樹脂、桐油、アマニ油、クルミ油等で変性した油変性レゾールフェノール樹脂等のレゾール型フェノール樹脂等のフェノール樹脂、フェノキシ樹脂、尿素(ユリア)樹脂、メラミン樹脂等のトリアジン環含有樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂、ノルボルネン系樹脂、シアネート樹脂、イソシアネート樹脂、ウレタン樹脂、ベンゾシクロブテン樹脂、マレイミド樹脂、ビスマレイミドトリアジン樹脂、ポリアゾメチン樹脂、熱硬化性ポリイミド等が挙げられる。
これらの熱硬化性樹脂は、単独で使用してもよく、2種類以上をブレンドして用いてもよい。ブレンドする場合のブレンド比は各種用途に応じて適宜選択されればよい。
[光硬化性樹脂]
光硬化性樹脂の具体例としては、特に制限されるものではないが、公知一般の(メタ)アクリレート樹脂、ビニル樹脂、エポキシ樹脂等が挙げられる。これらは、反応機構により、概ね光により発生したラジカルによりモノマーが反応するラジカル反応型と、モノマーがカチオン重合するカチオン反応型とに分類される。ラジカル反応型のモノマーには、(メタ)アクリレート化合物、ビニル化合物(例えばある種のビニルエーテル)等が該当する。カチオン反応型としては、エポキシ化合物、ある種のビニルエーテル等が該当する。なお、例えば、カチオン反応型として用いることができるエポキシ化合物は、熱硬化性樹脂及び光硬化性樹脂の両者のモノマーとなり得る。
(メタ)アクリレート化合物とは、(メタ)アクリレート基を分子内に一つ以上有する化合物を指す。(メタ)アクリレート化合物の具体例としては、単官能(メタ)アクリレート、多官能(メタ)アクリレート、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレート等が挙げられる。
ビニル化合物としては、ビニルエーテル、スチレン及びスチレン誘導体、ビニル化合物等が挙げられる。ビニルエーテルとしては、エチルビニルエーテル、プロピルビニルエーテル、ヒドロキシエチルビニルエーテル、エチレングリコールジビニルエーテル等が挙げられる。スチレン誘導体としては、メチルスチレン、エチルスチレン等が挙げられる。ビニル化合物としては、トリアリルイソイシアヌレート、トリメタアリルイソシアヌレート等が挙げられる。
さらに、光硬化性樹脂の原料として、いわゆる反応性オリゴマーを用いてもよい。反応性オリゴマーとしては、(メタ)アクリレート基、エポキシ基、ウレタン結合、及びエステル結合から選ばれる任意の組合せを同一分子内に併せ持つオリゴマー、例えば、(メタ)アクリレート基とウレタン結合とを同一分子内に併せ持つウレタンアクリレート、(メタ)アクリレート基とエステル結合とを同一分子内に併せ持つポリエステルアクリレート、エポキシ樹脂から誘導され、エポキシ基と(メタ)アクリレート基とを同一分子内に併せ持つエポキシアクリレート、等が挙げられる。
光硬化性樹脂は、単独で使用してもよく、2種類以上をブレンドして用いてもよい。ブレンドする場合のブレンド比は各種用途に応じて適宜選択されればよい。
[エラストマー(ゴム)]
エラストマー(すなわちゴム)の具体例としては、特に制限されるものではないが、例えば、天然ゴム(NR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、イソプレンゴム(IR)、ブチルゴム(IIR)、アクリロニトリル-ブタジエンゴム(NBR)、アクリロニトリル-スチレン-ブタジエン共重合体ゴム、クロロプレンゴム、スチレン-イソプレン共重合体ゴム、スチレン-イソプレン-ブタジエン共重合体ゴム、イソプレン-ブタジエン共重合体ゴム、クロロスルホン化ポリエチレンゴム、改質天然ゴム(エポキシ化天然ゴム(ENR)、水素化天然ゴム、脱タンパク天然ゴム等)、エチレン-プロピレン共重合体ゴム、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらのゴムは、単独で使用してもよく、2種類以上をブレンドして用いてもよい。ブレンドする場合のブレンド比は各種用途に応じて適宜選択されればよい。
[添加剤]
本実施形態の樹脂組成物は、その性能を向上させるために、必要に応じて添加剤をさらに含んでも良い。添加剤としては特に限定されないが、例えば、分散安定剤;微細セルロース以外の高耐熱性の有機ポリマーからなる微細繊維フィラー成分(例えば、アラミド繊維のフィブリル化繊維又は微細繊維);相溶化剤;可塑剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;ゼオライト、セラミックス、タルク、シリカ、金属酸化物、金属粉末等の無機化合物;着色剤;香料;顔料;流動調整剤;レベリング剤;導電剤;帯電防止剤;紫外線吸収剤;紫外線分散剤;消臭剤等が挙げられる。任意の添加剤の樹脂組成物中の含有割合は、本発明の所望の効果が損なわれない範囲で適宜選択されるが、例えば0.01~50質量%、又は0.1~30質量%であってよい。
(分散安定剤)
好ましい態様においては、微細セルロースを樹脂組成物中で安定に分散させる機能を有する分散安定剤を用いてもよい。分散安定剤は、樹脂組成物中での微細セルロースの分散状態を向上、制御することによって、樹脂組成物の力学物性を向上させることができる。分散安定剤は、界面活性剤、沸点160℃以上の有機化合物、及び微細セルロースを高度に分散可能な化学構造を有する樹脂からなる群から選ばれる少なくとも1種であることができる。
樹脂組成物の総質量に対する分散安定剤の質量比率は、下限が、樹脂組成物の機械特性及び熱安定性の向上効果を良好に得る観点から、好ましくは、0.01質量%以上、又は0.5質量%以上、又は0.1質量%以上、又は0.5質量%以上、又は1質量%以上であり、上限が、樹脂組成物中のベース樹脂の所望の特性を良好に維持する観点から、好ましくは、20質量%以下、又は10質量%以下、又は5質量%以下、又は3質量%以下である。
界面活性剤としては、親水性の置換基を有する部位と疎水性の置換基を有する部位とが共有結合した化学構造を有していればよく、食用、工業用等様々な用途で利用されているものを用いることができる。例えば、以下のものを1種又は2種以上併用できる。
界面活性剤は、陰イオン系界面活性剤、非イオン系界面活性剤、両性イオン系界面活性剤、及び陽イオン系界面活性剤のいずれも使用することができるが、セルロースとの親和性の点で、陰イオン系界面活性剤、及び非イオン系界面活性剤が好ましく、非イオン系界面活性剤がより好ましい。
上述の中でも、セルロースとの親和性の点で、親水基としてポリオキシエチレン鎖、カルボン酸基、又は水酸基を有する界面活性剤が好ましく、親水基としてポリオキシエチレン鎖を有するポリオキシエチレン系界面活性剤(ポリオキシエチレン誘導体)がより好ましく、非イオン系のポリオキシエチレン誘導体がさらに好ましい。ポリオキシエチレン誘導体のポリオキシエチレン鎖長としては、3以上が好ましく、5以上がより好ましく、10以上がさらに好ましく、15以上が特に好ましい。鎖長は長ければ長いほど、セルロースとの親和性が高まるが、コーティング性とのバランスにおいて、上限としては60以下が好ましく、50以下がより好ましく、40以下がさらに好ましく、30以下が特に好ましく、20以下が最も好ましい。
上述の界面活性剤でも、特に、疎水基としては、アルキルエーテル型、アルキルフェニルエーテル型、ロジンエステル型、ビスフェノールA型、βナフチル型、スチレン化フェニル型、及び硬化ひまし油型が、ベース樹脂との親和性が高いため、好適に使用できる。好ましいアルキル鎖長(アルキルフェニルの場合はフェニル基を除いた炭素数)としては、炭素鎖が5以上であることが好ましく、10以上がより好ましく、12以上がさらに好ましく、16以上が特に好ましい。ベース樹脂がポリオレフィンの場合、炭素数が多いほど、ベース樹脂との親和性が高まるため上限はないが、上限は30以下が好ましく、25以下がより好ましい。
これらの疎水基の中でも、環状構造を有するもの、又は嵩高く多官能構造を有するものが好ましい。環状構造を有するものとしては、アルキルフェニルエーテル型、ロジンエステル型、ビスフェノールA型、βナフチル型、及びスチレン化フェニル型が好ましく、多官能構造を有するものとしては、硬化ひまし油型が好ましい。
これらの中でも、特にロジンエステル型、及び硬化ひまし油型がより好ましい。
また、ベース樹脂の種類に依存するが、非界面活性剤系の分散媒体として、沸点160℃以上の有機化合物が有効であることがある。このような有機化合物の具体例として、例えばベース樹脂がポリオレフィン系樹脂である場合には、流動パラフィン、デカリン等の高沸点有機溶媒が有効である。また、ベース樹脂がナイロン系樹脂及びポリアセテート系樹脂のような極性樹脂の場合には、微細セルロースを製造する際に使用できる非プロトン性溶媒と同様の溶媒、例えば、DMSOを使用することが有効な場合がある。
ベース樹脂100質量部に対する複合粒子の量の下限は0.1質量部以上、好ましくは1質量部以上、より好ましくは2質量部以上、さらに好ましくは3質量部以上であって、上限は100質量部以下、好ましくは80質量部以下、より好ましくは70質量部以下、特に好ましくは50質量部以下である。樹脂組成物の溶融時の流動性と機械的特性とのバランスの観点から、微細セルロース量を上述の範囲内とすることが望ましい。
樹脂組成物の総質量に対する微細セルロースの質量比率は、下限が、樹脂組成物の機械特性及び熱安定性の向上効果を良好に得る観点から、好ましくは、0.05質量%以上、又は0.1質量%以上、又は1質量%以上であり、上限が、樹脂組成物中のベース樹脂の所望の特性を良好に維持する観点から、好ましくは、50質量%以下、又は40質量%以下、又は30質量%以下、又は20質量%以下である。
樹脂組成物の総質量に対するベース樹脂(一態様において熱可塑性樹脂)の質量比率は、熱安定性(線熱膨張率の低減、及び高温時の弾性保持)を発揮する観点から、好ましくは、50質量%以上、又は60質量%以上、又は70質量%以上、又は80質量%以上であり、樹脂組成物に対して高弾性率化、熱膨張率の低減等の機能を付与する観点から、好ましくは、99.5質量%以下、又は90質量%以下である。
ベース樹脂(一態様において熱可塑性樹脂)100質量部に対する微細セルロース(一態様において微細セルロース繊維)の量は、好ましくは、0.1質量部以上、又は1質量部以上、又は2質量部以上、又は3質量部以上であり、上限は、好ましくは、40質量部以下、又は30質量部以下、又は20質量部以下、又は10質量部以下である。樹脂組成物の溶融時の流動性と機械的特性とのバランスの観点から、微細セルロース量を上述の範囲内とすることが望ましい。一態様においては、乾燥状態の複合粒子がベース樹脂に混入された後に高度に再分散するため、樹脂対比の微細セルロース量が少なくても十分な力学的特性を実現することができる。具体的には、微細セルロースは、ベース樹脂100質量部に対し、好ましくは1質量部以上10質量部以下の割合とすることができる。特に、ベース樹脂100質量部に対し、1質量部以上5質量部以下であっても優れた力学的物性を実現することができるため、着色及び臭気と同時に組成物の吸湿性といった問題を極小化することができる。
樹脂組成物中の複合粒子の含有量は、0.5~40質量%であることができ、10~20質量%がより好ましい。
一態様において、本開示の複合粒子を用いた樹脂組成物は、微細セルロースを単独で(すなわち複合粒子としてではなく)用いかつ樹脂組成物中の微細セルロース比率が同じである比較の樹脂組成物での値に対する比として評価したときに、
引張破断強度が、好ましくは1.03以上、より好ましくは1.05以上、さらに好ましくは1.10以上、最も好ましくは1.15以上であり、及び/又は
引張破断伸度が、好ましくは1.05以上、より好ましくは1.10以上、さらに好ましくは1.20以上、最も好ましくは1.30以上であり、及び/又は
曲げ弾性率が、好ましくは1.03以上、より好ましくは1.05以上、さらに好ましくは1.10以上、最も好ましくは1.15以上であり、及び/又は
線膨張係数が、好ましくは0.90以下、より好ましくは0.85以下、さらに好ましくは0.80以下、最も好ましくは0.75以下である。
一態様においては、樹脂組成物の貯蔵弾性率変化が、好ましくは0.98以下、より好ましくは0.95、さらに好ましくは0.90以下、最も好ましくは0.85以下である。
なお、貯蔵弾性率変化は下記式に従って算出される。
貯蔵弾性率変化=低温の貯蔵弾性率/高温の貯蔵弾性率
例えば、ポリアミド6については低温/高温の温度は0℃/150℃とし、ポリプロピレンについては-50℃/100℃とする。一般に貯蔵弾性率は高温になるほど小さくなるため、貯蔵弾性率変化は1以上となる。この値が1に近いほど、高温での貯蔵弾性率変化が小さく、耐熱性が高い(高温での剛性が高い)といえる。
複合粒子の形態で微細セルロースがベース樹脂中に添加されている樹脂組成物においては、微細セルロースが直接ベース樹脂中に添加されている樹脂組成物と比較し、微細セルロースの分散性が改善される。微細セルロースの分散性が悪い状態は微細セルロースが粗大凝集物として存在していることを意味する。粗大凝集物は引張試験時の破断起点となるため、粗大凝集物の存在は、理想的な分散状態と比較したときに引張破断強度及び伸度を低下させるため、樹脂組成物製造において好ましくない。また、粗大凝集物の存在は、フィラーとして有効に寄与する微細セルロース量の減少を意味し、理想的な分散状態と比較したときに曲げ弾性率を低下させ、線膨張係数及び貯蔵弾性率変化を悪化させるため、樹脂組成物製造において好ましくない。
本開示の樹脂組成物は、微細セルロースの改善された分散性を有することができるため、微細セルロースを含む従来の樹脂組成物よりも低い線膨張性を示すことが可能となる。一態様において、樹脂組成物の温度範囲0℃~60℃における線膨張係数は、好ましくは80ppm/k以下、より好ましくは70ppm/k以下、さらに好ましくは60ppm/k以下、さらに好ましくは55ppm/k以下、特に好ましくは50ppm/k以下、最も好ましくは45ppm/k以下である。線膨張係数は、低いほど好ましいが、樹脂組成物の製造容易性の観点から、例えば10ppm/k以上、又は15ppm/k以上であってよい。
本開示の樹脂組成物を用いて得られる成形体の強度欠陥の解消の観点から、一態様において、樹脂組成物の引張破断強度の変動係数CVは、好ましくは15%以下である。ここでいう変動係数とは、標準偏差(σ)を算術平均(μ)除して100を乗じた百分率であらわされる値であり、相対的なばらつきを表す単位のない数である。
CV=(σ/μ)×100
ここで、μとσは、下式により与えられる。
Figure 0007385625000001
ここで、xiは、n個のデータ x1、x2、x3・・・・Xnのうちの引張破断強度の単一の個データである。
引張破断強度の変動係数CVを算出する際のサンプル数(n)は、樹脂組成物の欠陥を見つけやすくするため、少なくとも10以上であることが望ましい。より望ましくは15以上である。
変動係数のより好ましい上限は、12%、又は10%、又は9%、又は8%、又は7%、又は6%、又は5%である。下限はゼロ%が好ましいが、製造容易性の観点からは好ましくは0.1%である。上記範囲の変動係数は、一態様において、微細セルロース(特に微細セルロース繊維)とセルロース誘導体との併用によって実現できる。一態様において、微細セルロース繊維とセルロース誘導体とを併用する場合、微細セルロース繊維単独よりも高分散性かつ高濃度で樹脂組成物中に微細セルロース繊維を存在させることが可能となる。これにより、微細セルロース繊維を含む従来の樹脂組成物からなる樹脂成形品に見られた、部分的な強度欠陥の発生を解消し、実製品としての信頼性が大幅に向上するという、画期的な効果を得ることが可能となる。
従来の樹脂成形品の上記のような部分的な強度欠陥は、微細セルロース(一態様において微細セルロース繊維)がベース樹脂(一態様において熱可塑性樹脂)中で凝集することで、その凝集体周辺に生じる空隙(ボイド)の形成が原因と考えられる。この強度欠陥の形成しやすさを評価する指標としては、複数の試験片の引張試験を実施し、破断強度のバラツキの有無・数を確認する方法が挙げられる。
たとえば、自動車のボディや、ドアパネル、バンパーといった構造部品の成形体中に、微細セルロースの凝集体に由来するボイドが存在すると、成形体に瞬間的に大きな応力がかかった際、若しくは振動の様に、小さい応力ではあるが、応力が繰り返しかかった際に、上述した均一ではない部分やボイドに応力が集中することとなる。そして最終的には、集中した応力によりこれら成形体が破壊される事態に至る。これが製品としての信頼性低下となっている。
