WO2022168877A1 - エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材 - Google Patents

エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材 Download PDF

Info

Publication number
WO2022168877A1
WO2022168877A1 PCT/JP2022/004068 JP2022004068W WO2022168877A1 WO 2022168877 A1 WO2022168877 A1 WO 2022168877A1 JP 2022004068 W JP2022004068 W JP 2022004068W WO 2022168877 A1 WO2022168877 A1 WO 2022168877A1
Authority
WO
WIPO (PCT)
Prior art keywords
air filter
filter medium
porous membrane
pressure loss
less
Prior art date
Application number
PCT/JP2022/004068
Other languages
English (en)
French (fr)
Inventor
秀之 清谷
邦彦 乾
伸樹 浦岡
吉之 渋谷
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202280013176.3A priority Critical patent/CN116806164A/zh
Priority to KR1020237029565A priority patent/KR20230142551A/ko
Priority to EP22749748.4A priority patent/EP4289495A1/en
Publication of WO2022168877A1 publication Critical patent/WO2022168877A1/ja
Priority to US18/229,739 priority patent/US20230372849A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/12Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces in multiple arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0258Types of fibres, filaments or particles, self-supporting or supported materials comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0407Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0613Woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0618Non-woven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0627Spun-bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0654Support layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0668The layers being joined by heat or melt-bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0681The layers being joined by gluing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/069Special geometry of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1291Other parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0281Fibril, or microfibril structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • B32B2262/0284Polyethylene terephthalate [PET] or polybutylene terephthalate [PBT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/12Conjugate fibres, e.g. core/sheath or side-by-side
    • B32B2262/124Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present disclosure relates to an air filter medium, a method for manufacturing an air filter medium, a mask filter medium, and a pleated mask filter medium.
  • a porous membrane (hereinafter sometimes referred to as a PTFE porous membrane) made of polytetrafluoroethylene (hereinafter sometimes referred to as PTFE) has been used as an air filter.
  • PTFE porous membranes have higher dust collection efficiency than glass fiber filter media at the same pressure loss, so they are particularly suitable for HEPA filters (High Efficiency Particulate Air Filters) and ULPA filters (Ultra low Penetration Air Filters). is preferably used for
  • air filter media having a fluororesin porous membrane are required to have high performance and resistance to clogging while keeping pressure loss low.
  • An air filter medium is an air filter medium comprising a fluororesin porous membrane and a support material laminated on the fluororesin porous membrane.
  • the fluororesin porous membrane has a pressure loss of 80 Pa or less when air passes through it at a flow rate of 5.3 cm/sec.
  • the PF value of the fluororesin porous membrane is 20 or more.
  • the thickness of the fluororesin porous membrane is 10 ⁇ m or more.
  • the dust holding amount of the fluororesin porous membrane is 15.0 g/m 2 or more.
  • the amount of dust retained was obtained by continuously blowing air containing polyalphaolefin particles with a number median diameter of 0.25 ⁇ m through the fluororesin porous membrane at a flow rate of 5.3 cm/sec, and the pressure loss in the fluororesin porous membrane increased by 250 Pa. It means the dust retention amount of the polyalphaolefin particles when
  • the pressure loss, the PF value, and the dust holding amount of the fluororesin porous membrane can all be values in a non-charged state in which the fluororesin porous membrane is not charged.
  • the non-charged air filter media is de-charged by being subjected to static elimination processing according to "JIS B 9908-4 Part 4: Test method for static elimination processing of ventilation air filter units". Refers to air filter media.
  • the fluororesin porous membrane suppresses a decrease in the collection efficiency and maintains the collection efficiency even when the charged state changes to a non-charged state.
  • the pressure loss of the fluororesin porous membrane of this air filter medium is 80 Pa or less, the pressure loss is kept low. Moreover, since the PF value of the fluororesin porous membrane is 20 or more, this air filter medium has high performance. Furthermore, in this air filter medium, clogging is less likely to occur because the dust retention capacity of the fluororesin porous membrane is 15.0 g/m 2 or more.
  • the air filter medium according to the second aspect is the air filter medium according to the first aspect, and the fluororesin porous membrane has a thickness of 50 ⁇ m or less.
  • This air filter material can be kept small.
  • the air filter material according to the third aspect is the air filter material according to the first aspect or the second aspect, and the pressure loss variation coefficient of the air filter material is 6.0 or less.
  • the coefficient of variation of pressure loss means a value obtained by dividing the standard deviation of the pressure loss distribution by the average value.
  • a fluororesin porous membrane that keeps pressure loss low tends to cause variations in pressure loss for each part of the membrane.
  • the homogeneity can be improved by suppressing the variation coefficient of the pressure loss.
  • An air filter medium according to a fourth aspect is the air filter medium according to any one of the first to third aspects, wherein the fluororesin porous membrane is composed of polytetrafluoroethylene that can be fibrillated and non-thermal melt processing that does not fibrillate. and a non-fibrillating hot-melt processable component with a melting point of less than 320°C.
  • this air filter material can increase the thickness by increasing the voids due to the relatively thick fibers, making it possible to increase the amount of dust that can be retained.
  • the air filter medium according to the fifth aspect is the air filter medium according to any one of the first to fourth aspects, wherein the fluororesin porous membrane contains modified polytetrafluoroethylene.
  • This air filter material is easy to secure a large thickness, and it is possible to increase the dust retention capacity.
  • a method for manufacturing an air filter medium according to the sixth aspect is a method for manufacturing an air filter medium according to any one of the first to fifth aspects.
  • This manufacturing method includes steps of creating a fluororesin sheet using a fluororesin raw material, stretching the fluororesin sheet in a first direction at a stretching speed of 30%/sec or less in the stretching direction, and After the step of stretching in the direction, the step of stretching in a second direction orthogonal to the first direction.
  • the total draw ratio by the drawing in the first direction and the drawing in the second direction is 250 times or more and 800 times or less.
  • the stretching speed in the stretching direction in one of the stretching is performed at a speed of 30% / second or less. good.
  • a mask filter medium according to the seventh aspect includes the air filter medium according to any one of the first to fifth aspects or the air filter medium manufactured by the manufacturing method according to the sixth aspect.
  • This filter material for masks suppresses suffocation during use, has high performance, and is less prone to clogging.
  • a filter medium for a pleated mask according to an eighth aspect is the air filter medium according to any one of the first to fifth aspects, or the air filter medium manufactured by the manufacturing method according to the sixth aspect, which has mountain folds and valley folds. It is a filter material for a pleated mask having a shape including a part.
  • This pleated mask filter medium was continuously ventilated with air containing polyalphaolefin particles having a median number diameter of 0.25 ⁇ m at a flow rate of 85 L/min. The pressure loss is 120 Pa or less when ventilated at a rate of /min.
  • This pleated mask filter material can be used while suppressing suffocation even after receiving a load.
  • FIG. 2 is a schematic cross-sectional view showing the layer structure of an air filter medium (No. 1).
  • FIG. 2 is a schematic cross-sectional view showing the layer structure of an air filter medium (No. 2).
  • FIG. 3 is a schematic cross-sectional view showing the layer structure of an air filter medium (No. 3).
  • Fig. 2 is an external perspective view of a filter medium for a pleated mask;
  • FIG. 4 is a front view of the pleated mask filter medium attached to the pedestal.
  • Fig. 2 is a side cross-sectional view of the pleated mask filter medium attached to the pedestal;
  • air filter media (hereinafter also simply referred to as filter media), methods for manufacturing air filter media, filter media for masks, and filter media for pleated masks will be described with examples.
  • Air filter medium The air filter medium includes a fluororesin porous membrane and a support material.
  • the supporting material is laminated on the fluororesin porous membrane in the film thickness direction.
  • the pressure loss of the air filter medium may be 80 Pa or less, preferably 75 Pa or less. Although the pressure loss of the air filter medium is not particularly limited, it may be 20 Pa or more. The pressure loss of the air filter medium can be measured as the pressure loss when air is passed at a flow rate of 5.3 cm/sec.
  • the physical properties of the air filter medium described in the present embodiment and the fluororesin porous membrane described later indicate values in an uncharged state in which the air filter medium and the fluororesin porous membrane are not charged.
  • the non-charged state refers to the state in which static electricity is not charged by performing static elimination processing according to "JIS B 9908-4 Part 4: Test method for static elimination processing of ventilation air filter units".
  • the thickness of the air filter medium is preferably, for example, 200 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the air filter medium is the value of the thickness when a load of 0.3N is applied to the object to be measured in a specific measuring device.
  • the specific layer structure of the air filter material described above is not particularly limited.
  • the air filter material 30 shown in FIG. and a breathable support material 32 laminated on the downstream side in the direction of air flow like the air filter medium 30 shown in FIG. 2, it has a fluororesin porous membrane 31 and an air-permeable support material 32 laminated on the upstream side of the fluororesin porous membrane 31 in the air flow direction. It can be. Further, for example, like the air filter medium 30 shown in FIG. , may be used.
  • the method of laminating each film or layer is not particularly limited, and lamination using an anchor effect due to partial melting by heating or melting of a hot-melt resin may be used, or reactive adhesion may be used. It may be pasted together using an agent or the like, or simply placed on top of each other.
  • the fluororesin porous membrane has a pressure loss of 80 Pa or less, preferably 75 Pa or less, more preferably 72 Pa or less when air is passed through at a flow rate of 5.3 cm/sec. preferable.
  • the pressure loss of the fluororesin porous membrane is not particularly limited, but may be 20 Pa or more.
  • the pressure loss of the fluororesin porous membrane is preferably 40 Pa or more from the viewpoint of easily obtaining a fluororesin porous membrane having good uniformity over the entire membrane while suppressing a decrease in collection efficiency.
  • the PF value of the fluororesin porous membrane is 20 or more, more preferably 22 or more.
  • the thickness of the fluororesin porous membrane is 10 ⁇ m or more. This makes it easier to obtain a porous film with an increased dust retention capacity of the polyalphaolefin particles.
  • the thickness of the fluororesin porous membrane is preferably 50 ⁇ m or less from the viewpoint of preventing the thickness of the folded portions from becoming too large when used in a state where the folded portions are present.
  • the thickness of the fluororesin porous membrane is the value of the thickness when a load of 0.3 N is applied to the object to be measured in a specific measuring device.
  • the dust holding amount of the polyalphaolefin particles of the fluororesin porous membrane is 15.0 g/m 2 or more.
  • the amount of dust retained by the polyalphaolefin particles was determined by continuously blowing air containing polyalphaolefin particles with a median number diameter of 0.25 ⁇ m through the fluororesin porous membrane at a flow rate of 5.3 cm/sec, and reducing the pressure loss of the fluororesin porous membrane. It means the weight per unit area of the polyalphaolefin particles retained in the fluororesin porous membrane when the pressure is increased by 250 Pa.
  • the dust holding amount is 15.0 g/m 2 or more, even if gas containing oil is allowed to pass through when using the air filter medium, the increase in pressure loss of the air filter medium is suppressed. Therefore, it is possible to continue using while suppressing clogging.
  • the variation coefficient of pressure loss is preferably 6.0 or less.
  • the coefficient of variation (CV value) of the pressure loss means a value obtained by dividing the standard deviation of the pressure loss distribution at various points in the fluororesin porous membrane by the average value of the pressure loss.
  • CV value the coefficient of variation of the pressure loss
  • the mask filter medium has a relatively small total area (for example, 500 cm 2 or less, or 350 cm 2 or less), it is desirable to suppress the occurrence of partially poor quality areas. Therefore, an air filter medium that can keep the variation coefficient of pressure loss small is particularly suitable for use as a mask filter medium.
  • the fluororesin porous membrane may have a substantially uniform filling rate in the thickness direction, or may have a varying filling rate in the thickness direction.
  • the windward portion has a lower filling rate than the leeward portion (gradient density porous membrane).
  • the fluororesin porous membrane contains a fluororesin, and preferably mainly contains a fluororesin, and has fibrils (fibers) (not shown) and nodes (nodes) connected to the fibrils. It is more preferable to have a porous membrane structure.
  • “mainly” means that the fluororesin is contained in the largest amount when a plurality of types of components are contained.
  • the fluororesin porous membrane may contain, for example, 50% by weight or more of the fluororesin relative to the weight of the fluororesin porous membrane, preferably 80% by weight or more of the fluororesin, and 95% by weight. It is more preferable to contain the above fluororesin, and it may be composed only of the fluororesin.
  • a component different from the fluororesin contained in the fluororesin porous membrane includes, for example, an inorganic filler that is a non-melt-processable component (component B) that does not fiberize, which will be described later.
  • component B non-melt-processable component
  • the fluororesin used for the fluororesin porous membrane may consist of one type of component, or may consist of two or more types of components. Further, examples of the fluororesin include those containing PTFE that can be fibrillated (hereinafter also referred to as component A).
  • component A PTFE that can be fibrillated
  • B component a non-hot-melt processable component that does not fiberize
  • C component also referred to as ).
  • PTFE that can be fibrillated Fiberizable PTFE is, for example, one that is extensible and non-melt processable.
  • non-melt-processable means that the material has a high melt viscosity, does not flow easily in a molten state, and is difficult to melt-process.
  • the PTFE that can be made into fibers preferably has a melt viscosity at 380° C. of 1 ⁇ 10 8 Pa ⁇ S or more.
  • Fiberizable PTFE is, for example, high molecular weight PTFE obtained from emulsion polymerization or suspension polymerization of tetrafluoroethylene (TFE).
  • high molecular weight as used herein means that fibrils that are easily fibrillated during stretching during the preparation of a porous membrane, that fibrils having a long fiber length can be obtained, and that the standard specific gravity (SSG) is 2.130 to 2.230. , refers to the molecular weight of a size that does not substantially melt flow due to its high melt viscosity.
  • the SSG of PTFE which can be fibrillated, is preferably 2.130 to 2.190, more preferably 2.140 to 2.170, from the viewpoint of being easily fibrillated and obtaining fibrils having a long fiber length. If the SSG is too high, the stretchability may deteriorate, and if the SSG is too low, the rollability may deteriorate, the homogeneity of the porous membrane may deteriorate, and the pressure loss of the porous membrane may increase.
  • the standard specific gravity (SSG) is measured according to ASTM D4895.
  • PTFE obtained by emulsion polymerization is preferable from the viewpoint of being easily fibrilized and obtaining fibrils having a long fiber length.
  • Emulsion polymerization can generally be carried out in an aqueous medium containing TFE, or TFE and a monomer other than TFE, a dispersant, and a polymerization initiator.
  • the emulsion polymerization is preferably carried out with gentle stirring under stirring conditions set so that the produced PTFE microparticles do not agglomerate.
  • the polymerization temperature is generally 20-100° C., preferably 50-85° C.
  • the polymerization pressure is generally 0.5-3.0 MPa.
  • the polymerization initiator for emulsion polymerization a radical polymerization initiator, a redox polymerization initiator, and the like are preferable.
  • the amount of the polymerization initiator is preferably as small as possible because the formation of low-molecular-weight PTFE is suppressed and PTFE with low SSG can be obtained. PTFE with high SSG tends to form.
  • PTFE may constitute a fine powder obtained by emulsion polymerization.
  • the fine powder can be obtained by recovering PTFE fine particles from the PTFE aqueous dispersion obtained by the above emulsion polymerization, coagulating them, and then drying them.
  • the fine powder made of PTFE has good extrusion processability, and can be extruded as a paste at an extrusion pressure of 20 MPa or less, for example.
  • the extrusion pressure was measured when the paste was extruded through an orifice (diameter 2.5 cm, land length 1.1 cm, introduction angle 30°) under the conditions of a reduction ratio of 100, an extrusion speed of 51 cm/min, and 25°C. It is.
  • Paste extrusion molding generally involves mixing the fine powder and an extrusion aid (lubricant), preforming the mixture, and then extruding the mixture.
  • Extrusion aids are not particularly limited and conventionally known ones can be used, but petroleum hydrocarbons having a boiling point of 150° C. or higher, such as naphtha, are preferred.
  • the amount of the extrusion aid used varies depending on the type of the extrusion aid, etc., but is usually 5 parts by weight or more and 50 parts by weight (P) or less with respect to 100 parts by weight of the PTFE powder.
  • the content is preferably 10 parts by weight or more and 40 parts by weight or less, more preferably 25 parts by weight or more and 35 parts by weight or less.
  • Preforming and extrusion can be performed by a conventionally known method, and conditions can be appropriately selected.
  • the presence or absence of fibrillation that is, whether or not it can be fibrillated can be determined by whether paste extrusion, which is a typical method for molding high-molecular-weight PTFE powder made from TFE polymer, is possible. Paste extrusion is generally possible because high molecular weight PTFE has fibrillating properties. If the green molded body obtained by paste extrusion has no substantial strength or elongation, for example 0% elongation and breaks when pulled, it can be considered to be non-fibrillating.
  • the high-molecular-weight PTFE may be modified polytetrafluoroethylene (hereinafter referred to as modified PTFE), homopolytetrafluoroethylene (hereinafter referred to as homo-PTFE), or a combination of modified PTFE and homo-PTFE. It may be a mixture.
  • modified PTFE polytetrafluoroethylene
  • homo-PTFE homopolytetrafluoroethylene
  • the high-molecular-weight PTFE may be modified polytetrafluoroethylene (hereinafter referred to as modified PTFE), homopolytetrafluoroethylene (hereinafter referred to as homo-PTFE), or a combination of modified PTFE and homo-PTFE. It may be a mixture.
  • the content of modified PTFE in high-molecular-weight PTFE is preferably 10% by weight or more and 98% by weight or less, and 50% by weight or more and 95% by weight or less, from the viewpoint of maintaining good moldability of polyte
  • Homo PTFE is not particularly limited, and is disclosed in JP-A-53-60979, JP-A-57-135, JP-A-61-16907, JP-A-62-104816, JP-A-62- 190206, JP-A-63-137906, JP-A-2000-143727, JP-A-2002-201217, International Publication No. 2007/046345, International Publication No. 2007/119829, International Publication No. Homo PTFE disclosed in 2009/001894 pamphlet, WO 2010/113950 pamphlet, WO 2013/027850 pamphlet, etc. can be preferably used.
  • JP-A-57-135 having high stretching properties JP-A-63-137906, JP-A-2000-143727, JP-A-2002-201217, WO 2007/046345 pamphlet, Homo PTFE disclosed in International Publication No. 2007/119829, International Publication No. 2010/113950, etc. is preferred.
  • Modified PTFE consists of TFE and monomers other than TFE (hereinafter referred to as modified monomers).
  • Modified PTFE includes, but is not limited to, those uniformly modified with a modifying monomer, those modified at the beginning of the polymerization reaction, and those modified at the end of the polymerization reaction.
  • the modified PTFE is preferably a TFE copolymer obtained by subjecting TFE and a small amount of a monomer other than TFE to the polymerization within a range that does not significantly impair the properties of the TFE homopolymer.
  • Modified PTFE for example, JP-A-60-42446, JP-A-61-16907, JP-A-62-104816, JP-A-62-190206, JP-A-64-1711 , JP-A-2-261810, JP-A-11-240917, JP-A-11-240918, International Publication No. 2003/033555, International Publication No. 2005/061567, International Publication No. 2007/005361, International Publication Those disclosed in No. 2011/055824 pamphlet, International Publication No. 2013/027850 pamphlet, etc. can be preferably used.
  • JP-A-61-16907, JP-A-62-104816, JP-A-64-1711, JP-A-11-240917, International Publication No. 2003/033555, International Modified PTFE disclosed in Publication No. 2005/061567 pamphlet, International Publication No. 2007/005361 pamphlet, International Publication No. 2011/055824 pamphlet, etc. is preferable.
  • Modified PTFE contains TFE units based on TFE and modified monomer units based on modified monomers.
  • a modified monomer unit is a part of the molecular structure of modified PTFE and is derived from the modified monomer.
  • Modified PTFE preferably contains modified monomer units in an amount of 0.001 to 0.500% by weight, preferably 0.01 to 0.30% by weight, based on the total monomer units.
  • a total monomer unit is a portion derived from all monomers in the molecular structure of modified PTFE.
  • the modifying monomer is not particularly limited as long as it can be copolymerized with TFE.
