WO2016104589A1 - エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法 - Google Patents

エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法 Download PDF

Info

Publication number
WO2016104589A1
WO2016104589A1 PCT/JP2015/085992 JP2015085992W WO2016104589A1 WO 2016104589 A1 WO2016104589 A1 WO 2016104589A1 JP 2015085992 W JP2015085992 W JP 2015085992W WO 2016104589 A1 WO2016104589 A1 WO 2016104589A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
porous film
filter medium
air filter
less
Prior art date
Application number
PCT/JP2015/085992
Other languages
English (en)
French (fr)
Inventor
竜巳 阪野
乾 邦彦
渋谷 吉之
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015145306A external-priority patent/JP6115596B2/ja
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US15/538,597 priority Critical patent/US10226730B2/en
Priority to EP15873157.0A priority patent/EP3238804B1/en
Priority to CN201580070721.2A priority patent/CN107106955B/zh
Publication of WO2016104589A1 publication Critical patent/WO2016104589A1/ja
Priority to US16/235,143 priority patent/US10406471B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to an air filter medium, a filter pack, an air filter unit, and a method for producing an air filter medium.
  • a filter medium for an air filter that satisfies the criteria of a HEPA filter a filter medium made of glass fiber, called a glass filter medium.
  • the HEPA grade glass filter medium has a high collection efficiency of 99.97% for particles having a particle diameter of 0.3 ⁇ m, but has a high pressure loss.
  • a filter medium using a PTFE porous membrane made by stretching polytetrafluoroethylene (PTFE) As a low pressure loss HEPA filter replacing such a glass filter medium, a filter medium using a PTFE porous membrane made by stretching polytetrafluoroethylene (PTFE) is known.
  • the PTFE porous membrane has a high collection efficiency and a low pressure loss as compared with the glass filter medium, and is excellent in the balance between the collection efficiency and the pressure loss.
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-52320
  • Patent Document 2 Japanese Patent Laid-Open No. 2013-63424
  • a filter medium for an air filter is proposed in which a melt blown nonwoven fabric is provided upstream of the PTFE porous membrane, and a breathable cover layer made of a spunbond nonwoven fabric is further provided upstream thereof.
  • the filter medium in order to make the filter medium have a long life, it is required to increase the amount of dust retained in the filter medium.
  • the air filter unit when used for a gas turbine intake application, the air filter may be clogged without waiting for a periodic inspection of the gas turbine due to a small amount of dust. When clogging occurs in this way, the operation of the gas turbine must be stopped only to replace the air filter, and the loss is increased.
  • the present invention provides an air filter medium, a filter pack, an air filter unit, and a method for producing such an air filter medium that not only have high collection efficiency and low pressure loss but also a high dust holding capacity. With the goal.
  • the inventors of the present invention provided two layers of a porous film mainly containing a fluororesin, and a pre-collecting material having specific physical properties on the upstream side.
  • PF value By making the PF value when the first porous film and the second porous film are laminated within a specific range, not only the collection efficiency is high and the pressure loss is low, but also the dust holding amount is increased. We have found that this is possible and have completed the present invention.
  • An air filter medium is an air filter medium that collects dust in a gas, and includes a first porous film, a second porous film, and a pre-collecting material. ing.
  • the first porous film mainly contains a fluororesin.
  • the second porous film mainly contains a fluororesin and is disposed on the downstream side of the airflow with respect to the first porous film.
  • the pre-collecting material is disposed on the upstream side of the airflow with respect to the first porous film, and collects a part of the dust in the airflow.
  • the pre-collecting material has a pressure loss of 15 Pa or more and less than 55 Pa when air is passed at a flow rate of 5.3 cm / second, and the collection efficiency of NaCl having a particle diameter of 0.3 ⁇ m is 25% or more and less than 80%.
  • the ratio of the PF value of the pre-collecting material to the PF value when the first porous film and the second porous film are laminated is “the PF value of the pre-collecting material / the first porous film and the second porous film.
  • the value of “PF value when laminating” is 0.20 or more and 0.45 or less.
  • the PF value of the pre-collecting material is preferably 7 or more and 13 or less.
  • This filter medium for air filter not only has high collection efficiency but low pressure loss, and can also increase the amount of dust retained.
  • the air filter medium according to the second aspect is the air filter medium according to the first aspect, and further includes an upstream air-permeable support material.
  • the upstream air-permeable support material is disposed on the upstream side of the airflow with respect to the first porous membrane, and supports the first porous membrane.
  • the pre-collecting material only needs to be disposed upstream of the first air flow in the airflow, may be disposed upstream of the airflow support in the upstream airflow support material, or may be upstream in airflow. You may arrange
  • This filter medium for air filter can improve the upstream strength.
  • the air filter medium according to the third aspect is the air filter medium according to the first aspect or the second aspect, and further includes a downstream air-permeable support material.
  • the downstream air-permeable support material is disposed on the downstream side of the airflow with respect to the second porous membrane, and supports the second porous membrane.
  • This air filter medium can improve the strength on the downstream side.
  • An air filter medium is the air filter medium according to any one of the first to third aspects, wherein the pressure loss when air is passed at a flow rate of 5.3 cm / second is second.
  • the first porous film is smaller than the first porous film, and the collection efficiency of NaCl having a particle diameter of 0.3 ⁇ m is higher in the second porous film than in the first porous film.
  • This filter medium for air filter not only has high collection efficiency and low pressure loss, but also makes it possible to further increase the amount of dust.
  • An air filter medium is the air filter medium according to any of the first to fourth aspects, wherein the first porous membrane has a pressure loss of 30 Pa or more and 90 Pa or less, and is collected.
  • Polyalphaolefin when the efficiency is 95% or more and 99% or less, and air containing polyalphaolefin particles having a number median diameter of 0.25 ⁇ m is continuously ventilated at a flow rate of 5.3 cm / sec and the pressure loss increases by 250 Pa
  • the amount of particles retained is 25 g / m 2 or more and 35 g / m 2 or less.
  • This filter medium for air filter not only has high collection efficiency and low pressure loss, but also makes it possible to further increase the amount of dust.
  • An air filter medium according to a sixth aspect is the air filter medium according to any one of the first to fifth aspects, with respect to the PF value when the first porous film and the second porous film are laminated.
  • the value of “PF value of pre-collecting material / PF value when the first porous film and the second porous film are laminated”, which is the ratio of the PF value of the pre-collecting material, is 0.20 or more and 0.38. It is as follows.
  • This filter material for air filter can keep the pressure loss low even when the dust holding amount is increased.
  • An air filter medium according to a seventh aspect is the air filter medium according to any one of the first to sixth aspects, wherein the first porous film and the second porous film are polytetrafluoro which can be fiberized. It is mainly composed of ethylene, a non-heat-melting processable component that does not become fiberized, and a component that can be heat-melted and processed without fiberization and having a melting point of less than 320 ° C.
  • a conventional PTFE porous membrane mainly composed only of PTFE (high molecular weight PTFE) that can be made into fibers contains many fine fibrils with small fiber diameters, and has a large surface area per fiber and high collection efficiency.
  • PTFE high molecular weight PTFE
  • the film thickness is relatively thin and there are many overlapping fibers, a large amount of fine particles cannot be retained, and the high collection efficiency per fiber is not effectively exhibited.
  • this filter material for air filter is composed of polytetrafluoroethylene that can be made into fiber, a non-heat-melting processable component that is not fiberized, and a component that can be heat-melted and processed that is not fiberized and has a melting point of less than 320 ° C. Since it is composed mainly of components, it is possible to increase the amount of dust retention by increasing the film thickness by increasing the voids with relatively thick fibers compared to the conventional PTFE porous membrane.
  • An air filter medium is the air filter medium according to any one of the first aspect to the seventh aspect, and the polyalphaolefin particles having a number median diameter of 0.25 ⁇ m are used for the air filter medium.
  • the dust content of the polyalphaolefin particles is 40 g / m 2 or more when the contained air is continuously ventilated at a flow rate of 5.3 cm / sec and the pressure loss increases by 250 Pa.
  • An air filter medium according to a ninth aspect is the air filter medium according to any one of the first to eighth aspects, and when air is passed through the air filter medium at a flow rate of 5.3 cm / sec.
  • the pressure collection efficiency of the particles is 99.97% or more when air containing NaCl particles having a particle diameter of 0.3 ⁇ m is passed at a flow rate of 5.3 cm / sec.
  • An air filter pack according to a tenth aspect includes the air filter medium according to any one of the first to ninth aspects, and the air filter medium is processed into a zigzag shape in which mountain folds and valley folds are alternately repeated. Configured.
  • the “filter pack” is not particularly limited.
  • the “filter pack” is not a flat sheet shape, but a zigzag shape that is folded by alternately performing a mountain fold and a valley fold. It may be shaped so that it can be accommodated in the body.
  • An air filter unit includes an air filter medium according to any one of the first aspect to the ninth aspect or a filter pack according to the tenth aspect, a frame body that holds the air filter medium or filter pack, It has.
  • a method for producing a filter medium for an air filter according to a twelfth aspect is a method for producing a filter medium for air filter that collects dust in a gas, and includes a first porous film and a second porous film mainly containing a fluororesin.
  • the pre-collecting material has a pressure loss of 15 Pa or more and less than 55 Pa when air is passed at a flow rate of 5.3 cm / second, and the collection efficiency of NaCl having a particle diameter of 0.3 ⁇ m is 25% or more and less than 80%.
  • the ratio of the PF value of the pre-collecting material to the PF value when the first porous film and the second porous film are laminated is “the PF value of the pre-collecting material / the first porous film and the second porous film.
  • the value of “PF value when laminating” is 0.20 or more and 0.45 or less.
  • the manufacturing method further includes a step of integrating the first porous film, the second porous film, and the pre-collecting material by heat
  • the PF value of the pre-collecting material is preferably 7 or more and 13 or less.
  • the manufacturing method of the filter material for air filters which concerns on a 13th viewpoint is a manufacturing method of the filter material for air filters which concerns on a 12th viewpoint, Comprising:
  • the upstream air-permeable support material which supports a 1st porous membrane is used from the 1st porous membrane. Is further provided with a step of disposing upstream of the airflow.
  • the pre-collecting material may be disposed on the upstream side of the air flow with respect to the first porous membrane, may be disposed on the upstream side of the air flow with respect to the upstream air-permeable support material, or may be disposed on the upstream air-permeable support material. May also be arranged downstream of the airflow.
  • a method for producing an air filter medium according to a fourteenth aspect is the method for producing an air filter medium according to the twelfth aspect or the thirteenth aspect, wherein the downstream air-permeable support material that supports the second porous membrane is the second one.
  • the method further includes a step of disposing the air flow downstream of the porous film.
  • the strength of the air filter medium obtained on the downstream side can be improved.
  • the air filter medium, filter pack, or air filter unit according to the present invention not only the collection efficiency is high but the pressure loss is low, the amount of dust can be increased.
  • an air filter medium having not only high collection efficiency but low pressure loss but also increased dust retention.
  • filter medium for air filter
  • filter medium also simply referred to as filter medium
  • filter pack an air filter unit
  • method for manufacturing the filter medium for air filter will be described by way of embodiments.
  • FIG. 1 shows a schematic cross-sectional view of a five-layer air filter medium 1 according to this embodiment.
  • the air filter medium 1 is an air filter medium that collects dust in the gas, in order from the upstream side of the airflow, the pre-collection medium 10, an optional upstream air-permeable support material 21, and the first filter medium.
  • a porous membrane 31, a second porous membrane 32, and an optional downstream air-permeable support material 22 are provided.
  • the first porous film 31 mainly contains a fluororesin.
  • the second porous film 32 mainly contains a fluororesin and is disposed adjacent to each other on the downstream side of the airflow from the first porous film 31.
  • the upstream air-permeable support material 21 is disposed on the upstream side of the airflow with respect to the first porous film 31 and supports the first porous film 31.
  • the downstream air-permeable support material 22 is disposed on the downstream side of the airflow with respect to the second porous film 32 and supports the second porous film 32.
  • the pre-collecting material 10 is disposed on the upstream side of the airflow from the first porous membrane 31 (in the present embodiment, on the upstream side of the airflow than the upstream air-permeable support material 21), and a part of the dust in the airflow is removed. Collect.
  • the pre-collecting material 10 has a pressure loss of 15 Pa or more and less than 55 Pa when air is passed at a flow rate of 5.3 cm / sec, and a collection efficiency of NaCl having a particle diameter of 0.3 ⁇ m is 25% or more and less than 80%.
  • the ratio of the PF value of the pre-collecting material 10 to the PF value when the first porous film 31 and the second porous film 32 are laminated is “the PF value of the pre-collecting material 10 / the first porous film 31 and The value of the “PF value when the second porous film 32 is laminated” is 0.20 or more and 0.45 or less.