従来、この実製品で起こる構造欠陥を試験段階で予見する手法として、例えば、製品中の微細セルロースの分散性を顕微鏡等で確認するような手法が用いられていた。しかしながら顕微鏡での観察等は、極めて微視的な観察であり、試験片全体、製品全体を網羅的に評価できるものではなく、精度よく予見することは困難であった。
本発明者らは、種々の検討を進める中で、引張破断強度の変動係数と、製品の構造欠陥の割合に相関関係があることを見出した。
より詳細に説明すると、例えば内部構造が均質で、ボイド等もない材料であれば、複数のサンプルの引張破断試験を行った際にも、破断に至る際の応力は、当該複数のサンプル間でほぼ同値であり、その変動係数は非常に小さい。しかしながら内部に不均一部やボイドを有する材料は、あるサンプルにおいて破断に至る応力がその他のサンプルの応力と大きな差異を有する。このような、他のサンプルの応力と異なる応力を示すサンプルの多さの程度を、変動係数という尺度を用いることで明確にすることができる。
例を挙げると、例えば、降伏強度を有さない材料の場合は、内部に欠陥を有するサンプルは、その他のサンプルに比して、より低い強度で破断に至る。また、降伏強度を有する材料の場合は、降伏に至ったのち、ネッキングに至る途中で破断に至ることが多く、内部に欠陥を有するサンプルは、その他のサンプルに比して、より高い強度で破断に至る傾向を示す。このように挙動の違いはあるが、引張破断強度の変動係数という尺度により、実製品の強度欠陥の発生可能性を予期しえる。
引張破断強度の変動係数には、組成物中における微細セルロースの分散状態が大きく影響を与えていると考えられる。分散状態を良好にする手法は種々ある。例として、微細セルロースとセルロース誘導体の比率を最適化する方法、微細セルロースの径及び/又はL/Dを最適化する方法、押出機での溶融混練の際に、スクリュー配置の最適化、温度のコントロールによる樹脂粘度の最適化等により、微細セルロースに充分なせん断を与える方法、最適な有機成分(例えば界面活性剤)を追加添加することにより樹脂と微細セルロースの界面を強化する方法、樹脂と微細セルロースとの間に何らかの化学結合を形成させる方法、微細セルロース表面を化学修飾する方法、微細セルロースとセルロース誘導体の複合体作製方法を最適化する方法等、様々なアプローチが挙げられる。微細セルロースの分散状態を改善するためにこれらのアプローチのいずれを採用してもよい。引張破断強度の変動係数CVを10%以下とすることは、得られる成形体の強度欠陥の解消に高く寄与することができ、成形体の強度に対する信頼性が大幅に向上するという効果を与える。
一態様においては、引張降伏強度が、樹脂組成物中の熱可塑性樹脂単独に比して飛躍的に改善する傾向がある。樹脂組成物の引張降伏強度の、微細セルロースを含まない組成物又は熱可塑性樹脂単独の引張降伏強度を1.0としたときの比率は、1.05倍以上であることが好ましく、より好ましくは1.10倍以上、さらにより好ましくは1.15倍以上、特に好ましくは1.20倍以上、最も好ましくは1.3倍以上である。上記比率の上限は特に制限されないが、製造容易性の観点から、例えば、5.0倍であることが好ましく、より好ましくは4.0倍である。
一態様において、樹脂組成物は、微細セルロースの組成物内での分散均一性に優れるため、大型成形体における線膨張係数のバラツキが小さいという特徴をも有する。具体的には、大型成形体の異なる部位から採取した試験片を用いて測定した線膨張係数のバラツキが非常に低いという特徴を示す。
微細セルロースの組成物内での分散が不均一で、部位による線膨張係数の違いが大きい場合、温度変化により、成形体に歪みや、反りが生じるといった不具合を生じやすい。しかもこの不具合は熱膨張の違いにより生じ、温度の上下により可逆的に発生する故障モードである。そのため、室温状態でのチェックでは認識できないという潜在的危険性を有する故障モードとなりうるものである。
線膨張係数のバラツキの大小は、部位の異なる部分より得た測定サンプルの線膨張係数の変動係数を用いて表すことが可能である。ここでいう変動係数とは、上述の引張破断強度の変動係数の項で説明したものと計算方法は同じである。
一態様において、樹脂組成物から得られる線膨張係数の変動係数は、15%以下であることが好ましい。より好ましい変動係数の上限は、13%であり、さらに好ましくは11%、より好ましくは10%、更により好ましくは9%、最も好ましくは8%である。下限はゼロ%が好ましいが、製造容易性の観点からは好ましくは0.1%である。
線膨張係数の変動係数を算出する際のサンプル数(n)は、データの誤差等による影響を少なくするため、少なくとも10以上であることが望ましい。
≪樹脂組成物の製造方法≫
一態様において、樹脂組成物は、複合粒子とベース樹脂とを混合し、熱溶融混練、熱硬化、光硬化、加硫等を行うことにより製造できる。更に、その樹脂組成物を成形することにより成形体を製造できる。なお、複合粒子を樹脂組成物製造において添加する際の形態は、特に限定されず、乾燥粉体だけでなく水を含むスラリー状であっても良い。水を含むスラリーは、上述した複合粒子の製造方法の乾燥過程の途中で乾燥を中止する方法、一度乾燥させた後、水を添加する方法等によって調製できる。
一態様において、樹脂組成物の製造方法は、複合粒子を、乾燥粉末又は水分散体の形態で、熱可塑性樹脂(一態様において、複合粒子中の熱可塑性樹脂と異なる熱可塑性樹脂)と溶融混練成型機の内部で混練し、次いで成形する工程を含む。
別の一態様において、樹脂組成物の製造方法は、複合粒子を熱硬化性樹脂と混合し、次いで成形し、次いで熱硬化処理を行う工程、又は複合粒子を光硬化性樹脂と混合し、次いで成形し、次いで光硬化処理を行う工程、を含む。
別の一態様において、樹脂組成物の製造方法は、複合粒子をゴムと混合し、次いで成形し、次いで加硫を行う工程を含む。
ベース樹脂が熱可塑性樹脂である場合の樹脂組成物の製法としては、特に制限はないが、例えば、
1.単軸又は二軸押出機を用いて、複合粒子(乾燥粉末又は水分散体)と熱可塑性樹脂との混合物を溶融混練した後、
(1)ストランド状に押出し、水浴中で冷却固化させ、樹脂組成物のペレット状成形体を得る方法、
(2)棒状又は筒状に押出し冷却して、樹脂組成物の押出成形体を得る方法、若しくは
(3)Tダイより押出し、樹脂組成物のシート状又はフィルム状成形体を得る方法、又は
2.複合粒子(乾燥粉末又は水分散体)と熱可塑性樹脂モノマーとを混合し、重合反応(具体的には固相重合、乳化重合、懸濁重合、溶液重合、塊状重合等)を行い、得られた生成物を、上記(1)~(3)のいずれかの方法で押出して、樹脂組成物の成形体を得る方法、
3.ベース樹脂モノマー、微細セルロース、セルロース誘導体の水分散液を混合し、重合反応を行い、得られた生成物を、上記(1)~(3)のいずれかの方法で押出して、樹脂組成物の成形体を得る方法、
等が挙げられる。
別の一態様において、より具体的な樹脂組成物の製造方法は、以下を例示できる。
1.ベース樹脂、微細セルロース乾燥体、セルロース誘導体粉末、必要により分散剤を所望の比率で混合した後、一括溶融混練する方法、
2.ベース樹脂、微細セルロース水スラリー、セルロース誘導体粉末、必要により分散剤を所望の比率で混合した後、一括で溶融混練する方法、
3.微細セルロースとセルロース誘導体の複合体を予め作製した後、ベース樹脂及び必要により分散剤を所望の比率で混合した後、一括で溶融混練する方法、
4.ベース樹脂及び必要により分散剤を溶融混練した後、所望の比率で混合された微細セルロース乾燥体及びセルロース誘導体粉末を添加して、更に溶融混練する方法、
5.ベース樹脂及び必要により分散剤を溶融混練した後、所望の比率で混合された微細セルロース水スラリー及びセルロース誘導体粉末を添加して、更に溶融混練する方法、
6.ベース樹脂及び必要により分散剤を溶融混練した後、予め作製した微細セルロースとセルロース誘導体の複合体を所望の比率で添加して、更に溶融混練する方法、
等が挙げられる。
ベース樹脂が熱可塑性樹脂である場合、複合粒子とベース樹脂との混合物を溶融混練する際の加熱温度は、使用する樹脂に合わせて調整することができる。熱可塑性樹脂供給業者が推奨する最低加工温度は、ナイロン66では255~270℃、ナイロン6では225~240℃、ポリアセタール樹脂では170℃~190℃、ポリプロピレンでは160~180℃である。加熱設定温度は、これらの推奨最低加工温度より20℃高い温度の範囲が好ましい。混合温度をこの温度範囲とすることにより、混合成分を均一に混合することができる。
樹脂組成物の水分率は特に制限はないが、例えばポリアミドの場合、溶融時のポリアミドの分子量上昇を抑えるために、10ppm以上であることが好ましく、溶融時のポリアミドの加水分解を抑えるために1200ppm以下であることが好ましく、900ppm以下であることが更に好ましく、700ppm以下であることが最も好ましい。水分率は、ISO 15512に準拠した方法でカールフィッシャー水分計を用いて測定される値である。
本実施形態の樹脂組成物は、種々の形状での提供が可能である。具体的には、樹脂ペレット状、シート状、繊維状、板状、棒状等が挙げられる。中でも、樹脂ペレット形状が、後加工の容易性や運搬の容易性からより好ましい。この際の好ましいペレット形状としては、丸型、楕円型、円柱型等が挙げられ、これらは押出加工時のカット方式により異なる。アンダーウォーターカットと呼ばれるカット方法で切断されたペレットは、丸型になることが多く、ホットカットと呼ばれるカット方法で切断されたペレットは丸型又は楕円型になることが多く、ストランドカットと呼ばれるカット方法で切断されたペレットは円柱状になることが多い。丸型ペレットの場合、その好ましい大きさは、ペレット直径として1mm以上、3mm以下である。また、円柱状ペレットの場合の好ましい直径は、1mm以上3mm以下であり、好ましい長さは、2mm以上10mm以下である。上記の直径及び長さは、押出時の運転安定性の観点から、下限以上とすることが望ましく、後加工での成形機への噛み込み性の観点から、上限以下とすることが望ましい。
一態様において、樹脂組成物は、セルロース誘導体が付着した微細セルロース繊維から成る不織布(単に不織布とも称す)と、熱可塑性樹脂との複合体であってよい。このような樹脂組成物は、特に限定されるものではないが、例えば以下のような操作によって製造できる。
(A)熱可塑性樹脂前駆体を不織布に含浸させて、該前駆体を重合させる方法。
(B)熱可塑性樹脂又は熱可塑性樹脂前駆体を含む溶液を不織布に含浸又は塗布した後、乾燥し、加熱プレス等で密着させ、必要に応じて熱可塑性樹脂又は熱可塑性樹脂前駆体を重合硬化させる方法。
(C)熱可塑性樹脂の溶融体を不織布に含浸し、加熱プレス等で密着させる方法。
(D)熱可塑性樹脂シートと不織布とを交互に配置し、加熱プレス等で密着させる方法。
セルロース誘導体が付着した微細セルロース繊維から成る不織布を得る方法としては、特に限定されるものではないが、例えば、前述したような、セルロース誘導体が付着した微細セルロース繊維水スラリーを抄紙又は塗布した後に乾燥する方法、始めに微細セルロース繊維単独で不織布を得た後、セルロース誘導体を溶解した有機溶剤を不織布に塗布した後に乾燥する方法等を例示できる。
熱可塑性樹脂をベース樹脂とした樹脂組成物は、種々の形状(例えば、フィルム状、シート状、繊維状、板状、ペレット状、粉末状、立体構造等)の樹脂成形体に成形できる。樹脂成形体の製造方法に特に制限はないが、射出成形(例えば射出圧縮成形、射出プレス成形、ガスアシスト射出成形、及び超高速射出成形)、各種押出成形(コールドランナー方式又はホットランナー方式)、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、各種異形押出成形(例えば二色成形及びサンドイッチ成形)等を例示できる。例えば、シート、フィルム、繊維等の成形には種々の押出成形が好適である。シート又はフィルムの成形にはインフレーション法、カレンダー法、キャスティング法等も用いることができる。さらに、特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また、回転成形又はブロー成形等により中空成形品とすることも可能である。これらの中では射出成形法がデザイン性とコストの観点より、特に好ましい。
ベース樹脂が熱硬化性樹脂又は光硬化性樹脂である樹脂組成物の製法としては、特に制限はないが、例えば、ベース樹脂溶液又はベース樹脂粉末分散体中に複合粒子を十分に分散させて乾燥する方法、ベース樹脂モノマー液中に複合粒子を十分に分散させて熱、UV照射、重合開始剤等によって重合する方法、複合粒子からなる成形体(例えば、シート、粉末粒子成形体等)にベース樹脂溶液又はベース樹脂粉末分散体を十分に含浸させて乾燥する方法、複合粒子からなる成形体にベース樹脂モノマー液を十分に含浸させて熱、UV照射、重合開始剤等によって重合する方法等が挙げられる。硬化に際し、種々の重合開始剤、硬化剤、硬化促進剤、重合禁止剤等を配合することができる。
熱硬化性樹脂又は光硬化性樹脂をベース樹脂とした樹脂組成物は、種々の樹脂成形体として利用が可能である。樹脂成形体の製造方法に特に制限はない。
熱硬化性樹脂の場合、板状の製品を製造するのであれば、押出成形法が一般的であるが、平面プレスによっても可能である。この他、異形押出成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いることが可能である。またフィルム状の製品を製造するのであれば、溶融押出法の他、溶液キャスト法を用いることができ、溶融成形方法を用いる場合、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形等が挙げられる。
また、未硬化又は半硬化のプリプレグと呼ばれるシートを作製した後、プリプレグを単層又は積層にして、加圧及び加熱して樹脂を硬化及び成形させる方法を用いてもよい。熱及び圧力を付与する方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等が挙げられるが、これらの成形方法に限定されない。
さらに、炭素繊維等の強化繊維のフィラメント又はプリフォームにベース樹脂硬化前の樹脂組成物を含浸させた後、当該ベース樹脂を硬化させて成形物を得る方法(例えば、RTM、VaRTM、フィラメントワインディング、RFI等の成形方法)が挙げられるが、これら成形方法に限定されない。
ベース樹脂が光硬化性樹脂である場合、活性エネルギー線を用いた各種硬化方法を用いて成形体を製造する事ができる。
ベース樹脂がゴムである場合の樹脂組成物の製法としては、特に制限はないが、例えば、複合粒子とゴムとを乾式で混練する方法、複合粒子とゴムとを分散媒中に分散又は溶解させた後、乾燥させて混練する方法等が挙げられる。混合方法としては、高い剪断力と圧力とをかけ、分散を促進できる点で、ホモジナイザーによる混合方法が好ましいが、その他、プロペラ式攪拌装置、ロータリー攪拌装置、電磁攪拌装置、手動による攪拌、等の方法を用いることもできる。得られた樹脂組成物は所望の形状に成形され、成形材料として用いることができる。成形材料の形状としては、例えば、シート、ペレット、粉末等が挙げられる。
ゴムをベース樹脂とした樹脂組成物は、種々の樹脂成形体として利用が可能である。樹脂成形体の製造方法に特に制限はなく、成形材料を、例えば金型成形、射出成形、押出成形、中空成形、発泡成形等の所望の成形方法を用いて成形し、所望の形状の未加硫の成形体を得ることができる。未加硫の成形体は、必要に応じて熱処理等で加硫することができる。
本開示の一態様は、
ベース樹脂としての熱可塑性樹脂、及び
本開示の複合粒子(例えば、微細セルロースとセルロース誘導体とで構成された複合粒子)、
を含む樹脂組成物の製造方法であって、
押出機において熱可塑性樹脂を溶融混練する第1の工程と、
第1の工程の溶融された樹脂に該複合粒子を添加する第2の工程と、
を含む方法を提供する。本開示において、複合粒子が「微細セルロースとセルロース誘導体とで構成され」とは、複合粒子が、微細セルロース及びセルロース誘導体を主成分として(すなわち、微細セルロースとセルロース誘導体との合計量が複合粒子100質量%に対して50質量%超となるように)含むことを意味し、添加剤等の第三成分を含むことを排除しない。