  • examples include perfluoroolefins such as hexafluoropropylene (HFP); chlorofluoroolefins such as chlorotrifluoroethylene (CTFE); Hydrogen-containing fluoroolefins such as ethylene and vinylidene fluoride (VDF); perfluorovinyl ether; perfluoroalkylethylene (PFAE), ethylene and the like.
  • HFP hexafluoropropylene
  • CTFE chlorofluoroolefins
  • VDF Hydrogen-containing fluoroolefins
  • VDF vinylidene fluoride
  • PFAE perfluoroalkylethylene
  • One type of modifying monomer may be used, or a plurality of types may be used.
  • the perfluorovinyl ether is not particularly limited, and examples thereof include perfluorounsaturated compounds represented by the following general formula (1).
  • CF 2 CF-ORf (1)
  • Rf represents a perfluoro organic group.
  • a perfluoro organic group is an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • the perfluoro organic group may have an ether oxygen.
  • perfluorovinyl ether examples include perfluoro(alkyl vinyl ether) (PAVE), in which Rf is a perfluoroalkyl group having 1 to 10 carbon atoms in the above general formula (1).
  • the perfluoroalkyl group preferably has 1 to 5 carbon atoms.
  • perfluoroalkyl groups in PAVE include perfluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group and the like.
  • PAVE is preferably perfluoropropyl vinyl ether (PPVE) or perfluoromethyl vinyl ether (PMVE).
  • the perfluoroalkylethylene is not particularly limited, and examples thereof include perfluorobutylethylene (PFBE) and perfluorohexylethylene (PFHE).
  • the modified monomer in modified PTFE is preferably at least one selected from the group consisting of HFP, CTFE, VDF, PAVE, PFAE and ethylene.
  • Homo PTFE is particularly easy to fibrillate, and from the viewpoint of obtaining fibrils with a long fiber length, 50% by weight of PTFE that can be fibrillated when a fluororesin porous membrane is formed using the B component and C component described later. is preferably contained in excess of
  • the fluororesin porous membrane not only the fiberizable PTFE (component A), but also a non-fibrillating non-hot-melt processable component (B component), and a non-fiberizing hot-melt processable component (C component), the following can be used as each B component and C component.
  • the fluororesin porous membrane composed of these three components has more voids and a thicker membrane structure than conventional PTFE (high molecular weight PTFE) porous membranes that can be fibrillated. Fine particles can be collected in a wide area in the thickness direction of the filter medium, thereby improving the amount of dust retained.
  • By forming the fluororesin porous membrane from these three components it is possible to particularly increase the amount of dust retained by liquid particles rather than by solid particles.
  • Component B non-fibrillating non-hot-melt processable component
  • the non-fibrillating non-hot-melt processable component is mainly unevenly distributed as non-fibrous particles in the knots, and PTFE that can be fibrillated is fibrillated. It works to suppress
  • Non-fibrillating non-hot-melt processable components include, for example, thermoplastic components such as low-molecular-weight PTFE, thermosetting resins, inorganic fillers, and mixtures thereof.
  • the thermoplastic component preferably has a melting point of 320° C. or higher and a high melt viscosity.
  • low-molecular-weight PTFE has a high melt viscosity, so it can remain in the knots even when processed at a temperature above its melting point.
  • low-molecular-weight PTFE is PTFE having a number-average molecular weight of 600,000 or less, a melting point of 320° C. or higher and 335° C. or lower, and a melt viscosity of 100 Pa ⁇ s to 7.0 ⁇ 10 5 Pa ⁇ s at 380° C. (See JP-A-10-147617).
  • a high-molecular-weight PTFE powder obtained by suspension polymerization of TFE or a high-molecular-weight PTFE powder (FP: fine powder) obtained by emulsion polymerization of TFE and a specific fluoride are mixed.
  • a method of thermal decomposition by contact reaction at high temperature see JP-A-61-162503
  • a method of irradiating the above high-molecular-weight PTFE powder or compact with ionizing radiation see JP-A-48-78252).
  • a method of directly polymerizing TFE together with a chain transfer agent see International Publication No.
  • the low-molecular-weight PTFE may be homo-PTFE, as well as fiberizable PTFE, or modified PTFE containing modified monomers as described above.
  • Low-molecular-weight PTFE has no fibrosis. The presence or absence of fibrosis can be determined by the method described above. Low molecular weight PTFE has no substantial strength or elongation in the green compact obtained by paste extrusion, eg 0% elongation and breaks when pulled.
  • the low-molecular-weight PTFE is not particularly limited, it preferably has a melt viscosity at 380°C of 1,000 Pa ⁇ s or more, more preferably 5,000 Pa ⁇ s or more, and even more preferably 10,000 Pa ⁇ s or more.
  • the melt viscosity is high, even if the hot-melt processable component that does not fiberize as the C component melts during the production of the porous membrane, the non-hot-melt processable component that does not fiberize may remain in the knots. and can reduce fibrosis.
  • Thermosetting resins include, for example, epoxy, silicone, polyester, polyurethane, polyimide, phenol, and mixtures thereof. From the viewpoint of co-coagulation workability, the thermosetting resin is desirably a resin that is dispersed in water in an uncured state. All of these thermosetting resins are also commercially available.
  • Inorganic fillers include talc, mica, calcium silicate, glass fiber, calcium carbonate, magnesium carbonate, carbon fiber, barium sulfate, calcium sulfate, and mixtures thereof.
  • talc is preferably used because of its affinity with high-molecular-weight PTFE that can be fibrillated and its specific gravity.
  • the inorganic filler preferably has a particle size of 3 ⁇ m or more and 20 ⁇ m or less from the viewpoint of forming a stable dispersion during the production of the porous membrane.
  • the particle size is an average particle size and is measured by a laser diffraction/scattering method. Any of these inorganic fillers can also be obtained as a commercial product.
  • the non-melt-processable component that does not fiberize may be a combination of a plurality of the above-described components.
  • the non-thermal melt processable component that does not fiberize is preferably contained in the porous membrane in an amount of 1% by weight or more and 50% by weight or less.
  • the non-hot-melt processable component that does not form fibers is 50% by weight or less, the fiber structure of the porous membrane can be easily maintained.
  • the non-hot-melt processable component that does not fiberize is preferably contained in an amount of 20% by weight or more and 40% by weight or less, more preferably 30% by weight. By containing 20% by weight or more and 40% by weight or less, it is possible to more effectively suppress fiberization of PTFE that can be fiberized.
  • Component C a hot-melt processable component that does not fiberize and has a melting point of less than 320 ° C.
  • a hot-melt processable component that does not fiberize and has a melting point of less than 320 ° C. has fluidity at the time of melting, so that it can be melted at the time of manufacturing the porous membrane (at the time of stretching) and solidify at the knots, thereby increasing the strength of the entire porous membrane and compressing it in a later process. deterioration of the filter performance can be suppressed even if there is
  • the hot-melt processable component that does not fiberize preferably exhibits a melt viscosity of less than 10000 Pa ⁇ s at 380°C.
  • the melting point of the non-fibrillated component that can be hot-melt processed is measured by a differential scanning calorimeter (DSC) at a temperature elevation rate of 10°C/min to a temperature above the melting point, once completely melted, and then at a rate of 10°C/min to the melting point. After cooling to below, the peak top of the heat of fusion curve obtained when the temperature is raised again at 10°C/min.
  • DSC differential scanning calorimeter
  • the heat-melt processable components that do not form fibers include heat-meltable fluoropolymers, polystyrene, polyethylene terephthalate (PET), polyesters, polyamides, and other resins, or mixtures thereof. Examples include those that can sufficiently exhibit the meltability and fluidity in. Among them, heat-meltable fluoropolymers are preferable from the viewpoint of excellent heat resistance at the stretching temperature during the production of the porous membrane and excellent chemical resistance.
  • Useful examples of the compound represented by formula (2) include, but are not limited to, fluoroethylene, VDF, trifluoroethylene, perfluoroolefins such as TFE and HFP; chlorofluoroolefins such as CTFE and dichlorodifluoroethylene; Examples include (perfluoroalkyl)ethylene such as PFBE and PFHE, perfluoro-1,3-dioxole and mixtures thereof.
  • PAVE perfluoro(alkyl vinyl ether)
  • PAVE is preferably perfluoropropyl vinyl ether (PPVE) or perfluoromethyl vinyl ether (PMVE).
  • Useful examples of compounds represented by general formula (3) include ethylene and propylene.
  • fluoropolymers include polyfluoroethylene derived from the polymerization of fluoroethylene, polyvinylidene fluoride (PVDF) derived from the polymerization of vinylidene fluoride (VDF), and chlorotrifluoroethylene (CTFE).
  • PVDF polyvinylidene fluoride
  • CTFE chlorotrifluoroethylene
  • PCTFE Polychlorotrifluoroethylene
  • Examples include fluoropolymers derived from copolymerization of monomers and at least one monomer represented by general formula (1) above and/or at least one monomer represented by general formula (3) above.
  • polymers having copolymer units derived from VDF and hexafluoropropylene (HFP), polymers derived from TFE and at least one copolymerizable comonomer other than TFE (at least 3% by weight) is.
  • the latter class of fluoropolymers includes TFE/PAVE copolymers (PFA), TFE/PAVE/CTFE copolymers, TFE/HFP copolymers (FEP), TFE/ethylene copolymers (ETFE), TFE/ HFP/ethylene copolymers (EFEP), TFE/VDF copolymers, TFE/VDF/HFP copolymers, TFE/VDF/CTFE copolymers, etc., or mixtures thereof.
  • the hot-melt processable component that does not fiberize may be a combination of a plurality of the above-described components.
  • the content in the porous membrane of the heat-melt processable component that does not fiberize is preferably 0.1% by weight or more and less than 20% by weight.
  • the amount is less than 20% by weight, it is suppressed that the non-fibrillating component that can be processed by heat melting is dispersed in the porous membrane other than the nodule portion and the pressure loss of the porous membrane increases. Further, when the content is less than 20% by weight, it becomes easy to perform stretching at a high stretching ratio of 40 times or more.
  • the content of the non-fibrillating hot-melt processable component in the porous membrane is preferably 15% by weight or less, more preferably 10% by weight or less.
  • the content in the porous membrane of the non-fibrillating, heat-melt processable component is preferably 0.5% by weight or more from the viewpoint of ensuring the strength of the porous membrane. Among them, about 5% by weight is particularly preferable.
  • the content of the heat-melt processable component that does not fiberize is preferably 10% by weight or less in order to achieve good stretching at a stretching area ratio of 40 times or more and 800 times or less.
  • a fluororesin in the preparation of the fluororesin porous membrane, a fluororesin can be used, but it is preferable to use, for example, the above-described A component or the above-described three components.
  • the forms of the three components A to C described above are not particularly limited, and are, for example, compositions, mixed powders, and molding materials, which will be described later.
  • the composition, the mixed powder, and the material for molding all contain the above-described A component, B component, and C component, and contain the C component in an amount of, for example, 0.1% by weight or more and less than 20% by weight of the total.
  • the form of the raw material of the porous membrane may be a mixed powder described later, a mixture other than powder, or a molding material or composition described later.
  • the mixed powder for example, a fine powder obtained by co-precipitation used in the examples described later, two of the three raw materials are mixed by co-precipitation, and the other component is mixed using a mixer. and a powder obtained by mixing three kinds of raw materials with a mixer.
  • Non-powder mixtures include, for example, shaped bodies such as porous bodies (for example, porous membranes), and aqueous dispersions containing three components.
  • Molding material refers to a material that has been adjusted for processing in order to mold the composition. It is a product that has been molded.
  • the molding material may contain, for example, known additives in addition to the above three components. Examples of known additives include carbon materials such as carbon nanotubes and carbon black, pigments, photocatalysts, activated carbon, antibacterial agents, adsorbents, and deodorants.
  • the composition can be produced by various methods. For example, when the composition is a mixed powder, the powder of component A, the powder of component B, and the powder of component C are mixed with a general mixer or the like.
  • a method of obtaining a co-coagulated powder by co-precipitating three aqueous dispersions containing A component, B component and C component respectively, A water containing any two components of A component, B component and C component It can be produced by a method of mixing a mixed powder obtained by preliminarily co-precipitating a dispersion with the remaining one-component powder using a general mixer or the like.
  • the composition is obtained by co-precipitating three aqueous dispersions containing A component, B component, and C component, respectively, in that the three different components are easily dispersed uniformly. is preferred.
  • the size of the mixed powder obtained by co-precipitation is not particularly limited.
  • the average particle size is measured according to JIS K6891.
  • the apparent density of the mixed powder obtained by co-coagulation is not particularly limited, and is, for example, 0.40 g/ml or more and 0.60 g/ml or less, and 0.45 g/ml or more and 0.55 g/ml or less. is preferred. Apparent density is measured according to JIS K6892.
  • a method of co-coagulation for example, (i) A method of mixing an aqueous dispersion of component A, an aqueous dispersion of component B, and an aqueous dispersion of component C, followed by coagulation; (ii) A method of adding powders of the remaining two components to an aqueous dispersion of any one component of A component, B component, and C component, followed by coagulation; (iii) A method of adding the powder of any one of the components A, B, and C to a mixed aqueous dispersion obtained by mixing the remaining two aqueous dispersions, followed by coagulation; (iv) A mixed powder of two components obtained by preliminarily mixing each aqueous dispersion of any two components among A component, B component, and C component and then coagulating is added to the remaining one component aqueous dispersion. a method of coagulating after addition; are mentioned.
  • the above method (i) is preferable in that the three components are easily dispersed uniformly.
  • acids such as nitric acid, hydrochloric acid, sulfuric acid; magnesium chloride, calcium chloride, sodium chloride, aluminum sulfate, magnesium sulfate, barium sulfate, sodium hydrogen carbonate, carbonate
  • a metal salt such as sodium or an organic solvent such as acetone or methanol for coagulation.
  • the form of component A before mixing is not particularly limited, but it may be an aqueous dispersion of the fibrilable PTFE described above, or it may be powder.
  • powders in particular, the above-mentioned FP: fine powder
  • Teflon 6-J hereinafter Teflon is a registered trademark
  • Teflon 6C-J a registered trademark
  • Teflon 62-J manufactured by Mitsui DuPont Fluorochemicals.
  • the aqueous dispersion of PTFE that can be fibrillated may be the above-mentioned aqueous dispersion after polymerization or a commercially available aqueous dispersion.
  • Preferred methods for producing the fibrilizable PTFE aqueous dispersion after polymerization include the production methods disclosed in the above publications listed as those disclosing homo-PTFE.
  • Examples of commercially available aqueous dispersions of PTFE that can be made into fibers include "Polyflon D-110", “Polyflon D-210", “Polyflon D-210C", “Polyflon D-310" manufactured by Daikin Industries, Ltd., and Mitsui DuPont.
  • Aqueous dispersions such as “Teflon 31-JR” and “Teflon 34-JR” manufactured by Fluorochemical Co., Ltd., and “Fluon AD911L”, “Fluon AD912L” and “AD938L” manufactured by Asahi Glass Co., Ltd. can be mentioned.
  • a nonionic surfactant or the like is added to 100 parts by weight of PTFE in the aqueous dispersion. Therefore, the nonionic surfactant tends to remain in the mixed powder obtained by co-precipitation, which may cause problems such as coloring of the porous body. For this reason, as the aqueous dispersion of PTFE that can be fibrillated, an aqueous dispersion obtained after polymerization is preferred.
  • component B before mixing is not particularly limited, but when component B is low-molecular-weight PTFE, the form before mixing is not particularly limited, and may be an aqueous dispersion or a powder (generally PTFE micropowder, or called micropowder).
  • low-molecular-weight PTFE powder include "MP1300-J” manufactured by Mitsui DuPont Fluorochemical Co., Ltd., "Lubron L-5" and “Lubron L-5F” manufactured by Daikin Industries, Ltd., and “Fluon L169J” manufactured by Asahi Glass Co. ”, “Fluon L170J”, “Fluon L172J”, etc., “KTL-F”, “KTL-500F” manufactured by Kitamura Co., Ltd., and the like.
  • the aqueous dispersion of low-molecular-weight PTFE may be an aqueous dispersion obtained by emulsion polymerization of TFE as described above, or may be a commercially available aqueous dispersion.
  • a micropowder dispersed in water using a surfactant or the like can also be used.
  • Preferred methods for producing a PTFE aqueous dispersion that can be fibrilized after polymerization include JP-A-7-165828, JP-A-10-147617, JP-A-2006-063140, JP-A-2009-1745, International The production method disclosed in the pamphlet of publication No. 2009/020187 etc. is mentioned.
  • aqueous dispersions of PTFE that can be made into fibers include aqueous dispersions such as “Lubron LDW-410” manufactured by Daikin Industries, Ltd.
  • aqueous dispersions such as “Lubron LDW-410” manufactured by Daikin Industries, Ltd.
  • 2 to 10 parts by weight of a nonionic surfactant or the like is added to 100 parts by weight of PTFE in the aqueous dispersion.
  • the nonionic surfactant tends to remain in the mixed powder obtained by co-precipitation, which may cause problems such as coloring of the porous body.
  • the aqueous dispersion of low-molecular-weight PTFE is preferably an aqueous dispersion after polymerization.
  • an inorganic filler when used as the B component, the form before mixing is not particularly limited, but an aqueous dispersion is preferred.
  • inorganic fillers include “Talc P2” manufactured by Nippon Talc Co., Ltd., “LMR-100” manufactured by Fuji Talc Industry Co., Ltd., and the like. These are used by appropriately surface-treating with a silane coupling agent or the like and dispersing the powder in water.
  • a secondary pulverized product by a jet mill (such as “talc P2”) is preferably used because of its dispersibility in water.
  • the C component examples include fluororesins such as FEP and PFA, as well as resins such as acrylic, urethane, and PET.
  • the form before mixing is not particularly limited, but an aqueous dispersion is preferred.
  • the aqueous dispersion in the case of a resin obtained by emulsion polymerization, the polymerized dispersion can be used as it is, or resin powder dispersed in water using a surfactant or the like can also be used.
  • a predetermined amount of component C is dispersed in water to prepare an aqueous dispersion so that the content of component C is 0.1% by weight or more and less than 20% by weight in the porous membrane.
  • the method of co-coagulation is not particularly limited, but it is preferable to mix the three aqueous dispersions and then apply a mechanical stirring force.
  • liquid lubricant is not particularly limited as long as it can wet the surface of the PTFE powder and can be removed after forming the mixture obtained by co-coagulation into a film.
  • examples include liquid paraffin, naphtha, white oil, hydrocarbon oils such as toluene and xylene, alcohols, ketones, and esters.
  • the mixture obtained by co-coagulation is mixed with a liquid lubricant, and then extruded and rolled by a conventionally known method to form a film-like material.
  • the amount of the liquid lubricant mixed with the fluororesin can be 10 parts by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the fluororesin. It is preferably 25 parts by weight or more and 35 parts by weight or less.
  • Extrusion can be performed by paste extrusion, ram extrusion, or the like, preferably by paste extrusion.
  • a sheet-like extrudate extruded by paste extrusion is rolled using a calender roll or the like under heating, for example, under temperature conditions of 40° C. or higher and 80° C. or lower.
  • the thickness of the resulting film-like rolled product is set based on the thickness of the target porous membrane, and is usually 100 ⁇ m or more and 1000 ⁇ m or less, may be 100 ⁇ m or more and 400 ⁇ m or less, and may be 150 ⁇ m or more and 350 ⁇ m or less. preferable.
  • the liquid lubricant is removed from the unbaked film which is a rolling product. Removal of the liquid lubricant is accomplished by heating or extraction methods, or a combination thereof.
  • the heating temperature in the case of using the heating method is not particularly limited as long as it is lower than the melting point of the hot-melt processable component that does not fiberize when the three components A to C are used. , 180° C. or higher and 200° C. or lower.
  • the rolled product from which the liquid lubricant has been removed is heated at a temperature of 250° C. or more and 325° C. or less before stretching from the viewpoint of ensuring a sufficient thickness of the obtained fluororesin porous membrane and reducing pressure loss. It is preferable to perform heat treatment by heating in an atmosphere for 1 minute or longer.
  • the temperature of the heat treatment may be, for example, 320° C. or lower, and is preferably lower than the melting point of the fluororesin used for producing the fluororesin porous membrane.
  • the temperature of the heat treatment may be, for example, 260 ° C. or higher or 280 ° C. or higher from the viewpoint of sufficiently reducing the pressure loss while ensuring a sufficient thickness.
  • the temperature may be higher than the temperature at which the liquid lubricant is removed from the fired film by a heating method, or may be higher than the stretching temperature (in the case of biaxial stretching, the temperature of the primary stretching performed first).
  • the duration of the heat treatment is not particularly limited, but may be, for example, 1 minute or more and 2 hours or less, or 30 minutes or more and 1 hour or less, depending on the desired effect of the heat treatment.
  • the temperature for lowering the filling rate is higher than the temperature for increasing the filling rate during the above heat treatment, although there is no particular limitation.
  • the heat treatment is performed so that the temperature of the windward portion is higher than that of the leeward portion during the heat treatment.