  • Each of the first porous membrane 31 and the second porous membrane 32 is mainly composed of a fluororesin, and a fibril (fiber) and a node (nodal portion) connected to the fibril (not shown). And has a porous membrane structure.
  • the first porous film 31 and the second porous film 32 may contain, for example, a fluororesin exceeding 50% by weight of the entire constituent components. That is, the first porous film 31 and the second porous film 32 may contain less than 50% by weight of a component different from the fluororesin.
  • the first porous film 31 is arranged on the upstream side of the airflow (upper side in FIG. 1), and the second porous film 32 is arranged on the downstream side of the airflow (lower side in FIG. 1) than the first porous film 31.
  • the first porous film 31 and the second porous film 32 may have the same film structure, or may have different film structures.
  • the fluororesin used for the first porous film 31 and the second porous film 32 may be composed of one type of component or may be composed of two or more types of components.
  • the fluororesin comprising two or more components include, for example, PTFE that can be fiberized (hereinafter also referred to as A component), a non-heat melt processable component that is not fiberized (hereinafter also referred to as B component), and a melting point of 320.
  • a component PTFE that can be fiberized
  • B component non-heat melt processable component that is not fiberized
  • B component a melting point of 320.
  • a mixture of three components of a component that can be heat-melted and processed at a temperature lower than 0 ° C. hereinafter also referred to as “C component”
  • the first porous membrane 31 is preferably composed of a combination of these three components.
  • the first porous film 31 composed of these three components has a film structure with a large number of voids and a large film thickness compared to a conventional PTFE (high molecular weight PTFE) porous film that can be made into a fiber.
  • the fine particles therein can be collected in a wide region in the thickness direction of the filter medium, thereby improving the dust holding amount.
  • PTFE that can be fiberized is, for example, high molecular weight PTFE obtained from emulsion polymerization or suspension polymerization of tetrafluoroethylene (TFE).
  • the high molecular weight as used herein means that a fiber having a long fiber length can be obtained easily during fiber drawing at the time of stretching, and the standard specific gravity (SSG) is 2.130 to 2.230.
  • the molecular weight is such that it does not substantially melt and flow because of its high melt viscosity.
  • the PTFE SSG that can be made into a fiber is preferably 2.130 to 2.190, more preferably 2.140 to 2.170 from the viewpoint of easy fibrillation and obtaining a fibril having a long fiber length.
  • SSG stretchability of the mixture of the components A to C may be deteriorated. If the SSG is too low, the rollability is deteriorated and the uniformity of the porous film is deteriorated. Loss may be high.
  • PTFE obtained by emulsion polymerization is preferable from the viewpoint of easily forming fibers and obtaining fibrils having a long fiber length. Standard specific gravity (SSG) is measured according to ASTM D 4895.
  • the presence / absence of fiberizing property that is, whether fiberization is possible can be determined by whether paste extrusion, which is a typical method of molding high molecular weight PTFE powder made from a TFE polymer, is possible. Usually, paste extrusion is possible because high molecular weight PTFE has fiberizing properties. When the green body obtained by paste extrusion does not have substantial strength or elongation, for example, when the elongation is 0% and it breaks when pulled, it can be considered that there is no fiberizing property.
  • the high molecular weight PTFE may be modified polytetrafluoroethylene (hereinafter referred to as modified PTFE), homopolytetrafluoroethylene (hereinafter referred to as homo-PTFE), or modified PTFE and homo-PTFE. It may be a mixture.
  • the homo-PTFE is not particularly limited, and JP-A-53-60979, JP-A-57-135, JP-A-61-16907, JP-A-62-104816, JP-A-62- No. 190206, JP-A-63-137906, JP-A-2000-143727, JP-A-2002-201217, International Publication No. 2007/046345, International Publication No. 2007/119829, International Publication No.
  • the homo-PTFE disclosed in the 2009/001894 pamphlet, the international publication 2010/113950 pamphlet, the international publication 2013/027850 pamphlet and the like can be suitably used.
  • Homo PTFE disclosed in International Publication No. 2007/119829 pamphlet, International Publication No. 2010/113950 pamphlet and the like is preferable.
  • Modified PTFE consists of TFE and a monomer other than TFE (hereinafter referred to as modified monomer).
  • Modified PTFE includes, but is not limited to, those uniformly modified with a modifying monomer, those modified at the beginning of the polymerization reaction, those modified at the end of the polymerization reaction, and the like.
  • Modified PTFE is disclosed in, for example, JP-A-60-42446, JP-A-61-16907, JP-A-62-104816, JP-A-62-190206, JP-A-64-1711.
  • Modified PTFE includes a TFE unit based on TFE and a modified monomer unit based on a modified monomer.
  • the modified monomer unit is a part of the molecular structure of modified PTFE and derived from the modified monomer.
  • the modified monomer unit is preferably contained in an amount of 0.001 to 0.500% by weight, preferably 0.01 to 0.30% by weight, based on the total monomer units.
  • the total monomer unit is a part derived from all monomers in the molecular structure of the modified PTFE.
  • the modified monomer is not particularly limited as long as it can be copolymerized with TFE.
  • perfluoroolefin such as hexafluoropropylene (HFP); chlorofluoroolefin such as chlorotrifluoroethylene (CTFE); trifluoro Examples thereof include hydrogen-containing fluoroolefins such as ethylene and vinylidene fluoride (VDF); perfluorovinyl ether; perfluoroalkylethylene (PFAE) and ethylene.
  • HFP hexafluoropropylene
  • CFE chlorofluoroolefin
  • CTFE chlorotrifluoroethylene
  • hydrogen-containing fluoroolefins such as ethylene and vinylidene fluoride (VDF); perfluorovinyl ether; perfluoroalkylethylene (PFAE) and ethylene.
  • VDF vinylidene fluoride
  • PFAE perfluoroalkylethylene
  • PFAE per
  • the perfluorovinyl ether is not particularly limited, and examples thereof include perfluoro unsaturated compounds represented by the following general formula (1).
  • CF 2 CF-ORf (1)
  • Rf represents a perfluoro organic group.
  • a perfluoro organic group is an organic group in which all hydrogen atoms bonded to carbon atoms are substituted with fluorine atoms.
  • the perfluoro organic group may have ether oxygen.
  • perfluorovinyl ether examples include perfluoro (alkyl vinyl ether) (PAVE) in which Rf is a perfluoroalkyl group having 1 to 10 carbon atoms in the general formula (1).
  • the perfluoroalkyl group preferably has 1 to 5 carbon atoms.
  • Examples of the perfluoroalkyl group in PAVE include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, and a perfluorohexyl group.
  • PAVE is preferably perfluoropropyl vinyl ether (PPVE) or perfluoromethyl vinyl ether (PMVE).
  • the perfluoroalkylethylene is not particularly limited, and examples thereof include perfluorobutylethylene (PFBE) and perfluorohexylethylene (PFHE).
  • the modified monomer in the modified PTFE is preferably at least one selected from the group consisting of HFP, CTFE, VDF, PAVE, PFAE, and ethylene.
  • the homo-PTFE is particularly preferably contained in an amount exceeding 50% by weight of the PTFE that can be fiberized from the viewpoint of easy fibrillation and obtaining a fibril having a long fiber length.
  • the PTFE that can be fiberized may be a combination of a plurality of the above-described components.
  • PTFE that can be fiberized is preferably contained in an amount exceeding 50% by weight of the porous membrane from the viewpoint of maintaining the fiber structure of the porous membrane.
  • Component B Non-heat-melt processable component that does not fiberize
  • Non-heat-melt processable component that does not fiberize is unevenly distributed as non-fibrous particles mainly in the knots, and fiber that can be fiberized is made into fiber. It works to suppress it.
  • the component having thermoplasticity preferably has a melting point of 320 ° C. or higher and a high melt viscosity.
  • low molecular weight PTFE has a high melt viscosity, so that it can remain at the nodule even when processed at a temperature higher than the melting point.
  • low molecular weight PTFE means PTFE having a number average molecular weight of 600,000 or less, a melting point of 320 ° C. or more and 335 ° C. or less and a melt viscosity at 380 ° C. of 100 Pa ⁇ s to 7.0 ⁇ 10 5 Pa ⁇ s. (See JP-A-10-147617).
  • high molecular weight PTFE powder obtained from suspension polymerization of TFE or high molecular weight PTFE powder (fine powder) obtained from emulsion polymerization of TFE and a specific fluoride are subjected to high temperature.
  • a method of thermally decomposing by contact reaction see Japanese Patent Application Laid-Open No. 61-162503
  • a method of irradiating the above high molecular weight PTFE powder or molded product with ionizing radiation see Japanese Patent Application Laid-Open No. 48-78252
  • a method of directly polymerizing TFE together with a chain transfer agent see, for example, International Publication No.
  • the low-molecular-weight PTFE may be homo-PTFE or modified PTFE containing the above-mentioned modifying monomer, like PTFE that can be fiberized.
  • Low molecular weight PTFE has no fiberizing property. The presence or absence of fiberizing property can be determined by the method described above. Low molecular weight PTFE has no substantial strength or elongation in an unfired molded body obtained by paste extrusion. For example, it has an elongation of 0% and breaks when pulled.
  • the low molecular weight PTFE is not particularly limited, but the melt viscosity at 380 ° C. is preferably 1000 Pa ⁇ s or more, more preferably 5000 Pa ⁇ s or more, and further preferably 10,000 Pa ⁇ s or more.
  • the melt viscosity at 380 ° C. is preferably 1000 Pa ⁇ s or more, more preferably 5000 Pa ⁇ s or more, and further preferably 10,000 Pa ⁇ s or more.
  • the melt viscosity is high, the non-thermomeltable processable component that does not fiberize may remain in the knot portion even when the meltable component that does not fiberize as the C component melts during the production of the porous film. And fiberization can be suppressed.
  • thermosetting resin examples include resins such as epoxy, silicone resin, polyester, polyurethane, polyimide, phenol, and mixtures thereof.
  • thermosetting resin a water-dispersed resin in an uncured state is desirably used from the viewpoint of workability of co-coagulation described later. Any of these thermosetting resins can also be obtained as a commercial product.
  • the inorganic filler examples include talc, mica, calcium silicate, glass fiber, calcium carbonate, magnesium carbonate, carbon fiber, barium sulfate, calcium sulfate, and mixtures thereof.
  • talc is preferably used from the viewpoint of affinity and specific gravity with high molecular weight PTFE that can be fiberized.
  • the inorganic filler those having a particle diameter of 3 ⁇ m or more and 20 ⁇ m or less are preferably used from the viewpoint of forming a stable dispersion during the production of the porous membrane.
  • the particle diameter is an average particle diameter and is measured by a laser diffraction / scattering method. Any of these inorganic fillers can also be obtained as commercial products.
  • non-melt processable component that is not fiberized may be a combination of a plurality of the above components.
  • the non-thermomelt processable component that is not fiberized is contained in an amount of 1% by weight to 50% by weight of the porous membrane. It is easy to maintain the fiber structure of the porous membrane when the content of the non-thermomelt processable component that is not fiberized is 50% by weight or less.
  • the non-hot melt processable component which does not become fiber is preferably contained in an amount of 20% by weight to 40% by weight, and more preferably 30% by weight. By containing 20% by weight or more and 40% by weight or less, fiberization of PTFE that can be fiberized can be more effectively suppressed.
  • Component C a component that can be heat-melted and processed without fiberization, having a melting point of less than 320 ° C. ) Has fluidity at the time of melting, so that it can be melted and solidified at the knot at the time of production (stretching) of the porous membrane, and the strength of the entire porous membrane can be increased and compressed in the subsequent process. Even if there is, deterioration of the filter performance can be suppressed.
  • the heat-melt processable component that does not become a fiber exhibits a melt viscosity of less than 10,000 Pa ⁇ s at 380 ° C.
  • the melting point of the component that can be heat-melt processed without fibrosis is melted once at a temperature rising rate of 10 ° C./min. After cooling to below, it is set as the peak top of the heat of fusion curve obtained when the temperature is raised again at 10 ° C./min.
  • Components that can be heat-melted and processed without fiberization include heat-meltable fluoropolymers, polystyrene, polyethylene terephthalate (PET), polyester, polyamide, and the like, or a mixture thereof. In which meltability and fluidity can be sufficiently exhibited.
  • fluoropolymers that can be melted by heat are preferable because they are excellent in heat resistance at the stretching temperature during the production of the porous film and excellent in chemical resistance.
  • Useful examples of the compound represented by the general formula (2) include, but are not limited to, perfluoroolefins such as fluoroethylene, VDF, trifluoroethylene, TFE and HFP, chlorofluoroolefins such as CTFE and dichlorodifluoroethylene, Examples thereof include (perfluoroalkyl) ethylene such as PFBE and PFHE, perfluoro-1,3-dioxole, and mixtures thereof.
  • R is independently selected from H, Cl, an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, and a cyclic alkyl group having 3 to 10 carbon atoms.