高弾性率である微細セルロースの集合体であるパルプを叩解レベルで解繊し、樹脂フィラーとして活用することは従来より行われている。解繊度の低いパルプは樹脂中への分散も比較的良好であるため、パルプ乾燥物を熱可塑性樹脂に添加しても混練は可能であり、その後の押出成形品でも一定の品質レベルを維持することができる。しかし、このようなパルプと熱可塑性樹脂との複合材では、数ミリメートルから数百マイクロメートルレベルのパルプ繊維が弱い相互作用でフィラーとして熱可塑性樹脂中に分散しているに過ぎず、複合材の物性を向上させるためには、タルク等の他のフィラーと同様、大量のパルプ繊維を熱可塑性樹脂中に投入しなければならない(少なくとも、複合材総質量の20質量%以上)。一方、ナノメートルサイズ(すなわち1μm未満)の微細セルロースをフィラー成分として用いる場合、微細セルロース間の相互作用を適切に制御することにより、樹脂組成物総質量の10質量%以下、好ましくは5質量%以下の微細セルロース量で、熱可塑性樹脂中に高度に広がったネットワーク構造を形成させることが可能となる。このネットワーク構造は微細セルロースと熱可塑性樹脂との複合材の力学的特性を著しく向上させる。なお、典型的な態様において、上記のネットワーク構造を形成可能な微細セルロースは、熱可塑性樹脂との混練前において、例えば水分散媒中において高弾性なゲルの状態を形成し得る。セルロース誘導体は、微細セルロース間の相互作用を制御し、したがってベース樹脂中での微細セルロース間の分散状態を制御することに寄与する。
微細セルロース(特にセルロースウィスカー及び/又はセルロースファイバー)単体での径がナノメートルサイズ(すなわち1μm未満)であることは、第二の工程においてセルロース凝集体を効果的に形成させる観点から好ましい。
第2の工程において、押出機としては、単軸押出機、二軸押出機等を使用できるが、二軸押出機がセルロースの分散性を制御する上で好ましい。押出機のシリンダー長(L)をスクリュー径(D)で除したL/Dは、40以上が好ましく、特に好ましくは50以上である。また、混練時のスクリュー回転数は、100~800rpmの範囲が好ましく、より好ましくは150~600rpmの範囲内である。これらはスクリューのデザインにより、変化する。
押出機のシリンダー内の各スクリューは、楕円形の二翼のねじ形状のフルフライトスクリュー、ニーディングディスクと呼ばれる混練エレメント、等を組み合わせて最適化される。
一態様においては、押出機のシリンダーの途中部分に添加口が設置され、添加口に投入された原料はシリンダー内のスクリューに導かれる。一態様において、添加口の位置は、第1の工程を行う溶融混練ゾーンより下流に配置される。押出機を用いた通常の混練では、最初の樹脂溶融ゾーンが最も強く剪断がかかる領域であるため、搬送ゾーンを移動する未溶融状態の樹脂に対しフィラー成分を添加することにより、その後の加熱溶融下での剪断力でフィラーが微分散される。しかしながら、セルロースを強化フィラーとして樹脂に微分散させる場合、樹脂溶融ゾーンの手前でセルロースを添加すると、樹脂溶融ゾーンでの強い剪断力が原因でセルロースが劣化する場合がある。特に、セルロース単体での径がナノメートルサイズ(すなわち1μm未満)である微細セルロースを使用する場合、その表面積は極めて大きいため、通常のフィラー成分の樹脂に対する添加量比(具体的には、フィラー成分と樹脂との合計100質量%に対してフィラー成分20質量%以上)で強化樹脂組成を設計しようとした場合、上記剪断力による微細セルロースの劣化が大きくなり、微細セルロースのもつ本来の強固な結晶構造の損失、強化樹脂としての力学的特性の低下、着色及び臭気といった問題が生じる場合がある。
本開示の複合粒子は、乾燥状態にあっても優れた再分散性を有することができるため、上記剪断下に複合粒子をさらすことなく微分散が可能である。すなわち、第1の工程で溶融された熱可塑性樹脂に対して、第2の工程で複合粒子を添加できる。微細セルロースとセルロース誘導体とで構成された複合粒子は、既に溶融状態にある樹脂中で速やかに微分散し、その添加量が極めて微量、例えばベース樹脂である熱可塑性樹脂100質量部に対し10質量部以下であっても強化フィラーとして良好な機能を発揮し得、最終的に得られる樹脂組成物の力学的特性を確実に向上し、かつ着色及び臭気といった問題も良好に抑制することができる。
シリンダー内部を通過する際に受ける熱履歴の軽減を目的とし、添加口は、押出機の溶融混練ゾーンよりも下流側に設計することが好ましい。具体的には、シリンダーの全長(L1)に対し、シリンダーの出口から添加口までの長さ(L2)を1/2以下に設計することが好ましい。なおシリンダーの全長には混練に関与しない部分(例えば搬送ゾーン)も含まれる。
添加口からは、微細セルロースとセルロース誘導体とで構成された複合粒子が投入され、押出機内で溶融混練された熱可塑性樹脂中に混入される。本実施形態の複合粒子は再分散性に優れているため、押出機内の後工程で投入されても樹脂中で高度に分散させることができる。
熱可塑性樹脂が耐熱性に優れたエンジニアプラスチックであった場合、その溶融温度は非常に高温であるため、加工時には強い熱履歴が微細セルロースにもかかり、焼けによる着色及び臭気の問題が生じやすい。また、この強い熱履歴は、セルロース(特に天然セルロース)のもつ優れた力学的特性を部分的に失わせるため、熱可塑性樹脂にセルロースをフィラーとして添加したときの樹脂組成物の力学的特性の向上効果を低下させる。
本実施形態では、微細セルロースを、予めセルロース誘導体を用いて、乾燥状態にあっても優れた再分散性をもつ複合粒子に改質しているため、第1の工程の溶融された樹脂に対して(好ましくは押出機の溶融混練ゾーンよりも下流、より好ましくはL2/L1が1/2以下、更に好ましくはL2/L1が1/3以下、最も好ましくはL2/L1が1/4以下に位置する添加口から)シリンダーに複合粒子を添加しても、微細セルロースが高度に分散した樹脂組成物を製造することができる。上記のような態様で投入された微細セルロースにおいては、熱履歴が緩和されているため、焼けによる着色及び臭気の発生が抑制される。また、本実施形態の方法によれば、熱履歴の緩和ととともに微細セルロースの高度な分散も実現できるため、樹脂組成物の高度な力学特性を実現することができる。
押出機の、添加口を含む部位(サイドフィーダー)の下流には、ガス抜きシリンダー、真空引きベント等を適宜設け、複合粒子投入時に混入した空気及び微量の水分(水蒸気)を脱気することができる。
また、二軸押出機は、先端排出部で樹脂に高圧がかかり、樹脂温度が上昇しやすい。この樹脂圧力を制御したり樹脂温度上昇を軽減する目的で、下流にギヤポンプを設置することができる。
本実施形態では、微細セルロースとセルロース誘導体とで構成された複合粒子が押出機内を搬送される距離を、熱可塑性樹脂と比較して短くできるため、複合粒子混入後のシリンダー内のスクリューの構成を工夫することで確実な均質分散を実現することができる。具体的には、これに限定するものではないが、進行方向と逆向きのフィードを作り出す反時計回りのスクリューを1箇所以上、添加口よりも下流側のシリンダー内に設けることにより、微細セルロースの高度な分散をより確実に実現することができる。
≪成形体≫
本実施形態の樹脂組成物から得られる成形体は、用途によってどのような形状であってもよく、三次元の立体形状でも、シート状、フィルム状又は繊維状でも構わない。例えば、成形体の一部(例えば数箇所)を加熱処理する事により溶融させ、例えば樹脂又は金属の基板に接着して用いても構わない。成形体は、樹脂又は金属の基板に塗布された塗膜であってもよく、基板との積層体を形成してもよい。また、シート状、フィルム状又は繊維状の成形体につき、アニール処理、エッチング処理、コロナ処理、プラズマ処理、シボ転写、切削、表面研磨等の二次加工を行っても構わない。
本実施形態の樹脂組成物は、高耐熱かつ軽量であることから、鋼板の代替、又は炭素繊維強化プラスチック、ガラス繊維強化プラスチック等の繊維強化プラスチック、無機フィラーを含む樹脂コンポジット等の代替ができる。例えば、産業用機械部品(例えば、電磁機器筐体、ロール材、搬送用アーム、医療機器部材等)、一般機械部品、自動車・鉄道・車両等部品(例えば外板、シャーシ、空力部材、座席、トランスミッション内部の摩擦材等)、船舶部材(例えば船体、座席等)、航空関連部品(例えば、胴体、主翼、尾翼、動翼、フェアリング、カウル、ドア、座席、内装材等)、宇宙機、人工衛星部材(モーターケース、主翼、構体、アンテナ等)、電子・電気部品(例えばパーソナルコンピュータ筐体、携帯電話筐体、OA機器、AV機器、電話機、ファクシミリ、家電製品、玩具用品等)、建築・土木材料(例えば、鉄筋代替材料、トラス構造体、つり橋用ケーブル等)、生活用品、スポーツ・レジャー用品(例えば、ゴルフクラブシャフト、釣り竿、テニス又はバトミントンのラケット等)、風力発電用筐体部材等、また容器・包装部材、例えば、燃料電池に使用されるような水素ガス等を充填する高圧力容器用の材料となり得る。
これらの中でも、既存の樹脂組成物と比べて高耐熱化、軽量化されることで優位性を発揮できるのは、樹脂成形が必要な自動車用部材である。特に高温環境下で使用されるエンジン周辺の部材であるギア、エンジンカバー、ラジエータータンク、インテークマニホールド等に有用である。高温環境下での剛性が低い場合、ギアのような複雑な構造において歯の噛み合わせのズレ又は欠損の発生、エンジンカバー、ラジエータータンク、インテークマニホールド等の容器において他の部材との接合部の破損や変形がある。したがって、高温剛性に優れる本実施形態の樹脂組成物は高温環境下で使用される部材に最適である。また、本実施形態の樹脂組成物は、微細セルロースが良好に分散していることで、高耐熱、軽量及び高強度である上に、低線膨張であり、更に表面性状及び摺動特性にも優れることから、特に、クーリングファン、キャニスター、ロッカーカバー、オーナメントカバー、ラジエタードレンキャップ、ラジエターファン、シリンダーヘッドカバー、オイルパン、オイルリザーバータンク、ガソリンタンク、ケーブルライナー、ファスナークリップ、エンジンマウント、エンジンファン、スパークプラグカバー、スパークプラグキャップ、ジャンクションブロック、リレーブロック、コネクター、ブレーキ配管、燃料配管用チューブ、廃ガス系統部品吸気系部品、排気系部品等の部材に適している。
本開示の一態様に係る樹脂組成物は、高機械的特性及び低線膨張性を有することができ、及び/又は大型部品に対応可能な高い流動性を有することができ、及び/又は部分的な強度欠陥を実質的に含まない成形体を与えることができるため、成形体は種々の大型部品であってよい。
本開示は以下の態様を包含する。
<態様A>
[1] 微細セルロースと熱可塑性樹脂とを含む複合粒子であって、
前記複合粒子中の微細セルロースの比率が10質量%以上95質量%以下であり、
分散液中の微細セルロース濃度が1質量%となるように前記複合粒子をDMSO中に分散させて得た分散液の、液温25℃及び剪断速度10s-1における粘度η10が、10mPa・s以上である、複合粒子。
[2] 前記分散液の、液温25℃における、剪断速度100s-1での粘度η100に対する剪断速度10s-1での粘度η10の比η10/η100であるチキソトロピーインデックス(TI)が、2以上である、上記態様1に記載の複合粒子。
[3] メジアン粒径が1μm以上5000μm以下である、上記態様1又は2に記載の複合粒子。
[4] 前記熱可塑性樹脂がDMSOに可溶である、上記態様1~3のいずれかに記載の複合粒子。
[5] 前記熱可塑性樹脂がセルロース誘導体である、上記態様4に記載の複合粒子。
[6] 前記微細セルロースが、比表面積相当径2nm以上1000nm未満を有する、上記態様1~5のいずれかに記載の複合粒子。
[7] 前記微細セルロースの一部が化学修飾されており、かつ前記微細セルロースがI型結晶構造を有する、上記態様1~6のいずれかに記載の複合粒子。
[8] 前記化学修飾がアセチル化である、上記態様7に記載の複合粒子。
[9] 上記態様1~8のいずれかに記載の複合粒子の製造方法であって、
微細セルロースの水分散体と熱可塑性樹脂の粒子とを混合し、次いで乾燥させて、複合粒子を回収する、粉末化工程を含む、方法。
[10] 前記微細セルロースの水分散体を、
有機溶媒中でセルロースの解繊処理を行って微細セルロース分散体を得る解繊工程、及び
前記微細セルロース分散体中の有機溶媒を水に置換する精製工程、
によって調製する、上記態様9に記載の製造方法。
[11] 前記解繊工程と同時に、又は前記解繊工程の後かつ前記精製工程の前に、微細セルロースの化学修飾を行う化学修飾工程を更に含む、上記態様10に記載の方法。
[12] 上記態様1~8のいずれかに記載の複合粒子の製造方法であって、
微細セルロースの有機溶媒分散体中に熱可塑性樹脂を添加して、有機溶媒中に微細セルロースが分散しかつ熱可塑性樹脂が溶解している微細セルロース/樹脂分散体を得る微細セルロース/樹脂分散体調製工程、
前記微細セルロース/樹脂分散体を前記熱可塑性樹脂の貧溶媒と混合し、微細セルロースと熱可塑性樹脂とを含む複合粒子を析出させることによって、複合粒子分散体を得る析出工程、
前記複合粒子分散体中の前記有機溶媒を水に置換して水分散体を得る精製工程、及び
前記水分散体を乾燥させて複合粒子を回収する粉末化工程、
を含む、方法。
[13] 前記微細セルロースの有機溶媒分散体を、有機溶媒中でセルロースを解繊処理する解繊工程によって調製する、上記態様12に記載の複合粒子の製造方法。
[14] 前記解繊工程と同時又は前記解繊工程の後に、微細セルロースの化学修飾を行う化学修飾工程を更に含む、上記態様13に記載の方法。
[15] 上記態様1~8のいずれかに記載の複合粒子とベース樹脂とを含む、樹脂組成物。
[16] 前記ベース樹脂が、熱可塑性樹脂である、上記態様15に記載の樹脂組成物。
[17] 前記ベース樹脂が、熱硬化性樹脂又は光硬化性樹脂である、上記態様15に記載の樹脂組成物。
[18] 前記ベース樹脂が、ゴムである、上記態様15に記載の樹脂組成物。
[19] 上記態様16に記載の樹脂組成物の製造方法であって、
複合粒子を、乾燥粉末又は水分散体の形態で、熱可塑性樹脂と溶融混練成型機の内部で混練し、次いで成形する工程を含む、方法。
[20] 上記態様17に記載の樹脂組成物の製造方法であって、
複合粒子を熱硬化性樹脂と混合し、次いで成形し、次いで熱硬化処理を行う工程、又は
複合粒子を光硬化性樹脂と混合し、次いで成形し、次いで光硬化処理を行う工程、
を含む、方法。
[21] 上記態様18に記載の樹脂組成物の製造方法であって、
複合粒子をゴムと混合し、次いで成形し、次いで加硫を行う工程を含む、方法。
<態様B>
[1] 熱可塑性樹脂、
前記熱可塑性樹脂100質量部に対して0.1~40質量部の、繊維径が2nm以上1μm未満である微細セルロース繊維、及び
前記微細セルロース繊維100質量部に対して1質量部~500質量部の、セルロース誘導体、
を含む、樹脂組成物。
[2] 前記熱可塑性樹脂が、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂及びこれらのいずれか2種以上の混合物からなる群より選択される、上記態様1に記載の樹脂組成物。
[3] 前記熱可塑性樹脂が、ポリプロピレンであり、該ポリプロピレンのISO1133に準拠して230℃で測定されたメルトマスフローレイト(MFR)が、3g/10分以上30g/10分以下である、上記態様1に記載の樹脂組成物。
[4] 前記熱可塑性樹脂が、ポリアミド系樹脂であり、該ポリアミド系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95である、上記態様1に記載の樹脂組成物。
[5] 前記熱可塑性樹脂が、ポリエステル系樹脂であり、該ポリエステル系樹脂の全末端基に対するカルボキシル末端基比率([COOH]/[全末端基])が、0.30~0.95である、上記態様1に記載の樹脂組成物。
[6] 前記熱可塑性樹脂が、ポリアセタール系樹脂であり、該ポリアセタール系樹脂が、0.01~4モル%のコモノマー由来構造を含有するコポリアセタールである、上記態様1に記載の樹脂組成物。
[7] 前記セルロース誘導体が、セルロースアセテート、セルロースアセテートプロピオネート、及びセルロースアセテートブチレートからなる群より選択される少なくとも1種である、上記態様1~6のいずれかに記載の樹脂組成物。
[8] 前記微細セルロース繊維の繊維径が500nm以下である、上記態様1~7のいずれかに記載の樹脂組成物。
[9] 前記微細セルロース繊維の結晶化度が50%以上である、上記態様1~8のいずれかに記載の樹脂組成物。
[10] 前記微細セルロース繊維が化学修飾微細セルロース繊維である、上記態様1~9のいずれかに記載の樹脂組成物。