  • the leeward side portion may be subjected to a cooling process of cooling to a temperature lower than normal temperature.
  • the temperature difference between the windward portion and the leeward portion may be 100° C. or higher, preferably 200° C. or higher, and preferably 300° C. from the viewpoint of generating a sufficient density difference. °C or more is more preferable.
  • the heat treatment it is preferable to perform the heat treatment so that the heating time is lengthened when the filling rate is low and the heating time is short when the filling rate is high.
  • the heating time is lengthened when the filling rate is low and the heating time is short when the filling rate is high.
  • the rolled product from which the liquid lubricant has been removed as described above or the rolled product which has been further heat-treated is drawn.
  • the melting point of the hot melt processable component that does not fiberize and the non-hot melt processable component that does not fiberize are is stretched at a temperature below the decomposition temperature of
  • the hot-melt processable component that does not fiberize melts during the drawing process, and then solidifies at the knots, Strength in the thickness direction of the porous membrane can be enhanced.
  • the stretching temperature at this time may be set by the temperature of the furnace for stretching or the temperature of the heating rollers that convey the rolled material, or may be achieved by combining these settings.
  • the stretching includes stretching in a first direction and preferably stretching in a second direction perpendicular to the first direction.
  • stretching in the first direction may be followed by stretching in the second direction.
  • the stretching in the first direction and the stretching in the second direction may be realized at the same time.
  • stretching in the first direction at the first stretching speed stretching in the first direction at the second stretching speed may be further carried out, and then stretching in the second direction may be carried out.
  • the first direction is the longitudinal direction (vertical direction: MD direction) of the rolled product
  • the second direction is the width direction (lateral direction: TD direction) of the rolled product.
  • the stretching may be carried out at the same time as a state in which a plurality of rolled products are stacked.
  • the rolled product may be stretched at an area magnification of 250 times or more and 800 times or less, preferably 300 times or more and 600 times or less, and more preferably 400 times or more and 580 times or less.
  • the draw ratio By sufficiently increasing the draw ratio, the fluororesin porous membrane can have more fibers, the collection efficiency can be easily improved, the uniformity of drawing can be improved, and the coefficient of variation of pressure loss can be kept small. It is preferable in that it becomes possible to In addition, by sufficiently reducing the draw ratio, it is possible to prevent the thickness of the fluororesin porous membrane from becoming too small, which is preferable in that it is possible to prevent the amount of dust retained from becoming small.
  • the film is stretched at a rate of 30%/sec or less, and more preferably at a drawing speed of 20%/sec or less.
  • a stretching rate of 30%/sec or less in either the machine direction or the transverse direction may be achieved.
  • a draw rate of 30%/sec or less is achieved during the machine direction drawing which takes place.
  • a stretching speed of 30%/second or less is realized in either the longitudinal direction or the transverse direction.
  • the stretching speed is not limited to the machine direction and the transverse direction, and for example, the stretching speed in the stretching direction can be 1%/second or more.
  • the stretching speed is a value obtained by dividing the stretching ratio (%) by the time (seconds) required for the stretching, and the stretching ratio (%) is the length after stretching relative to the length before stretching. It is the length ratio (length after stretching/length before stretching). In addition, it is preferable to reduce the stretching speed in this way, since the pressure loss of the obtained porous membrane can be further reduced.
  • the temperature during stretching in the first direction is preferably 200°C or higher and 300°C or lower, more preferably 230°C or higher and 270°C or lower.
  • the temperature during stretching in the second direction is preferably 200° C. or higher and 300° C. or lower, more preferably 250° C. or higher and 290° C. or lower.
  • the stretching of the rolled product also referred to as unbaked fluororesin product
  • the SS curve graph showing the relationship between tensile strength and elongation
  • the tensile strength of a resin material increases with elongation. While the range of the elastic region, the breaking point, etc. differ depending on the material and the evaluation conditions, it is quite general that the tensile tension shows an upward trend with the amount of elongation.
  • the tensile strength of the non-sintered fluororesin shows a gradual decreasing tendency after showing a peak at a certain amount of elongation. This indicates that the fluororesin unsintered material has "a region where the unstretched portion is stronger than the stretched portion".
  • the fluororesin porous membrane of the present embodiment it is preferable to obtain a stretched body with a lower density, and in the case of biaxial stretching, it is effective to apply a low stretching rate, especially to the first stretching.
  • the stretching speed is low.
  • the above phenomenon due to PTFE becomes more conspicuous, and even in the case of obtaining a molded article having a large thickness, it is possible to increase the drawing speed more than in the case of using only PTFE as a raw material.
  • the porous membrane thus obtained is preferably heat-set in order to obtain mechanical strength and dimensional stability.
  • the temperature during heat setting may be the melting point of PTFE or higher or lower than the melting point of PTFE, preferably 250° C. or higher and 400° C. or lower.
  • the fluororesin porous membrane may be a single layer, or may be a multi-layered laminate of a first fluororesin porous membrane and a second fluororesin porous membrane. It is preferable that the amount of each liquid lubricant used in the production is 25 parts by weight or more and 35 parts by weight or less with respect to 100 parts by weight of the fluororesin. By using 25 parts by weight or more, the pressure loss can be reduced, and the pressure loss of the entire filter medium can be easily adjusted to 80 Pa or less. In addition, by using 35 parts by weight or less, the moldability of the unbaked film (raw tape) can be ensured, and the pore diameter of the first fluororesin porous membrane becomes too large, and fine particles pass through without being trapped and go downstream. It is possible to prevent the load on the second fluororesin porous membrane on the downstream side from becoming too large.
  • the amount of the liquid lubricant used when producing the first fluororesin porous membrane is preferably, for example, 30 parts by weight or more and 35 parts by weight or less with respect to 100 parts by weight of the fluororesin.
  • the amount of the liquid lubricant used when producing the first fluororesin porous membrane is preferably, for example, 30 parts by weight or more and 35 parts by weight or less with respect to 100 parts by weight of the fluororesin.
  • 26 parts by weight or more and 31 parts by weight or less are used to produce the second fluororesin porous membrane within a range that satisfies the liquid lubricant amount difference of 1 to 4 parts by weight, whereas the first fluororesin porous membrane is produced.
  • the dust holding capacity of the filter medium can be greatly increased.
  • the difference in average pore size between the first porous fluororesin membrane and the second porous fluororesin membrane is achieved by varying the compounding ratio of the above three components between the two porous membranes. You may let
  • the breathable supporting material is arranged on the upstream side, the downstream side, or both the upstream side and the downstream side of the fluororesin porous membrane, and supports the fluororesin porous membrane. Therefore, even if the fluororesin porous membrane is difficult to stand on its own due to, for example, a thin film thickness, the fluororesin porous membrane can stand upright by being supported by the air-permeable support material. In addition, the strength as an air filter medium is ensured, and even when folded into a specific shape, the shape is likely to be maintained.
  • the material and structure of the breathable support material are not particularly limited, but examples include nonwoven fabric, woven fabric, metal mesh, and resin net. Among them, nonwoven fabrics having heat-sealability are preferable from the viewpoint of strength, collecting properties, flexibility, and workability.
  • Nonwoven fabrics include nonwoven fabrics in which some or all of the constituent fibers have a core/sheath structure, two-layer nonwoven fabrics consisting of two layers: a layer of fibers made of a low-melting material and a layer of fibers made of a high-melting material, and heat-sealed on the surface.
  • a nonwoven fabric coated with a flexible resin is preferred. Examples of such nonwoven fabrics include spunbond nonwoven fabrics.
  • the melting point of the core component is higher than that of the sheath component.
  • core/sheath materials include PET/PE and high melting point polyester/low melting point polyester.
  • low melting point material/high melting point material for the two-layer nonwoven fabric include, for example, PE/PET, PP/PET, PBT/PET, and low melting point PET/high melting point PET.
  • the nonwoven fabric whose surface is coated with a heat-fusible resin include a PET nonwoven fabric coated with EVA (ethylene-vinyl acetate copolymer resin) and a PET nonwoven fabric coated with an olefin resin.
  • the material of the nonwoven fabric is not particularly limited, and polyolefin (PE, PP, etc.), polyamide, polyester (PET, etc.), aromatic polyamide, or a composite material thereof can be used.
  • the air-permeable support material is partially melted by heating, or by melting of a hot-melt resin, using an anchor effect, or using a reactive adhesive or the like. It can be bonded to a porous resin membrane.
  • the air-permeable support material has extremely low pressure loss, collection efficiency, and dust holding capacity compared to the above-described fluororesin porous membrane, and may be considered to be substantially zero.
  • the pressure loss of the breathable support material is, for example, preferably 10 Pa or less, more preferably 5 Pa or less, and even more preferably 1 Pa or less.
  • the collection efficiency of the air-permeable support material may be, for example, substantially zero or can be regarded as substantially zero.
  • the thickness of the breathable support material is, for example, preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less.
  • the thickness of the air-permeable support material is preferably 200 ⁇ m or more from the viewpoint of easily maintaining the pleated shape.
  • the air filter material of the present embodiment has low pressure loss, it is preferably used for masks from the viewpoint of suppressing suffocation during use.
  • the mask is preferably one that suppresses the intrusion of dust, oily smoke, bacteria, viruses, etc. into the body through the human mouth and nose.
  • the type of mask may be a general-purpose mask, a dust-proof mask, or a medical mask.
  • the shape of the mask may be any of a flat type, a pleated type, and a three-dimensional type.
  • a pleated mask may be used with the folded pleat portions unfolded.
  • the three-dimensional mask may be a beak-shaped mask that tapers toward the front.
  • Filter material for pleated mask uses the air filter material described above, and is formed into a zigzag shape in which mountain folds and valley folds are alternately repeated so that the filter medium surfaces face each other.
  • Pleated parts are formed by processing (pleating), and the mountain folds constitute the windward surface and the valley folds constitute the leeward surface.
  • a concentric pleated shape in which the part is provided so as to form concentric circles on the windward side, and a plurality of valley fold parts are provided so as to form concentric circles on the leeward side.
  • FIG. 4 shows an external perspective view of the pleated mask filter medium of the present embodiment
  • FIG. 5 shows a front view of the pleated mask filter medium attached to the pedestal
  • FIG. 6 shows the pleated mask filter medium attached to the pedestal.
  • 1 is a cross-sectional side view of the filter medium for a pleated mask.
  • the pleated mask filter material 20 may be a pleated mask filter material 20 that is attached to the opening 2a of the pedestal 2 made of resin or the like that does not have a filtering function. More preferably, the pleated mask filter medium 20 is attached to a base 2 having an attachment opening 2a for replacing the filter medium. A string 3 may be provided from the pedestal 2 for wearing over the ear.
  • the folding height which is the distance between adjacent mountain folds and valley folds of the pleated mask filter material, is preferably 10 mm or more and 40 mm or less.
  • the folding height is preferably 10 mm or more and 40 mm or less.
  • the pleat interval which is the distance between adjacent mountain folds or the distance between valley folds of the pleated mask filter material, is preferably 2.0 mm or more and 4.5 mm or less.
  • the pleat interval is 2.0 mm or more, it is possible to suppress an increase in pressure loss due to the pleat-shaped structure.
  • the pleat interval is 4.5 mm or less, it is possible to ensure a sufficiently wide total area of the air filter material that can be used as the pleated mask filter material.
  • the spacing between the filter media surfaces facing each other in the pleated mask filter media may be secured, for example, by using a separator such as a hot-melt resin as a spacing member, or the filter media surfaces may be embossed. may be secured using a protrusion formed by Further, the filter material for the pleated mask may be simply folded without applying a separator or embossing. Even in this case, the airflow can pass between the mountain folds on the windward side.
  • the area of the windward surface of the pleated mask filter material attached to the opening formed in the pedestal can be, for example, 22 cm 2 or more and 61 cm 2 or less.
  • the length of the diagonal line may be 4.5 cm or more and 11 cm or less.
  • the total area of the pleated mask filter material should be 200 cm 2 or more from the viewpoint of easy maintenance of low pressure loss and good collection efficiency even after holding the object to be collected to some extent. is preferable, and 300 cm 2 or more is more preferable. In addition, the total area of the pleated mask filter material should be 1,300 cm 2 or less from the viewpoint that the area of the windward surface and the folding height of the pleated mask filter material are sizes that are easy to use and that an effective pleat interval is achieved. is preferred.
  • the filter material for the pleated mask is a state in which 200 mg of polyalphaolefin particles are loaded by continuously blowing air containing polyalphaolefin particles with a median number diameter of 0.25 ⁇ m at a flow rate of 85 L / min.
  • the pressure loss when ventilated at a flow rate of 40 L/min is preferably 120 Pa or less, more preferably 100 Pa or less, and even more preferably 80 Pa or less. As a result, even if the user continues to use the product, it is possible to make it difficult to feel suffocation during use.
  • Example 1-6 Comparative Example 1-6
  • PTFE that can be fiberized
  • component A non-fibrous non-thermal melt processable component
  • component C melting point A mixed powder composed of a hot-melt processable component
  • a PTFE aqueous dispersion having an SSG of 2.160 produced according to the method described in Comparative Example 3 of WO 2005/061567 pamphlet. (polymer conversion), a low-molecular-weight PTFE aqueous dispersion (B Component) 28.5% by weight (polymer conversion), and FEP aqueous dispersion (C component) 5% by weight (polymer conversion) having a melting point of 215 ° C.
  • the unsintered PTFE film was stretched in a predetermined temperature environment (250° C.) in the longitudinal direction (MD direction) at a predetermined draw ratio (10 times) and a predetermined draw rate (13.8%/sec).
  • a tenter that can clip the stretched unbaked film, under a predetermined temperature environment (288 ° C.), a predetermined stretching ratio (45 times) in the width direction (TD direction), a predetermined stretching speed (330% / second) ) and heat-set at a temperature of 390°C.
  • a fluororesin porous membrane was obtained.
  • the mixture was extruded using a paste extruder equipped with a sheet die to obtain a sheet-shaped compact.
  • This sheet-shaped molding was molded into a film by a calender roll heated to 70° C. to obtain a PTFE film.
  • This film is passed through a hot air drying oven at 250 ° C. to evaporate and remove the hydrocarbon oil, and an unbaked PTFE film ( raw tape) was obtained.
  • the unsintered PTFE film is stretched at a predetermined temperature environment (250 ° C.) in the longitudinal direction (MD direction) using a heating three-roll stretching device (7.5 times in Example 6).
  • FP raw material of the fluororesin porous membrane used in the air filter material of Comparative Example 1-2 100 parts by weight of homo-PTFE fine powder of polytetrafluoroethylene having an average molecular weight of 6,500,000 (manufactured by Daikin Industries, Ltd., trade name: F106). was mixed with a predetermined amount (30 parts by weight) of an extrusion aid (liquid lubricant).
  • the mixture was extruded using a paste extruder equipped with a sheet die to obtain a sheet-shaped compact.
  • This sheet-shaped molding was molded into a film by a calender roll heated to 70° C. to obtain a PTFE film.
  • the film was passed through a hot-air drying oven at 200° C. to evaporate and remove the extrusion aid to obtain a band-shaped unbaked PTFE film (raw tape) having a predetermined average thickness (200 ⁇ m) and an average width of 170 mm.
  • the unsintered PTFE film is stretched in a predetermined temperature environment (300° C. for Comparative Example 1, 250° C. for Comparative Example 2) in the longitudinal direction (MD direction) using a heating type three-roll stretching device.
  • the fluororesin porous membranes used in the air filter media of Example 1-6 and Comparative Example 1-6 obtained as described above are heat-sealed with air-permeable support materials on both the upstream side and the downstream side.
  • the air-permeable support material is a spunbond nonwoven fabric (average fiber diameter 24 ⁇ m, basis weight 40 g/m 2 , thickness 0.2 mm) composed of fibers with a core/sheath structure using PET as the core and PE as the sheath. (It should be noted that the collection efficiency could be regarded as substantially 0 or approximately 0.).
  • the PF value was obtained according to the following equation from the pressure loss and collection efficiency of the air filter medium (collection efficiency of NaCl particles with a particle diameter of 0.1 ⁇ m).
  • PF value ⁇ -log ((100-collection efficiency (%)) / 100) ⁇ / (pressure loss (Pa) / 1000)
  • Comparative Examples 1 and 2 in which homo-PTFE was used as a raw material, the generation of thin fibers was not suppressed, the film thickness could not be kept thick, and the PAO dust retention amount was greatly reduced in both cases. Moreover, in Comparative Example 1, the pressure loss is increased. Comparative Example 2, which was prepared so as to reduce the pressure loss, resulted in a further decrease in the film thickness and the amount of PAO dust retained.
  • Comparative Example 3 using the same raw material as in Examples 1 to 5 and Comparative Example 6 using the same raw material as in Example 6, the total draw ratio was less than 250 times, and the homogeneity of the stretched film was greatly reduced. .
  • Comparative Example 4 using the same raw materials as in Examples 1 to 5, the total draw ratio was greater than 800 times and the drawing speed in the MD direction was high, so the film thickness could not be maintained and the amount of dust retained in PAO. was low.
  • Comparative Example 5 is an example in which the pressure loss of the air filter media exceeds 80 Pa and does not satisfy the performance conditions of the air filter media.
  • Example 7 and 8 use the air filter material of Example 1
  • Comparative Example 7 uses the air filter material of Comparative Example 2.
  • Each of the pleated filter media of Examples 7 and 8 and Comparative Example 7 was folded into a substantially rectangular parallelepiped shape.
  • Examples 7 and 8, and Comparative Example 7 were produced with the total area, folded height, number of pleats, and opening area as shown in Table 2, respectively.
  • the total area means the area of the air filter material used for pleating.
  • the folding height means the distance between adjacent mountain folds and valley folds.
  • the number of pleats means the number of mountain folds provided so as to line up on the windward side of the airflow in the substantially rectangular parallelepiped pleated mask filter material.
  • the opening area means the area of the rectangular portion at the windward end of the airflow in the substantially rectangular parallelepiped pleated mask filter material.
  • the pleated mask filter media of Examples 7 and 8 and Comparative Example 7 are replaceable pleated filter media that are used by being attached to a mask pedestal having a predetermined filter media attachment portion.
  • the collection efficiency and pressure loss were measured for the substantially rectangular parallelepiped pleated mask filter medium itself.
  • Example 9 is a three-dimensional mask filter medium that uses the air filter medium of Example 1 and is used in a substantially beak shape.
  • the mask filter medium of Example 9 has a shape of a general dust mask, with a contour portion that contacts the face and a vicinity of the center in a front view that bulges forward from the contour portion.
  • the reference example is a flat flat gauze mask, which is not folded into a pleated shape as in Examples 7 and 8.
  • PAO particles PAO particles (number median diameter 0.25 ⁇ m) generated by a Ruskin nozzle were used, and the concentration of the PAO particles was about 1 to 6 million/cm 3 .
  • the collection efficiency is the initial state before loading, and the state after loading 200 mg by continuously ventilating air containing polyalphaolefin particles with a median number diameter of 0.25 ⁇ m at a flow rate of 85 L / min. measured respectively.
  • the transmittance in the state after the air containing polyalphaolefin particles with a median number diameter of 0.25 ⁇ m was continuously blown at a flow rate of 85 L/min and a load of 200 mg was divided by the transmittance before the load, which is the initial state.
  • a value, the transmittance ratio (transmittance after loading/transmittance before loading) was calculated.
  • the pressure loss when 100 mg of NaCl particles with a median number diameter of 0.1 ⁇ m was loaded was measured and found to be 123 Pa.
  • Comparative Example 7 which was produced using the air filter medium of Comparative Example 2, the pressure loss when 200 mg of PAO particles was loaded increased significantly compared to the pressure loss before loading.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Pulmonology (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