  • all Rs may be the same, or any two or more Rs may be the same, and these two or more Rs may be different from the remaining Rs, and all the Rs may be different from each other.
  • the other R may be different from each other when there are a plurality of R.) and may also include a copolymer derived from copolymerization with at least one copolymerizable comonomer.
  • a useful example of the compound represented by the general formula (1) is perfluoro (alkyl vinyl ether) (PAVE).
  • PAVE perfluoro (alkyl vinyl ether)
  • PPVE perfluoropropyl vinyl ether
  • PMVE perfluoromethyl vinyl ether
  • Useful examples of the compound represented by the general formula (3) include ethylene, propylene and the like.
  • fluoropolymers include polyfluoroethylene derived from polymerization of fluoroethylene, polyvinylidene fluoride (PVDF) derived from polymerization of vinylidene fluoride (VDF), and chlorotrifluoroethylene (CTFE).
  • PCTFE Polychlorotrifluoroethylene
  • PCTFE Polychlorotrifluoroethylene
  • fluoropolymers include TFE / PAVE copolymer (PFA), TFE / PAVE / CTFE copolymer, TFE / HFP copolymer (FEP), TFE / ethylene copolymer (ETFE), TFE / Examples thereof include HFP / ethylene copolymer (EFEP), TFE / VDF copolymer, TFE / VDF / HFP copolymer, TFE / VDF / CTFE copolymer, and the like.
  • PFA PAVE copolymer
  • FEP TFE / HFP copolymer
  • ETFE TFE ethylene copolymer
  • EFEP HFP / ethylene copolymer
  • TFE / VDF copolymer TFE / VDF / HFP copolymer
  • TFE / VDF / CTFE copolymer and the like.
  • the component which can be heat-melt processed without being fiberized may be a combination of a plurality of the above-described components.
  • the content of the heat-melt-processable component that is not fiberized in the porous membrane is preferably 0.1% by weight or more and less than 20% by weight. By being less than 20% by weight, it is possible to suppress an increase in the pressure loss of the porous film due to dispersion of components that can be heat-melt processed without being fiberized into portions other than the knots in the porous film. Moreover, it becomes easy to perform extending
  • the content of the heat-melt-processable component that is not fiberized in the porous membrane is 0.1% by weight or more, so that deterioration of the filter performance of the porous membrane is sufficiently suppressed even if a compressive force or the like is given in a subsequent process. It becomes easy.
  • the content of the heat-melt processable component that is not fiberized in the porous membrane is preferably 15% by weight or less, and more preferably 10% by weight or less.
  • the content in the porous membrane of the component capable of being melt-processed without being fiberized is preferably 0.5% by weight or more from the viewpoint of securing the strength of the porous membrane. Of these, about 5% by weight is particularly preferable.
  • the content of the component that can be heat-melt processed without being fiberized is preferably 10% by weight or less in order to satisfactorily perform stretching at a stretched area magnification of 40 to 800 times.
  • the fibril is mainly composed of the A component and the nodule is composed of the components A to C.
  • Such a knot portion is formed relatively large in the porous film, thereby forming a thick porous film.
  • such a knot part is relatively hard by containing a component that can be heat-melted and processed without being fiberized, and serves as a pillar that supports the porous film in the thickness direction. Even if a compressive force or the like in the thickness direction is received in a subsequent process such as pleating as described later, it is possible to prevent the filter performance of the porous film from being deteriorated.
  • the first porous membrane 31 and the second porous membrane 32 preferably have a filling rate of 1% or more and 20% or less determined according to the following formula, and is 2% or more and 10% or less. The following is more preferable.
  • Each average pore diameter of the first porous film 31 and the second porous film 32 is preferably more than 1.6 ⁇ m, and the average pore diameter of the first porous film 31 is 3.0 ⁇ m or more and 3.9 ⁇ m or less, It is more preferable that the average pore diameter of the porous film 32 of 2 is more than 1.6 ⁇ m and less than 3.0 ⁇ m. Thereby, it becomes easy to make the dust holding amount of the 1st porous membrane 31 larger than the dust holding amount of the 2nd porous membrane 32, and it becomes easy to improve the dust holding amount of the filter medium 1 whole.
  • the average pore diameter is measured according to ASTM F316-86.
  • the average pore diameter is also referred to as an average flow path diameter.
  • the thickness of the first porous film 31 is preferably more than 10 ⁇ m and more preferably more than 40 ⁇ m from the viewpoint of increasing the dust holding amount and collection efficiency.
  • the upper limit of the film thickness of the 1st porous film 31 is not specifically limited, For example, it may be 100 micrometers.
  • the film thickness of the second porous film 32 is preferably more than 10 ⁇ m, and more preferably more than 40 ⁇ m, for example, when the second porous film 32 is composed of the above three components.
  • the upper limit of the film thickness of the 2nd porous film 32 is not specifically limited, For example, it may be 100 micrometers.
  • the film thickness was measured by stacking five objects to be measured and measuring the total film thickness, and dividing the value by 5 was taken as one film thickness.
  • the first porous film 31 and the second porous film 32 may have the same or different amounts of dust retention. From the viewpoint of greatly improving the dust holding amount of the filter medium 1 while keeping the collection efficiency of the filter medium 1 high, there is a difference between the dust holding amount of the first porous film 31 and the dust holding amount of the second porous film 32.
  • the dust holding amount of the first porous film 31 is preferably larger than the dust holding amount of the second porous film 32.
  • the amount of dust retained is the above polyalpha when the pressure loss increases by 250 Pa when air containing polyalphaolefin (PAO) particles having a median diameter of 0.25 ⁇ m is continuously ventilated at a flow rate of 5.3 cm / sec. It refers to the amount of dust retained by the olefin particles, and is simply referred to as the amount of dust retained in the following description.
  • PAO polyalphaolefin
  • the comparison between the dust holding amount of the first porous film 31 and the dust holding amount of the second porous film 32 is made using, for example, the average value of the dust holding amounts measured at 10 to 50 locations of one porous film. It can be carried out. The amount of dust retained at each measurement location is measured according to the procedure described later using polyalphaolefin particles.
  • the dust holding amount of the first porous film 31 is, for example, 25 g / m 2 or more and 35 g / m 2 or less.
  • the pressure loss of the first porous membrane 31 and the pressure loss of the second porous membrane 32 may be the same or different from each other, but the pressure loss is low and the collection efficiency is low. From the viewpoint of increasing the dust holding amount while maintaining high physical properties, the pressure loss of the first porous film 31 is preferably smaller than the pressure loss of the second porous film 32.
  • the collection efficiency of the first porous membrane 31 and the collection efficiency of the second porous membrane 32 may be equal to or different from each other, but maintain the physical properties with low pressure loss and high collection efficiency. From the standpoint of increasing the amount of dust retained with this, it is preferable that the collection efficiency of the second porous film 32 is higher than that of the first porous film 31.
  • the pressure loss of the first porous film 31 is made smaller than the pressure loss of the second porous film 32, and the collection efficiency of the second porous film 32 is set to be the collection efficiency of the first porous film 31.
  • the first porous film 31 on the upstream side can pass the particulates to the downstream side to some extent without collecting too much fine particles.
  • the second porous film 32 on the downstream side can perform sufficient collection. Thereby, it can collect over the wide area
  • pressure loss refers to the pressure loss when air is passed at a flow rate of 5.3 cm / sec. In the following description, it is also simply referred to as pressure loss.
  • the collection efficiency refers to the collection efficiency of the particles when air containing NaCl particles having a particle diameter of 0.3 ⁇ m is passed at a flow rate of 5.3 cm / sec, unless otherwise specified. It is also simply called collection efficiency in the explanation.
  • the pressure loss of the first porous film 31 and the pressure loss of the second porous film 32 can be compared using, for example, the average value of the pressure loss measured at 10 to 50 locations of one porous film. .
  • the pressure loss at each measurement location is measured according to the procedure described later.
  • size of the difference of the pressure loss of the 1st porous film 31 and the pressure loss of the 2nd porous film 32 is not specifically limited, For example, you may be 10 Pa or more and 130 Pa or less.
  • the pressure loss of the 1st porous film 31 may be 30 Pa or more and 90 Pa or less, and may be 40 Pa or more and 80 Pa or less.
  • the pressure loss of the second porous film 32 may be 40 Pa or more and 160 Pa or less, or 50 Pa or more and 100 Pa or less.
  • Comparison of the collection efficiency of the first porous membrane 31 and the collection efficiency of the second porous membrane 32 is performed using, for example, an average value of the collection efficiencies measured at 10 to 50 locations of one porous membrane. be able to.
  • the collection efficiency at each measurement location is measured according to the procedure described later using NaCl particles having a particle diameter of 0.3 ⁇ m.
  • the collection efficiency of the first porous film 31 is, for example, 95% or more and 99% or less
  • the collection efficiency of the second porous film 32 is, for example, 99% or more and 99.99% or less. It is.
  • the reason that the dust holding amount can be increased by making the first porous film 31 on the upstream side different from the second porous film on the downstream side is that the first porous film is the second porous film. It is considered that the average pore diameter is larger than that of the fine particles so that the fine particles can flow downstream. That is, the average pore diameter of the first porous membrane 31 that is the upstream layer is widened and roughened (specifically, the average pore diameter is 3.0 ⁇ m or more and 3.9 ⁇ m or less). It is considered that the dust was collected in a wider range in the thickness direction of the filter medium 1 as a result of passing in the thickness (thickness) direction. In particular, when the first porous film 31 and the second porous film 32 produced using the above three components are used, the thickness can be secured, so that a region in the thickness direction that can be collected can be secured, and the dust retention It is thought that the amount was increased.
  • the first porous film 31 and the second porous film 32 are produced, for example, according to a method for producing a porous film included in a method for producing an air filter filter material to be described later.
  • the upstream breathable support material 21 is disposed on the upstream side of the first porous membrane 31 and supports the first porous membrane 31. For this reason, even if the first porous film 31 is difficult to be self-supporting due to a thin film thickness or the like, the first porous film 31 can be made to stand by the support of the upstream air-permeable support material 21.
  • the downstream air-permeable support material 22 is disposed on the downstream side of the second porous film 32 and supports the second porous film 32.
  • the downstream air-permeable support material 22 is arrange
  • the second porous membrane 32 can be made to stand by the support of the downstream air-permeable support material 22.
  • the material and structure of the upstream air-permeable support material 21 and the downstream air-permeable support material 22 are not particularly limited, and examples thereof include a nonwoven fabric, a woven fabric, a metal mesh, and a resin net.
  • the nonwoven fabric which has heat-fusibility from a point of intensity
  • Non-woven fabric is a non-woven fabric in which some or all of the constituent fibers have a core / sheath structure, a two-layer non-woven fabric comprising two layers of a fiber layer made of a low melting point material and a fiber layer made of a high melting point material, and heat fusion to the surface
  • a nonwoven fabric coated with a conductive resin is preferred.
  • An example of such a nonwoven fabric is a spunbond nonwoven fabric.
  • the core / sheath nonwoven fabric preferably has a core component having a higher melting point than the sheath component.
  • examples of the combination of the core / sheath materials include PET / PE and high-melting polyester / low-melting polyester.
  • Examples of the combination of the low melting point material / high melting point material of the two-layer nonwoven fabric include PE / PET, PP / PET, PBT / PET, and low melting point PET / high melting point PET.
  • Examples of the non-woven fabric having a surface coated with a heat-fusible resin include a PET non-woven fabric coated with EVA (ethylene vinyl acetate copolymer resin), and a PET non-woven fabric coated with an olefin resin.
  • the material of the nonwoven fabric is not particularly limited, and polyolefin (PE, PP, etc.), polyamide, polyester (PET, etc.), aromatic polyamide, or a composite material thereof can be used.
  • the upstream air-permeable support material 21 uses the anchor effect or uses an adhesive such as a reactive adhesive by melting a part of the upstream air-permeable support material 21 by heating, or by melting a hot melt resin. Then, it can be bonded to the first porous film 31. Similarly, the downstream air-permeable support material 22 can be bonded to the second porous film 32.
  • the upstream air-permeable support material 21 and the downstream air-permeable support material 22 may be the same type or different types.
  • the upstream air-permeable support material 21 and the downstream air-permeable support material 22 are all extremely low in pressure loss, collection efficiency, and dust holding amount as compared with the porous membrane described above, and can be regarded as substantially zero. It may be a thing.
  • Each pressure loss of the upstream air-permeable support material 21 and the downstream air-permeable support material 22 is, for example, preferably 10 Pa or less, more preferably 5 Pa or less, and even more preferably 1 Pa or less.
  • each of the collection efficiencies of NaCl having a particle diameter of 0.3 ⁇ m of the upstream air-permeable support material 21 and the downstream air-permeable support material 22 can be regarded as substantially 0 or substantially 0, for example. Also good.
  • each thickness of the upstream air-permeable support material 21 and the downstream air-permeable support material 22 is, for example, preferably 0.3 mm or less, and more preferably 0.25 mm or less.