[11] 前記化学修飾微細セルロース繊維がエステル化微細セルロース繊維である、上記態様10に記載の樹脂組成物。
[12] セルロースウィスカーを、前記微細セルロース繊維100質量部に対して10~500質量部の量で更に含む、上記態様1~11のいずれかに記載の樹脂組成物。
[13] 前記樹脂組成物の引張破断強度の変動係数(標準偏差/算術平均値)が、15%以下である、上記態様1~12のいずれかに記載の樹脂組成物。
[14] 前記樹脂組成物の引張降伏強度が、前記熱可塑性樹脂の引張降伏強度の1.05倍以上である、上記態様1~13のいずれかに記載の樹脂組成物。
[15] 前記樹脂組成物の0℃~60℃の範囲での線膨張係数が80ppm/k以下である、上記態様1~14のいずれかに記載の樹脂組成物。
[16] 上記態様1~15のいずれかに記載の樹脂組成物より形成される、樹脂ペレット。
[17] 上記態様1~15のいずれかに記載の樹脂組成物より形成される、樹脂成形体。
<態様C>
[1] 熱可塑性樹脂と、
微細セルロースとセルロース誘導体で構成された複合粒子と、
を含む樹脂組成物の製造方法であって、
押出機において前記熱可塑性樹脂を溶融混練する第1の工程と、
第1の工程の溶融された樹脂に前記複合粒子を添加する第2の工程と、
を含む、製造方法。
[2] 前記第1の工程は、押出機が備えるシリンダー内の溶融混練ゾーンで行われ、
前記第2の工程は、前記シリンダーに設けられた添加口から前記複合粒子を供給することにより行われる、上記態様1に記載の製造方法。
[3] 前記添加口は、前記溶融混練ゾーンよりも下流に配置される、上記態様2に記載の製造方法。
[4] 前記シリンダーの全長(L1)に対し、前記シリンダーの出口から前記添加口までの長さ(L2)が1/2以下である、上記態様2又は3に記載の製造方法。
[5] 前記添加口よりも下流側のシリンダー内に、前記複合粒子を前記熱可塑性樹脂中で混練分散させるための反時計回りスクリューが1箇所以上設けられている、上記態様2~4のいずれかに記載の製造方法。
[6] 前記複合粒子を構成する微細セルロースは化学修飾されている、上記態様1~5のいずれかに記載の製造方法。
[7] 前記微細セルロースの化学修飾は、アセチル化である、上記態様6に記載の製造方法。
[8] 前記樹脂組成物は、前記微細セルロースを、前記熱可塑性樹脂100質量部に対し1質量部以上10質量部以下の割合で含む、上記態様1~7のいずれかに記載の製造方法。
[9] 前記微細セルロースは、長さ/径比率(L/D比)が15未満のセルロースウィスカーと、L/D比が150以上のセルロースファイバーとを含む、上記態様1~8のいずれかに記載の製造方法。
[10] 前記熱可塑性樹脂の融点が220℃以上である、上記態様1~9のいずれかに記載の製造方法。
以下に、本発明を実施例に基づいて更に説明するが、本発明はこれら実施例に限定されない。
1.原料
以下に、使用した原料について説明する。
≪ベース樹脂≫
ポリアミド
ポリアミド6(以下、単にPA6と称す。)
宇部興産株式会社より入手可能な「UBEナイロン 1013B」
カルボキシル末端基比率が、([COOH]/[全末端基])=0.6
ポリプロピレン
ホモポリプロピレン(以下、単にPPと称す)
プライムポリマーから入手可能な「プライムポリプロ J105B」
ISO1133に準拠230℃測定MFR=9.0g/10分
マレイン酸変性ポリプロピレン(以下、単にMPPと称す)
三洋化成工業株式会社から入手可能な「ユーメックス1001」
ISO1133に準拠して230℃で測定されたMFR=230g/10分
≪複合粒子(複合体)の熱可塑性樹脂≫
[セルロース誘導体]
セルロースアセテートブチレート CAB0.1(イーストマンケミカル社製、製品名CAB381-0.1、分子量20000、エステル化度:ブチル基37wt%、アセチル基13wt%、ヒドロキシ基1.5wt%)
セルロースアセテートブチレート CAB20(イーストマンケミカル社製、製品名CAB381-20、分子量70000、エステル化度:ブチル基37wt%、アセチル基13.5wt%、ヒドロキシ基1.5wt%)
セルロースアセテートプロピオネート CAP20(イーストマンケミカル社製、製品名CAP482-20、エステル化度:プロピオニル基48wt%、アセチル基1.3wt%、ヒドロキシ基1.7wt%)
[ポリアミド]
ポリアミド6パウダーPA6(メタルカラー社製、製品名SNP-613NS)
≪実施例A≫
<微細セルロースの製造>
複合粒子、及び微細セルロースのみの単独粒子のそれぞれの製造で用いる微細セルローススラリーを、下記製造例A~E2の方法で表1の組成に従って製造した。
[セルロースウィスカー(以下、CNCともいう。)]
市販DPパルプ(平均重合度1600)を裁断し、10質量%塩酸水溶液中で、105℃で30分間加水分解した。得られた酸不溶解残さを濾過、洗浄、pH調整し、固形分濃度14質量%、pH6.5の結晶セルロース分散体を調製した。この結晶セルロース分散体を噴霧乾燥し、結晶セルロースの乾燥物を得た。次に、供給量を10kg/hrとして、気流型粉砕機(STJ-400型、セイシン企業社製)に上記で得た乾燥物を供給して粉砕し、結晶セルロース微粉末としてセルロースウィスカーを得た。得られたセルロースウィスカーの特性を後述の方法で評価した。結果を下記に示す。
L/D=1.6
平均径=200nm
結晶化度=78%
重合度=200
[製造例A](水中で解繊)
コットンリンターパルプ3質量部を水27質量部に浸漬させてオートクレーブ内で130℃、4時間の熱処理を行った。得られた膨潤パルプは水洗し、水を含む精製パルプ(30質量部)を得た。つづいて、水を含む精製パルプ30質量部に水を170質量部入れて水中に分散させて(固形分率1.5質量%)、ディスクリファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー(加圧型DISK式)を用い、ディスク間のクリアランスを1mmで該水分散体を20分間叩解処理した。それに引き続き、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で徹底的に叩解を行い、叩解水分散体(固形分濃度:1.5質量%)を得た。得られた叩解水分散体を、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NSO15H)を用いて操作圧力100MPa下で15回の微細化処理し、微細セルローススラリー(固形分濃度:1.5質量%)を得た。そして、脱水機により固形分率10質量%まで濃縮し、スラリーA(水溶媒)30質量部を得た。
[製造例B1](DMSO中で解繊)
コットンリンターパルプ1質量部を、一軸撹拌機(アイメックス社製 DKV-1 φ125mmディゾルバー)を用いジメチルスルホキサイド(DMSO)30質量部中で500rpmにて1時間、常温で攪拌した。続いて、ホースポンプでビーズミル(アイメックス社製 NVM-1.5)にフィードし、DMSOのみで180分間循環運転させ、固形分率3.2質量%のスラリーB1(DMSO溶媒)を31質量部得た。
循環運転の際、ビーズミルの回転数は2500rpm、周速12m/sとし、用いたビーズはジルコニア製で、φ2.0mm、充填率70%とした(ビーズミルのスリット隙間は0.6mmとした)。また、循環運転の際は、摩擦による発熱を吸収するためにチラーによりスラリー温度を40℃に温度管理した。
[製造例B2](DMSO中で解繊、次いで水に溶媒置換)
スラリーB1に純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、未反応試薬溶媒等を除去し、固形分率10質量%のスラリーB2(水溶媒)を10質量部得た。
[製造例C1](DMSO中で解繊、次いで化学修飾)
スラリーB1を防爆型ディスパーザータンクに投入した後、酢酸ビニル3.2質量部、炭酸水素ナトリウム0.49質量部を加え、タンク内温度を70℃とし、120分間撹拌を行い、固形分率2.9質量%のスラリーC1(DMSO溶媒)を35質量部を得た。
[製造例C2](DMSO中で解繊、次いで化学修飾、次いで水に溶媒置換)
スラリーC1に純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、未反応試薬溶媒等を除去し、固形分率10質量%のスラリーC2(水溶媒)を10質量部得た。
[製造例D1](CNC使用、DMSO中で解繊、次いで化学修飾)
セルロース原料をリンターパルプ0.6質量部及びCNC0.4質量部に変更した以外は製造例B1と同様の手法で微細セルロースDMSOスラリーを得た。つづいて、製造例C1と同様の手法で微細セルロースのアセチル化を行い、固形分率2.9質量%のスラリーD1(DMSO溶媒)を35質量部得た。
[製造例D2](CNC併用、DMSO中で解繊、次いで化学修飾、次いで水に溶媒置換)
スラリーD1に純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、未反応試薬溶媒等を除去し、固形分率10質量%のスラリーD2(水溶媒)を10質量部得た。
[製造例E1](木材パルプ使用、DMSO中で解繊と同時に化学修飾)
セルロース原料を針葉樹晒クラフトパルプNBKP1質量部に変更したとともに、ビーズミル処理直前に酢酸ビニル3.2質量部、炭酸水素ナトリウム0.49質量部を加え、40℃、180分間循環運転を行った以外は製造例B1と同様の手法で処理を行い、固形分率2.9質量%のスラリーE1(DMSO溶媒)を35質量部得た(微細セルロースは1質量部)。
[製造例E2](木材パルプ使用、DMSO中で解繊と同時に化学修飾、次いで水に溶媒置換)
スラリーE1に純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、未反応試薬溶媒等を除去し、固形分率10質量%のスラリーE2(水溶媒)を10質量部得た。
<複合粒子の製造>
実施例A1~A9、比較例A1~A8で用いる複合粒子及び微細セルロースのみの単独粒子は、下記製造例V~Zの方法で表2の組成に従って製造した。
[製造例V]
スラリーB1,C1,D1,E1について、全量防爆型ディスパーザータンクに各々を投入した後、セルロース誘導体粉末を加え、10分間、回転数100rpm、常温で撹拌しセルロース誘導体を完全に溶解させた。続いて、別の防爆型ディスパーザータンクに入れた純水30質量部を200rpmで撹拌しながら、該スラリーを1L/minの速度で全量滴下し、滴下終了後も10分間続けて撹拌し、セルロース誘導体を析出させた(析出工程)。得られた水分散体から脱水機により液体分を取り除いた。この後、純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、DMSOを除去し、水を含む複合粒子10質量部を製造した(固形分率10質量%)。
[製造例W]
スラリーB1,C1,D1について、製造例Vで製造した水を含む複合粒子を全量プラネタリミキサー(ハイビスミックス2P-1)を用いて回転数50rpm、40℃、真空乾燥させることにより、乾燥複合粒子を得た。
[製造例X]
スラリーC2についてナイロン6粉末を添加し、プラネタリミキサーを用いて回転数50rpm、室温、2hr混練した後、40℃、真空乾燥させることにより、乾燥複合粒子を得た。
[製造例Y]
スラリーB2、C2、D2、E2について熱可塑性樹脂粉末を一切添加せず、プラネタリミキサーを用いて回転数50rpm、40℃、真空乾燥させることにより、単独粒子を得た。
[製造例Z]
スラリーAについてセルロース誘導体粉末を添加し、プラネタリミキサーを用いて回転数50rpm、室温、2hr混練し、40℃、真空乾燥をして固形分率30質量%まで濃縮することで、水を含む複合粒子を製造した。
<測定方法-微細セルロース>
[測定サンプル作製]
製造例A、B1、C1、C2、D1、E1の微細セルロースの物性を表1に示す。これらの物性は製造例A、B1、C1、C2、D1、E1の水スラリー及び下記手法で作製された多孔質シートを用いて評価した。
まず、固形分濃度10質量%の微細セルロース濃縮スラリー又は化学修飾微細セルロース濃縮スラリー4gをtert-ブタノール96g中に分散させ、さらにホモジナイザー(IKA製、商品名「ウルトラタラックスT18」)で処理条件:回転数25,000rpm×5分間で凝集物が無い状態まで分散処理した(固形分濃度0.4質量%)。得られたtert-ブタノール分散液100gをろ紙(5C,アドバンテック,直径90mm)上で濾過した。ろ過で得られた湿紙はろ紙が貼りついた状態で、かつ、直径150mmろ紙2枚に挟んで、かつ、湿紙の周囲を300g程度の円筒状(内径110mm)の重りで抑えた状態で150℃、5min間加熱し、乾燥シートを得た。この時、このシートの透気抵抗度がシート目付10g/m2あたり100sec/100ml以下のものを多孔質シートとし、測定サンプルとして使用した。
23℃、50%RHの環境で1日静置したサンプルの目付W(g/m2)を測定した後、王研式透気抵抗試験機(旭精工(株)製、型式EG01)を用いて透気抵抗度R(sec/100ml)を測定した。この時、下記式に従い、10g/m2目付あたりの値を算出した。
目付10g/m2あたり透気抵抗度(sec/100ml)=R/W×10
[数平均径]
製造例A、B1、C1、C2、D1、E1における水スラリー及びセルロースウィスカーをtert-ブタノールで0.01質量%まで希釈し、高剪断ホモジナイザー(IKA製、商品名「ウルトラタラックスT18」)を用い、処理条件:回転数25,000rpm×5分間で分散させ、マイカ上にキャスト、風乾したものを測定サンプルとし、高分解能走査型顕微鏡で計測して求めた。具体的には、100本の微細セルロースが観測されるように倍率が調整された観察視野にて、無作為に選んだ100本の微細セルロースの径及び長さを計測した。つづいて、得られた100個の径及び長さの平均値を微細セルロースの数平均径、数平均長とした。また、数平均径及び数平均長よりL/Dを算出した。
[結晶化度]
多孔質シートのX線回折測定を行い、下記式より結晶化度を算出した。
結晶化度(%)=[I(200)-I(amorphous)]/I(200)×100
(200):セルロースI型結晶における200面(2θ=22.5°)による回折ピーク強度
(amorphous):セルロースI型結晶におけるアモルファスによるハローピーク強度であって、200面の回折角度より4.5°低角度側(2θ=18.0°)のピーク強度
(X線回折測定条件)
装置 MiniFlex(株式会社リガク製)
操作軸 2θ/θ
線源 CuKα
測定方法 連続式
電圧 40kV
電流 15mA
開始角度 2θ=5°
終了角度 2θ=30°
サンプリング幅 0.020°
スキャン速度 2.0°/min
サンプル:試料ホルダー上に多孔質シートを貼り付け
[IRインデックス、DS]
多孔質シートのATR-IR法による赤外分光スペクトルを、フーリエ変換赤外分光光度計(JASCO社製 FT/IR-6200)で測定した。赤外分光スペクトル測定は以下の条件で行った。
積算回数:64回、
波数分解能:4cm-1
測定波数範囲:4000~600cm-1
ATR結晶:ダイヤモンド、
入射角度:45°
得られたIRスペクトルよりIRインデックスを、下記式(1):
IRインデックス= H1730/H1030(1)
に従って算出した。式中、H1730およびH1030は1730cm-1、1030cm-1(セルロース骨格鎖C-O伸縮振動の吸収バンド)における吸光度である。ただし、それぞれ1900cm-1と1500cm-1を結ぶ線と800cm-1と1500cm-1を結ぶ線をベースラインとして、このベースラインを吸光度0とした時の吸光度を意味する。
そして、平均置換度(DS)をIRインデックスより下記式(2)に従って算出した。
DS=4.13×IRインデックス・・・(2)
<測定方法-複合粒子>
[DMSO分散液粘度、チキソトロピーインデックス(TI)]
微細セルロースが1質量%となるように所定量の複合粒子をDMSO中に添加し、複合粒子を含むDMSO分散液100mlを調製した。つづいて、マグネチックスターラーで1200rpmの回転数で1時間以上撹拌した。液温が25℃であることを確認した後、撹拌中の分散液を一部分取し、レオメーター(TAインスツルメント社、製品名:ARES)にて二重円筒ジオメトリで粘度測定を直ちに行った。なお装置は事前に25℃に温調した。