圧力損失を低く抑えつつ、高性能であり、目詰まりが生じにくいエアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材を提供する。フッ素樹脂多孔膜(31)とフッ素樹脂多孔膜(31)に積層された通気性支持材(32)を備えたエアフィルタ濾材(30)であって、フッ素樹脂多孔膜(31)は、空気を流速5.3cm/秒で通過させたときの圧力損失が80Pa以下であり、圧力損失および粒子径0.1μmのNaCl粒子を用いて把握される捕集効率を用いて、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められるPF値が20以上であり、厚みが10μm以上であり、個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速5.3cm/秒で連続通風し、圧力損失が250Pa分だけ上昇したときの前記ポリアルファオレフィン粒子の保塵量が、15.0g/m2以上である。

Description

エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材
 本開示は、エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材に関する。
 従来より、例えば、ポリテトラフルオロエチレン(以下、PTFEという場合がある。)からなる多孔膜(以下、PTFE多孔膜という場合がある。)がエアフィルタとして用いられている。PTFE多孔膜は、ガラス繊維製濾材に比べて同じ圧力損失で比較したとき塵の捕集効率が高いことから、特に、HEPAフィルタ(High Efficiency Particulate Air Filter)やULPAフィルタ(Ultra low Penetration Air Filter)に好適に用いられている。
 このようなフィルタとしては、例えば、特許文献1(国際公開第2013/157647号)に記載のエアフィルタ濾材のように、性能が良好なPTFE多孔膜を有するエアフィルタ濾材が提案されている。
 ところが、フッ素樹脂多孔膜を有するエアフィルタ濾材としては、圧力損失を低く抑えつつ、高性能であり、目詰まりの生じにくいものとすることが求められる。
 第1観点に係るエアフィルタ濾材は、フッ素樹脂多孔膜と、フッ素樹脂多孔膜に積層された支持材と、を備えたエアフィルタ濾材である。フッ素樹脂多孔膜は、空気を流速5.3cm/秒で通過させたときの圧力損失が80Pa以下である。フッ素樹脂多孔膜のPF値は、20以上である。PF値は、圧力損失および粒子径0.1μmのNaCl粒子を用いて把握される捕集効率を用いて、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められる。フッ素樹脂多孔膜の厚みは、10μm以上である。フッ素樹脂多孔膜の保塵量は、15.0g/m以上である。保塵量は、個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速5.3cm/秒でフッ素樹脂多孔膜に連続通風し、フッ素樹脂多孔膜での圧力損失が250Pa分だけ上昇したときの前記ポリアルファオレフィン粒子の保塵量を意味する。
 なお、フッ素樹脂多孔膜の圧力損失、PF値、および、保塵量は、いずれもフッ素樹脂多孔膜が帯電していない非帯電状態での値とすることができる。なお、非帯電状態のエアフィルタ濾材は、「JIS B 9908-4 第4部:換気用エアフィルタユニットの除電処理の試験方法」に準じた除電処理が施されることで帯電していない状態のエアフィルタ濾材をいう。なお、フッ素樹脂多孔膜は、エレクトレットフィルタ等と比較して、帯電状態から非帯電状態になったとしても捕集効率の低下が抑制され、捕集効率が維持される。
 このエアフィルタ濾材は、フッ素樹脂多孔膜の圧力損失が80Pa以下であることから、圧力損失が低く抑えられたものである。また、このエアフィルタ濾材は、フッ素樹脂多孔膜のPF値が20以上であるため、高性能である。さらに、このエアフィルタ濾材は、フッ素樹脂多孔膜の保塵量が15.0g/m以上であるため、目詰まりが生じにくい。
 第2観点に係るエアフィルタ濾材は、第1観点のエアフィルタ濾材であって、フッ素樹脂多孔膜は、厚みが50μm以下である。
 このエアフィルタ濾材は、厚みを小さく抑えることができる。
 第3観点に係るエアフィルタ濾材は、第1観点または第2観点のエアフィルタ濾材であって、エアフィルタ濾材の圧力損失の変動係数が6.0以下である。
 なお、圧力損失の変動係数は、圧力損失分布の標準偏差を平均値で除してなる値を意味する。
 圧力損失を小さく抑えたフッ素樹脂多孔膜は、膜の箇所毎の圧力損失のバラツキが生じがちになる。しかし、このエアフィルタ濾材では、圧力損失の変動係数を小さく抑えることで、均質性を良好にすることができている。
 第4観点に係るエアフィルタ濾材は、第1観点から第3観点のいずれかのエアフィルタ濾材であって、フッ素樹脂多孔膜は、繊維化し得るポリテトラフルオロエチレンと、繊維化しない非熱溶融加工性成分と、融点320℃未満の繊維化しない熱溶融加工可能な成分と、を含む。
 このエアフィルタ濾材は、フッ素樹脂多孔膜について、比較的太い繊維により空隙を多くして厚みを増やすことができ、保塵量を高めることが可能になっている。
 第5観点に係るエアフィルタ濾材は、第1観点から第4観点のいずれかのエアフィルタ濾材であって、フッ素樹脂多孔膜は、変性ポリテトラフルオロエチレンを含む。
 このエアフィルタ濾材は、厚みを大きく確保しやすく、保塵量を高めることが可能になっている。
 第6観点に係るエアフィルタ濾材の製造方法は、第1観点から第5観点のいずれかのエアフィルタ濾材の製造方法である。この製造方法は、フッ素樹脂原料を用いてフッ素樹脂製シートを作成する工程と、フッ素樹脂製シートを、延伸方向における延伸速度が30%/秒以下で第1方向に延伸する工程と、第1方向に延伸する工程の後、第1方向に直交する第2方向に延伸する工程と、を備えている。ここで、第1方向の延伸と第2方向の延伸による総延伸倍率は、250倍以上800倍以下である。
 なお、第1方向の延伸を、2回に分けて2段以上の延伸とする場合には、そのうちの1つの延伸において延伸方向における延伸速度が30%/秒以下の速度で行われていればよい。
 このエアフィルタ濾材の製造方法によれば、圧力損失が低く、高性能であり、目詰まりの生じにくいエアフィルタ濾材を容易に得ることが可能になる。
 第7観点に係るマスク用濾材は、第1観点から第5観点のいずれかのエアフィルタ濾材、または、第6観点の製造方法により製造されたエアフィルタ濾材、を備えている。
 このマスク用濾材は、使用時の息苦しさが抑制され、高性能であり、目詰まりが生じにくい。
 第8観点に係るプリーツ状マスク用濾材は、第1観点から第5観点のいずれかのエアフィルタ濾材、または、第6観点の製造方法により製造されたエアフィルタ濾材が、山折り部および谷折り部を含んだ形状となっているプリーツ状マスク用濾材である。このプリーツ状マスク用濾材は、個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速85L/分で連続通風することでポリアルファオレフィン粒子が200mg負荷された状態において、空気を流速40L/分で通風した時の圧力損失が120Pa以下である。
 このプリーツ状マスク用濾材は、負荷を受けた後であっても息苦しさを抑えたまま使うことが可能である。
エアフィルタ濾材(その1)の層構成を示す概略断面図である。 エアフィルタ濾材(その2)の層構成を示す概略断面図である。 エアフィルタ濾材(その3)の層構成を示す概略断面図である。 プリーツ状マスク用濾材の外観斜視図である。 台座に取り付けられた状態のプリーツ状マスク用濾材の正面図である。 台座に取り付けられた状態のプリーツ状マスク用濾材の側面視断面図である。
 以下、エアフィルタ濾材(以降、単に濾材ともいう。)、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材について、例を挙げて説明する。
 (1)エアフィルタ濾材
 エアフィルタ濾材は、フッ素樹脂多孔膜と、支持材と、を備えている。支持材は、フッ素樹脂多孔膜に対して膜厚方向に積層されている。
 エアフィルタ濾材の圧力損失は、80Pa以下であってよく、75Pa以下であることが好ましい。なお、エアフィルタ濾材の圧力損失は、特に限定されないが、20Pa以上であってよい。エアフィルタ濾材の圧力損失は、空気を流速5.3cm/秒で通過させたときの圧力損失として測定することができる。
 なお、本実施形態に記載のエアフィルタ濾材および後述のフッ素樹脂多孔膜の各物性は、いずれもエアフィルタ濾材およびフッ素樹脂多孔膜が帯電していない非帯電状態での値を示している。なお、非帯電状態は、「JIS B 9908-4 第4部:換気用エアフィルタユニットの除電処理の試験方法」に準じた除電処理が施されることで帯電していない状態をいう。公知の濾材としては、帯電状態で用いられることで捕集効率等を良好にしているものもあるが、このような濾材は、湿潤状態で用いられることや人間の呼気に含まれる水分等により帯電状態を維持できない場合には、捕集効率等が良好に維持されない。これに対して、本実施形態のエアフィルタ濾材およびフッ素樹脂多孔膜は、非帯電状態になったとしても捕集効率の低下が抑制され、捕集効率が良好に維持される。
 エアフィルタ濾材としては、空気を流速5.3cm/秒で通過させたときの圧力損失、および、粒子径0.1μmのNaCl粒子を用いて把握される捕集効率を用いて、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められるPF値が、20以上であることが好ましい。
 エアフィルタ濾材の厚みは、例えば、200μm以上500μm以下であることが好ましい。エアフィルタ濾材の厚みは、特定の測定装置において、測定対象に0.3Nの荷重をかけたときの厚さの値である。
 以上に述べたエアフィルタ濾材の具体的な層構成は、特に限定されるものではなく、例えば、図1に示すエアフィルタ濾材30のように、フッ素樹脂多孔膜31と、フッ素樹脂多孔膜31の空気流れ方向における下流側に積層された通気性支持材32と、を有するものであってもよい。また、例えば、図2に示すエアフィルタ濾材30のように、フッ素樹脂多孔膜31と、フッ素樹脂多孔膜31の空気流れ方向における上流側に積層された通気性支持材32と、を有するものであってもよい。また、例えば、図3に示すエアフィルタ濾材30のように、フッ素樹脂多孔膜31と、フッ素樹脂多孔膜31の空気流れ方向における上流側と下流側の両方に積層された通気性支持材32と、を有するものであってもよい。
 また、これらの各膜や層等の重ね合わせの仕方は、特に限定されず、加熱による一部溶融又はホットメルト樹脂の溶融によるアンカー効果を利用した貼り合わせであってもよいし、反応性接着剤等を用いた貼り合わせであってもよいし、単に重ね置くだけであってもよい。
 以下、各層および各層間の関係について例示説明する。
 (2)フッ素樹脂多孔膜
 フッ素樹脂多孔膜は、空気を流速5.3cm/秒で通過させたときの圧力損失が80Pa以下であり、75Pa以下であることが好ましく、72Pa以下であることがより好ましい。なお、フッ素樹脂多孔膜の圧力損失は、特に限定されないが、20Pa以上であってよい。なお、捕集効率の低下を抑えつつ、膜全体における均質性が良好なフッ素樹脂多孔膜が得られやすい観点から、フッ素樹脂多孔膜の圧力損失は、40Pa以上であることが好ましい。
 フッ素樹脂多孔膜のPF値は、20以上であり、22以上であることがより好ましい。PF値は、空気を流速5.3cm/秒で通過させたときの圧力損失、および、粒子径0.1μmのNaCl粒子を用いて把握される捕集効率を用いて、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められる値である。
 フッ素樹脂多孔膜の厚みは、10μm以上である。これにより、ポリアルファオレフィン粒子の保塵量を高めた多孔膜が得られやすい。また、フッ素樹脂多孔膜の厚みは、折り込んだ箇所を有する状態で用いられる場合に、折り込み箇所の厚みが大きくなりすぎることを抑制する観点から、50μm以下であることが好ましい。フッ素樹脂多孔膜の厚みは、特定の測定装置において、測定対象に0.3Nの荷重をかけたときの厚さの値である。
 フッ素樹脂多孔膜のポリアルファオレフィン粒子の保塵量が、15.0g/m以上である。ポリアルファオレフィン粒子の保塵量は、個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速5.3cm/秒でフッ素樹脂多孔膜に連続通風し、フッ素樹脂多孔膜の圧力損失が250Pa分だけ上昇したときにフッ素樹脂多孔膜に保持されているポリアルファオレフィン粒子の単位面積当たりの重さを意味する。当該保塵量が15.0g/m2以上であるために、エアフィルタ濾材を使用している際に油を含む気体を通過させることがあっても、エアフィルタ濾材の圧力損失の上昇を抑制でき、目詰まりを抑制させながら使用し続けることが可能になる。
 なお、圧力損失の変動係数は、6.0以下であることが好ましい。この圧力損失の変動係数(CV値)は、フッ素樹脂多孔膜の各所における圧力損失分布の標準偏差を、その圧力損失の平均値で除してなる値を意味する。一般に、圧力損失が小さく抑えられているフッ素樹脂多孔膜では、膜の箇所毎の圧力損失のバラツキが生じやすくなる。しかし、本実施形態のエアフィルタ濾材では、圧力損失の変動係数が6.0以下であり、圧力損失が低い多孔膜であっても、均一に延伸されることで、膜の均質性を良好にすることができている。特に、マスク用濾材は、濾材の総面積が比較的小さいため(例えば、500cm以下、または、350cm以下)、特に、部分的に質の悪い箇所の発生が抑制されることが望ましい。したがって、圧力損失の変動係数を小さく抑えることができているエアフィルタ濾材は、マスク用濾材として用いる場合に特に適している。
 なお、フッ素樹脂多孔膜は、厚み方向における充填率が概ね均一であってもよいし、厚み方向において充填率が変化しているものであってもよい。厚み方向における充填率が変化しているフッ素樹脂多孔膜としては、風上側の部分の方が風下側の部分よりも充填率が低いもの(傾斜密度多孔膜)であることが好ましい。
 フッ素樹脂多孔膜は、フッ素樹脂を含んで構成されており、主としてフッ素樹脂を含んで構成されていることが好ましく、図示しないフィブリル(繊維)とフィブリルに接続されたノード(結節部)とを有する多孔質な膜構造を有するものであることがより好ましい。ここで、「主として」とは、複数種類の成分を含有する場合にはフッ素樹脂が最も多く含有されていることを意味する。フッ素樹脂多孔膜は、例えば、フッ素樹脂多孔膜の重量に対して50重量%以上のフッ素樹脂を含んでいてもよいし、80重量%以上のフッ素樹脂を含んでいることが好ましく、95重量%以上のフッ素樹脂を含んでいることがより好ましく、フッ素樹脂のみから構成されていてもよい。
 フッ素樹脂多孔膜に含まれるフッ素樹脂と異なる成分としては、例えば、後述する繊維化しない非溶融加工性成分(B成分)である無機フィラーが挙げられる。
 フッ素樹脂多孔膜に用いられるフッ素樹脂は、1種類の成分からなってもよく、2種以上の成分からなってもよい。また、フッ素樹脂としては、例えば、繊維化し得るPTFE(以降、A成分ともいう)を含むものが挙げられる。また、フッ素樹脂としては、当該A成分と、繊維化しない非熱溶融加工性成分(以降、B成分ともいう)、および融点320℃未満の繊維化しない熱溶融加工可能な成分(以降、C成分ともいう)の3成分の混合物が挙げられる。
 (2-1)A成分:繊維化し得るPTFE
 繊維化し得るPTFEは、例えば、延伸性および非溶融加工性を有するものである。なお、「非溶融加工性」とは、高い溶融粘度を有するため、溶融状態において容易に流動せず、溶融加工することが困難であることを意味する。繊維化しうるPTFEとしては、380℃における溶融粘度が1×10Pa・S以上であることが好ましい。
 繊維化し得るPTFEは、例えば、テトラフルオロエチレン(TFE)の乳化重合、または懸濁重合から得られた高分子量PTFEである。ここでいう高分子量とは、多孔膜作成時の延伸の際に繊維化しやすく、繊維長の長いフィブリルが得られるものであって、標準比重(SSG)が、2.130~2.230であり、溶融粘度が高いため実質的に溶融流動しない大きさの分子量をいう。繊維化し得るPTFEのSSGは、繊維化しやすく、繊維長の長いフィブリルが得られる観点から、2.130~2.190が好ましく、2.140~2.170が更に好ましい。SSGが高すぎると、延伸性が悪化するおそれがあり、SSGが低すぎると、圧延性が悪化して、多孔膜の均質性が悪化し、多孔膜の圧力損失が高くなるおそれがある。上記標準比重(SSG)は、ASTM D 4895に準拠して測定される。
 また、繊維化しやすく、繊維長の長いフィブリルが得られる観点から、乳化重合で得られたPTFEが好ましい。乳化重合は、一般に、TFE、又は、TFEとTFE以外の単量体と分散剤と重合開始剤とを含有する水性媒体中で行うことができる。なお、乳化重合は、生成したPTFE微粒子が凝集しないよう設定した撹拌条件下に、穏やかに撹拌して行うことが好ましい。乳化重合において、重合温度は、一般に20~100℃、好ましくは50~85℃であり、重合圧力は、一般に0.5~3.0MPaである。乳化重合における重合開始剤としては、ラジカル重合開始剤、レドックス系重合開始剤等が好ましい。重合開始剤の量は、少ないほど低分子量のPTFEの生成が抑制され、SSGが低いPTFEを得ることができる点で好ましいが、あまりに少ないと重合速度が小さくなり過ぎる傾向があり、あまりに多いと、SSGが高いPTFEが生成する傾向がある。
 PTFEは、乳化重合により得られるファインパウダーを構成するものであってもよい。ファインパウダーは、上述の乳化重合により得られるPTFE水性分散液からPTFE微粒子を回収し、凝析させたのち乾燥させることにより得ることができる。上記PTFEからなるファインパウダーは、押出加工性が良く、例えば、20MPa以下の押出圧力でペースト押出することができる。なお、押出圧力とは、リダクションレシオ100、押出速度51cm/分、25℃の条件で、オリフィス(直径2.5cm、ランド長1.1cm、導入角30゜)を通してペースト押出を行う際に測定したものである。ペースト押出し成形は、一般に、上記ファインパウダーと押出助剤(潤滑剤)とを混合したのち、予備成形を行い、押出しするものである。押出助剤は、特に限定されず従来公知のものを使用することができるが、ナフサ等、沸点が150℃以上である石油系炭化水素が好ましい。押出助剤の使用量は、押出助剤の種類等によって異なるが、通常、PTFEの粉末100重量部に対して、5重量部以上50重量部(P)以下である。なお、10重量部以上40重量部以下とすることが好ましく、25重量部以上35重量部以下であることがより好ましい。予備成形および押出しは、従来公知の方法で行うことができ、適宜条件を選択することができる。
 なお、繊維化性の有無、すなわち、繊維化し得るか否かは、TFEの重合体から作られた高分子量PTFE粉末を成形する代表的な方法であるペースト押出しが可能か否かによって判断できる。通常、ペースト押出しが可能であるのは、高分子量のPTFEが繊維化性を有するからである。ペースト押出しで得られた未焼成の成形体に実質的な強度や伸びがない場合、例えば伸びが0%で、引っ張ると切れるような場合は繊維化性がないとみなすことができる。
 上記高分子量PTFEは、変性ポリテトラフルオロエチレン(以下、変性PTFEという)であってもよいし、ホモポリテトラフルオロエチレン(以下、ホモPTFEという)であってもよいし、変性PTFEとホモPTFEの混合物であってもよい。なお、高分子PTFEにおける変性PTFEの含有割合は、ポリテトラフルオロエチレンの成形性を良好に維持させる観点から、10重量%以上98重量%以下であることが好ましく、50重量%以上95重量%以下であることがより好ましい。ホモPTFEは、特に限定されず、特開昭53-60979号公報、特開昭57-135号公報、特開昭61-16907号公報、特開昭62-104816号公報、特開昭62-190206号公報、特開昭63-137906号公報、特開2000-143727号公報、特開2002-201217号公報、国際公開第2007/046345号パンフレット、国際公開第2007/119829号パンフレット、国際公開第2009/001894号パンフレット、国際公開第2010/113950号パンフレット、国際公開第2013/027850号パンフレット等で開示されているホモPTFEを好適に使用できる。中でも、高い延伸特性を有する特開昭57-135号公報、特開昭63-137906号公報、特開2000-143727号公報、特開2002-201217号公報、国際公開第2007/046345号パンフレット、国際公開第2007/119829号パンフレット、国際公開第2010/113950号パンフレット等で開示されているホモPTFEが好ましい。