  • each of the fabric weights of the upstream air-permeable support material 21 and the downstream air-permeable support material 22 is, for example, 20 g / m 2 or more and 50 g / m 2 or less.
  • Pre-collecting material 10 is disposed upstream of the first porous film 31 (in the present embodiment, upstream of the upstream air-permeable support material 21), and dust in the airflow A part of can be collected.
  • the pre-collecting material 10 has a pressure loss of 15 Pa or more and less than 55 Pa, a collection efficiency of 25% or more and less than 80%, a thickness of 0.4 mm or less, and a PF value of 7 or more and 15 or less.
  • the pre-collecting material 10 is not particularly limited, but is preferably a non-woven fabric or a fiber layer structure composed of a fiber material manufactured by a melt blown method, an electrospinning method, a sea island method, or one of these hybrid methods.
  • the hybrid method includes, for example, a melt spinning method or an electret blow method.
  • the sea-island method for example, in the case where fibers are formed by discharging from a plurality of discharge ports, provides a difference in the raw material depending on the discharge path, configures the sea part with a part of the raw material, and forms the island part with another different raw material. This is a method in which the cross section is a sea-island structure.
  • a two-component or plural-component polymer of sea islands is spun and the sea components are melted by post-processing, so that the island portion remains and can be made into a fiber.
  • the bulk density, stretchability, and the like can be adjusted by a combination of raw materials through the discharge path.
  • a melted polymer is discharged from a nozzle by an extruder, and heated air is blown out along the nozzle to form a yarn.
  • a thread having a smaller diameter can be obtained by adjusting the amount of polymer discharged from the nozzle per unit time, the blowing speed of heated air, and the like.
  • the physical properties of the yarn can also be changed by the melt viscosity of the polymer used.
  • the pressure loss of the pre-collecting material 10 is 15 Pa or more and less than 55 Pa from the viewpoint of keeping the pressure loss of the entire filter medium 1 low.
  • the dust collection efficiency of the pre-collecting material 10 is 25% or more and less than 80%, and more preferably 40% or more and less than 80%. If the collection efficiency of the pre-collecting material 10 is too low, the collection load of the first porous film 31 and the second porous film 32 becomes high, and clogging due to dust occurs early. Moreover, if the pre-collecting material 10 has an excessively high collection efficiency, clogging of the pre-collecting material 10 itself cannot be ignored, and the clogging is also caused early.
  • the thickness of the pre-collecting material 10 is 0.4 mm or less, for example. When the thickness of the pre-collecting material 10 exceeds 0.4 mm, the pressure loss (structural resistance) resulting from the structure of the air filter unit 60 becomes large.
  • the PF value of the pre-collecting material 10 suppresses the collection efficiency of the pre-collecting material 10 for suppressing the collection load on the first porous film 31 and the second porous film 32 and the pressure loss of the entire filter medium. From the viewpoint of improving the balance between the pressure loss of the pre-collecting material 10 and increasing the amount of dust retained in the entire filter medium, it is 7 to 15 and more preferably 7 to 13.
  • the PF value is determined by the following equation.
  • the material of the fiber material of the pre-collecting material 10 is not particularly limited.
  • polyethylene polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), polyacrylonitrile ( PAN), polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA), polyurethane (PU), and mixtures thereof.
  • the average fiber diameter in the non-woven fabric or fiber layer structure of the pre-collecting material 10 is preferably 0.8 ⁇ m or more and less than 2.0 ⁇ m.
  • the average fiber diameter is smaller than 0.8 ⁇ m, the collection efficiency is increased, but the fibers are densely arranged, so that the pressure loss in the pre-collecting material 10 is greatly increased.
  • the average fiber diameter is 2 ⁇ m or more, if the basis weight is increased in order to maintain the collection efficiency, the thickness of the pre-collecting material 10 increases, and the pressure loss in the pre-collecting material 10 increases. Resulting in.
  • the basis weight is preferably, for example, 5 g / m 2 or more and 50 g / m 2 or less.
  • the fiber diameter is too small, the fiber spacing becomes dense and clogging of the pre-collecting material itself cannot be ignored. If the fiber diameter is too large, the collection efficiency per unit fiber decreases. In order to obtain the collection efficiency, the basis weight and thickness are increased, and the structural resistance is increased, which is not preferable.
  • the geometric standard deviation indicating the spread of the fiber diameter distribution is preferably 2.5 or less, more preferably 2.0 or less. This is because if the geometric standard deviation is too large, the proportion of fibers with low collection efficiency per unit fiber increases, and it is necessary to increase the basis weight and thickness in order to obtain the collection efficiency required for the pre-collecting material. Because it comes.
  • the average fiber diameter is determined as follows. First, the surface of the test sample was photographed with a scanning electron microscope (SEM) at 1000 to 5000 times, and two perpendicular lines were drawn on one photographed image, and the thickness of the image of the fiber intersecting with these lines Is obtained as the fiber diameter.
  • the number of fibers to be measured is 200 or more.
  • the fiber diameter thus obtained is log-normally plotted with the fiber diameter on the horizontal axis and the cumulative frequency on the vertical axis, and the value at which the cumulative frequency is 50% is defined as the average fiber diameter.
  • the geometric standard deviation representing the distribution of the fiber diameter is obtained by reading the fiber diameter at the cumulative frequency of 50% and the fiber diameter at the cumulative frequency of 84% from the result of the above-mentioned logarithmic normal plot and calculating from the following formula.
  • Geometric standard deviation [ ⁇ ] cumulative frequency 84% fiber diameter / cumulative frequency 50% fiber diameter (5)
  • PF value of the pre-collecting material 10 / PF value when the first porous film 31 and the second porous film 32 are laminated which is a ratio of the PF value of 10, is 0.20 or more and 0.45. Or less, more preferably 0.20 or more and 0.38 or less.
  • the relationship between the pre-collecting material 10 and the first porous film 31 and the second porous film 32 is within the above range, so that the pre-collecting material 10 is not clogged early. It is possible to collect dust in the pre-collecting material 10 and to moderately reduce the collection burden on the first porous film 31 and the second porous film 32 on the downstream side, and in a wide range in the thickness direction. More dust can be collected.
  • the PF value in a state where the upstream air-permeable support material 21, the first porous film 31, the second porous film 32, and the downstream air-permeable support material 22 are laminated is substantially the first value. Is equal to the PF value in a state where the porous film 31 and the second porous film 32 are laminated. This is because the upstream air-permeable support material 21 and the downstream air-permeable support material 22 do not substantially contribute to pressure loss and collection efficiency.
  • the pressure loss of the filter medium 1 is preferably less than 200 Pa, and more preferably 70 Pa or more and 195 Pa or less. Since the pressure loss of the filter medium 1 is in such a range, it can be suppressed to be lower than that of a HEPA filter made of a glass filter medium.
  • the collection efficiency of the filter medium 1 is preferably 99.97% or more.
  • a filter medium satisfying such a collection efficiency can be used as a HEPA grade filter.
  • the dust retention amount of the filter medium 1 is 40 g / m 2 or more.
  • the filter medium 1 of the present embodiment can greatly improve the dust holding amount (equal or more than the dust holding amount of the glass filter medium) while maintaining a high balance between the collection efficiency and the pressure loss. ing.
  • the filter medium 1 of the present embodiment includes the first porous film 31, the second porous film 32, and the pre-collecting material 10 such that the pressure loss of the entire filter medium 1 is less than 200 Pa, and the collection efficiency is 99.
  • the dust holding amount can be increased to 40 g / m 2 or more while maintaining the physical property of 97% or more.
  • the pre-collecting material 10 the optional upstream air-permeable support material 21, the first porous film 31, the second porous film 32, and the optional material are sequentially installed from the upstream side of the airflow.
  • An example of a filter medium having a five-layer structure including the downstream air-permeable support material 22 has been described.
  • a filter medium 2 for an air filter having a six-layer structure as shown in FIG. 2 may be used.
  • the air filter medium 2 is, in order from the upstream side of the air flow, the pre-collecting material 10, an optional upstream air-permeable support material 21, the first porous membrane 31, and the second
  • the porous film 32 and an optional downstream air-permeable support material 22 are provided, and an optional medium-circulation gas support material 23 is further provided between the first porous film 31 and the second porous film 32.
  • the pre-collecting material 10 the upstream air-permeable support material 21, the first porous film 31, the second porous film 32, and the downstream air-permeable support material 22 are all included. It is the same as that of the filter medium 1 for the air filter.
  • the medium-circulation air-permeable support material 23 those described in the column of the air-permeable support material can be used in the same manner as the upstream air-permeable support material 21 and the downstream air-permeable support material 22 described above.
  • the upstream air-permeable support material 21, the downstream air-permeable support material 22, and the medium circulation air-supporting material 23 may be the same type or different types.
  • the dust holding amount is maintained while maintaining the physical properties that the pressure loss is less than 200 Pa and the collection efficiency is 99.97% or more. Can be increased to 40 g / m 2 or more.
  • the present invention is not limited to this and may be three or more.
  • the plurality of porous membranes be arranged so that the magnitude of the pressure loss decreases in order from the downstream side to the upstream side of the airflow.
  • the pre-collecting material 10 the optional upstream air-permeable support material 21, the first porous film 31, the second porous film 32, and the optional material are sequentially installed from the upstream side of the airflow.
  • An example of a filter medium having a five-layer structure including the downstream air-permeable support material 22 has been described.
  • a filter medium 3 for an air filter having a three-layer structure as shown in FIG. 3 may be used.
  • the air filter medium 2 includes a pre-collecting material 10, a first porous film 31, and a second porous film 32 in order from the upstream side of the airflow, like the air filter medium 1. .
  • the pre-collecting material 10 the first porous film 31, and the second porous film 32 are all the same as those of the air filter medium 1.
  • the air filter medium 3 has a weaker structure and is less likely to be self-supporting in that the optional upstream air-permeable support material 21 and the optional downstream air-permeable support material 22 are not provided as compared with the air filter medium 1.
  • the strength may not be required depending on the structure of the place used and the installation environment, and it can be used as a filter medium for an air filter.
  • the amount of dust retained while maintaining the physical properties of a pressure loss of less than 200 Pa and a collection efficiency of 99.97% or more, as with the air filter medium 1. Can be increased to 40 g / m 2 or more.
  • the number of porous membranes used is not limited to two, and may be three or more. In this case, it is preferable that the plurality of porous membranes be arranged so that the magnitude of the pressure loss decreases in order from the downstream side to the upstream side of the airflow.
  • Example of application The filter material for air filters is used for the following uses, for example.
  • ULPA filter Ultra low Penetration Air Filter
  • HEPA filter hospital, for semiconductor manufacturing
  • cylindrical cartridge filter for industry
  • bag filter for industry
  • heat resistant bag filter for exhaust gas treatment
  • heat resistance Pleated filter for exhaust gas treatment
  • SINBRAN registered trademark
  • catalyst filter for exhaust gas treatment
  • filter with adsorbent for HDD incorporation
  • vent filter with adsorbent for HDD incorporation
  • vent filter Fields such as (HDD built-in), vacuum cleaner filters (for vacuum cleaners), general-purpose multilayered felt materials, cartridge filters for gas turbines (for compatible products for gas turbines), cooling filters (for electronic equipment housings); Freeze-drying materials such as freeze-drying containers, automotive ventilation materials for electronic circuits and lamps, container applications such as container caps, protective ventilation applications for electronic devices, and ventilation / internal pressure adjustment for medical ventilation applications Field; Semiconductor liquid filtration filters (for semiconductor manufacturing), hydrophilic filters (for semiconductor manufacturing), chemical filters (for chemical processing), pure water production line
  • FIG. 4 is an external perspective view of the filter pack 40 of the present embodiment.
  • the filter pack 40 includes the above-described air filter medium (for example, the air filter medium 1 and the air filter medium 2).
  • the filter medium for the air filter of the filter pack 40 is a processed filter medium that has been processed (pleated) into a zigzag shape in which mountain folds and valley folds are alternately repeated.
  • the pleating process can be performed by, for example, a rotary folding machine.
  • variety of a filter medium is not specifically limited, For example, they are 25 mm or more and 280 mm or less. Since the filter pack 40 has been subjected to pleating processing, it is possible to increase the folding area of the filter medium when used in an air filter unit, thereby obtaining an air filter unit with high collection efficiency. .
  • the filter pack 40 may further include a spacer (not shown) for holding the pleat interval when used in the air filter unit, in addition to the filter medium.
  • the material of the spacer is not particularly limited, but a hot melt resin can be preferably used.
  • FIG. 5 is an external perspective view of the air filter unit 60 of the present embodiment.
  • the air filter unit 60 includes the air filter medium or filter pack described above, and the frame 50 that holds the air filter medium or filter pack.