測定条件として、100秒かけて剪断速度を100s-1から1s-1まで下降させた後、100秒かけて100s-1まで上昇させるサイクルを2回繰り返した。そして、最後に100s-1から1s-1まで100秒かけて下降させ、1sec毎に粘度データを取得した。そして、剪断速度10s-1、100s-1時の粘度をそれぞれη10、η100とした。
下記式に従い、チキソトロピーインデックスTIを算出した。
TI=η10/η100
[複合粒子-メジアン粒径]
複合粒子1質量%を含む水分散体200mlを調製した。つづいて、家庭用ミキサー(Panasonic社、ファイバーミキサーMX-X701)で1分間処理した。そして、レーザー回折式粒度分布測定装置(ベックマンコールター社、LSI3320)を用い、4回測定における平均値をメジアン粒径とした。
<測定方法-樹脂組成物>
射出成形機を用いて、ISO294-3に準拠した多目的試験片を成形した。
ポリアミド系材料:JIS K6920-2に準拠した条件
ポリプロピレン系材料:JIS K6921-2に準拠した条件
[引張破断強度、引張破断伸度、曲げ弾性率]
樹脂組成物及びベース樹脂単独の各々について、ISO527に準拠して引張破断強度及び引張破断伸度、並びにISO179に準拠して曲げ弾性率を測定した。
なお、ポリアミド系材料は、吸湿による変化が起きるため、成形直後にアルミ防湿袋に保管し、吸湿を抑制した。
[線膨張係数]
樹脂複合体又は樹脂を、3mm幅×25mm長に切断し、測定サンプルとした。SII製TMA6100型装置を用いて、引っ張りモードでチャック間10mm、荷重5g、窒素雰囲気下、室温から120℃まで5℃/min.で昇温した後、25℃まで5℃/min.で降温し、再び25℃から120℃まで5℃/min.で昇温した。この際、2度目の昇温時における30℃~100℃の間の平均の線熱膨張率を測定した。
[貯蔵弾性率]
樹脂複合体ペレットを射出成形機にてPA6については260℃、PPについては160℃で溶融し、JIS K7127規格のダンベル状試験片を作製した。貯蔵弾性率測定に用いた装置と測定条件は下記である。
装置:GABO社エプレクサー
測定モード:引張
周波数:10Hz
温度範囲:-130℃~150℃
昇温速度:3℃/分
測定雰囲気:窒素
貯蔵弾性率変化は、下記式に従って算出した。
貯蔵弾性率変化=低温の貯蔵弾性率/高温の貯蔵弾性率
PA6については低温/高温の温度は0℃/150℃とし、PPについては-50℃/100℃とした。一般に貯蔵弾性率は高温になるほど小さくなるため、貯蔵弾性率変化は1以上となる。この値が1に近いほど、高温での貯蔵弾性率変化が小さく、耐熱性(高温剛性)が優れる。
上述の測定方法で測定した樹脂組成物の5つの物性(引張破断強度、引張破断伸度、曲げ弾性率、線膨張係数、貯蔵弾性率変化)について、複合粒子に代えて微細セルロースのみを用いて形成した樹脂組成物の値に対する、複合粒子を用いて形成した樹脂組成物の値の比を求めた。
<実施例A1~A9及び比較例A1~A8>
樹脂組成物の製造において、二軸押出機(東芝機械(株)製TEM-26SS押出機(L/D=48、真空ベント付き))を用い、ポリアミド系材料は260℃、ポリプロピレン系材料は190℃にシリンダー温度を設定した。複合粒子及びベース樹脂が表3に記載の割合になるように混合して定量フィーダーより供給し、押出量15kg/時間、スクリュー回転数250rpmの条件で溶融混練、真空脱気後、ダイからストランド状に押出した。ストランドはストランドバスにて急冷し、ストランドカッターで切断しペレット形状の樹脂組成物を得た。
Figure 0007385625000002
Figure 0007385625000003
Figure 0007385625000004
≪実施例B≫
<微細セルロース繊維(以下、CNFと略すことがある)の製造>
[製造例A]
コットンリンターパルプ3質量部を水27質量部に浸漬させてオートクレーブ内で130℃、4時間の熱処理を行った。得られた膨潤パルプは水洗し、水を含む精製パルプ(30質量部)を得た。つづいて、水を含む精製パルプ30質量部に水を170質量部入れて水中に分散させて(固形分率1.5質量%)、ディスクリファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー(加圧型DISK式)を用い、ディスク間のクリアランスを1mmで該水分散体を20分間叩解処理した。それに引き続き、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で徹底的に叩解を行い、叩解水分散体(固形分濃度:1.5質量%)を得た。得られた叩解水分散体を、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NSO15H)を用いて操作圧力100MPa下で15回の微細化処理を実施し、微細セルローススラリー(固形分濃度:1.5質量%)を得た。そして、脱水機により固形分率10質量%まで濃縮し、スラリーa(水溶媒)30質量部を得た。
[製造例B1]
コットンリンターパルプ1質量部を、一軸撹拌機(アイメックス社製 DKV-1 φ125mmディゾルバー)を用いジメチルスルホキサイド(DMSO)30質量部中で500rpmにて1時間、常温で攪拌した。続いて、ホースポンプでビーズミル(アイメックス社製 NVM-1.5)にフィードし、DMSOのみで180分間循環運転させ、スラリーb1(DMSO溶媒)を31質量部得た。
循環運転の際、ビーズミルの回転数は2500rpm、周速12m/sとし、用いたビーズはジルコニア製で、Φ2.0mm、充填率70%とした(ビーズミルのスリット隙間は0.6mmとした)。また、循環運転の際は、摩擦による発熱を吸収するためにチラーによりスラリー温度を40℃に温度管理した。
[製造例B2]
スラリーb1に純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、未反応試薬溶媒等を除去し、固形分率10質量%のスラリーb2(水溶媒)を10質量部得た。
[製造例C1]
スラリーb1を防爆型ディスパーザータンクに投入した後、酢酸ビニル3.2質量部、炭酸水素ナトリウム0.49質量部を加え、タンク内温度を70℃とし、120分間撹拌を行い、スラリーc1(DMSO溶媒)を35質量部得た。
[製造例C2]
スラリーc1に純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、未反応試薬溶媒等を除去し、固形分率10質量%のスラリーc2(水溶媒)を10質量部得た。
<セルロース誘導体複合体の製造>
実施例B1~B23、比較例B1~B6で用いるセルロース誘導体複合体は、下記製造例W~Zの方法で表5の組成に従って製造した。
[製造例W1~W5]
スラリーaに対し、セルロース誘導体粉末CAB又はCAPを加え、プラネタリミキサー(プライミクス社製、ハイビスミックス2P-1)を用いて10分間、回転数50rpm、常温で撹拌し、水を含む複合体W1~W5を製造した。
[製造例W-6]
スラリーaに対し、プラネタリミキサーを用いて回転数50rpm、40℃、真空乾燥させることにより、微細セルロース繊維粉末W6を得た。
[製造例X-1]
スラリーb2にセルロース誘導体粉末CABを加え、プラネタリミキサーを用いて10分間、回転数50rpm、常温で撹拌した後、さらに回転数50rpm、40℃、真空乾燥させることにより乾燥複合体X1を製造した。
[製造例X-2]
スラリーb2についてプラネタリミキサーを用いて回転数50rpm、40℃、真空乾燥させることにより、化学修飾微細セルロース繊維粉末X2を得た。
[製造例Y]
スラリーb1について、全量を防爆型ディスパーザータンクに投入した後、セルロース誘導体粉末CAB又はCAPを加え、10分間、回転数100rpm、常温で撹拌しセルロース誘導体を完全に溶解させた。続いて、別の防爆型ディスパーザータンクに入れた純水30質量部を200rpmで撹拌しながら、該スラリーを1L/minの速度で全量滴下し、滴下終了後も10分間続けて撹拌し、セルロース誘導体を析出させた(析出工程)。得られた水分散体から脱水機により液体分を取り除いた。この後、純水30質量部を加えて十分に撹拌した後、脱水機に入れて濃縮した。得られたウェットケーキを再度30質量部の純水に分散、撹拌、濃縮する洗浄操作を合計5回繰り返すことで、DMSOを除去し、水を含む複合体Y10質量部(固形分率10質量%)を製造した。
[製造例Z-1~Z-5]
使用するスラリーをスラリーc1にした以外は製造例Y-1と同様の方法で水を含む複合体を製造した後、プラネタリミキサーを用いて回転数50rpm、40℃、真空乾燥させることにより、乾燥複合体Z1~Z5を製造した。
[製造例Z-6]
製造例Z-1~Z-5と同様に水を含む複合体を製造した後、セルロースウィスカー粉末を添加した上でプラネタリミキサーを用いて回転数50rpm、40℃、真空乾燥させることにより、セルロースウィスカーを含む乾燥複合体Z6を製造した。
[製造例Z-7]
スラリーc2についてプラネタリミキサーを用いて回転数50rpm、40℃、真空乾燥させることにより、化学修飾微細セルロース繊維粉末Z7を得た。
<測定方法-微細セルロース繊維>
[測定サンプル作製]
固形分濃度10質量%の微細セルロース繊維又は化学修飾微細セルロース繊維濃縮スラリー4gを用い、実施例Aと同様の手順で測定サンプルを作製した。
実施例及び比較例中の微細セルロース繊維及び化学修飾微細セルロース繊維の物性を表4に示す。これらの物性は製造例A、B2,C2の水スラリー、及び下記手法で作製された多孔質シートを用いて評価した。なお、製造例B1、C1で得られる微細セルロース繊維/化学修飾微細セルロース繊維は製造例B2、C2で得られるものと同等とみなした。
[繊維径]
比表面積・細孔分布測定装置(Nova-4200e, カンタクローム・インスツルメンツ社製)にて、多孔質シート試料約0.2gを真空下で120℃、2時間乾燥を行った後、液体窒素の沸点における窒素ガスの吸着量を相対蒸気圧(P/P)が0.05以上0.2以下の範囲にて5点測定した後(多点法)、同装置プログラムによりBET比表面積(m/g)を算出した。そして比表面積より比表面積相当径を下記の式より算出し、微細セルロース繊維の繊維径Dとした。
D(nm)=2667/比表面積(m2/g)
[結晶化度]
実施例Aと同様の手順で評価した。
[IRインデックス、DS]
実施例Aと同様の手順で評価した。
[熱分解開始温度]
多孔質シートの熱分析を以下の測定法にて評価した。
装置:Rigaku社製、Thermo plus EVO2
サンプル:多孔質シートから円形に切り抜いたものをアルミ試料パン中に10mg分重ねて入れた。
サンプル量:10mg
測定条件:窒素フロー100ml/min中で、室温から150℃まで昇温速度:10℃/minで昇温し、150℃で1時間保持した後、30℃になるまで冷却した。つづいて、そのまま30℃から450℃まで昇温速度:10℃/minで昇温した。
D算出方法:横軸が温度、縦軸が重量残存率%のグラフから求めた。多孔質シートの150℃(水分がほぼ除去された状態)での重量(重量減少量0wt%)を起点としてさらに昇温を続け、1wt%重量減少時の温度と2wt%重量減少時の温度とを通る直線を得た。この直線と、重量減少量0wt%の起点を通る水平線(ベースライン)とが交わる点の温度を熱分解開始温度(TD)とした。
[1wt%重量減少温度]
1wt%重量減少温度算出方法:前記Td算出時に用いた1wt%重量減少時の温度を1wt%重量減少温度とした。
[250℃重量減少率]
装置:Rigaku社製、Thermo plus EVO2
サンプル:多孔質シートから円形に切り抜いたものをアルミ試料パン中に10mg分重ねて入れた。
サンプル量:10mg
測定条件:窒素フロー100ml/min中で、室温から150℃まで昇温速度:10℃/minで昇温し、150℃で1時間保持した後、150℃から250℃まで昇温速度:10℃/minで昇温し、そのまま250℃で2時間保持した。
250℃重量変化率算出方法:250℃に到達した時点での重量W0を起点として、2時間250℃で保持した後の重量をW1とし、下記式より求めた。
250℃重量変化率(%):(W1-W0)/W0×100
[重合度]
「第14改正日本薬局方」(廣川書店発行)の結晶セルロース確認試験(3)に規定される銅エチレンジアミン溶液による還元比粘度法により測定した。
[重量平均分子量(Mw)、数平均分子量(Mn)]
多孔質シートを0.88g秤量し、ハサミで小片に切り刻んだ後、軽く攪拌したうえで、純水20mLを加え1日放置した。次に遠心分離によって水と固形分を分離した。続いてアセトン20mLを加え、軽く攪拌したうえで1日放置した。次に遠心分離によってアセトンと固形分を分離した。続いてN、N-ジメチルアセトアミド20mLを加え、軽く攪拌したうえで1日放置した。再度、遠心分離によってN、N-ジメチルアセトアミドと固形分を分離したのち、N,N-ジメチルアセトアミド20mLを加え、軽く攪拌したうえで1日放置した。遠心分離によってN,N-ジメチルアセトアミドと固形分を分離し、固形分に塩化リチウムが8質量パーセントになるように調液したN,N-ジメチルアセトアミド溶液を19.2g加え、スターラーで攪拌し、目視で溶解するのを確認した。セルロースを溶解させた溶液を0.45μmフィルターでろ過し、ろ液をゲルパーミエーションクロマトグラフィ用の試料として供した。用いた装置と測定条件は下記である。
装置 :東ソー社 HLC-8120
カラム:TSKgel SuperAWM-H(6.0mmI.D.×15cm)×2本
検出器:RI検出器
溶離液:N、N-ジメチルアセトアミド(塩化リチウム0.2%)
流速:0.6mL/分
検量線:プルラン換算
[酸不溶成分平均含有率]
酸不溶成分の定量は、微細セルロース繊維原料について非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載のクラーソン法で行った。絶乾させた微細セルロース繊維の原料を精秤し、所定の容器に入れて72質量%濃硫酸を加え、内容物が均一になるようにガラス棒で適宜押した後、オートクレーブしてセルロース及びヘミセルロースを酸溶液中に溶解させた。放冷後に内容物をガラスファイバーろ紙で濾過し、酸不溶成分を残渣として得た。この酸不溶成分重量より酸不溶成分含有率を算出し、そして、3サンプルについて算出した酸不溶成分含有率の数平均を酸不溶成分平均含有率とした。
[アルカリ可溶多糖類平均含有率]
アルカリ可溶多糖類含有率は微細セルロース繊維の原料について非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載の手法より、ホロセルロース含有率(Wise法)からαセルロース含有率を差し引くことで求めた。1つのサンプルにつき3回アルカリ可溶多糖類含有率を算出し、算出したアルカリ可溶多糖類含有率の数平均を微細セルロース繊維のアルカリ可溶多糖類平均含有率とした。
<測定方法-樹脂組成物>
[引張降伏強度上昇比]
射出成形機を用いて、ISO294-3に準拠した多目的試験片を成形した。
ポリプロピレン系材料に関しては、JIS K6921-2に準拠した条件で実施した。
ポリアミド系材料に関しては、JIS K6920-2に準拠した条件で実施した。
原料樹脂(すなわち熱可塑性樹脂単独)及び樹脂組成物(すなわち微細セルロース繊維含有樹脂組成物)の各々について、ISO527に準拠して引張降伏強度を測定し、微細セルロース繊維含有樹脂組成物の引張降伏強度を原料樹脂の引張降伏強度で除して、引張降伏強度上昇比を算出した。
なお、ポリアミド系材料は、吸湿による変化が起きるため、成形直後にアルミ防湿袋に保管し、吸湿を抑制した。
[引張破断強度の変動係数]
ISO294-3に準拠した多目的試験片を用いて、ISO527に準拠して引張破断強度をn数15でそれぞれ測定し、得られた各データをもとに下式に基づき変動係数(CV)を計算した。
CV=(σ/μ)×100
ここで、σは標準偏差、μは引張破断強度の算術平均を表す。
[線膨張係数]
実施例Aと同様の手順で、測定前アニーリング及び測定を行った。
[成形片膨張率]
実際の成形体の寸法変化に即した評価方法として、成形片膨張率を測定した。
具体的には、流動性評価の際に成形したフル充填の成形片を用いて、23℃、50%RHの環境下で成形片長さ方向の寸法を測定したのち、試験片を60℃のオーブン中に入れ、30分後に取り出した直後の長さ方向の寸法を実測し、寸法変化率を計算した。測定はn=5で実施しその算術平均をもって、成形片膨張率とした。
[フェンダーの欠陥率]