 変性PTFEは、TFEと、TFE以外のモノマー(以下、変性モノマーという)とからなる。変性PTFEには、変性モノマーにより均一に変性されたもの、重合反応の初期に変性されたもの、重合反応の終期に変性されたものなどが挙げられるが、特にこれらに限定されない。変性PTFEは、TFE単独重合体の性質を大きく損なわない範囲内で、TFEとともに微量のTFE以外の単量体をも重合に供することにより得られるTFE共重合体であることが好ましい。変性PTFEは、例えば、特開昭60-42446号公報、特開昭61-16907号公報、特開昭62-104816号公報、特開昭62-190206号公報、特開昭64-1711号公報、特開平2-261810号公報、特開平11-240917、特開平11-240918、国際公開第2003/033555号パンフレット、国際公開第2005/061567号パンフレット、国際公開第2007/005361号パンフレット、国際公開第2011/055824号パンフレット、国際公開第2013/027850号パンフレット等で開示されているものを好適に使用できる。中でも、高い延伸特性を有する特開昭61-16907号公報、特開昭62-104816号公報、特開昭64-1711号公報、特開平11-240917、国際公開第2003/033555号パンフレット、国際公開第2005/061567号パンフレット、国際公開第2007/005361号パンフレット、国際公開第2011/055824号パンフレット等で開示されている変性PTFEが好ましい。
 変性PTFEは、TFEに基づくTFE単位と、変性モノマーに基づく変性モノマー単位とを含む。変性モノマー単位は、変性PTFEの分子構造の一部分であって変性モノマーに由来する部分である。変性PTFEは、変性モノマー単位が全単量体単位の0.001~0.500重量%含まれることが好ましく、好ましくは、0.01~0.30重量%含まれる。全単量体単位は、変性PTFEの分子構造における全ての単量体に由来する部分である。
 変性モノマーは、TFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロピレン(HFP)等のパーフルオロオレフィン;クロロトリフルオロエチレン(CTFE)等のクロロフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン(VDF)等の水素含有フルオロオレフィン;パーフルオロビニルエーテル;パーフルオロアルキルエチレン(PFAE)、エチレン等が挙げられる。用いられる変性モノマーは1種であってもよいし、複数種であってもよい。
 パーフルオロビニルエーテルは、特に限定されず、例えば、下記一般式(1)で表されるパーフルオロ不飽和化合物等が挙げられる。
  CF=CF-ORf・・・(1)
  式中、Rfは、パーフルオロ有機基を表す。
 本明細書において、パーフルオロ有機基は、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基である。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
 パーフルオロビニルエーテルとしては、例えば、上記一般式(1)において、Rfが炭素数1~10のパーフルオロアルキル基であるパーフルオロ(アルキルビニルエーテル)(PAVE)が挙げられる。パーフルオロアルキル基の炭素数は、好ましくは1~5である。PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。PAVEとしては、パーフルオロプロピルビニルエーテル(PPVE)、パーフルオロメチルビニルエーテル(PMVE)が好ましい。
 上記パーフルオロアルキルエチレン(PFAE)は、特に限定されず、例えば、パーフルオロブチルエチレン(PFBE)、パーフルオロヘキシルエチレン(PFHE)等が挙げられる。
 変性PTFEにおける変性モノマーとしては、HFP、CTFE、VDF、PAVE、PFAE及びエチレンからなる群より選択される少なくとも1種であることが好ましい。
 ホモPTFEは、特に、繊維化しやすく、繊維長の長いフィブリルが得られる観点から、後述のB成分およびC成分を用いてフッ素樹脂多孔膜を構成させる場合には、繊維化し得るPTFEの50重量%を超えて含有されていることが好ましい。
 フッ素樹脂多孔膜として、上記繊維化し得るPTFE(A成分)だけでなく、繊維化しない非熱溶融加工性成分(B成分)、および融点320℃未満の繊維化しない熱溶融加工可能な成分(C成分)も含んだものとする場合には、各B成分、C成分として、以下のものを用いることができる。これら3種の成分からなるフッ素樹脂多孔膜は、従来の繊維化し得るPTFE(高分子量PTFE)多孔膜と比べ、空隙が多く、膜厚の厚い膜構造を有していることで、気体中の微粒子を濾材の厚み方向の広い領域で捕集でき、これにより、保塵量を向上させることができる。フッ素樹脂多孔膜をこれら3種の成分から構成することにより、固体粒子よりも液体粒子の保塵量を特に増大させることが可能になる。
 (2-2)B成分:繊維化しない非熱溶融加工性成分
 繊維化しない非熱溶融加工性成分は、主に結節部において非繊維状の粒子として偏在し、繊維化し得るPTFEが繊維化されるのを抑制する働きをする。
 繊維化しない非熱溶融加工性成分としては、例えば、低分子量PTFE等の熱可塑性を有する成分、熱硬化性樹脂、無機フィラー、およびこれらの混合物が挙げられる。
 熱可塑性を有する成分は、融点が320℃以上であり、溶融粘度が高い方が好ましい。例えば低分子量PTFEは溶融粘度が高いため、融点以上の温度で加工しても結節部に留まることができる。本明細書において、低分子量PTFEとは、数平均分子量が60万以下、融点が320℃以上335℃以下、380℃での溶融粘度が100Pa・s~7.0×10Pa・sのPTFEである(特開平10-147617号公報参照)。
 低分子量PTFEの製造方法としては、TFEの懸濁重合から得られる高分子量PTFE粉末(モールディングパウダー)またはTFEの乳化重合から得られる高分子量PTFE粉末(FP:ファインパウダー)と特定のフッ化物とを高温下で接触反応させて熱分解する方法(特開昭61-162503号公報参照)や、上記高分子量PTFE粉末や成形体に電離性放射線を照射する方法(特開昭48-78252号公報参照)、また連鎖移動剤とともにTFEを直接重合させる方法(国際公開第2004/050727号パンフレット、国際公開第2009/020187号パンフレット、国際公開第2010/114033号パンフレット等参照)等が挙げられている。低分子量PTFEは、繊維化し得るPTFEと同様、ホモPTFEであってもよく、前述の変性モノマーが含まれる変性PTFEでもよい。
 低分子量PTFEは繊維化性が無い。繊維化性の有無は、上述した方法で判断できる。低分子量PTFEは、ペースト押出しで得られた未焼成の成形体に実質的な強度や伸びがなく、例えば伸びが0%で、引っ張ると切れる。
 低分子量PTFEは、特に限定されないが、380℃での溶融粘度が1000Pa・s以上であることが好ましく、5000Pa・s以上であることがより好ましく、10000Pa・s以上であることがさらに好ましい。このように、溶融粘度が高いと、多孔膜の製造時に、C成分として繊維化しない熱溶融加工可能な成分が溶融しても、繊維化しない非熱溶融加工性成分は結節部に留まることができ、繊維化を抑えることができる。
 熱硬化性樹脂としては、例えば、エポキシ、シリコーン、ポリエステル、ポリウレタン、ポリイミド、フェノール、およびこれらの混合物等の各樹脂が挙げられる。熱硬化性樹脂は、共凝析の作業性の観点から、未硬化状態で水分散された樹脂が望ましく用いられる。これら熱硬化性樹脂は、いずれも市販品として入手することもできる。
 無機フィラーとしては、タルク、マイカ、ケイ酸カルシウム、ガラス繊維、炭酸カルシウム、炭酸マグネシウム、炭素繊維、硫酸バリウム、硫酸カルシウム、およびこれらの混合物等が挙げられる。中でも、繊維化しうる高分子量のPTFEとの親和性および比重の点から、タルクが好ましく用いられる。無機フィラーは、多孔膜の製造時に安定な分散体を形成できる観点から、粒子径3μm以上20μm以下のものが好ましく用いられる。粒子径は、平均粒径であり、レーザー回折・散乱法によって測定される。これら無機フィラーは、いずれも市販品として入手することもできる。
 なお、繊維化しない非溶融加工性成分は、上記した成分を複数組み合わせたものであってよい。
 繊維化しない非熱溶融加工性成分は、多孔膜の1重量%以上50重量%以下含有されることが好ましい。繊維化しない非熱溶融加工性成分の含有量が50重量%以下であることで、多孔膜の繊維構造を維持させやすい。繊維化しない非熱溶融加工性成分は、好ましくは20重量%以上40重量%以下含有され、より好ましくは30重量%含有される。20重量%以上40重量%以下含有されることで、繊維化し得るPTFEの繊維化をより有効に抑えることができる。
 (2-3)C成分:融点320℃未満の繊維化しない熱溶融加工可能な成分
 融点320℃未満の繊維化しない熱溶融加工可能な成分(以下、繊維化しない熱溶融加工可能な成分ともいう)は、溶融時に流動性を有することにより、多孔膜の製造時(延伸時)に溶融して結節部において固まることができ、多孔膜全体の強度を高めて、後工程で圧縮等されることがあってもフィルタ性能の劣化を抑えることができる。
 繊維化しない熱溶融加工可能な成分は、380℃において10000Pa・s未満の溶融粘度を示すことが好ましい。なお、繊維化しない熱溶融加工可能な成分の融点は、示差走査熱量計(DSC)により昇温速度10℃/分で融点以上まで昇温して一度完全に溶融させ、10℃/分で融点以下まで冷却した後、10℃/分で再び昇温したときに得られる融解熱曲線のピークトップとする。
 繊維化しない熱溶融加工可能な成分としては、熱溶融可能なフルオロポリマー、ポリスチレン、ポリエチレンテレフタレート(PET)、ポリエステル、ポリアミド等の各樹脂、あるいはこれらの混合物であり、多孔膜の製造時の延伸温度における溶融性、流動性を十分に発揮しうるものが挙げられる。中でも、多孔膜製造時の延伸温度での耐熱性に優れ、耐薬品性に優れる点から、熱溶融可能なフルオロポリマーが好ましい。熱溶融可能なフルオロポリマーは、下記一般式(2)
  RCF=CR・・・(2)
(式中、Rはそれぞれ独立して、H、F、Cl、炭素原子1~8個のアルキル、炭素原子6~8個のアリール、炭素原子3~10個の環状アルキル、炭素原子1~8個のパーフルオロアルキルから選択される。この場合に、全てのRが同じであってもよく、また、いずれか2つのRが同じで残る1つのRがこれらと異なってもよく、全てのRが互いに異なってもよい。)で示される少なくとも1種のフッ素化エチレン性不飽和モノマー、好ましくは2種以上のモノマー、から誘導される共重合単位を含むフルオロポリマーが挙げられる。
 一般式(2)で表される化合物の有用な例としては、限定されないが、フルオロエチレン、VDF、トリフルオロエチレン、TFE、HFP等のパーフルオロオレフィン、CTFE、ジクロロジフルオロエチレン等のクロロフルオロオレフィン、PFBE、PFHE等の(パーフルオロアルキル)エチレン、パーフルオロ-1,3-ジオキソールおよびその混合物等が挙げられる。
 また、フルオロポリマーは、少なくとも1種類の上記一般式(2)で示されるモノマーと、
 上記一般式(1)および/または下記一般式(3)
 RC=CR・・・(3)
(式中、Rは、それぞれ独立して、H、Cl、炭素原子1~8個のアルキル基、炭素原子6~8個のアリール基、炭素原子3~10個の環状アルキル基から選択される。この場合に、全てのRが同じであってもよく、また、いずれか2以上のRが同じでこれら2以上のRと残る他のRとが異なってもよく、全てのRが互いに異なってもよい。前記他のRは、複数ある場合は互いに異なってよい。)で示される少なくとも1種の共重合性コモノマーとの共重合から誘導されるコポリマーも含み得る。
 一般式(1)で表される化合物の有用な例としては、パーフルオロ(アルキルビニルエーテル)(PAVE)が挙げられる。このPAVEとしては、パーフルオロプロピルビニルエーテル(PPVE)、パーフルオロメチルビニルエーテル(PMVE)が好ましい。
 一般式(3)で表される化合物の有用な例としては、エチレン、プロピレン等が挙げられる。
 フルオロポリマーのより具体的な例としては、フルオロエチレンの重合から誘導されるポリフルオロエチレン、フッ化ビニリデン(VDF)の重合から誘導されるポリフッ化ビニリデン(PVDF)、クロロトリフルオロエチレン(CTFE)の重合から誘導されるポリクロロトリフルオロエチレン(PCTFE)、2種以上の異なる上記一般式(2)で示されるモノマーの共重合から誘導されるフルオロポリマー、少なくとも1種の上記一般式(2)のモノマーと、少なくとも1種の上記一般式(1)および/または少なくとも1種の上記一般式(3)で示されるモノマーの共重合から誘導されるフルオロポリマーが挙げられる。
 かかるポリマーの例は、VDFおよびヘキサフルオロプロピレン(HFP)から誘導される共重合体単位を有するポリマー、TFEおよびTFE以外の少なくとも1種の共重合性コモノマー(少なくとも3重量%)から誘導されるポリマーである。後者の種類のフルオロポリマーとしては、TFE/PAVE共重合体(PFA)、TFE/PAVE/CTFE共重合体、TFE/HFP共重合体(FEP)、TFE/エチレン共重合体(ETFE)、TFE/HFP/エチレン共重合体(EFEP)、TFE/VDF共重合体、TFE/VDF/HFP共重合体、TFE/VDF/CTFE共重合体等、あるいはこれらの混合物が挙げられる。
 なお、繊維化しない熱溶融加工可能な成分は、上記した成分を複数組み合わせたものであってよい。
 繊維化しない熱溶融加工可能な成分の多孔膜における含有量は、0.1重量%以上20重量%未満であることが好ましい。20重量%未満であることで、繊維化しない熱溶融加工可能な成分が多孔膜中の結節部以外の部分にも分散して多孔膜の圧力損失が高くなることが抑制される。また、20重量%未満であることで、伸長面積倍率が40倍以上の高倍率での延伸を行いやすくなる。繊維化しない熱溶融加工可能な成分の多孔膜における含有量が0.1重量%以上であることで、後工程において圧縮力等が与えられたとしても多孔膜のフィルタ性能の劣化を十分に抑えやすくなる。繊維化しない熱溶融加工可能な成分の多孔膜における含有量は、15重量%以下であるのが好ましく、10重量%以下であるのがより好ましい。また、繊維化しない熱溶融加工可能な成分の多孔膜における含有量は、多孔膜の強度を確保する観点から、0.5重量%以上であるのが好ましい。中でも、5重量%程度であるのが特に好ましい。
 繊維化しない熱溶融加工可能な成分の含有率は、伸長面積倍率40倍以上800倍以下での延伸を良好に行うために、10重量%以下であるのが好ましい。
 (2-4)フッ素樹脂多孔膜の製造方法
 次に、エアフィルタ用濾材の製造方法について、例を挙げて説明する。
 フッ素樹脂多孔膜の作製においては、フッ素樹脂を用いることができるが、例えば、上述したA成分または上記説明した3種の成分を用いることが好ましい。
 上記説明したA~Cの3種の成分の形態は、特に限定されず、例えば、後述する組成物、混合粉末、成形用材料である。組成物、混合粉末、成形用材料はいずれも、上記した、A成分、B成分、C成分を含み、C成分を、例えば、全体の0.1重量%以上20重量%未満含有する。
 多孔膜の原料の形態は、後述する混合粉末であってもよく、粉末でない混合物であってもよく、また、後述する成形用材料あるいは組成物であってもよい。混合粉末としては、例えば、後述する実施例で用いられる共凝析によって得られるファインパウダーや、3種の原料のうち2種を共凝析で混合し、もう1種の成分を混合機を用いて混合した粉体、3種の原料を混合機で混合した粉体などが挙げられる。粉末でない混合物としては、例えば、多孔体(例えば多孔膜)等の成形体、3種の成分を含む水性分散体が挙げられる。
 成形用材料は、組成物を成形するために、加工のための調整を行ったものをいい、例えば、加工助剤(液体潤滑剤等)等を添加したもの、粒度を調整したもの、予備的な成形を行ったものである。成形用材料は、例えば、上記3種の成分に加え、公知の添加剤等を含んでもよい。公知の添加剤としては、例えば、カーボンナノチューブ、カーボンブラック等の炭素材料、顔料、光触媒、活性炭、抗菌剤、吸着剤、防臭剤等が挙げられる。
 組成物は、種々の方法により製造することができ、例えば、組成物が混合粉末である場合、A成分の粉末、B成分の粉末、およびC成分の粉末を一般的な混合機等で混合する方法、A成分、B成分、およびC成分をそれぞれ含む3つの水性分散液を共凝析することによって共凝析粉末を得る方法、A成分、B成分、C成分のいずれか2成分を含む水性分散液を予め共凝析することにより得られた混合粉末を残る1成分の粉末と一般的な混合機等で混合する方法、等により製造できる。なかでも、3種の異なる成分が均一に分散し易い点で、組成物は、A成分、B成分、およびC成分をそれぞれ含む3つの水性分散液を共凝析することにより得られるものであることが好ましい。
 共凝析によって得られる混合粉末のサイズは、特に限定されず、例えば、平均粒径が100μm以上1000μm以下であり、300μm以上800μm以下であることが好ましい。この場合、平均粒径は、JIS  K6891に準拠して測定される。共凝析によって得られる混合粉末の見掛密度は、特に限定されず、例えば、0.40g/ml以上0.60g/ml以下であり、0.45g/ml以上0.55g/ml以下であることが好ましい。見掛密度は、JIS  K6892に準拠して測定される。
 上記共凝析の方法としては、例えば、
 (i)A成分の水性分散液、B成分の水性分散液、およびC成分の水性分散液を混合した後に凝析する方法、
 (ii)A成分、B成分、C成分のうちいずれか1つの成分の水性分散液に、残る2成分の粉末を添加した後に凝析する方法、
 (iii)A成分、B成分、C成分のうちいずれか1つの成分の粉末を、残る2成分の水性分散液を混合した混合水性分散液に添加した後に凝析する方法、
 (iv)予めA成分、B成分、C成分のうちいずれか2つの成分の各水性分散液を混合した後に凝析させて得られた2成分の混合粉末を、残る1成分の水性分散液に添加した後に凝析する方法、
が挙げられる。
 上記共凝析の方法としては、3種の成分が均一に分散し易い点で、上記(i)の方法が好ましい。
 上記(i)~(iv)の方法による共凝析では、例えば、硝酸、塩酸、硫酸等の酸;塩化マグネシウム、塩化カルシウム、塩化ナトリウム、硫酸アルミニウム、硫酸マグネシウム、硫酸バリウム、炭酸水素ナトリウム、炭酸ナトリウム等の金属塩;アセトン、メタノール等の有機溶剤、のいずれかを添加して凝析させることが好ましい。
 上記A成分の混合前の形態は、特に限定されないが、上述の繊維化し得るPTFEの水性分散液であってもよいし、粉体であってもよい。粉末(特に、上述のFP:ファインパウダー)としては、例えば、三井・デュポンフロロケミカル社製「テフロン6-J」(以下テフロンは登録商標)、「テフロン6C-J」、「テフロン62-J」等、ダイキン工業社製「ポリフロンF106」、「ポリフロンF104」、「ポリフロンF201」、「ポリフロンF302」等、旭硝子社製「フルオンCD123」、「フルオンCD1」、「フルオンCD141」、「フルオンCD145」等、デュポン社製「Teflon60」、「Teflon60  X」、「Teflon601A」、「Teflon601  X」、「Teflon613A」、「Teflon613A  X」、「Teflon605XT  X」、「Teflon669  X」等が挙げられる。ファインパウダーは、TFEの乳化重合から得られる繊維化し得るPTFEの水性分散液(重合上がりの水性分散液)を凝析、乾燥することで得てもよい。