  • the air filter unit may be manufactured such that the filter medium is held by the frame body, or may be manufactured so that the filter pack 40 is held by the frame body 50.
  • the air filter unit 60 shown in FIG. 5 is manufactured using the filter pack 40 and the frame body 50.
  • the frame 50 is made, for example, by combining plate materials or molding a resin, and the gap between the filter pack 40 and the frame 50 is preferably sealed with a tooth sealant.
  • the sealing agent is for preventing leakage between the filter pack 40 and the frame body 50, and for example, a resin made of epoxy, acrylic, urethane, or the like is used.
  • the air filter unit 60 including the filter pack 40 and the frame body 50 is a mini-pleat type air filter unit in which one filter pack 40 extending in a flat plate shape is held so as to be housed inside the frame body 50.
  • a V bank type air filter unit or a single header type air filter unit in which a plurality of filter packs extending in a flat plate shape are arranged and held in a frame may be used.
  • an air filter unit including a filter medium and a frame has a corrugated shape obtained by alternately folding the filter medium, and a corrugated separator, for example, is disposed in a valley portion of the filter medium formed by alternately folding the filter medium.
  • a separator-type air filter unit may also be used.
  • the manufacturing method of the filter medium of this embodiment is a manufacturing method of the filter medium for air filters which collects dust in gas, (A) obtaining a first porous film and a second porous film mainly containing a fluororesin; (B) disposing the first porous membrane on the upstream side of the airflow with respect to the second porous membrane; (C) a step of disposing a pre-collecting material that collects part of dust in the airflow upstream of the first porous membrane; With The pre-collecting material has a pressure loss of 15 Pa or more and less than 55 Pa when air is passed at a flow rate of 5.3 cm / sec, and a collection efficiency of NaCl having a particle diameter of 0.3 ⁇ m is 25% or more and less than 80%.
  • the thickness is 0.4 mm or less
  • the ratio of the PF value of the pre-collecting material to the PF value when the first porous film and the second porous film are laminated is “PF value of pre-collecting material / first porous film and second
  • the value of “PF value when laminating porous films” is 0.20 or more and 0.45 or less
  • the method further includes a step of integrating the first porous film, the second porous film, and the pre-collecting material by heat laminating.
  • the same fluororesin used in the step (a) as that used in the air filter medium described above is used.
  • the first porous film and the second porous film may further contain other components different from the fluororesin.
  • the PF value of the pre-collecting material is preferably 7 or more and 13 or less.
  • the method may further comprise the step of (d) disposing an upstream air-permeable support material that supports the first porous membrane upstream of the first porous membrane.
  • the first porous film, the second porous film, the upstream air-permeable support material, and the pre-collecting material may be further integrated by thermal lamination.
  • the method may further include a step of disposing a downstream air-permeable support material that supports the second porous membrane on the downstream side of the airflow with respect to the second porous membrane.
  • the first porous film, the second porous film, the downstream air-permeable support material, and the pre-collecting material may be further integrated by thermal lamination.
  • first porous film the second porous film, the upstream air-permeable support material, the downstream air-permeable support material, and the pre-collecting material;
  • it may further include a step of integrating by heat lamination.
  • step (a) the method of producing the first porous film and the second porous film using the above-described three kinds of components will be described as an example.
  • the forms of the three components A to C described above are not particularly limited, and examples thereof include a composition, a mixed powder, and a molding material described later. First, the composition, mixed powder, and molding material used as the raw material for the porous film will be described.
  • composition, the mixed powder, and the molding material each include the above-described A component, B component, and C component, and the C component is contained in an amount of 0.1% by weight or more and less than 20% by weight.
  • the A component, the B component, and the C component are the same as the above-described PTFE that can be fiberized, the non-heat-melting processable component that is not fiberized, and the heat-meltable component that is not fiberized.
  • the molding material is, for example, a porous membrane molding material for molding a porous membrane used for a filter medium that collects fine particles in a gas.
  • the form of the raw material of the porous film may be a mixed powder described later, a non-powder mixture, or a molding material or composition described later.
  • the mixed powder for example, fine powder obtained by co-coagulation used in the examples described later, or two of the three raw materials are mixed by co-coagulation, and the other component is used with a mixer. And mixed powders, and powders obtained by mixing three kinds of raw materials with a mixer.
  • the mixture that is not powder include a molded body such as a porous body (for example, a porous film) and an aqueous dispersion containing three kinds of components.
  • the molding material refers to a material that has been adjusted for processing in order to mold the composition. For example, a material to which a processing aid (liquid lubricant, etc.) is added, a material whose particle size is adjusted, a preliminary material, etc. was molded.
  • the molding material may include, for example, known additives in addition to the above three components. Examples of known additives include carbon materials such as carbon nanotubes and carbon black, pigments, photocatalysts, activated carbon, antibacterial agents, adsorbents, deodorants and the like.
  • the composition can be produced by various methods.
  • the composition is a mixed powder
  • the A component powder, the B component powder, and the C component powder are mixed by a general mixer or the like.
  • Method, method of obtaining co-coagulated powder by co-coagulating three aqueous dispersions each containing A component, B component, and C component (step a) above) Any of A component, B component, and C component
  • a mixed powder obtained by co-coagulating an aqueous dispersion containing two components in advance can be produced by a method of mixing the remaining one component powder with a general mixer or the like. If it is such a method, even if it is any manufacturing method, a suitable extending
  • the composition is obtained by co-coagulation of three aqueous dispersions each containing A component, B component, and C component in that three different components are easily dispersed uniformly. It is preferable.
  • the size of the mixed powder obtained by co-coagulation is not particularly limited.
  • the average particle size is 100 ⁇ m or more and 1000 ⁇ m or less, and preferably 300 ⁇ m or more and 800 ⁇ m or less.
  • the average particle diameter is measured according to JIS K6891.
  • the apparent density of the mixed powder obtained by co-coagulation is not particularly limited, and is, for example, 0.40 g / ml or more and 0.60 g / ml or less, and 0.45 g / ml or more and 0.55 g / ml or less. It is preferable.
  • the apparent density is measured according to JIS K6892.
  • Examples of the co-coagulation method include: (I) A method of coagulating after mixing an aqueous dispersion of component A, an aqueous dispersion of component B, and an aqueous dispersion of component C; (Ii) A method of coagulating after adding the remaining two component powders to the aqueous dispersion of any one of the A component, B component, and C component; (Iii) A method of coagulating after adding the powder of any one of the A component, B component and C component to the mixed aqueous dispersion obtained by mixing the remaining two aqueous dispersions, (Iv) The two-component mixed powder obtained by coagulating after mixing each aqueous dispersion of any two components of component A, component B and component C in advance into the remaining component aqueous dispersion A method of coagulation after addition, Is mentioned.
  • the method (i) is preferable in that the three components are easily dispersed uniformly.
  • acids such as nitric acid, hydrochloric acid, sulfuric acid; magnesium chloride, calcium chloride, sodium chloride, aluminum sulfate, magnesium sulfate, barium sulfate, sodium hydrogen carbonate, carbonic acid
  • a metal salt such as sodium
  • an organic solvent such as acetone and methanol
  • the form before mixing of the component A is not particularly limited, but may be the above-mentioned aqueous PTFE dispersion that can be fiberized or powder.
  • the powder particularly, the fine powder described above
  • the powder include “Teflon 6-J” (hereinafter, “Teflon is a registered trademark”), “Teflon 6C-J”, “Teflon 62-J”, etc., manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.
  • the fine powder may be obtained by coagulating and drying an aqueous dispersion of PTFE obtained by emulsion polymerization of TFE (an aqueous dispersion after polymerization).
  • the aqueous PTFE dispersion that can be fiberized may be the above-described aqueous dispersion after polymerization, or a commercially available aqueous dispersion.
  • a preferable method for preparing an aqueous PTFE dispersion that can be fiberized after polymerization include those disclosed in the above publications listed as disclosing homo-PTFE.
  • Commercially available aqueous dispersions of PTFE that can be made into fibers include “Polyflon D-110”, “Polyflon D-210”, “Polyflon D-210C”, and “Polyflon D-310” manufactured by Daikin Industries, Ltd.
  • aqueous dispersions such as “Teflon 31-JR” and “Teflon 34-JR” manufactured by Fluorochemical Co., Ltd., “Fluon AD911L”, “Fullon AD912L”, and “AD938L” manufactured by Asahi Glass Co., Ltd.
  • aqueous dispersions such as “Teflon 31-JR” and “Teflon 34-JR” manufactured by Fluorochemical Co., Ltd., “Fluon AD911L”, “Fullon AD912L”, and “AD938L” manufactured by Asahi Glass Co., Ltd.
  • aqueous dispersions such as “Teflon 31-JR” and “Teflon 34-JR” manufactured by Fluorochemical Co., Ltd., “Fluon AD911L”, “Fullon AD912L”, and “AD938L” manufactured by Asahi Glass Co., Ltd.
  • the form before mixing of B component is not particularly limited, but when B component is low molecular weight PTFE, the form before mixing is not particularly limited, but may be an aqueous dispersion or powder (generally It may be called PTFE micropowder or micropowder).
  • the low molecular weight PTFE powder include “MP1300-J” manufactured by Mitsui & DuPont Fluoro Chemical Co., Ltd., “Lublon L-5” and “Lublon L-5F” manufactured by Daikin Industries, Ltd., and “Fullon L169J manufactured by Asahi Glass Co., Ltd. ”,“ Fullon L170J ”,“ Fullon L172J ”and the like,“ KTL-F ”,“ KTL-500F ”and the like manufactured by Kitamura.
  • the aqueous dispersion of low molecular weight PTFE may be an aqueous dispersion after polymerization obtained from the above-mentioned emulsion polymerization of TFE, or may be a commercially available aqueous dispersion. Also, micro powder dispersed in water using a surfactant can be used.
  • a preferred method for preparing an aqueous PTFE dispersion that can be fiberized after polymerization JP-A-7-165828, JP-A-10-147617, JP-A-2006-063140, JP-A-2009-1745, International The production method disclosed in the publication 2009/020187 pamphlet etc. is mentioned.
  • aqueous dispersions of PTFE examples include aqueous dispersions such as “Lublon LDW-410” manufactured by Daikin Industries, Ltd.
  • aqueous dispersions such as “Lublon LDW-410” manufactured by Daikin Industries, Ltd.
  • 2 to 10 parts by weight of a nonionic surfactant is added to 100 parts by weight of PTFE in the aqueous dispersion.
  • the nonionic surfactant tends to remain in the mixed powder obtained by co-coagulation, which may cause problems such as coloring of the porous body.
  • the aqueous dispersion of low molecular weight PTFE is preferably an aqueous dispersion after polymerization.
  • an inorganic filler when used as the B component, the form before mixing is not particularly limited, but an aqueous dispersion is preferable.
  • the inorganic filler include “Talc P2” manufactured by Nippon Talc Co., Ltd. and “LMR-100” manufactured by Fuji Talc Industry Co., Ltd. These are used by appropriately performing a surface treatment with a silane coupling agent or the like and dispersing the powder in water.
  • a secondary pulverized product such as “talc P2” by a jet mill is preferably used because of dispersibility in water.
  • the C component examples include fluororesins such as FEP and PFA, and resins such as acrylic, urethane, and PET.
  • the form before mixing is not particularly limited, but an aqueous dispersion is preferable.
  • the aqueous dispersion is a resin obtained by emulsion polymerization, the dispersion after polymerization can be used as it is, and a resin powder dispersed in water using a surfactant or the like can also be used.
  • An aqueous dispersion is prepared by dispersing a predetermined amount of C component in water such that 0.1% by weight or more and less than 20% by weight is contained in the porous film.
  • the co-coagulation method is not particularly limited, but it is preferable to apply a mechanical stirring force after mixing three aqueous dispersions.
  • liquid lubricant is not particularly limited as long as it can wet the surface of the PTFE powder and can be removed after the mixture obtained by co-coagulation is formed into a film.
  • hydrocarbon oils such as liquid paraffin, naphtha, white oil, toluene and xylene, alcohols, ketones, esters and the like.
  • the mixture obtained by co-coagulation is mixed with a liquid lubricant and then extruded and rolled by a conventionally known method to form a film-like product.
  • Extrusion can be performed by paste extrusion, ram extrusion, or the like, but is preferably performed by paste extrusion.
  • the sheet-like extrudate extruded by paste extrusion is rolled using a calender roll or the like under heating, for example, under a temperature condition of 40 ° C. or higher and 80 ° C. or lower.
  • the thickness of the obtained film-like rolled product is set based on the thickness of the target porous film, and is usually 100 ⁇ m or more and 400 ⁇ m or less.
  • the liquid lubricant is removed from the green film that is a rolled product.
  • the liquid lubricant is removed by a heating method, an extraction method, or a combination thereof.
  • the heating temperature in the case of the heating method is not particularly limited as long as it is lower than the melting point of the hot-melt processable component that is not fiberized, and is, for example, 100 ° C. or higher and 250 ° C. or lower.