実施例で得られたペレットを用いて、最大型締圧力4000トンの射出成形機のシリンダー温度を250℃に設定し、図6の概略図に示す形状を有するフェンダーを成形可能な所定の金型(キャビティー容積:約1400cm3、平均厚み:2mm、投影面積:約7000cm2、ゲート数:5点ゲート、ホットランナー:なお、図6中で、成形体のランナー位置を明確にするためにランナー(ホットランナー)の相対的な位置1を図示した。)を用い、金型温度を60℃に設定し、20枚のフェンダーを成形した。
得られたフェンダーを床に置き、5kgの砂を入れた袋を、約50cmの高さより、フェンダー中心部に落下させ、フェンダーの破壊状況を確認した。20枚中破壊した枚数を数えた。
[線膨張係数の変動係数]
フェンダーの欠陥率の測定で使用したフェンダーを用いて、図7の(1)から(10)の位置よりおおよそ約10mm角に切り出し、縦約10mm、横約10mm、厚さ2mmの10個の小平板試験片を採取した。なお、(1)~(3)は成形体ゲート付近、(4)~(7)は成形体の流動末端部、(8)~(10)は、成形体の中央部である。
得られた小平板試験片を、さらに精密カットソーにて縦4mm、横2mm、長さ4mmの測定用直方体サンプルに切り出した。この時の直方体サンプルの横部分がフェンダーの厚さ方向となる。
測定に先立ち、120℃環境下で5時間静置してアニーリングを実施して測定用サンプルを得た。得られたサンプルを、測定温度範囲-10℃~+80℃で、ISO11359-2に準拠して測定し、0℃~60℃の間での膨張係数を算出し、合計10個の測定結果を得た。この10個の測定データをもとに下式に基づき変動係数(CV)を計算した。
CV=(σ/μ)×100
ここで、σは標準偏差、μは引張破断強度の算術平均を表す。
<実施例B1~B21、比較例B1~B4>
微細セルロース繊維又は化学修飾微細セルロース繊維、セルロース誘導体、セルロースウィスカー、及びポリアミドが表6~表8に記載の割合になるように、ポリアミドとセルロース誘導体複合体、セルロースウィスカーを混合し、東芝機械(株)製のTEM48SS押出機で、スクリュー回転数350rpm、吐出量140kg/hrで溶融混練し、真空脱揮した後、ダイからストランド状に押出し、水浴で冷却し、ペレタイズした。ペレットは円柱状の形状で、直径が2.3mmで、長さが5mmであった。
これらを上述した評価方法に準拠して、評価した。
ポリアミド系樹脂中に微細セルロース繊維又は化学修飾微細セルロース繊維だけではなくセルロース誘導体も含まれることでフェンダーの欠陥率、及び成形片の膨張率が大幅に改善していることが判る。また、この傾向はセルロースウィスカーが添加された場合でも確認される。
<実施例B22~B23、比較例B5~B6>
樹脂をポリプロピレン又は酸変性ポリプロピレンに変更した、或いは、セルロースウィスカーを添加した以外は表9に記載の組成で実施例B1の手法を用い、ペレットを得た。
Figure 0007385625000005
Figure 0007385625000006
Figure 0007385625000007
Figure 0007385625000008
Figure 0007385625000009
Figure 0007385625000010
ポリプロピレン系樹脂中に微細セルロース繊維又は化学修飾微細セルロース繊維だけではなくセルロース誘導体も含まれることでフェンダーの欠陥率、及び成形片の膨張率が大幅に改善していることが判る。また、酸変性ポリプロピレンを併用することで熱可塑性樹脂と微細セルロース繊維との親和性が向上し、樹脂中での微細セルロース繊維の分散性も向上し全体的に物性は良好になっている。
≪実施例C≫
<評価方法>
[セルロースファイバーの繊維径D、繊維長L/繊維径D]
セルロースファイバースラリーの一部を純水で洗浄を繰り返し、セルロースファイバー水スラリーを得る。セルロースファイバー水スラリーは、tert-ブタノールで0.01質量%まで希釈し、高剪断ホモジナイザー(IKA製、商品名「ウルトラタラックスT18」)を用い、処理条件:回転数25,000rpm×5分間で分散させ、マイカ上にキャスト、風乾したものを測定サンプルとし、高分解能走査型顕微鏡で計測して求める。具体的には、100本以上の微細セルロースが観測されるように倍率が調整された観察視野にて、無作為に選んだ100本の微細セルロースの径D、長Lを計測する。続いて、得られた100個の径Dの平均値を微細セルロースの数平均径とする。本実施例では、数平均径が20nm以上450nm未満である場合、後述するセルロースナノファイバー(CNF)と定義する。また、100本の微細セルロースのL/Dを算出し、その平均値を微細セルロースの平均L/Dとする。本実施例では、平均L/Dが30以上1000未満である場合、後述するセルロースナノファイバー(CNF)と定義する。セルロースファイバーの繊維径DおよびL/Dは、化学修飾されたセルロースファイバーの繊維径及びL/Dでも保存されており、セルロースファイバーを化学修飾する場合であっても、化学修飾前の微細セルロースを評価すればよい。
<押出機の構成及び押出>
[態様1]
L/Dが60で、シリンダーブロック数が13個あり、シリンダー1を、メインスロートとし、シリンダー4(L/D=17の位置)、シリンダー8(L/D=35の位置)及びシリンダー10(L/D=45の位置)に押出側面より強制押し込み可能なフィーダーを設置可能なスクリュー直径が30mmの二軸押出機を用意し、シリンダー4(L/D=18の位置)に強制押し込み可能なフィーダーを設置し、シリンダー8(L/D=36の位置)及びシリンダー10(L/D=45の位置)は閉とする。また、シリンダー12にはシリンダー上部にベントポートを設置し減圧吸引できるようにし、真空吸引を実施する。
押出機のスクリュー構成としては、シリンダー1及び2を搬送スクリューのみで構成される搬送ゾーンとし、シリンダー3に上流側より1個の時計回りニーディングディスク(送りタイプニーディングディスク:以下、単にRKDと呼ぶことがある。)、2個のニュートラルニーディングディスク(無搬送タイプニーディングディスク:以下、単にNKDと呼ぶことがある。)、1個の反時計回りスクリュー(逆送りタイプニーディングディスク:以下、単にRKDと呼ぶことがある。)をこの順に配する。シリンダー4~8は搬送ゾーンとし、シリンダー9に2個のNKDと1個のLKDをこの順に配する。続くシリンダー10は搬送ゾーンとし、シリンダー11に2個のNKD、引き続いての1個のLKDをこの順に配し、シリンダー12及び13は搬送ゾーンとする。
この押出機のシリンダー設定温度を、樹脂がPPの場合は、シリンダー1を水冷、シリンダー2を160℃、シリンダー3~ダイスを200℃に設定する。また、樹脂がPA6の場合は、シリンダー1を水冷、シリンダー2を230℃、シリンダー3~ダイスを250℃に設定する。
メインスロートより樹脂を、シリンダー4の添加口より、複合粒子を表10及び11に記載の割合で供給し、押出機のスクリュー回転数250rpmで溶融混練を実施し、ストランド状に押出し、水冷し、ペレタイズする。得られたペレットは、水分低減のため、80℃に設定した真空乾燥機で、12時間真空乾燥を実施する。
[態様2]
シリンダー8(L/D=35の位置)に強制押し込み可能なフィーダーを設置し、シリンダー4(L/D=17の位置)及びシリンダー10(L/D=45の位置)は閉とし、シリンダー8から複合粒子を供給した以外は、すべて態様1と同様に準備する。
[態様3]
シリンダー10(L/D=45の位置)に強制押し込み可能なフィーダーを設置し、シリンダー4(L/D=17の位置)及びシリンダー8(L/D=35の位置)は閉とし、シリンダー10から複合粒子を供給した以外は、すべて態様1と同様に準備する。
[態様4]
態様1の押出機のシリンダー4、8、10の押出側面より強制押し込み口を閉とし、スクリュー構成としては、シリンダー1~8までを搬送スクリューのみで構成される搬送ゾーンとし、シリンダー9に2個のNKDと1個のLKDをこの順に配する。続くシリンダー10は搬送ゾーンとし、シリンダー11に2個のNKD、引き続いての1個のLKDをこの順に配し、シリンダー12及び13は搬送ゾーンとする。また、シリンダー12にはシリンダー上部にベントポートを設置し減圧吸引できるようにし、真空吸引を実施する。可能なフィーダーを設置可能とした以外は、すべて、態様1と同様に準備する。
樹脂、複合粒子とも、表10及び11に記載の割合でメインスロートより供給し、押出機のスクリュー回転数250rpmで溶融混練を実施し、ストランド状に押出し、水冷し、ペレタイズする。得られたペレットは、水分低減のため、80℃に設定した真空乾燥機で、12時間真空乾燥を実施する。この際、メインスロートからは、樹脂と複合粒子をそれぞれ異なる供給装置より供給する。
<セルロースウィスカー>
実施例Aと同じものを用いる。
<セルロースナノファイバー(CNF)スラリーの製造>
コットンリンターパルプ1質量部を、一軸撹拌機(アイメックス社製 DKV-1 φ125mmディゾルバー)を用いジメチルスルホキサイド(DMSO)10~50質量部中で200~700rpmにて0.5~2時間、常温で攪拌する。続いて、ホースポンプでビーズミル(アイメックス社製 NVM-1.5)にフィードし、DMSOのみで1~3時間循環運転させ、微細セルロース繊維スラリーを得る。
<化学修飾された微細セルローススラリーの製造>
得られた微細セルロース繊維スラリーをディスパーザータンクに投入した後、グルコースの水酸基を十分にアセチル化し得る質量比において酢酸ビニル(VA)、炭酸水素ナトリウムを加え、タンク内温度を30~60℃とし、60~180分間攪拌を行い、化学修飾された微細セルローススラリーを得る。なお、セルロースウィスカーを添加する場合は、この段階で投入し、同時にアセチル化を行う。以上の手順で、化学修飾された微細セルローススラリーを得る。
<複合粒子の製造>
得られた化学修飾された微細セルローススラリーを、再度ディスパーザータンクに投入した後、セルロース誘導体粉末CAB又はCAPを所定量加え、常温で撹拌してセルロース誘導体を完全に溶解させる。続いて、別の防爆型ディスパーザータンクに入れた純水中に該スラリーを一定速度で全量滴下し、セルロース誘導体を析出させる(析出工程)。得られた析出分を純水で洗浄を繰り返すことにより複合粒子の水スラリーを得る。最後に、複合粒子水スラリーを、プラネタリーミキサー(ハイビスミックス2P-1)を用いて真空乾燥させることにより、乾燥複合粒子を得る。
<測定方法>
[化学修飾微細セルロースの測定サンプル作製]
化学修飾微細セルローススラリーの一部を純水で洗浄を繰り返し、化学修飾微細セルロース水スラリーを得る。続いて、該水スラリーをtert-ブタノール中に分散させ(固形分率0.4質量%、水分率5質量%未満)、さらにホモジナイザーで凝集物が無い状態まで分散処理する。得られたtert-ブタノール分散液をろ紙(5C,アドバンテック,直径90mm)上で濾過し、得られた湿紙を加熱乾燥してシートを得る。シートの透気抵抗度がシート目付10g/m2当たり100sec/100ml以下のものを多孔質シートとし、測定サンプルとして使用する。
[化学修飾微細セルロースの結晶化度]
実施例Aと同様の手順で、多孔質シートのX線回折測定を行い結晶化度を算出する。結晶化度が55%以上ものは、フィラーとして良好な力学物性を発揮し得るため、本実施例では要件を満たすものと評価する。
[化学修飾の度合の評価]
微細セルロースの化学修飾の度合について、実施例Aと同様の手順で、多孔質シートのATR-IR法による赤外分光スペクトル測定及びIRインデックスの算出を行う。
DSが0.1以上1.6未満のものは、十分な化学修飾が行われており、本実施例では要件を満たすものと評価する。
[複合粒子のメジアン粒子径]
実施例Aと同様の手順で測定する。粒径が1μm以上5000μm未満のものは樹脂との混練時にフィラーとして安定した挙動を示すため、本実施例では要件を満たすものと評価する。
[流動性(最小充填圧力)]
実成形に近い流動性の指標として、最小充填圧力を測定する。
具体的には、型締圧力200トンの射出成形機に、フィルムゲートを幅方向に有する、長さ200mm、幅150mmで、厚みが平板中央部で3mmから1.5mmに変化する平板金型を取り付け、シリンダー温度と金型温度を以下のように設定し、試験片が充填するギリギリの圧力を測定する。この際、保圧切り替えは行わず、射出圧力、速度は1段のみとする。また、20ショット連続でフル充填で成形した後に、徐々に射出圧力を落としていき、未充填が生じる直前若しくは、ヒケが生じる直前の射出圧力を最小充填圧力とする。
シリンダー温度
ポリプロピレン系材料 210℃
ポリアミド系材料 260℃
金型温度
ポリプロピレン系材料 40℃
ポリアミド系材料 70℃
[樹脂組成物の評価]
1.着色性
着色しやすさの指標として着色性を評価する。一般的に樹脂に着色する際は、一度白色にした後、所望の色に必要な染顔料を添加して調色する作業が行われる。白色へのしやすさは、着色性を大きく左右することとなる。ここでは所定量の酸化チタンを添加した際の白さを測定することにより着色性を評価する。
実施例で作製した、微細セルロースを配合したペレット100質量部に対して、酸化チタンを50質量部含むマスターバッチを3質量部の割合でドライブレンドし、型締圧力200トンの射出成形機を用いて、流動性(最小充填圧力)で用いたものと同じ平板金型を用い、シリンダー温度と金型温度を以下のように設定し、試験片が充分に充填する圧力で成形を行う。なお、この時使用したマスターバッチは、ポリプロピレン系材料に関してはポリプロピレンをベース樹脂とし、ポリアミド系材料に関してはポリアミドをベース樹脂とするマスターバッチを用いる。
シリンダー温度/金型温度
ポリプロピレン系材料 210℃/40℃
ポリアミド系材料 260℃/70℃
得られた試験片の平板部を用いて、色差計(コニカミノルタ社製 CM-2002)を用いて、D65光、10°視野にてL*値を測定し、以下の評価基準により着色性の評価を行う。
平板のL*値 着色性
85以上 優
80以上85未満 良
75以上80未満 可
75未満 不良
2.成形片外観
流動性評価の際に成形したフル充填の成形片の外観を以下の指標で評価する。
点数 状況
5 成形片全面に光沢がある
4 成形片の流動末端部に光沢がない
3 成形片の薄肉部に光沢がない
2 成形片全面に光沢がなく、若干の変色が確認できる。
1 成形片全面に光沢がなく、かなりの変色が確認できる。
3.臭気
臭気は、官能試験を行い、以下の3段階で評価する。
A:臭気なし。
B:やや糖臭(甘いにおい)がある。
C:強い糖臭がある。
D:糖臭とともに、焦げ臭いにおいがある。
臭気試験は、次の各段階で実施する。(1)押出直後の樹脂組成物ペレット、(2)射出成形時の雰囲気、(3)射出成形直後の成形体、(4)射出成形1時間後の成形体
4.線膨張係数
実施例Aと同様の手順で、測定前アニーリング及び測定を行う。
線膨張係数(ppm/K) 寸法安定性の度合い
30以下 優
40以下 良
50以下 可
50超 不良
5.引張降伏強度上昇比
実施例Bと同様の手順で、試料片の成形、測定、引張降伏強度上昇比の算出を行う。なお、ポリアミド系材料は、吸湿による変化が起きるため、成形直後にアルミ防湿袋に保管し、吸湿を抑制する。
引張降伏強度の上昇比 樹脂物性の向上の度合い
1.2以上 優
1.1以上 良
1.0以上 可
1.0未満 不良
6.成形片膨張率
実施例Bと同様の手順で、試験片の成形、測定、成形片膨張率の算出を行う。
成型片膨張率 膨張抑制の度合い
0.2%以下 優
0.3%以下 良
0.4%以下 可
0.4%超 不良
[実施例C1~C14、比較例C1~C2]
表10に各成分の組成比及び評価結果を示す。
実施例C1~C14において、アセチル化された微細セルロースは、繊維径D、繊維長L/繊維径Dが上述したセルロースナノファイバーの定義に入る(但し、実施例C13で使用したセルロースウィスカーは除く)。結晶化度および平均置換度(DS)は、上記要件を満たしている。また、セルロース誘導体との複合粒子のメジアン粒径もまた、上記要件を満たしている。
実施例C5、C9、C14は、複合粒子を押出機のシリンダー1に設置されたメインスロートより供給し、比較例C1およびC2は、微細セルロースをセルロース誘導体で複合粒子化していない。
Figure 0007385625000011
Figure 0007385625000012
本発明の樹脂組成物は、例えば、高い強度及び低い線膨張性とともに安定した性能が求められる大型部品である、自動車の外装材料用途等の分野で好適に利用できる。
1 ランナー(ホットランナー)の相対的な位置
(1)~(10) 線膨張係数の変動係数を測定するための試験片を採取した位置