 繊維化し得るPTFEの水性分散液としては、上述の重合上がりの水性分散液であってもよいし、市販品の水性分散液であってもよい。重合上がりの繊維化し得るPTFE水性分散液の好ましい作製方法としては、ホモPTFEを開示するものとして列挙した上記公報等に開示されている作製方法が挙げられる。市販品の繊維化し得るPTFEの水性分散液としては、ダイキン工業社製「ポリフロンD-110」、「ポリフロンD-210」、「ポリフロンD-210C」、「ポリフロンD-310」等、三井・デュポンフロロケミカル社製「テフロン31-JR」、「テフロン34-JR」等、旭硝子社製「フルオンAD911L」、「フルオンAD912L」、「AD938L」等の水性分散液が挙げられる。市販品の繊維化し得るPTFEの水性分散液はいずれも、安定性を保つために、水性分散液中のPTFE 100重量部に対して、非イオン性界面活性剤等を2~10重量部添加しているため、共凝析によって得られる混合粉末に非イオン性界面活性剤が残留しやすく、多孔体が着色する等の問題を起こすおそれがある。このため、繊維化し得るPTFEの水性分散液としては、重合上がりの水性分散液が好ましい。
 B成分の混合前の形態は、特に限定されないが、B成分が低分子量PTFEである場合、混合前の形態は特に限定されないが、水性分散体であってもよいし、粉体(一般的にPTFEマイクロパウダー、またはマイクロパウダーと呼ばれる)であってもよい。低分子量PTFEの粉体としては、例えば、三井・デュポンフロロケミカル社製「MP1300-J」等、ダイキン工業社製「ルブロンL-5」、「ルブロンL-5F」等、旭硝子社製「フルオンL169J」、「フルオンL170J」、「フルオンL172J」等、喜多村社製「KTL-F」、「KTL-500F」等が挙げられる。
 低分子量PTFEの水性分散液としては、上述のTFEの乳化重合から得られた重合上がりの水性分散液であってもよいし、市販品の水性分散液であってもよい。また、マイクロパウダーを界面活性剤を使うなどして水中に分散したものも使用できる。重合上がりの繊維化し得るPTFE水性分散液の好ましい作製方法としては、特開平7-165828号公報、特開平10-147617号公報、特開2006-063140号公報、特開2009-1745号公報、国際公開第2009/020187号パンフレット等に開示されている作製方法が挙げられる。市販品の繊維化し得るPTFEの水性分散液としては、ダイキン工業社製「ルブロンLDW-410」等の水性分散液が挙げられる。市販品の低分子量PTFEの水性分散液は安定性を保つために、水性分散液中のPTFE  100重量部に対して、非イオン性界面活性剤等を2~10重量部添加しているため、共凝析によって得られる混合粉末に非イオン性界面活性剤が残留しやすく、多孔体が着色する等の問題を起こすおそれがある。このため、低分子量PTFEの水性分散液としては、重合上がりの水性分散液が好ましい。
 また、B成分として無機フィラーを用いる場合も混合前の形態は特に限定されないが、水性分散体が好ましい。無機フィラーとしては、日本タルク株式会社製「タルクP2」、富士タルク工業社製「LMR-100」等が挙げられる。これらは適宜シランカップリング剤などによる表面処理等を施し水中に粉体を分散して用いられる。中でも、水への分散性の理由から、ジェットミルによる2次粉砕品(「タルクP2」など)が好ましく用いられる。
 C成分としては、例えば、FEP,PFAなどのフッ素樹脂の他,アクリル,ウレタン,PET等の各樹脂が挙げられる。混合前の形態は特に限定されないが水性分散体が好ましい。水性分散体は、乳化重合によって得られる樹脂の場合は、その重合上がり分散体をそのまま使えるほか,樹脂粉を界面活性剤などを使い、水分中に分散した物も使用できる。C成分は、多孔膜において0.1重量%以上20重量%未満含有されるよう、所定量が水中に分散されて水性分散体が調製される。
 共凝析の方法は、特に限定されないが、3つの水性分散体を混合したのち機械的な撹拌力を作用させるのが好ましい。
 共凝析後は、脱水、乾燥を行なって、液体潤滑剤(押出助剤)を混合し、押出を行う。液体潤滑剤としては、PTFEの粉末の表面を濡らすことが可能であり、共凝析により得られた混合物をフィルム状に成形した後に除去可能な物質であるものであれば、特に限定されない。例えば、流動パラフィン、ナフサ、ホワイトオイル、トルエン、キシレンなどの炭化水素油、アルコール類、ケトン類、エステル類などが挙げられる。
 共凝析により得られた混合物は、液体潤滑剤と混合された後、従来公知の方法で押出、圧延されることにより、フィルム状物に成形される。ここで、フッ素樹脂(例えば、共凝析により得られた混合物)に対して混合される液体潤滑剤の量は、フッ素樹脂100重量部に対して10重量部以上40重量部以下にすることができ、25重量部以上35重量部以下であることが好ましい。液体潤滑剤の量を多くすることにより、得られるフッ素樹脂多孔膜について充填率を小さく抑えつつ厚みを大きく確保し、圧力損失を小さく抑えやすい。また、液体潤滑剤の量を少なくすることにより、得られるフッ素樹脂多孔膜の捕集効率を高めやすく、圧力損失の変動係数も小さく抑えやすい。
 押出は、ペースト押出、ラム押出等により行えるが、好ましくはペースト押出により行われる。ペースト押出により押し出されたシート状の押出物は、加熱下、例えば40℃以上80℃以下の温度条件の下、カレンダーロール等を用いて圧延される。得られるフィルム状の圧延物の厚さは、目的の多孔膜の厚さに基づいて設定され、通常100μm以上1000μm以下であり、100μm以上400μm以下であってよく、150μm以上350μm以下であることが好ましい。
 次いで、圧延物である未焼成フィルムから液体潤滑剤が除去される。液体潤滑剤の除去は、加熱法又は抽出法により、或いはこれらの組み合わせにより行われる。加熱法による場合の加熱温度は、A~Cの3種の成分を用いる場合には繊維化しない熱溶融加工性成分の融点より低ければ特に限定されず、例えば、100℃以上250℃以下であり、180℃以上200℃以下であってもよい。
 ここで、液体潤滑剤が除去された圧延物は、得られるフッ素樹脂多孔膜の厚みを十分に確保し、圧力損失を低減させる観点から、延伸を行う前に、250℃以上325℃以下の温度雰囲気下で1分以上加熱するという熱処理を行うことが好ましい。当該熱処理の温度は、例えば、320℃以下であってもよく、フッ素樹脂多孔膜の作製に用いられるフッ素樹脂の融点未満であることが好ましく、上記圧延物を示差走査熱量計を用いて昇温速度10℃/分の条件で昇温させた場合に結晶融解曲線上に複数の吸熱カーブ(一次融点、二次融点)が現れる場合にはより低い最大ピーク温度(一次融点)以下であってもよい。また、当該熱処理の温度は、厚みを十分に確保しつつ圧力損失を十分に小さくする観点から、例えば、260℃以上であってもよく、280℃以上であってもよく、圧延物である未焼成フィルムから加熱法により液体潤滑剤を除去する場合の温度以上であってもよく、延伸温度(二軸延伸の場合には先に行われる一次延伸の温度)以上であってもよい。なお、熱処理の継続時間は、特に限定されないが、所望する熱処理の効果に応じて、例えば、1分以上2時間以下としてもよく、30分以上1時間以下としてもよい。
 なお、厚み方向において充填率が異なるフッ素樹脂多孔膜を得るためには、特に限定されないが、上記熱処理の際に、充填率を低くする方の温度が充填率を高くする方の温度よりも高くなるように熱処理することが好ましく、風上側の部分の方が風下側の部分の方よりも熱処理時の温度が高くなるように熱処理することが好ましい。なお、風下側の部分については、常温よりも低い温度まで冷却させる冷却処理を行うようにしてもよい。なお、熱処理時の温度に関して、風上側の部分と風下側の部分の温度差は、十分な密度差を生じさせる観点から、100℃以上であってよく、200℃以上であることが好ましく、300℃以上であることがより好ましい。また、上記熱処理の際に、充填率を低くする方の加熱時間を長くし、充填率を高くする方の加熱時間を短くするように熱処理することが好ましい。これにより、得られる圧延物を延伸することで、風上側の方の充填率を低くし、風下側の方の充填率を高くすることが可能になる。
 以上のようにして液体潤滑剤が除去された圧延物またはさらに熱処理された圧延物は、延伸される。なお、繊維化しない熱溶融加工性成分と繊維化しない非熱溶融加工性成分が含まれている場合には、繊維化しない熱溶融加工性成分の融点以上かつ繊維化しない非熱溶融加工性成分の分解温度以下の温度下で延伸される。
 なお、フッ素樹脂多孔膜の作製において繊維化しない熱溶融加工性成分を用いている場合には、この延伸過程で、繊維化しない熱溶融加工性成分が溶融し、後に結節部において固まることで、多孔膜の厚み方向の強度を強化することができる。この時の延伸温度は、延伸を行う炉の温度、又は圧延物を搬送する加熱ローラの温度によって設定されてもよく、或いは、これらの設定を組み合わせることで実現されてもよい。
 延伸は、第1の方向への延伸と、好ましくは第1の方向と直交する第2の方向への延伸とを含む。ここで、第1の方向への延伸の後に第2の方向への延伸を行ってもよい。また、第1の方向への延伸と第2の方向への延伸とが同時に実現されてもよい。さらに、第1延伸速度で第1の方向への延伸を行った後に、第2延伸速度でさらに第1の方向への延伸を行い、その後に、第2の方向への延伸を行ってもよい。本実施形態では、第1の方向は、圧延物の長手方向(縦方向:MD方向)であり、第2の方向は、圧延物の幅方向(横方向:TD方向)である。なお、延伸は、複数枚の圧延物を重ねた状態として、同時に延伸するようにしてもよい。
 前記圧延物は、延伸させる伸長面積倍率が、250倍以上800倍以下であってよく、300倍以上600倍以下であることが好ましく、400倍以上580倍以下であることがより好ましい。延伸倍率を十分に高くすることにより、フッ素樹脂多孔膜がより多くの繊維を有することが可能になり、捕集効率を向上させやすく、延伸の均一性を高めて圧力損失の変動係数を小さく抑えることが可能になる点で好ましい。また、延伸倍率を十分に低くすることにより、フッ素樹脂多孔膜の厚みが小さくなりすぎることを抑制し、保塵量が小さくなることを抑制することが可能になる点で好ましい。
 延伸の際には、得られるフッ素樹脂多孔膜の厚みを大きくして保塵量を向上させ、圧力損失を低減させつつ、圧力損失の変動係数を小さく抑えやすい観点から、延伸方向への延伸速度が30%/秒以下で延伸された部分が生じるように延伸することが好ましく、延伸速度が20%/秒以下で延伸された部分が生じるように延伸することがより好ましくい。二軸延伸の場合には縦方向と横方向のいずれかで30%/秒以下の延伸速度が実現されていればよいが、十分な厚みを確保しつつ圧力損失を低減させる観点から、先に行われる縦方向の延伸の際に30%/秒以下の延伸速度が実現されていることが好ましい。異なる延伸速度により2段階に縦方向の延伸を行う場合には、そのいずれかで延伸方向における延伸速度が30%/秒以下の延伸が行われることが好ましい。また、テーブルテスト装置等を用いて平面的に縦方向と横方向とを同時に延伸させる場合においては、縦方向か横方向のいずれかの延伸方向において30%/秒以下の延伸速度が実現されていることが好ましい。なお、延伸速度は、縦方向と横方向に限らず、例えば、延伸方向における延伸速度が1%/秒以上とすることができる。
 なお、延伸速度とは、延伸倍率(%)を、その延伸に要した時間(秒)で除して得られる値であり、延伸倍率(%)とは、延伸前の長さに対する延伸後の長さの比(延伸後の長さ/延伸前の長さ)である。なお、このように延伸速度を遅くさせる場合には、さらに得られる多孔膜の圧力損失を低減させることができる点で好ましい。
 なお、得られるフッ素樹脂多孔膜の厚みを大きくし、圧力損失をより低減させる観点から、延伸を行う前に、圧延物を上記熱処理しつつ、さらに、上述のように低速で延伸を行うことが好ましい。
 二軸延伸の場合において、第1の方向への延伸時の温度は、好ましくは200℃以上300℃以下、より好ましくは230℃以上270℃以下である。また、第2の方向への延伸時の温度は、好ましくは200℃以上300℃以下、より好ましくは250℃以上290℃以下である。
 なお、前記圧延物(フッ素樹脂未焼成物ともいう)の延伸に関して、延伸時の温度、延伸倍率、延伸速度が延伸物の物性に影響を与えることが知られている。フッ素樹脂未焼成物のS-Sカーブ(引張張力と伸びの関係を示すグラフ)は、他の樹脂とは異なる特異な特性を示す。通常、樹脂材料は伸びに伴って引張張力も上昇する。弾性領域の範囲、破断点などは、材料、評価条件によって異なる一方で、引張張力は、伸び量に伴って上昇傾向を示すのが極めて一般的である。これに対してフッ素樹脂未焼成物は、引張張力は、ある伸び量においてピークを示した後、緩やかな減少傾向を示す。このことは、フッ素樹脂未焼成物には、「延伸された部位よりも延伸されていない部位の方が強くなる領域」が存在することを示している。
 このことを延伸時の挙動に置き換えると、一般的な樹脂の場合、延伸時は、延伸面内で最も弱い部分が伸び始めるが、延伸された部分の方が延伸されていない部分より強くなるため、次に弱い未延伸部が延伸されていくことで、延伸された領域が広がって、全体的に延伸される。一方、フッ素樹脂未焼成物の場合、伸び始める部分が、上記「延伸された部位よりも延伸されていない部位の方が強くなる領域」に差し掛かると、既に伸びた部分が更に延伸され、この結果、延伸されなかった部分がノード(結節部、未延伸部)として残る。延伸速度が遅くなると、この現象は顕著になり、より大きいノード(結節部、未延伸部)が残る。このような現象を延伸時に利用することにより、種々の用途に応じて延伸体の物性調整が行われている。
 本実施形態のフッ素樹脂多孔膜については、より低密度の延伸体を得ることが好ましく、二軸延伸の場合には、低延伸速度を特に第1の延伸に適用することが有効である。ここで、大きいノード(結節部、未延伸部)を残し、従来のPTFEのみを原料とした場合と比べて、繊維化しない非熱溶融加工性成分が用いられている場合には、低延伸速度による上記現象がより顕著になり、厚みの大きな成形体を得ようとする場合であっても、PTFEのみを原料とする場合よりも延伸速度を高めることが可能になる。
 こうして得られた多孔膜は、機械的強度、寸法安定性を得るために、好ましくは熱固定される。熱固定の際の温度は、PTFEの融点以上又はPTFEの融点未満であってよく、好ましくは250℃以上400℃以下である。
 フッ素樹脂多孔膜は、単層であってもよいし、第1フッ素樹脂多孔膜と第2フッ素樹脂多孔膜とを積層させた複層であってもよい。作製時に用いられる液体潤滑剤の量は、それぞれ、フッ素樹脂100重量部に対して25重量部以上35重量部以下であることが好ましい。25重量部以上用いることで、圧力損失を低くでき、濾材全体としての圧力損失を80Pa以下に調整しやすい。また、35重量部以下用いることで、未焼成フィルム(生テープ)の成形性を確保でき、第1フッ素樹脂多孔膜の孔径が大きくなりすぎて微粒子が捕集されずに通過して下流側に流れ、下流側の第2フッ素樹脂多孔膜の負担が大きくなりすぎることを抑制できる。
 特に、第1フッ素樹脂多孔膜の作製時に用いられる液体潤滑剤量は、フッ素樹脂100重量部に対し、例えば30重量部以上35重量部以下であることが好ましい。例えば、液体潤滑剤量差1~4重量部を満たす範囲で、第2フッ素樹脂多孔膜を作製するのに26重量部以上31重量部以下用いるのに対し、第1フッ素樹脂多孔膜を作製するのに30重量部以上35重量部以下用いることで、濾材の保塵量を大幅に高めることができる。
 なお、第1フッ素樹脂多孔膜と第2フッ素樹脂多孔膜との平均孔径の差を生じさせることは、上記3種の成分の配合比を、2枚の多孔膜の間で異ならせることで達成させてもよい。
 (3)通気性支持材
 通気性支持材は、フッ素樹脂多孔膜の上流側もしくは下流側または上流側と下流側の両方に配置されており、フッ素樹脂多孔膜を支持する。このためフッ素樹脂多孔膜の膜厚が薄い等で自立が困難であっても、通気性支持材の支持によりフッ素樹脂多孔膜を立たせることが可能になる。また、エアフィルタ濾材としての強度が確保され、特定の形状に折り込んだ場合であっても当該形状が保たれやすい。
 通気性支持材の材質及び構造は、特に限定されないが、例えば、不織布、織布、金属メッシュ、樹脂ネットなどが挙げられる。なかでも、強度、捕集性、柔軟性、作業性の点からは熱融着性を有する不織布が好ましい。不織布は、構成繊維の一部または全てが芯/鞘構造を有する不織布、低融点材料からなる繊維の層と高融点材料からなる繊維の層の2層からなる2層不織布、表面に熱融着性樹脂が塗布された不織布が好ましい。このような不織布としては、例えば、スパンボンド不織布が挙げられる。また、芯/鞘構造の不織布は、芯成分が鞘成分よりも融点が高いものが好ましい。例えば、芯/鞘の各材料の組み合わせとしては、例えば、PET/PE、高融点ポリエステル/低融点ポリエステルが挙げられる。2層不織布の低融点材料/高融点材料の組み合わせとしては、例えば、PE/PET、PP/PET、PBT/PET、低融点PET/高融点PETが挙げられる。表面に熱融着性樹脂が塗布された不織布としては、例えばPET不織布にEVA(エチレン酢酸ビニル共重合樹脂)が塗布されたもの、PET不織布にオレフィン樹脂が塗布されたものが挙げられる。
 不織布の材質は、特に限定されず、ポリオレフィン(PE、PP等)、ポリアミド、ポリエステル(PET等)、芳香族ポリアミド、またはこれらの複合材などを用いることができる。
 通気性支持材は、加熱により通気性支持材の一部が溶融することで、或いはホットメルト樹脂の溶融により、アンカー効果を利用して、或いは反応性接着剤等の接着を利用して、フッ素樹脂多孔膜に接合することができる。
 通気性支持材は、上述したフッ素樹脂多孔膜と比較すると、圧力損失、捕集効率および保塵量のいずれも極めて低く、実質的に0とみなすこともできるものであってもよい。通気性支持材の圧力損失は、例えば、10Pa以下であることが好ましく、5Pa以下であることがより好ましく、1Pa以下であることがさらに好ましい。また、通気性支持材の捕集効率は、例えば、実質的に0あるいは略0とみなすことができるものであってもよい。
 通気性支持材の厚みは、例えば、500μm以下であることが好ましく、300μm以下であることがより好ましい。なお、フッ素樹脂多孔膜を折り込んでプリーツ状にして用いる際については、プリーツ形状を維持させやすくする観点から、通気性支持材の厚みは、200μm以上であることが好ましい。
 (4)エアフィルタ濾材の用途
 本実施形態のエアフィルタ濾材は、圧力損失が低いため、使用時の息苦しさを抑制することができる観点から、マスク用に用いられることが好ましい。
 マスクとしては、人間の口、鼻を介した、埃、油煙、菌、ウィルス等の体内への侵入を抑制するものであることが好ましい。
 マスクの種類としては、汎用マスクであってもよいし、防じん用のマスクであってもよいし、医療用のマスクであってもよい。また、マスクの形態としては、平型、プリーツ型、立体型のいずれであってもよい。プリーツ型のマスクについては、折りたたまれたプリーツ部分を広げた状態で用いられるものであってよい。立体型のマスクとしては、前側にいくほど先細りした形状のくちばし型であってもよい。
 (5)プリーツ状マスク用濾材
 本実施形態のプリーツ状マスク用濾材は、上述のエアフィルタ濾材を用いて、濾材面が互いに対向するように山折りおよび谷折りが交互に繰り返されたジグザグ形状に加工(プリーツ加工)することによりプリーツ部分を形成し、山折り部が風上面を構成して谷折り部が風下面を構成する全体が略直方体形状となったものか、または、複数の山折り部が風上側で同心円となるように設けられており複数の谷折り部が風下側で同心円となるように設けられた同心円型のプリーツ形状となったもの等が挙げられる。
 本実施形態のプリーツ状マスク用濾材について、図4に外観斜視図を示し、図5に台座に取り付けられた状態のプリーツ状マスク用濾材の正面図を示し、図6に台座に取り付けられた状態のプリーツ状マスク用濾材の側面視断面図を示す。
 プリーツ状マスク用濾材は、図4―6に示すように、濾過機能を有しない樹脂等で構成された台座2の開口2aに対して取り付けて用いられるプリーツ状マスク用濾材20であってよい。より好ましくは、プリーツ状マスク用濾材20は、濾材交換式の取り付け開口2aを備えた台座2に取り付けて用いられる。なお、台座2からは、耳にかけて装着するための紐3が設けられていてよい。