  • the rolled product from which the liquid lubricant has been removed is stretched at a temperature equal to or higher than the melting point of the non-fibrous hot melt processable component and below the decomposition temperature of the non-hot melt meltable component.
  • the stretching temperature at this time may be set according to the temperature of the furnace in which stretching is performed or the temperature of the heating roller that conveys the rolled product, or may be realized by combining these settings.
  • Stretching includes stretching in the first direction, and preferably stretching in a second direction orthogonal to the first direction.
  • the porous membrane is used for an embossed air filter medium, it is preferable to perform stretching in the second direction.
  • the first direction is the longitudinal direction (longitudinal direction) of the rolled product
  • the second direction is the width direction (lateral direction) of the rolled product.
  • the rolled product is stretched at a stretched area ratio of 40 times to 800 times.
  • the stretching speed in the first direction is preferably 10% / second or more and 600% / second or less, more preferably 10% / second or more and 150% / second or less.
  • the temperature during stretching is preferably 200 ° C. or higher and 350 ° C. or lower, more preferably 280 ° C. or higher and 310 ° C. or lower.
  • the stretching speed in the second direction is preferably 10% / second or more and 600% / second or less.
  • the temperature during stretching is preferably 200 ° C. or higher and 400 ° C. or lower, more preferably 250 ° C. or higher and 350 ° C. or lower.
  • the stretching in the second direction may be performed simultaneously with or separately from the stretching in the first direction.
  • the stretching of the rolled product also referred to as an unfired fluororesin
  • the SS curve (a graph showing the relationship between tensile tension and elongation) of the unfired fluororesin shows unique characteristics different from those of other resins.
  • the tensile tension of a resin material increases with elongation. While the range of the elastic region, the breaking point, and the like vary depending on the material and the evaluation conditions, it is very common that the tensile tension shows an increasing tendency with the amount of elongation.
  • the unfired fluororesin shows a gradual decrease in tensile tension after a peak at a certain elongation. This indicates that the unfired fluororesin has a “region where the unstretched portion is stronger than the stretched portion”.
  • the stretching speed of the first stretching is 150%. / Second or less, preferably 80% / second or less, and the stretching in the second direction needs to be 500% / second or less.
  • the low filling rate structure of the molded body thus obtained is easily damaged by an external force.
  • the presence of a non-thermomelt processable component that does not become fiberized makes the above phenomenon more pronounced due to the low stretching speed.
  • the range of applicable stretching speeds is to extend the stretching speed of the first stretching to 600% / second or less, preferably 150% / second or less, and the stretching in the second direction to 600% / second or less. it can.
  • the presence of components that do not become fiber and can be heat-melt processed allows the structure to be maintained after post-processing.
  • the porous membrane thus obtained is preferably heat-set in order to obtain mechanical strength and dimensional stability.
  • the temperature at the time of heat setting may be not lower than the melting point of PTFE or lower than the melting point of PTFE, and is preferably 250 ° C. or higher and 400 ° C. or lower.
  • the time of preparation of a 2nd porous film is with respect to 100 weight part of fluororesins rather than the time of preparation of a 1st porous film.
  • the difference in the amount of liquid lubricant relative to 100 parts by weight of the fluororesin is preferably 1 part by weight or more and 4 parts by weight or less.
  • the amount of the auxiliary agent is 1 part by weight or more, an appropriate difference in average pore diameter can be generated between the two porous membranes. It can suppress that the uniformity of extending
  • the uniformity of stretching means that in a porous film prepared by stretching, there are few variations in characteristics such as collection efficiency and pressure loss, and these characteristics are uniform throughout the entire porous film.
  • the liquid lubricant amount difference is, for example, 2 parts by weight.
  • the amount of the liquid lubricant used when producing the first porous film and when producing the second porous film is preferably 30 parts by weight or more and 37 parts by weight or less with respect to 100 parts by weight of the fluororesin.
  • a pressure loss can be made low and a pressure loss can be less than 200 Pa as the whole filter medium.
  • 37 parts by weight or less the moldability of the raw tape described later can be secured, the pore diameter of the first porous film becomes too large, and the fine particles pass through without being collected and flow to the downstream side. It can suppress that the burden of this 2nd porous membrane becomes large too much.
  • the amount of the liquid lubricant used when producing the first porous film is preferably, for example, 34 to 36 parts by weight with respect to 100 parts by weight of the fluororesin.
  • the second porous film is used in an amount of less than 31 to 34 parts by weight, whereas the first porous film is formed in an amount of 34 to By using less than 36 parts by weight, the amount of dust retained in the filter medium can be significantly increased.
  • the first porous film and the second porous film can be produced by producing a green film (hereinafter also referred to as a raw tape) by a known method and then biaxially stretching.
  • a green film hereinafter also referred to as a raw tape
  • the difference in average pore diameter between the two porous membranes may be achieved by making the blending ratio of the above three components different between the two porous membranes.
  • the collection efficiency is 25% or more and less than 80%
  • the thickness is 0.4 mm or less
  • the PF value is 7 or more and 15 or less.
  • the arrangement method is not particularly limited.
  • the step of integrating the first porous film, the second porous film, and the pre-collecting material by heat lamination is not particularly limited, and the first porous film and the second porous film are integrated by one heat lamination.
  • the adjacent ones are integrated by thermal lamination, and this is repeated to repeat the first porous film and the second porous film. All of the pre-collecting material may be integrated.
  • the step of integrating the first porous film, the second porous film, the upstream air-permeable support material, and the pre-collecting material by heat lamination is not particularly limited, and the first porous film is formed by one heat lamination.
  • the first porous film is formed by one heat lamination.
  • the second porous membrane, the upstream air-permeable support material, and the pre-collecting material those adjacent to each other are integrated by thermal lamination, and this is repeated. All of the first porous membrane, the second porous membrane, the upstream air-permeable support material, and the pre-collecting material may be integrated.
  • the integration of the downstream air-permeable support material is the same as the upstream air-permeable support material.
  • the lamination method of each layer in the filter medium 1 for an air filter having a five-layer structure shown in FIG. 1 is not particularly limited.
  • each raw tape used as the 1st porous film and the 2nd porous film is produced, and after drying separately, these are piled up.
  • the first porous film and the second porous film are heated each time they are stretched in a stacked state, and heat is applied twice in total, so that the two porous films adhere well and are later processed. As a result, separation of the two porous films at the boundary can be suppressed.
  • the porous films can be joined to each other by heating to near the melting point of PTFE.
  • the nonwoven fabric mentioned above a woven fabric, a metal mesh, a resin net etc. can be used as an upstream air permeable support material.
  • the anchor effect by the partial melting of the upstream air-permeable support material by heating or the melting of the hot melt resin is used, or a reactive adhesive or the like is used.
  • the upstream air-permeable support material can be bonded to the first porous membrane using adhesion.
  • the downstream air-permeable support material can be bonded to the second porous membrane in the same manner.
  • the lamination method of each layer in the filter medium 2 for an air filter having a six-layer structure shown in FIG. 2 is not particularly limited.
  • a three-layer structure can be obtained by preparing two porous membranes, sandwiching one of the porous membranes between an upstream air-permeable support material and a medium-flowing support material, and heat laminating. And one porous film which remains with respect to the said 3 layer structure can be joined by carrying out heat lamination, carrying out lateral stretching.
  • the downstream air-permeable support material can be bonded to the second porous membrane by further laminating the downstream air-permeable support material to the second porous membrane.
  • the pre-collecting material when using a non-woven fabric or the like as the pre-collecting material, use the anchor effect due to partial melting of the pre-collecting material by heating or melting of the hot melt resin, or adhesion using a reactive adhesive or the like. Utilizing this, the pre-collecting material can be joined to the upstream breathable support material.
  • each layer in the filter medium 3 for an air filter having a three-layer structure shown in FIG. 3 is not particularly limited.
  • the first porous membrane and the second porous membrane described above when they are joined, they can be joined in the same manner as the air filter medium 1 having a five-layer structure.
  • the pre-collecting material use the anchor effect by partially melting the pre-collecting material by heating or melting the hot melt resin, or using a reactive adhesive or the like. Utilizing this, the pre-collecting material can be joined to the upstream side of the first porous membrane.
  • the film thickness of the filter material for air filters obtained by bonding is as follows: the first porous membrane, the second porous membrane, the upstream air-permeable support material, the downstream air-permeable support material, the pre-collecting material, In the case of 2, the pressure is further applied to the medium flowable support material), so that it is not a simple total of the respective film thicknesses, but falls within the range of 85% to 100% of the simple total of the respective film thicknesses. It will be.
  • Example 1 PTFE aqueous dispersion (PTFE-A) with SSG of 2.160 66.5% by weight (converted to polymer)
  • Low molecular weight PTFE aqueous dispersion having a melt viscosity of 20,000 Pa ⁇ s measured using a flow tester method at 380 ° C. (PTFE-B) 28.5% by weight (in terms of polymer) and 5% by weight of an FEP aqueous dispersion having a melting point of 215 ° C. (in terms of polymer) were mixed, and 500 ml of 1% aqueous aluminum nitrate solution was added as a coagulant. Co-coagulation was carried out by stirring. The produced powder was drained using a sieve and then dried in a hot air drying oven at 135 ° C. for 18 hours to obtain the above three-component mixed powder.
  • This film was passed through a hot air drying oven at 200 ° C. to evaporate and remove the hydrocarbon oil to obtain a strip-shaped unfired fluororesin film (first raw tape) having an average thickness of 300 ⁇ m and an average width of 150 mm. Further, a strip-shaped unfired fluororesin film (second raw tape having an average thickness of 300 ⁇ m and an average width of 150 mm) is formed in the same manner as the first raw tape except that the amount of liquid lubricant mixed is 33 parts by weight. )
  • the first raw tape and the second raw tape were overlapped and stretched in the longitudinal direction (longitudinal direction) at a draw ratio of 6.5 times.
  • the stretching temperature was 300 ° C.
  • the raw tape stretched and stretched was stretched in the width direction (lateral direction) at a stretching ratio of 13.5 times using a tenter capable of continuous clipping, and heat fixed.
  • the stretching temperature at this time was 290 ° C.
  • the heat setting temperature was 390 ° C.
  • a spunbonded non-woven fabric (average fiber diameter 20 ⁇ m, basis weight 40 g / m) comprising core / sheath fibers using PET as a core and PE as a sheath. m 2 , thickness 0.2 mm).
  • the obtained multilayer porous membrane is composed of a spunbond nonwoven fabric as the upstream breathable support material 21 arranged on the first porous membrane 31 side and the downstream breathable support material 22 arranged on the second porous membrane 32 side. And bonded by heat fusion using a laminating apparatus to obtain a fluororesin laminate of Example 1.
  • melt blown nonwoven fabric (weight per unit area 30 g / m 2 , thickness 0.25 mm) made of PP which is a fiber having an average fiber diameter of 1.6 ⁇ m was used.
  • EVA ethylene-vinyl acetate copolymer
  • the filter medium 1 had a pressure loss of 170 Pa and a collection efficiency of 99.991%. There was no increase in pressure loss due to thermal lamination.
  • the pressure loss and the collection efficiency are generally characteristics of the pre-collecting material 10, the first porous film 31, and the second porous film 32.
  • the produced filter medium 1 was pleated so as to be fold-folded and valley-folded every 260 mm with a rotary folding machine, and a zigzag-shaped processed filter medium as shown in FIG. 4 was produced. Then, the separator which corrugated the aluminum plate was inserted in the trough part of the filter medium 1, and the filter pack 40 of 590 mm long x 590 mm wide was obtained. The number of pleats at this time was 79.
  • the obtained filter pack 40 was fixed to an aluminum frame 50 having an outer dimension of 610 mm ⁇ 610 mm (length ⁇ width), an inner dimension of 580 mm ⁇ 580 mm (length ⁇ width), and a depth of 290 mm.
  • the air filter unit 60 was obtained by sealing the periphery of the filter pack with the frame 50 with a urethane adhesive.
  • Example 2 Between the first porous film 31 and the second porous film 32 of Example 1, an upstream breathable support material 21 having a basis weight and thickness different from those of Example 1 and a spunbond nonwoven fabric as a downstream breathable support material 22 And the same as Example 1 except the point which further provided the spun bond nonwoven fabric as the middle circulation support material 23, and was heat-laminated (the point made into the structure of the filter medium 2 shown in FIG. 2).
  • the second porous film 32 obtained by stretching the second raw tape of Example 1 in the longitudinal direction and the transverse direction is sandwiched between the downstream air-permeable support material 22 and the medium flowable gas support material 23.
  • the first fluororesin laminate of Example 2 was obtained by bonding by heat fusion using a laminating apparatus.
  • the first porous film 31 obtained by stretching the first raw tape of Example 1 in the longitudinal direction and the transverse direction is obtained by combining the first fluororesin laminate and the upstream air-permeable support material 21 of Example 2.