Claims (7)

  1. 数平均径が2nm以上1000nm未満である、セルロースファイバー及び/又はセルロースウィスカーを含む微細セルロース(但し、天然セルロース繊維にN-オキシル化合物を作用させることで得られるセルロースナノファイバー及びその誘導体を除く。)と、熱可塑性樹脂(但し、ポリメタクリル酸メチル及びポリ酢酸ビニルを除く。)とを含む、樹脂組成物分散用の複合粒子であって、
    前記複合粒子中の微細セルロースの比率が50質量%以上95質量%以下であり、
    分散液中の微細セルロース濃度が1質量%となるように前記複合粒子をジメチルスルホキシド中に分散させて得た分散液の、液温25℃及び剪断速度10s-1における粘度η10が、10mPa・s以上である、複合粒子。
  2. 数平均径が2nm以上1000nm未満である、セルロースファイバー及び/又はセルロースウィスカーを含む微細セルロース(但し、天然セルロース繊維にN-オキシル化合物を作用させることで得られるセルロースナノファイバー及びその誘導体を除く。)と、ジメチルスルホキシドに可溶である樹脂(但し、ポリメタクリル酸メチル及びポリ酢酸ビニルを除く。)とを含む、樹脂組成物分散用の複合粒子であって、
    前記複合粒子中の微細セルロースの比率が50質量%以上95質量%以下であり、
    分散液中の微細セルロース濃度が1質量%となるように前記複合粒子をジメチルスルホキシド中に分散させて得た分散液の、液温25℃及び剪断速度10s-1における粘度η10が、10mPa・s以上である、複合粒子。
  3. 樹脂組成物の製造方法であって、
    数平均径が2nm以上1000nm未満である、セルロースファイバー及び/又はセルロースウィスカーを含む微細セルロース(但し、天然セルロース繊維にN-オキシル化合物を作用させることで得られるセルロースナノファイバー及びその誘導体を除く。)と、熱可塑性樹脂(但し、ポリメタクリル酸メチル及びポリ酢酸ビニルを除く。)とを含む複合粒子を形成する工程、及び
    前記複合粒子と、前記複合粒子に含まれる熱可塑性樹脂とは異なる熱可塑性樹脂と、を混練する工程、
    を含み、
    前記複合粒子中の微細セルロースの比率が50質量%以上95質量%以下である、方法。
  4. 樹脂組成物の製造方法であって、
    数平均径が2nm以上1000nm未満である、セルロースファイバー及び/又はセルロースウィスカーを含む微細セルロース(但し、天然セルロース繊維にN-オキシル化合物を作用させることで得られるセルロースナノファイバー及びその誘導体を除く。)と、ジメチルスルホキシドに可溶である樹脂(但し、ポリメタクリル酸メチル及びポリ酢酸ビニルを除く。)とを含む複合粒子を形成する工程、及び
    前記複合粒子と、前記複合粒子に含まれる熱可塑性樹脂とは異なる熱可塑性樹脂と、を混練する工程、
    を含み、
    前記複合粒子中の微細セルロースの比率が50質量%以上95質量%以下である、方法。
  5. 樹脂組成物の製造方法であって、
    数平均径が2nm以上1000nm未満である、セルロースファイバー及び/又はセルロースウィスカーを含む微細セルロース(但し、天然セルロース繊維にN-オキシル化合物を作用させることで得られるセルロースナノファイバー及びその誘導体を除く。)と、熱可塑性樹脂(但し、ポリメタクリル酸メチル及びポリ酢酸ビニルを除く。)とを含む複合粒子を形成する工程と、
    押出機において熱可塑性樹脂を溶融混練する第1の工程と、
    第1の工程の溶融された樹脂に前記複合粒子を添加する第2の工程と、
    を含み、
    前記複合粒子中の微細セルロースの比率が50質量%以上95質量%以下である、方法。
  6. 樹脂組成物の製造方法であって、
    数平均径が2nm以上1000nm未満である、セルロースファイバー及び/又はセルロースウィスカーを含む微細セルロース(但し、天然セルロース繊維にN-オキシル化合物を作用させることで得られるセルロースナノファイバー及びその誘導体を除く。)と、ジメチルスルホキシドに可溶である樹脂(但し、ポリメタクリル酸メチル及びポリ酢酸ビニルを除く。)とを含む複合粒子を形成する工程と、
    押出機において熱可塑性樹脂を溶融混練する第1の工程と、
    第1の工程の溶融された樹脂に前記複合粒子を添加する第2の工程と、
    を含み、
    前記複合粒子中の微細セルロースの比率が50質量%以上95質量%以下である、方法。
  7. 散液中の微細セルロース濃度が1質量%となるように前記複合粒子をジメチルスルホキシド中に分散させて得た分散液の、液温25℃及び剪断速度10s-1における粘度η10が、10mPa・s以上である、請求項3~6のいずれか一項に記載の方法。
JP2021096841A 2018-09-03 2021-06-09 複合粒子及び樹脂組成物 Active JP7385625B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2018164610 2018-09-03
JP2018164590 2018-09-03
JP2018164630 2018-09-03
JP2018164590 2018-09-03
JP2018164630 2018-09-03
JP2018164610 2018-09-03
JP2020541249A JP6896946B2 (ja) 2018-09-03 2019-09-03 複合粒子及び樹脂組成物