 プリーツ状マスク用濾材の隣り合う山折り部と谷折り部との距離である折高さは、10mm以上40mm以下とすることが好ましい。折高さを10mm以上とすることで、エアフィルタ濾材の山折り部や谷折り部を形成する際の折り曲げ加工を容易にすることができる。また、折高さを40mm以下にすることで、プリーツ状マスク用濾材のプリーツ形状の構造に起因する圧力損失の増大を抑制することが可能になる。
 プリーツ状マスク用濾材の隣り合う山折り部と山折り部との距離または谷折り部と谷折り部との距離であるプリーツ間隔は、2.0mm以上4.5mm以下とすることが好ましい。プリーツ間隔が2.0mm以上であることで、プリーツ形状の構造に起因する圧力損失の増大を抑制できる。また、プリーツ間隔が4.5mm以下であることで、プリーツ状マスク用濾材に用いることができるエアフィルタ濾材の総面積を十分に広く確保することができる。
 なお、プリーツ状マスク用濾材において互いに対向する濾材面同士の間隔は、例えば、間隔保持部材としてのホットメルト樹脂等のセパレータを用いて確保されていてもよいし、濾材面にエンボス加工を施すことで形成される突起を用いて確保されていてもよい。また、プリーツ状マスク用濾材としては、セパレータやエンボス加工を施すことなく単に折り込まれたものであってもよい。この場合であっても、気流は風上側の山折り部同士の間を通過することができる。
 なお、台座に形成された開口に取り付けられるプリーツ状マスク用濾材の風上面の面積としては、例えば、22cm以上、61cm以下とすることができる。なお、当該風上面を矩形とする場合には、例えば、対角線の長さを4.5cm以上11cm以下としてもよい。
 プリーツ状マスク用濾材の総面積は、捕集対象をある程度保持した後であっても圧力損失を低く維持しやすく、捕集効率も良好な状態を維持しやすい観点から、200cm以上とすることが好ましく、300cm以上とすることがより好ましい。また、プリーツ状マスク用濾材の総面積は、プリーツ状マスク用濾材の風上面の面積と折高さが使いやすい大きさであることと有効なプリーツ間隔を実現する観点から1300cm以下とすることが好ましい。
 プリーツ状マスク用濾材は、個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速85L/分で連続通風することでポリアルファオレフィン粒子が200mg負荷された状態としたものについて、空気を流速40L/分で通風した時の圧力損失が120Pa以下であることが好ましく、100Pa以下であることがより好ましく、80Pa以下であることがさらに好ましい。これにより、使用を継続した場合であっても、使用時に息苦しさを感じにくいものとすることができる。
 以下、実施例および比較例を示して、本開示の内容を具体的に説明する。
 (実施例1-6、比較例1-6)
 実施例1のエアフィルタ濾材に用いられるフッ素樹脂多孔膜のFP原料としては、3種の成分(繊維化し得るPTFE(A成分)、繊維化しない非熱溶融加工性成分(B成分)、および融点320℃未満の繊維化しない熱溶融加工可能な成分(C成分))から構成される混合粉末を用いた。
 より具体的には、まず、国際公開第2005/061567号パンフレットの比較例3に記載の方法に準拠して作製されたSSGが2.160のPTFE水性分散体(A成分)66.5重量%(ポリマー換算)、国際公開第2009/020187号パンフレット記載の方法に準拠して作製された380℃におけるフローテスター法を用いて測定される溶融粘度が20000Pa・sの低分子量PTFE水性分散体(B成分)28.5重量%(ポリマー換算)、及び特開2010-235667号公報に記載の方法に準拠して作製された融点が215℃のFEP水性分散体(C成分)5重量%(ポリマー換算)を混合し、凝析剤として1%硝酸アルミニウム水溶液500mlを添加し、攪拌することにより共凝析を行った。そして、生成した粉をふるいを用いて水切りをした後、さらに、熱風乾燥炉により135℃で18時間乾燥し、上記3成分の混合粉末を得た。
 次いで、混合物100重量部当たり押出液状潤滑剤として炭化水素油(出光興産株式会社製「IPソルベント2028」)を20℃において29.0重量部(混合粉末100重量部に対して29.0重量部)を加えて混合した。次に、得られた混合物をペースト押出装置を用いて押し出して丸棒形状の成形体を得た。この丸棒形状の成型体を70℃に加熱したカレンダーロールによりフィルム状に成形しPTFEフィルムを得た。このフィルムを250℃の熱風乾燥炉に通して炭化水素油を蒸発除去し、平均厚さ300μm、平均幅150mmの帯状の未焼成PTFEフィルム(生テープ)を得た。次に、未焼成PTFEフィルムを、所定温度環境下(250℃)、長手方向(MD方向)に所定の延伸倍率(10倍)、所定の延伸速度(13.8%/秒)で延伸した。次に、延伸した未焼成フィルムをクリップできるテンターを用いて、所定温度環境下(288℃)、幅方向(TD方向)に所定の延伸倍率(45倍)、所定の延伸速度(330%/秒)で延伸し、390℃の温度で熱固定を行った。これによりフッ素樹脂多孔膜を得た。
 なお、実施例2-5および比較例3-5のエアフィルタ濾材に用いられるフッ素樹脂多孔膜においては、実施例1と同様のFP原料を用いつつ、表1に示すように、押出助剤(液体潤滑剤)の量、生テープ厚、MD温度、MD倍率、MD延伸速度、TD温度、TD倍率、Total倍率をそれぞれ変更することで、各フッ素樹脂多孔膜を得た。
 実施例6および比較例6のエアフィルタ濾材に用いられるフッ素樹脂多孔膜のFP原料としては、テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの共重合体であるパーフルオロアルキルビニルエーテル変性ポリテトラフルオロエチレンのファインパウダー(ダイキン工業株式会社製、製品名:F302)と、平均分子量650万のポリテトラフルオロエチレンのファインパウダー(ダイキン工業株式会社製、商品名:F106)とを重量比75:25で混合した混合粉末と、その混合粉末100重量部に対して所定量(実施例6が26重量部、比較例6が23重量部)の押出助剤(液状潤滑剤)と、を混合したものを用いた。
 次に、当該混合物をシートダイが取り付けられペースト押出装置を用いて押し出し、シート形状の成形体を得た。このシート形状の成型体を70℃に加熱したカレンダーロールによりフィルム状に成形しPTFEフィルムを得た。このフィルムを250℃の熱風乾燥炉に通して炭化水素油を蒸発除去し、所定の平均厚さ(実施例6が220μm、比較例6が600μm)、平均幅170mmの帯状の未焼成PTFEフィルム(生テープ)を得た。次に、未焼成PTFEフィルムを、加熱式3本ロール式延伸装置を用いて、所定温度環境下(250℃)、長手方向(MD方向)に所定の延伸倍率(実施例6が7.5倍、比較例6が10倍)、所定の延伸速度(実施例6が19.7%/秒、比較例6が28.7%/秒)で縦延伸した。次に、連続クリップできるテンター式連続延伸装置を用いて、所定温度環境下(実施例6が283℃、比較例6が300℃)、幅方向(TD方向)に所定の延伸倍率(実施例6が45倍、比較例6が20倍)、所定の延伸速度(330%/秒)で横延伸し、390℃の温度で熱固定を行った。これによりフッ素樹脂多孔膜を得た。
 比較例1-2のエアフィルタ濾材に用いられるフッ素樹脂多孔膜のFP原料としては、平均分子量650万のポリテトラフルオロエチレンのファインパウダー(ダイキン工業株式会社製、商品名:F106)ホモPTFE100重量部に対して所定量(30重量部)の押出助剤(液状潤滑剤)を混合したものを用いた。
 次に、当該混合物をシートダイが取り付けられペースト押出装置を用いて押し出し、シート形状の成形体を得た。このシート形状の成型体を70℃に加熱したカレンダーロールによりフィルム状に成形しPTFEフィルムを得た。このフィルムを200℃の熱風乾燥炉に通して押出助剤を蒸発除去し、所定の平均厚さ(200μm)、平均幅170mmの帯状の未焼成PTFEフィルム(生テープ)を得た。次に、未焼成PTFEフィルムを、加熱式3本ロール式延伸装置を用いて、所定温度環境下(比較例1が300℃、比較例2が250℃)、長手方向(MD方向)に所定の延伸倍率(比較例1が10倍、比較例2が48倍)、所定の延伸速度(比較例1が29.5%/秒、比較例2が553.9%/秒)で縦延伸した。次に、連続クリップできるテンター式連続延伸装置を用いて、所定温度環境下(290℃)、幅方向(TD方向)に所定の延伸倍率(比較例1が30倍、比較例2が36倍)、所定の延伸速度(330%/秒)で横延伸し、390℃の温度で熱固定を行った。これによりフッ素樹脂多孔膜を得た。
 以上のようにして得られた実施例1-6および比較例1-6のエアフィルタ濾材に用いられるフッ素樹脂多孔膜は、その上流側と下流側の両方に通気性支持材を熱融着させることにより各エアフィルタ濾材を得た。なお、通気性支持材は、PETを芯に、PEを鞘に用いた芯/鞘構造の繊維からなるスパンボンド不織布(平均繊維径24μm、目付40g/m、厚さ0.2mm)を用いた(なお、捕集効率は、実質的に0あるいは略0とみなすことができるものであった)。
 なお、実施例1-6および比較例1-6において測定した各物性は、以下の通りである。
 (エアフィルタ濾材における圧力損失)
 エアフィルタ濾材の測定サンプルを、直径100mmのフィルタホルダにセットし、コンプレッサで入口側を加圧し、流速計で空気の透過する流量を5.3cm/秒に調整した。そして、この時の圧力損失を差圧計で測定した。
 (エアフィルタ濾材における粒子径0.1μmのNaCl粒子の捕集効率)
 JIS B9928 附属書5(規定)NaClエアロゾルの発生方法(加圧噴霧法)記載の方法に準じて、アトマイザーで発生させたNaCl粒子を、静電分級器(TSI社製)で、粒径0.1μmに分級し、アメリシウム241を用いて粒子帯電を中和した後、透過する流量を5.3cm/秒に調整し、パーティクルカウンター(TSI社製、CNC)を用いて、測定試料である濾材の前後での粒子数を求め、次式により捕集効率を算出した。
 透過率(%)=(CO/CI)×100
 捕集効率(%)=100-透過率(%)
 CO=測定試料の下流側のNaCl  0.1μmの粒子数
 CI=測定試料の上流側のNaCl  0.1μmの粒子数
 (エアフィルタ濾材における粒子径0.1μmのNaCl粒子のPF値)
 粒子径0.1μmのNaCl粒子を用いて、エアフィルタ濾材の圧力損失及び捕集効率(粒子径0.1μmのNaCl粒子の捕集効率)とから、次式に従いPF値を求めた。
 PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)
 (フッ素樹脂多孔膜の膜厚)
 膜厚計(ID-C112CX型、ミツトヨ社製)を使用し、測定対象を5枚重ねて全体の膜厚を測定し、その値を5で割った数値を1枚の膜厚とした。
 (エアフィルタ濾材におけるポリアルファオレフィン粒子の保塵量:PHC)
 ポリアルファオレフィン(PAO)粒子(液体粒子)透過時の圧力損失上昇試験で評価した。即ち、PAO粒子を含んだ空気を有効濾過面積50cm2のサンプル濾材に流速5.3cm/秒で連続通風したときの圧力損失を差圧計で経時的に測定し、圧力損失が250Pa分だけ上昇したときに、濾材に保持されているPAO粒子の濾材の単位面積当たりの重量である保塵量(g/m2)を求めた。なお、PAO粒子は、ラスキンノズルで発生させたPAO粒子(個数中位径0.25μm)を用い、PAO粒子の濃度は、約100万~600万個/cm3とした。
 (エアフィルタ濾材における圧力損失の変動係数(CV値))
 ロール状に巻き取られた長尺のエアフィルタ濾材(幅方向長さ650mm)から、先端部を含む5m程度の部分を引き出し、エアフィルタ濾材の長手方向に200mmごとに25個に分割しかつ幅方向に両端部を除き130mmごとに4個に分割してなる格子状の100箇所について直径100mmのフィルタホルダを用いて圧力損失を測定した。ここでの圧力損失の測定は、濾材の幅方向に5個以上のフィルタホルダを備える測定装置を用いて、上記濾材を長手方向に移動させて複数の格子状の箇所について連続して測定することにより行った。次いで、これら測定した圧力損失からなる圧力損失分布から標準偏差を求め、求めた標準偏差を、測定した全ての箇所の圧力損失の平均値で割ることにより、変動係数(CV値)(%)を求めた。
 (エアフィルタ濾材におけるNaCl粒子の保塵量)
 NaCl粒子(固体粒子)透過時の圧力損失上昇試験で評価した。即ち、NaCl粒子を含んだ空気を有効濾過面積50cm2のサンプル濾材に流速5.3cm/秒で連続通風したときの圧力損失を差圧計で経時的に測定し、圧力損失が250Pa分だけ上昇したときに、濾材に保持されているNaCl粒子の濾材の単位面積当たりの重量である保塵量(g/m2)を求めた。なお、NaCl粒子は、アトマイザーで発生させたNaCl粒子(個数中位径0.1μm)を用い、NaCl粒子の濃度は、約500万~700万個/cm3とした。なお、エアフィルタ濾材におけるNaCl粒子の保塵量は、実施例1のエアフィルタ濾材についてのみ測定し、2.5g/m2であった。
 各実施例1―6および各比較例1-6のエアフィルタ濾材の諸物性を、以下の表に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~6では、圧力損失を低く抑えつつ、捕集効率を高く保ちつつ、膜厚を所定範囲に抑えつつ、PAO保塵量を高く保ちつつ、均質性が良好なエアフィルタ濾材が得られている。
 ホモPTFEを原料とした比較例1、2では細い繊維の発生が抑制されず、また、膜厚も厚く保持できず、PAO保塵量がいずれも大きく低下した。また、比較例1では、圧力損失が大きくなってしまっている。圧力損失が小さくなるように調製した比較例2では、膜厚、PAO保塵量がさらに低下する結果となった。
 実施例1~5と同様の原料を用いた比較例3、実施例6と同様の原料を用いた比較例6では、総延伸倍率が250倍を下回り小さく、延伸膜の均質性が大きく低下した。実施例1~5と同様の原料を用いた比較例4では、総延伸倍率が800倍を上回り大きく、またMD方向の延伸速度が速かったため、膜厚を保持できず、PAOでの保塵量が低かった。
 マスクとして用いる場合における息苦しさはマスクの形状および折り込み面積によって変わってくるが、加工・使用したときの息苦しさから、エアフィルタ濾材の圧力損失は80Pa以下とした。比較例5は、エアフィルタ濾材の圧力損失が80Paを越えており、エアフィルタ濾材の性能条件を満たしていない例である。
 (実施例7、8、比較例7)
 実施例7、8は、実施例1のエアフィルタ濾材を用いて、比較例7は、比較例2のエアフィルタ濾材を用いて、それぞれ、山折りおよび谷折りして折り込むことで得られたプリーツ状マスク用濾材である。実施例7、8、比較例7のプリーツ状濾材は、いずれも略直方体形状となるように折り込んだ。実施例7、8、比較例7は、それぞれ、表2に記載の通りの、総面積、折高さ、プリーツ数、開口面積を有するものとして作製した。
 ここで、総面積は、プリーツ状に折るために用いられたエアフィルタ濾材の面積を意味する。
 折高さは、互いに隣り合う山折り部と谷折り部との間の距離を意味する。
 プリーツ数は、略直方体形状のプリーツ状マスク用濾材において、気流の風上側に並ぶように設けられた山折り部の数を意味する。
 開口面積は、略直方体形状のプリーツ状マスク用濾材において、気流の風上側端部における矩形部分の面積を意味する。
 なお、実施例7、8、比較例7のプリーツ状マスク用濾材は、所定の濾材取り付け部を有するマスク台座に取り付けて用いられる交換式のプリーツ状濾材である。捕集効率および圧力損失は、上述の略直方体形状のプリーツ状マスク用濾材自体を対象として測定した。
 (実施例9)
 実施例9は、実施例1のエアフィルタ濾材を用いて、略くちばし形状にして用いられる立体型のマスク用濾材である。実施例9のマスク用濾材は、顔面に接触する輪郭部分と、正面視の中央近傍が輪郭部分より前側に膨出するように形成された、一般的な防じんマスクの形状を有している。
 (参考例)
 参考例は、実施例7、8のようにプリーツ状に折り込まれたものではなく、フラットな平型のガーゼマスクである。
 (圧力損失(負荷前))
 各測定サンプルを、試料ホルダーに取り付け、コンプレッサで入口側を加圧し、流速計で空気の透過する流量を40L/分に調整した。そして、この時の圧力損失を差圧計で測定した。
 (PAO粒子200mg負荷時の圧力損失)
 個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速85L/分で連続通風して200mg負荷した後の各測定サンプルについて、この時の圧力損失を差圧計で測定した。この時の圧力損失を濾材透過風速から40L/分相当時の圧力損失に換算したものを200mg負荷時の40L/分で通風したときの圧力損失とした。
 (PAO粒子200mg負荷前、負荷後の捕集効率および透過率比)
 ポリアルファオレフィン(PAO)粒子(液体粒子)負荷により、捕集効率を圧力損失上昇試験で評価した。PAO粒子を含んだ空気を各測定サンプルについて流速85L/分で負荷したとき、上流の濃度Cと下流の濃度Cから透過率、捕集効率、及び透過率比を算出した。
 透過率(%)=(C/C)×100
 捕集効率(%)=100-透過率(%)
 透過率比=透過率(負荷後)/透過率(負荷前)
 なお、PAO粒子は、ラスキンノズルで発生させたPAO粒子(個数中位径0.25μm)を用い、PAO粒子の濃度は、約100万~600万個/cmとした。捕集効率は、初期状態である負荷前と、個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速85L/分で連続通風して200mg負荷した後の状態である負荷後について、それぞれ測定した。
 また、個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速85L/分で連続通風して200mg負荷した後の状態の透過率を、初期状態である負荷前の透過率で除した値である透過率比(負荷後の透過率/負荷前の透過率)を算出した。
 (NaCl粒子100mg負荷時の圧力損失)
 個数中位径0.1μmのNaCl粒子を含む空気を流速85L/分で連続通風して100mg負荷した後のサンプルについて、この時の圧力損失を差圧計で測定した。この時の圧力損失を濾材透過風速から40L/分相当時の圧力損失に換算したものを200mg負荷時の40L/分で通風したときの圧力損失とした。
 なお、実施例7のプリーツ状マスク濾材については、個数中位径0.1μmのNaCl粒子100mg負荷時の圧力損失を測定したところ、123Paであった。
 (NaCl粒子100mg負荷前、負荷後の捕集効率)
 試料ホルダーに取り付けられたサンプルについて、上記表1における「エアフィルタ濾材における粒子径0.1μmのNaCl粒子の捕集効率」と同様にして、初期状態である負荷前と、個数中位径0.1μmのNaCl粒子を含む空気を流速85L/分で連続通風して100mg負荷した後の状態である負荷後について、それぞれ測定した。なお、実施例7のプリーツ状マスク濾材については、個数中位径0.1μmのNaCl粒子100mg負荷前、負荷後の捕集効率を測定した。実施例7のプリーツ状マスク濾材の負荷前の捕集効率は99.065%であった。また、実施例7のプリーツ状マスク濾材は、NaCl粒子の負荷を与えるにつれて捕集効率が増大し、負荷後の捕集効率は負荷前の捕集効率よりも高い値を示した。
 各実施例7-9、比較例7、および参考例の諸物性を、以下の表に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2から明らかなように、実施例1のエアフィルタ濾材を用いて作製された実施例7~9では、マスクの負荷前の圧力損失を低く抑えつつ、捕集効率を高く保ちつつ、PAO粒子負荷後の圧力損失の上昇を小さく抑えることができている。
 一方、比較例2のエアフィルタ濾材を用いて作製された比較例7では、PAO粒子200mg負荷時の圧力損失は負荷前の圧力損失に比べて大きく上昇している。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
  2 台座
  2a 開口
  3 紐
 20 プリーツ状マスク用濾材
 30 エアフィルタ濾材
 31 フッ素樹脂多孔膜
 32 通気性支持材(支持材)
国際公開第2013/157647号