  • the second fluororesin laminate of Example 2 was obtained by sandwiching and joining by heat fusion using a laminating apparatus.
  • melt blown nonwoven fabric as the pre-collecting material 10 and the second fluororesin laminate of Example 2 were laminated using an ethylene-vinyl acetate copolymer (EVA) hot melt adhesive while using a laminating apparatus. Bonding was performed by performing thermal lamination at 110 ° C. to obtain an air filter medium 2 having a layer structure shown in FIG.
  • EVA ethylene-vinyl acetate copolymer
  • the process of obtaining the filter pack 40 and the air filter unit 60 by pleating is the same as that in the first embodiment.
  • Example 3 Instead of the melt blown nonwoven fabric as the pre-collecting material 10 of Example 1, a melt blown nonwoven fabric (weight per unit area: 10 g / m 2 , thickness 0.07 mm) made of PP which is a fiber having an average fiber diameter of 1.7 ⁇ m was used. Other than the above, the second embodiment is the same as the first embodiment. In Example 3, a melt blown nonwoven fabric having a small basis weight is used.
  • Example 4 Instead of the melt blown nonwoven fabric as the pre-collecting material 10 of Example 1, a melt blown nonwoven fabric (weight per unit area: 50 g / m 2 , thickness: 0.37 mm) made of PP which is a fiber having an average fiber diameter of 1.8 ⁇ m was used. Other than the above, the second embodiment is the same as the first embodiment. In Example 4, a melt blown nonwoven fabric having a large basis weight and a large thickness is used.
  • Example 2 is the same as Example 2 except that a porous film having the same physical properties as the second porous film 32 of Example 2 was used instead of the first porous film 31 of Example 2.
  • Example 6 instead of the first porous membrane 31 of the first embodiment, a porous membrane having the same physical properties as the second porous membrane 32 of the first embodiment is used, and the upstream air-permeable support material 21 of the first embodiment, Example 2 is the same as Example 1 except that a spunbonded nonwoven fabric (average fiber diameter 20 ⁇ m, basis weight 30 g / m 2 , thickness 0.16 mm) was used instead of the spunbonded nonwoven fabric as the flowable support material 22.
  • a spunbonded nonwoven fabric average fiber diameter 20 ⁇ m, basis weight 30 g / m 2 , thickness 0.16 mm
  • Example 1 is the same as Example 1 except that the spunbonded nonwoven fabric as the upstream air-permeable support material 21 of Example 1 was not used.
  • Example 1 the first raw tape and the second raw tape are overlapped, stretched in the longitudinal direction (longitudinal direction), stretched in the width direction (lateral direction), and heat-set.
  • the multilayer porous membrane with which the 1st porous membrane 31 and the 2nd porous membrane 32 overlapped was obtained.
  • the spunbond nonwoven fabric as the downstream air-permeable support material 22 similar to Example 1 is arrange
  • the fluororesin laminate of Example 7 was obtained.
  • an ethylene-vinyl acetate copolymer (EVA) hot melt adhesive was applied to the pre-collecting material 10 similar to Example 1 on the first porous membrane 31 side of the fluororesin laminate of Example 7.
  • EVA ethylene-vinyl acetate copolymer
  • Example 1 is the same as Example 1 except that the spunbond nonwoven fabric as the upstream air-permeable support material 21 and the downstream air-permeable support material 22 of Example 1 was not used.
  • Example 1 the first raw tape and the second raw tape are overlapped, stretched in the longitudinal direction (longitudinal direction), stretched in the width direction (lateral direction), and heat-set.
  • the multilayer porous membrane with which the 1st porous membrane 31 and the 2nd porous membrane 32 overlapped was obtained.
  • the pre-collecting material 10 similar to that of Example 1 was applied with 2 g / m 2 of ethylene-vinyl acetate copolymer (EVA) hot melt adhesive with respect to the first porous membrane 31 side of the multilayer porous membrane. It was used and bonded by performing thermal lamination at 110 ° C. to obtain an air filter filter medium 3 having the layer structure shown in FIG.
  • EVA ethylene-vinyl acetate copolymer
  • Example 9 instead of the meltblown nonwoven fabric as the pre-collecting material 10 of Example 1, a meltblown nonwoven fabric made of polypropylene (PP) which is a fiber having an average fiber diameter of 0.32 ⁇ m (weight per unit: 0.7 g / m 2 , thickness: 0.002 mm)
  • Example 2 is the same as Example 1 except that is used.
  • PP polypropylene
  • the fluororesin laminate thus obtained had a pressure loss of 131 Pa and a collection efficiency of 99.997%.
  • the pressure loss and the collection efficiency are generally characteristics of the first porous film 31 and the second porous film 32 because the upstream air-permeable support material 21 and the downstream air-permeable support material 22 do not substantially contribute.
  • the process of obtaining the filter pack 40 and the air filter unit 60 by pleating is the same as that in the first embodiment.
  • the unsintered PTFE film was stretched in the longitudinal direction at a stretch ratio of 5 times.
  • the stretching temperature was 250 ° C.
  • the stretched unfired film was stretched at a stretch ratio of 32 times in the width direction using a tenter capable of continuously clipping, and heat-set.
  • the stretching temperature at this time was 290 ° C., and the heat setting temperature was 390 ° C.
  • a PTFE porous membrane filling ratio: 4.0%, average fiber diameter: 0.069 ⁇ m, thickness: 0.009 mm
  • a spunbonded nonwoven fabric (average fiber diameter 20 ⁇ m, basis weight 40 g / m 2 , thickness 0.20 mm) made of core / sheath structure fibers using PET as a core and PE as a sheath was used.
  • the above-mentioned spunbond nonwoven fabric as the upstream air-permeable support material 21 and the downstream air-permeable support material 22 was joined to both surfaces of the obtained PTFE porous membrane by heat fusion using a laminating apparatus to obtain a PTFE laminate.
  • the PTFE laminate thus obtained had a pressure loss of 118 Pa and a collection efficiency of 99.998% according to the measurement method described above. This pressure loss and collection efficiency are characteristics of a substantially PTFE porous membrane.
  • the process of obtaining the filter pack 40 and the air filter unit 60 by pleating is the same as that in the first embodiment.
  • Comparative Example 3 It is the same as that of the comparative example 2 except the point which further provided the pre collection material 10 with respect to the PTFE laminated body of the comparative example 2.
  • FIG. 3 It is the same as that of the comparative example 2 except the point which further provided the pre collection material 10 with respect to the PTFE laminated body of the comparative example 2.
  • a melt blown nonwoven fabric (weight per unit area 30 g / m 2 , thickness 0.25 mm) made of PP which is a fiber having an average fiber diameter of 1.6 ⁇ m was used.
  • the PTFE laminate of Comparative Example 2 and the meltblown nonwoven fabric that is the pre-collecting material 10 were heat laminated at 110 ° C. using 2 g / m 2 of an ethylene-vinyl acetate copolymer (EVA) hot melt adhesive. And a PP laminate (thickness 0.14 mm) was obtained.
  • EVA ethylene-vinyl acetate copolymer
  • the thickness of the filter medium was 0.569 mm.
  • the process of obtaining the filter pack 40 and the air filter unit 60 by pleating is the same as that in the first embodiment.
  • the glass filter medium can be produced, for example, using the methods described in Japanese Patent Application Laid-Open No. 2007-7586, Japanese Patent Application Laid-Open No. 5-123513, and Japanese Patent No. 3014440.
  • the glass filter medium can be made from a slurry in which glass fibers are dispersed in water by conveying the glass fibers in water using a paper machine.
  • a paper machine there is a combination machine that combines two same or different machines, such as a long net paper machine, a circular net paper machine, and an inclined wire type paper machine, for producing general paper and wet nonwoven fabric. Used. Bonding of the fibers by the binder may be performed by directly attaching the binder onto the glass fiber, or may be performed by impregnating the glass fiber with a binder solution obtained by dissolving the binder in a solvent and drying.
  • the binder known ones such as an acrylic resin and a phenol resin are used.
  • the process of obtaining the filter pack 40 and the air filter unit 60 by pleating is the same as that in the first embodiment.
  • Example 5 is the same as Example 5 except that the pre-collecting material 10 is not provided.
  • the air filter medium of Comparative Example 5 was obtained by laminating in the same manner as in the laminating step of the second fluororesin laminate of Example 2.
  • the process of obtaining the filter pack 40 and the air filter unit 60 by pleating is the same as that in the first embodiment.
  • Example 6 (Comparative Example 6) Instead of the melt blown nonwoven fabric as the pre-collecting material 10 of Example 1, a melt blown nonwoven fabric having a large PF value (weight per unit area 2 g / m 2 , thickness 0.02 mm) is used, which is the same as Example 1.
  • Example 7 instead of the melt blown nonwoven fabric as the pre-collecting material 10 of Example 1, a melt blown nonwoven fabric having a large PF value (weight per unit: 32 g / m 2 , thickness 0.26 mm), upstream permeable support material 21 of Example 1 instead of the spunbond nonwoven fabric, the upstream breathable support material 21 having a different basis weight and thickness was used (similar to the upstream breathable support material of Example 2), and the span as the downstream breathable support material 22 of Example 1 It is the same as that of Example 1 except the point (similar to the downstream air-permeable support material of Example 2) which used the downstream air-permeable support material 22 from which a fabric weight and thickness differ instead of a bond nonwoven fabric.
  • Example 8 instead of the melt blown nonwoven fabric as the pre-collecting material 10 of Example 1, a melt blown nonwoven fabric having a small PF value (weight per unit area: 28 g / m 2 , thickness: 0.23 mm), upstream permeable support material 21 of Example 1 instead of the spunbond nonwoven fabric, the upstream breathable support material 21 having a different basis weight and thickness was used (similar to the upstream breathable support material of Example 2), and the span as the downstream breathable support material 22 of Example 1 It is the same as that of Example 1 except the point (similar to the downstream air-permeable support material of Example 2) which used the downstream air-permeable support material 22 from which a fabric weight and thickness differ instead of a bond nonwoven fabric.
  • NaCl particles generated by an atomizer are separated by an electrostatic classifier (manufactured by TSI). After classifying to 3 ⁇ m and neutralizing the particle charge using americium 241, the flow rate of permeation is adjusted to 5.3 cm / second, and a particle counter (manufactured by TSI, CNC) is used to measure the filter medium as a measurement sample. The number of particles before and after was obtained, and the collection efficiency was calculated by the following equation.
  • Collection efficiency (%) (CO / CI) ⁇ 100
  • CO the number of particles of NaCl 0.3 ⁇ m collected by the measurement sample
  • CI the number of particles of NaCl 0.3 ⁇ m supplied to the measurement sample (PF value)
  • the PF value was determined from the pressure loss of the filter medium and the collection efficiency (collection efficiency of NaCl particles having a particle size of 0.3 ⁇ m) according to the following formula.
  • PF value ⁇ log ((100 ⁇ collection efficiency (%)) / 100) ⁇ / (pressure loss (Pa) / 1000) It should be noted that the value of 100-collection efficiency (%) is a value known as transmittance (%).
  • PAO particles liquid particles
  • the pressure loss when the air containing PAO particles was continuously passed through the sample filter medium with an effective filtration area of 50 cm 2 at a flow rate of 5.3 cm / second was measured over time with a differential pressure gauge (U-shaped manometer).
  • U-shaped manometer U-shaped manometer
  • the dust holding amount g / m 2
  • PAO particles PAO particles (number-median diameter 0.25 ⁇ m) generated by a Ruskin nozzle were used, and the concentration of the PAO particles was about 1 to 6 million particles / cm 3 .
  • the initial pressure loss of the filter is generally about 250 Pa or less in the HEPA unit, and the filter replacement time is generally 2 of the initial pressure loss of the filter.
  • the point at which the number is exceeded is recommended.
  • the initial pressure loss of a standard HEPA glass filter medium is about 250 to 300 Pa. Therefore, the end point of the above test for evaluating the dust holding amount of the filter medium is the time when the pressure loss is increased by 250 Pa.
  • a film thickness meter (1D-110MH type, manufactured by Mitutoyo Corporation) was used to measure the total film thickness by stacking five measurement objects, and a value obtained by dividing the value by 5 was defined as one film thickness.
  • both Example 1 and Comparative Example 1 are provided with a first porous membrane and a second porous membrane, and Example 1 is pre-collected upstream of the entire filter medium of Comparative Example 1.
  • the material 10 is further provided.
  • the collection load on the porous film 31 and the second porous film 32 can be moderately reduced, and more dust can be collected in a wide range in the thickness direction. It is possible to increase.
  • Example 9 in which a pre-collecting material having a higher PF value (PF value 14.2) was adopted, a sufficient amount of dust could be achieved, but the PF value was further increased.
  • the dust holding amount was less than 40 g / m 2 .