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020541249A Division JP6896946B2 (ja) 2018-09-03 2019-09-03 複合粒子及び樹脂組成物

Publications (3)

Publication Number Publication Date
JP2021155750A JP2021155750A (ja) 2021-10-07
JP2021155750A5 JP2021155750A5 (ja) 2022-09-12
JP7385625B2 true JP7385625B2 (ja) 2023-11-22

Family

ID=69722365

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020541249A Active JP6896946B2 (ja) 2018-09-03 2019-09-03 複合粒子及び樹脂組成物
JP2021096841A Active JP7385625B2 (ja) 2018-09-03 2021-06-09 複合粒子及び樹脂組成物

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020541249A Active JP6896946B2 (ja) 2018-09-03 2019-09-03 複合粒子及び樹脂組成物

Country Status (2)

Country Link
JP (2) JP6896946B2 (ja)
WO (1) WO2020050286A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234590B2 (ja) * 2018-11-13 2023-03-08 凸版印刷株式会社 塗工用組成物
JP7444669B2 (ja) 2020-03-25 2024-03-06 旭化成株式会社 微細セルロース繊維を含む複合粒子、及び複合粒子を含む樹脂組成物
KR20210147988A (ko) * 2020-05-29 2021-12-07 주식회사 엘지화학 고분자 복합체
CN114479389B (zh) * 2022-03-28 2023-05-23 金发科技股份有限公司 一种纳米纤维改性pbt复合材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270891A (ja) 2004-03-26 2005-10-06 Tetsuo Kondo 多糖類の湿式粉砕方法
JP2008297364A (ja) 2007-05-29 2008-12-11 Kyoto Univ ミクロフィブリル化セルロース複合樹脂及びその製造方法
JP2009107155A (ja) 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Mfc/樹脂複合材とその製造方法ならびに成形品
JP2012092203A (ja) 2010-10-26 2012-05-17 Nissan Chem Ind Ltd 混合物及びセルロースファイバー分散組成物並びにそれらの製造方法
JP2013014741A (ja) 2011-06-07 2013-01-24 Kao Corp 樹脂改質用添加剤及びその製造方法
JP2015522095A (ja) 2012-07-03 2015-08-03 ハーキュリーズ・インコーポレーテッド 分散性が改善した水溶性高分子粉末
WO2018131352A1 (ja) 2017-01-12 2018-07-19 コニカミノルタ株式会社 樹脂組成物、およびこれを用いた立体造形物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026042A (ja) * 1983-07-20 1985-02-08 Sekisui Plastics Co Ltd 発泡性熱可塑性樹脂粒子
JPH1170535A (ja) * 1997-08-28 1999-03-16 Matsushita Electric Ind Co Ltd セルロース系成形体の製造方法
JP3874560B2 (ja) * 1998-01-09 2007-01-31 旭化成ケミカルズ株式会社 微細セルロース含有複合物
JP4261403B2 (ja) * 2004-03-29 2009-04-30 積水化成品工業株式会社 多孔質樹脂粒子の製造方法
JP6904563B2 (ja) * 2017-08-25 2021-07-21 国立研究開発法人森林研究・整備機構 複合粒子の製造方法とその製造方法で得られる複合粒子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270891A (ja) 2004-03-26 2005-10-06 Tetsuo Kondo 多糖類の湿式粉砕方法
JP2008297364A (ja) 2007-05-29 2008-12-11 Kyoto Univ ミクロフィブリル化セルロース複合樹脂及びその製造方法
JP2009107155A (ja) 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd Mfc/樹脂複合材とその製造方法ならびに成形品
JP2012092203A (ja) 2010-10-26 2012-05-17 Nissan Chem Ind Ltd 混合物及びセルロースファイバー分散組成物並びにそれらの製造方法
JP2013014741A (ja) 2011-06-07 2013-01-24 Kao Corp 樹脂改質用添加剤及びその製造方法
JP2015522095A (ja) 2012-07-03 2015-08-03 ハーキュリーズ・インコーポレーテッド 分散性が改善した水溶性高分子粉末
WO2018131352A1 (ja) 2017-01-12 2018-07-19 コニカミノルタ株式会社 樹脂組成物、およびこれを用いた立体造形物の製造方法

Also Published As

Publication number Publication date
JP6896946B2 (ja) 2021-06-30
WO2020050286A1 (ja) 2020-03-12
JPWO2020050286A1 (ja) 2021-02-15
JP2021155750A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP7385625B2 (ja) 複合粒子及び樹脂組成物
JP7239524B2 (ja) 化学修飾されたセルロース微細繊維を含む高耐熱性樹脂複合体
JP7444669B2 (ja) 微細セルロース繊維を含む複合粒子、及び複合粒子を含む樹脂組成物
JP7411378B2 (ja) セルロース樹脂組成物
WO2021080010A1 (ja) ポリアミド-セルロース樹脂組成物
JP6678698B2 (ja) 微細セルロース含有樹脂組成物
JP2021138971A (ja) 高靭性ポリアミド−セルロース樹脂組成物
JP2021187885A (ja) セルロース樹脂組成物及びその製造方法
JP2022003120A (ja) セルロース樹脂組成物及びその製造方法
JP2021127383A (ja) セルロースナノファイバー乾固体、及びセルロースナノファイバーの再分散液の製造方法
JP6937817B2 (ja) セルロース組成物
JP6915107B2 (ja) 微細セルロース含有樹脂組成物
JP7342142B2 (ja) セルロース樹脂組成物
JP2022001631A (ja) セルロース繊維の乾燥粉体の製造方法
JP2021066780A (ja) 繊維状物質分散液、及び繊維強化樹脂組成物
JP2021169578A (ja) セルロース繊維乾燥体の製造方法、及び樹脂複合体の製造方法
JP2020204112A (ja) 化学修飾セルロース繊維
JP7504650B2 (ja) セルロース繊維乾燥体及びその製造方法、並びに樹脂複合体の製造方法
JP2024077608A (ja) 樹脂組成物及びその製造方法
JP2021070747A (ja) セルロースナノファイバー粉体及びその製造方法
JP2023177265A (ja) 樹脂組成物及び成形体
JP2021066779A (ja) 微細セルロース繊維及び樹脂複合体
WO2022260175A1 (ja) 樹脂組成物及びその製造方法
JP2024031890A (ja) 3dプリント用造形材料及びその製造方法
JP2023011541A (ja) 樹脂組成物及びその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231110

R150 Certificate of patent or registration of utility model

Ref document number: 7385625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150