Claims (8)

  1.  フッ素樹脂多孔膜(31)と、
     前記フッ素樹脂多孔膜の少なくとも一方の側に積層された支持材(32)と、
    を備えたエアフィルタ濾材(30)であって、
     前記フッ素樹脂多孔膜は、
     空気を流速5.3cm/秒で通過させたときの圧力損失が80Pa以下であり、
     前記圧力損失および粒子径0.1μmのNaCl粒子を用いて把握される捕集効率を用いて、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められるPF値が20以上であり、
     厚みが10μm以上であり、
     個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速5.3cm/秒で連続通風し、圧力損失が250Pa分だけ上昇したときの前記ポリアルファオレフィン粒子の保塵量が、15.0g/m以上である、
    エアフィルタ濾材。
  2.  前記フッ素樹脂多孔膜は、厚みが50μm以下である、
    請求項1に記載のエアフィルタ濾材。
  3.  圧力損失の変動係数が6.0以下である、
    請求項1または2に記載のエアフィルタ濾材。
  4.  前記フッ素樹脂多孔膜は、繊維化し得るポリテトラフルオロエチレンと、繊維化しない非熱溶融加工性成分と、融点320℃未満の繊維化しない熱溶融加工可能な成分と、を含む、
    請求項1から3のいずれか1項に記載のエアフィルタ濾材。
  5.  前記フッ素樹脂多孔膜は、変性ポリテトラフルオロエチレンを含む、
    請求項1から4のいずれか1項に記載のエアフィルタ濾材。
  6.  請求項1から5のいずれか1項に記載のエアフィルタ濾材の製造方法であって、
     フッ素樹脂原料を用いてフッ素樹脂製シートを作成する工程と、
     前記フッ素樹脂製シートを、延伸方向における延伸速度が30%/秒以下で第1方向に延伸する工程と、
     前記第1方向に延伸する工程の後、前記第1方向に直交する第2方向に延伸する工程と、
    を備え、
     総延伸倍率が250倍以上800倍以下である、
    エアフィルタ濾材の製造方法。
  7.  請求項1から5のいずれか1項に記載のエアフィルタ濾材、または、請求項6に記載の製造方法により製造されたエアフィルタ濾材を備えたマスク用濾材。
  8.  請求項1から5のいずれか1項に記載のエアフィルタ濾材、または、請求項6に記載の製造方法により製造されたエアフィルタ濾材が、山折り部および谷折り部を含んだ形状となっているプリーツ状マスク用濾材(20)であって、
     個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速85L/分で連続通風することでポリアルファオレフィン粒子が200mg負荷された状態のプリーツ状マスク用濾材について、空気を流速40L/分で通風した時の圧力損失が120Pa以下である、
    プリーツ状マスク用濾材。
PCT/JP2022/004068 2021-02-04 2022-02-02 エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材 WO2022168877A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280013176.3A CN116806164A (zh) 2021-02-04 2022-02-02 空气过滤器滤材、空气过滤器滤材的制造方法、口罩用滤材及褶裥状口罩用滤材
KR1020237029565A KR20230142551A (ko) 2021-02-04 2022-02-02 에어 필터 여과재, 에어 필터 여과재의 제조 방법, 마스크용 여과재, 및 플리츠 형상 마스크용 여과재
EP22749748.4A EP4289495A1 (en) 2021-02-04 2022-02-02 Air filter filtration material, method for producing air filter filtration material, filtration material for masks, and filtration material for pleat-like masks
US18/229,739 US20230372849A1 (en) 2021-02-04 2023-08-03 Air filter medium, method for producing air filter medium, mask filter medium, and pleated mask filter medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021016674A JP7181480B2 (ja) 2021-02-04 2021-02-04 エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材
JP2021-016674 2021-02-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/229,739 Continuation US20230372849A1 (en) 2021-02-04 2023-08-03 Air filter medium, method for producing air filter medium, mask filter medium, and pleated mask filter medium

Publications (1)

Publication Number Publication Date
WO2022168877A1 true WO2022168877A1 (ja) 2022-08-11

Family

ID=82741478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004068 WO2022168877A1 (ja) 2021-02-04 2022-02-02 エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材

Country Status (7)

Country Link
US (1) US20230372849A1 (ja)
EP (1) EP4289495A1 (ja)
JP (1) JP7181480B2 (ja)
KR (1) KR20230142551A (ja)
CN (1) CN116806164A (ja)
TW (1) TWI807595B (ja)
WO (1) WO2022168877A1 (ja)

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878252A (ja) 1972-01-20 1973-10-20 Japan Atomic Energy Res Inst
JPS5360979A (en) 1976-11-11 1978-05-31 Daikin Ind Ltd Polytetrafluoroethylene fine powder and its preparation
JPS57135A (en) 1980-05-31 1982-01-05 Daikin Ind Ltd Production of polytetrafluoroethylene fine powder
JPS6042446A (ja) 1983-04-28 1985-03-06 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 分散液で製造された変性ポリテトラフルオルエチレン組成物
JPS6116907A (ja) 1984-06-18 1986-01-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー テトラフルオロエチレン微粉末樹脂及びその製造方法
JPS61162503A (ja) 1985-01-10 1986-07-23 Central Glass Co Ltd 含フツ素樹脂の低分子量物の製造方法
JPS62104816A (ja) 1985-09-09 1987-05-15 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− テトラフルオロエチレン微粉末の製造法
JPS62190206A (ja) 1986-01-27 1987-08-20 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− テトラフルオロエチレン・フアインパウダ−の製法
JPS63137906A (ja) 1986-11-26 1988-06-09 インペリアル・ケミカル・インダストリーズ・ピーエルシー 凝固分散物グレードのテトラフルオロエチレン・ホモ−またはコポリマーの製法
JPS641711A (en) 1987-06-24 1989-01-06 Daikin Ind Ltd Modified polytetrafluoroethylene fine powder and production thereof
JPH02261810A (ja) 1989-01-27 1990-10-24 E I Du Pont De Nemours & Co 変性したポリテトラフルオロエチレン微細粉末及びその製造法
WO1994016802A1 (en) * 1993-01-25 1994-08-04 Daikin Industries, Ltd. Polytetrafluoroethylene porous film and method for manufacturing the same
JPH07165828A (ja) 1993-09-21 1995-06-27 Hoechst Ag ポリテトラフルオルエチレンミクロパウダー及びそれらの製造方法と使用法
JPH10147617A (ja) 1996-09-18 1998-06-02 Daikin Ind Ltd ポリテトラフルオロエチレン粉末及びその製造方法
JPH11240917A (ja) 1997-12-26 1999-09-07 Asahi Glass Co Ltd テトラフルオロエチレン系共重合体とその用途
JPH11240918A (ja) 1997-12-25 1999-09-07 Asahi Glass Co Ltd テトラフルオロエチレン系共重合体、その製造方法およびその用途
JP2000143727A (ja) 1998-11-13 2000-05-26 E I Du Pont De Nemours & Co ポリテトラフルオロエチレン樹脂
JP2002201217A (ja) 2000-10-30 2002-07-19 Asahi Glass Co Ltd 強度に優れるテトラフルオロエチレン重合体
JP2003033555A (ja) 2001-07-25 2003-02-04 Fuji Shoji:Kk 弾球遊技機
WO2004050727A1 (en) 2002-11-22 2004-06-17 E.I. Du Pont De Nemours And Company Directly polymerized low molecular weight granular polytetrafluoroethylene
JP2005061567A (ja) 2003-08-19 2005-03-10 Mazda Motor Corp 変速機の変速操作機構及びその設計方法
WO2005061567A1 (ja) 2003-12-22 2005-07-07 Daikin Industries, Ltd. 非溶融加工性ポリテトラフルオロエチレン及びそのファインパウダー
JP2006063140A (ja) 2004-08-25 2006-03-09 Asahi Glass Co Ltd 低分子量ポリテトラフルオロエチレン水性分散液の製造方法
JP2007005361A (ja) 2005-06-21 2007-01-11 Sharp Corp 発光素子
JP2007046345A (ja) 2005-08-10 2007-02-22 Nichiha Corp 外壁施工構造及びこれに用いる下地金具
JP2007119829A (ja) 2005-10-27 2007-05-17 Optrex Corp スパッタ成膜装置
JP2009001745A (ja) 2007-06-25 2009-01-08 Daikin Ind Ltd 低分子量ポリテトラフルオロエチレン水性分散液及びその製造方法
JP2009001894A (ja) 2007-06-22 2009-01-08 Okuma Engineering:Kk 樹脂表面上への透明dlc膜の形成方法
JP2009020187A (ja) 2007-07-10 2009-01-29 Canon Inc 画像形成装置
WO2009020187A1 (ja) 2007-08-07 2009-02-12 Daikin Industries, Ltd. 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
JP2010113950A (ja) 2008-11-06 2010-05-20 Sumitomo Chemical Co Ltd 非水電解質二次電池用正極材の製造方法
WO2010114033A1 (ja) 2009-03-31 2010-10-07 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレン粉末及びその製造方法
JP2010235667A (ja) 2009-03-30 2010-10-21 Daikin Ind Ltd 含フッ素ポリマーの製造方法
JP2011055824A (ja) 2009-09-14 2011-03-24 Michiko Makino 犬の散歩用引き綱補助具
JP2013027850A (ja) 2011-07-29 2013-02-07 Fujifilm Corp 二酸化炭素分離膜、二酸化炭素分離膜の製造方法及び二酸化炭素分離膜を用いた二酸化炭素分離モジュール
WO2013157647A1 (ja) 2012-04-20 2013-10-24 ダイキン工業株式会社 Ptfeを主成分とする組成物、混合粉末、成形用材料、及びフィルタ用濾材、エアフィルタユニット、並びに多孔膜の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5835389B2 (ja) * 2014-03-26 2015-12-24 ダイキン工業株式会社 エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878252A (ja) 1972-01-20 1973-10-20 Japan Atomic Energy Res Inst
JPS5360979A (en) 1976-11-11 1978-05-31 Daikin Ind Ltd Polytetrafluoroethylene fine powder and its preparation
JPS57135A (en) 1980-05-31 1982-01-05 Daikin Ind Ltd Production of polytetrafluoroethylene fine powder
JPS6042446A (ja) 1983-04-28 1985-03-06 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− 分散液で製造された変性ポリテトラフルオルエチレン組成物
JPS6116907A (ja) 1984-06-18 1986-01-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー テトラフルオロエチレン微粉末樹脂及びその製造方法
JPS61162503A (ja) 1985-01-10 1986-07-23 Central Glass Co Ltd 含フツ素樹脂の低分子量物の製造方法
JPS62104816A (ja) 1985-09-09 1987-05-15 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− テトラフルオロエチレン微粉末の製造法
JPS62190206A (ja) 1986-01-27 1987-08-20 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− テトラフルオロエチレン・フアインパウダ−の製法
JPS63137906A (ja) 1986-11-26 1988-06-09 インペリアル・ケミカル・インダストリーズ・ピーエルシー 凝固分散物グレードのテトラフルオロエチレン・ホモ−またはコポリマーの製法
JPS641711A (en) 1987-06-24 1989-01-06 Daikin Ind Ltd Modified polytetrafluoroethylene fine powder and production thereof
JPH02261810A (ja) 1989-01-27 1990-10-24 E I Du Pont De Nemours & Co 変性したポリテトラフルオロエチレン微細粉末及びその製造法
WO1994016802A1 (en) * 1993-01-25 1994-08-04 Daikin Industries, Ltd. Polytetrafluoroethylene porous film and method for manufacturing the same
JPH07165828A (ja) 1993-09-21 1995-06-27 Hoechst Ag ポリテトラフルオルエチレンミクロパウダー及びそれらの製造方法と使用法
JPH10147617A (ja) 1996-09-18 1998-06-02 Daikin Ind Ltd ポリテトラフルオロエチレン粉末及びその製造方法
JPH11240918A (ja) 1997-12-25 1999-09-07 Asahi Glass Co Ltd テトラフルオロエチレン系共重合体、その製造方法およびその用途
JPH11240917A (ja) 1997-12-26 1999-09-07 Asahi Glass Co Ltd テトラフルオロエチレン系共重合体とその用途
JP2000143727A (ja) 1998-11-13 2000-05-26 E I Du Pont De Nemours & Co ポリテトラフルオロエチレン樹脂
JP2002201217A (ja) 2000-10-30 2002-07-19 Asahi Glass Co Ltd 強度に優れるテトラフルオロエチレン重合体
JP2003033555A (ja) 2001-07-25 2003-02-04 Fuji Shoji:Kk 弾球遊技機
WO2004050727A1 (en) 2002-11-22 2004-06-17 E.I. Du Pont De Nemours And Company Directly polymerized low molecular weight granular polytetrafluoroethylene
JP2005061567A (ja) 2003-08-19 2005-03-10 Mazda Motor Corp 変速機の変速操作機構及びその設計方法
WO2005061567A1 (ja) 2003-12-22 2005-07-07 Daikin Industries, Ltd. 非溶融加工性ポリテトラフルオロエチレン及びそのファインパウダー
JP2006063140A (ja) 2004-08-25 2006-03-09 Asahi Glass Co Ltd 低分子量ポリテトラフルオロエチレン水性分散液の製造方法
JP2007005361A (ja) 2005-06-21 2007-01-11 Sharp Corp 発光素子
JP2007046345A (ja) 2005-08-10 2007-02-22 Nichiha Corp 外壁施工構造及びこれに用いる下地金具
JP2007119829A (ja) 2005-10-27 2007-05-17 Optrex Corp スパッタ成膜装置
JP2009001894A (ja) 2007-06-22 2009-01-08 Okuma Engineering:Kk 樹脂表面上への透明dlc膜の形成方法
JP2009001745A (ja) 2007-06-25 2009-01-08 Daikin Ind Ltd 低分子量ポリテトラフルオロエチレン水性分散液及びその製造方法
JP2009020187A (ja) 2007-07-10 2009-01-29 Canon Inc 画像形成装置
WO2009020187A1 (ja) 2007-08-07 2009-02-12 Daikin Industries, Ltd. 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
JP2010113950A (ja) 2008-11-06 2010-05-20 Sumitomo Chemical Co Ltd 非水電解質二次電池用正極材の製造方法
JP2010235667A (ja) 2009-03-30 2010-10-21 Daikin Ind Ltd 含フッ素ポリマーの製造方法
WO2010114033A1 (ja) 2009-03-31 2010-10-07 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレン粉末及びその製造方法
JP2011055824A (ja) 2009-09-14 2011-03-24 Michiko Makino 犬の散歩用引き綱補助具
JP2013027850A (ja) 2011-07-29 2013-02-07 Fujifilm Corp 二酸化炭素分離膜、二酸化炭素分離膜の製造方法及び二酸化炭素分離膜を用いた二酸化炭素分離モジュール
WO2013157647A1 (ja) 2012-04-20 2013-10-24 ダイキン工業株式会社 Ptfeを主成分とする組成物、混合粉末、成形用材料、及びフィルタ用濾材、エアフィルタユニット、並びに多孔膜の製造方法

Also Published As

Publication number Publication date
JP7181480B2 (ja) 2022-12-01
KR20230142551A (ko) 2023-10-11
JP2022119497A (ja) 2022-08-17
US20230372849A1 (en) 2023-11-23
CN116806164A (zh) 2023-09-26
TWI807595B (zh) 2023-07-01
TW202245899A (zh) 2022-12-01
EP4289495A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
JP5835389B2 (ja) エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
JP6458817B2 (ja) ポリテトラフルオロエチレンを主成分とする混合粉末及び成形用材料
JP6115596B2 (ja) エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
JP5804172B2 (ja) エンボス加工されたエアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエンボス加工されたエアフィルタ用濾材の製造方法
JP6372507B2 (ja) エアフィルタ用濾材、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
JP7227507B2 (ja) エアフィルタ濾材、フィルタパック、エアフィルタユニット、およびこれらの製造方法
WO2016104589A1 (ja) エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
JP7181480B2 (ja) エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材
JP7219412B2 (ja) エアフィルタ濾材、プリーツ状濾材、エアフィルタユニット、マスク用濾材、および、エアフィルタ濾材の再生方法
JP7401831B2 (ja) エアフィルタ濾材、エアフィルタパック、および、エアフィルタユニット
JP7256375B2 (ja) エアフィルタ濾材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280013176.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237029565

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749748

Country of ref document: EP

Effective date: 20230904