  • Comparative Example 8 (PF value 4.6) using a pre-collecting material having a low PF value, the dust holding amount was less than 40 g / m 2 .
  • the load is concentrated on the first porous film and the second porous film on the downstream side, so that the first It seems that clogging in the porous film or the second porous film occurs early.
  • the PF value (34.5) of the entire filter medium of Comparative Example 1 is that the upstream air-permeable support material 21 and the downstream air-permeable support material 22 do not substantially affect the pressure loss and the collection efficiency. This is substantially equal to the contribution by the first porous film 31 and the second porous film 32. Therefore, the ratio of the PF value of the pre-collecting material of Example 1 to the PF value of the entire filter medium of Comparative Example 1 is substantially when the first porous film and the second porous film of Example 1 are laminated. It is equal to the ratio of the PF value of the pre-collecting material of Example 1 to the PF value.
  • the physical properties of the first porous film and the second porous film are the same as in the first and second examples, in which the first porous film has lower pressure loss and lower collection efficiency than the second porous film.
  • Example 5 and Example 6 are compared with each other, it is possible to increase the amount of dust retention more by providing a specific difference between the upstream porous film and the downstream porous film. I understand.
  • Example 3 and Example 4 are compared, it can be seen that increasing the basis weight of the pre-collecting material 10 to increase the thickness can increase the amount of dust retained, although the pressure loss increases. Moreover, it turns out that pressure loss can be suppressed if the fabric weight of the pre-collecting material 10 is lowered
  • Example 7 the upstream air-permeable support material 21 is omitted, and in Example 8, both the upstream air-permeable support material 21 and the downstream air-permeable support material 22 are omitted. It can also be seen that a sufficient amount of dust can be achieved.
  • the filter medium for air filter As mentioned above, the filter medium for air filter, the filter pack, the air filter unit, and the method for producing the filter medium for air filter have been described in detail, but the present invention is not limited to the above-described embodiment, and in a range not departing from the gist of the present invention, Various improvements and changes are also included.

Abstract

 捕集効率が高く圧力損失が低いだけでなく、保塵量も高いエアフィルタ用濾材、フィルタパック、エアフィルタユニット、および、そのようなエアフィルタ用濾材の製造方法を提供する。上流側から順にプレ捕集材(10)、第1の多孔膜(31)、第2の多孔膜(32)が並んで配置されたエアフィルタ用濾材(1)において、プレ捕集材(10)は、空気を流速5.3cm/秒で通過させたときの圧力損失が15Pa以上55Pa未満であり、粒子径0.3μmのNaClの捕集効率が25%以上80%未満であり、厚みが0.4mm以下であり、PF値が7以上15以下であり、(プレ捕集材10のPF値/第1の多孔膜31と第2の多孔膜32を積層したときのPF値)の値が0.20以上0.45以下である。

Description

エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
 本発明は、エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法に関する。
 HEPAフィルタ(High Efficiency Particulate Air Filter)の基準を満たすエアフィルタ用濾材として、ガラス濾材と呼ばれる、ガラス繊維を用いて作製された濾材が知られている。HEPAグレードのガラス濾材は、粒子径0.3μmの粒子の捕集効率が99.97%と高い捕集効率を有している反面、圧力損失が高い。
 このようなガラス濾材に代わる低圧力損失のHEPAフィルタとして、ポリテトラフルオロエチレン(PTFE)を延伸して作られるPTFE多孔膜を用いた濾材が知られている。PTFE多孔膜は、ガラス濾材と比べ、高い捕集効率と低い圧力損失とを備え、捕集効率と圧力損失のバランスに優れている。
 例えば、以下の特許文献1(特開2013-52320号公報)や特許文献2(特開2013-63424号公報)においては、形状保持部材によって保持されて用いられるエアフィルタユニットの圧力損失を抑制するために、PTFE多孔膜の上流側にメルトブローン不織布を設け、さらにその上流側にスパンボンド不織布からなる通気性カバー層を設けたエアフィルタ用濾材を提案している。
特開2013-52320号公報 特開2013-63424号公報
 ところで、近年、濾材を長寿命なものにするため、濾材の保塵量を高めることが求められている。例えば、エアフィルタユニットをガスタービンの吸気用途に用いる場合には、保塵量が少ないことで、ガスタービンの定期検査を待たずにエアフィルタが目詰まりしてしまうことがある。このように目詰まりが生じると、エアフィルタを交換するためだけにガスタービンの稼動を停止せざるを得なくなり、ロスが大きくなっている。
 これに対して、上述の特許文献1および特許文献2に記載のエアフィルタは、捕集効率が高く、圧力損失も低いものの、保塵量については不足しており、保塵量のより一層の向上が求められている。
 本発明は、捕集効率が高く圧力損失が低いだけでなく、保塵量も高いエアフィルタ用濾材、フィルタパック、エアフィルタユニット、および、そのようなエアフィルタ用濾材の製造方法を提供することを目的とする。
 本件発明者らは、上記課題を解決すべく鋭意研究した結果、フッ素樹脂を主として含む多孔膜を2層と、上流側の特定の物性のプレ捕集材と、を設け、プレ捕集材のPF値/第1の多孔膜と第2の多孔膜を積層したときのPF値を特定の範囲とすることで、捕集効率が高く圧力損失が低いだけでなく保塵量も高くすることが可能になることを見出し、本発明を完成させた。
 第1の観点に係るエアフィルタ用濾材は、気体中の塵を捕集するエアフィルタ用濾材であって、第1の多孔膜と、第2の多孔膜と、プレ捕集材と、を備えている。第1の多孔膜は、フッ素樹脂を主として含む。第2の多孔膜は、フッ素樹脂を主として含み、第1の多孔膜よりも気流の下流側に配置されている。プレ捕集材は、第1の多孔膜よりも気流の上流側に配置され、気流中の塵の一部を捕集する。プレ捕集材は、空気を流速5.3cm/秒で通過させたときの圧力損失が15Pa以上55Pa未満であり、粒子径0.3μmのNaClの捕集効率が25%以上80%未満であり、厚みが0.4mm以下であり、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められるPF値が7以上15以下である。第1の多孔膜と第2の多孔膜を積層したときのPF値に対するプレ捕集材のPF値の割合である「プレ捕集材のPF値/第1の多孔膜と第2の多孔膜を積層したときのPF値」の値が、0.20以上0.45以下である。
 なお、プレ捕集材の上記PF値は、7以上13以下であることが好ましい。
 このエアフィルタ用濾材では、捕集効率が高く圧力損失が低いだけでなく、保塵量も高めることが可能になる。
 第2観点に係るエアフィルタ用濾材は、第1観点に係るエアフィルタ用濾材であって、上流通気性支持材をさらに備えている。上流通気性支持材は、第1の多孔膜よりも気流の上流側に配置され、第1の多孔膜を支持する。
 なお、プレ捕集材は、第1の多孔膜よりも気流の上流側に配置されていればよく、上流通気性支持材よりも気流の上流側に配置されていてもよいし、上流通気性支持材よりも気流の下流側に配置されていてもよい。
 このエアフィルタ用濾材は、上流側における強度を向上させることが可能になる。
 第3観点に係るエアフィルタ用濾材は、第1観点または第2観点に係るエアフィルタ用濾材であって、下流通気性支持材をさらに備えている。下流通気性支持材は、第2の多孔膜よりも気流の下流側に配置され、第2の多孔膜を支持する。
 このエアフィルタ用濾材は、下流側における強度を向上させることが可能になる。
 第4観点に係るエアフィルタ用濾材は、第1観点から第3観点のいずれかに係るエアフィルタ用濾材であって、空気を流速5.3cm/秒で通過させたときの圧力損失は第2の多孔膜よりも第1の多孔膜の方が小さく、粒子径0.3μmのNaClの捕集効率は第1の多孔膜よりも第2の多孔膜の方が高い。
 このエアフィルタ用濾材は、捕集効率が高く圧力損失が低いだけでなく、保塵量をさらに高めることが可能になる。
 第5観点に係るエアフィルタ用濾材は、第1観点から第4観点のいずれかに係るエアフィルタ用濾材であって、第1の多孔膜は、圧力損失が30Pa以上90Pa以下であり、捕集効率が95%以上99%以下であり、個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速5.3cm/秒で連続通風し圧力損失が250Pa分だけ上昇したときのポリアルファオレフィン粒子の保塵量が25g/m2以上35g/m2以下である。
 このエアフィルタ用濾材は、捕集効率が高く圧力損失が低いだけでなく、保塵量をさらに高めることが可能になる。
 第6観点に係るエアフィルタ用濾材は、第1観点から第5観点のいずれかに係るエアフィルタ用濾材であって、第1の多孔膜と第2の多孔膜を積層したときのPF値に対するプレ捕集材のPF値の割合である「プレ捕集材のPF値/第1の多孔膜と第2の多孔膜を積層したときのPF値」の値が、0.20以上0.38以下である。
 このエアフィルタ用濾材は、保塵量を高めた場合であっても、圧力損失を低く抑えることが可能となる。
 第7観点に係るエアフィルタ用濾材は、第1観点から第6観点のいずれかに係るエアフィルタ用濾材であって、第1の多孔膜および第2の多孔膜は、繊維化し得るポリテトラフルオロエチレンと、繊維化しない非熱溶融加工性成分と、融点320℃未満の繊維化しない熱溶融加工可能な成分と、から主としてなる。
 従来の繊維化し得るPTFE(高分子量PTFE)のみから主として構成されるPTFE多孔膜では、繊維径の細い微細なフィブリルを多く含んでおり、繊維1本当たりの表面積が大きく、捕集効率が高い反面、膜厚が比較的薄く、繊維同士の重なりが多いために多くの微粒子を保塵することができず、繊維1本当たりの捕集効率の高さが有効に発揮されていない。
 これに対して、このエアフィルタ用濾材は、繊維化し得るポリテトラフルオロエチレンと、繊維化しない非熱溶融加工性成分と、融点320℃未満の繊維化しない熱溶融加工可能な成分と、の3成分を主として含んで構成されているため、従来のPTFE多孔膜と比べて、比較的太い繊維により空隙を多くして膜厚を増やすことで保塵量を高めることが可能になっている。
 第8観点に係るエアフィルタ用濾材は、第1観点から第7観点のいずれかに係るエアフィルタ用濾材であって、エアフィルタ用濾について、個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速5.3cm/秒で連続通風し、圧力損失が250Pa分だけ上昇したときのポリアルファオレフィン粒子の保塵量が40g/m2以上である。
 第9観点に係るエアフィルタ用濾材は、第1観点から第8観点のいずれかに係るエアフィルタ用濾材であって、エアフィルタ用濾材について、空気を流速5.3cm/秒で通過させたときの圧力損失が200Pa未満であり、粒子径0.3μmのNaCl粒子を含む空気を流速5.3cm/秒で通過させたときの粒子の捕集効率が99.97%以上である。
 第10観点に係るエアフィルタパックは、第1観点から第9観点のいずれかに係るエアフィルタ用濾材を備え、エアフィルタ用濾材が山折りおよび谷折りが交互に繰り返されたジグザグ形状に加工されて構成されている。なお、「フィルタパック」は、特に限定されるものではないが、例えば、フラットなシート状のものではなく、山折りおよび谷折りを交互に行うことで折り畳まれたジグザグ形状であり、任意の枠体に収容可能となるように整形されているものであってよい。
 第11観点に係るエアフィルタユニットは、第1観点から第9観点のいずれかに係るエアフィルタ用濾材または第10観点に係るフィルタパックと、エアフィルタ用濾材またはフィルタパックを保持する枠体と、を備えている。
 第12観点に係るエアフィルタ用濾材の製造方法は、気体中の塵を捕集するエアフィルタ用濾材の製造方法であって、フッ素樹脂を主として含む、第1の多孔膜および第2の多孔膜を得るステップと、第1の多孔膜を第2の多孔膜よりも気流の上流側に配置するステップと、気流中の塵の一部を捕集するプレ捕集材を第1の多孔膜よりも気流の上流側に配置するステップと、を備えている。プレ捕集材は、空気を流速5.3cm/秒で通過させたときの圧力損失が15Pa以上55Pa未満であり、粒子径0.3μmのNaClの捕集効率が25%以上80%未満であり、厚みが0.4mm以下であり、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められるPF値が7以上15以下である。第1の多孔膜と第2の多孔膜を積層したときのPF値に対するプレ捕集材のPF値の割合である「プレ捕集材のPF値/第1の多孔膜と第2の多孔膜を積層したときのPF値」の値が、0.20以上0.45以下である。そして、当該製造方法は、第1の多孔膜と第2の多孔膜とプレ捕集材とが、熱ラミネートされることで一体化するステップをさらに備えている。
 なお、プレ捕集材の上記PF値は、7以上13以下であることが好ましい。
 このエアフィルタ用濾材の製造方法によれば、捕集効率が高く圧力損失が低いだけでなく、保塵量も高めたエアフィルタ用濾材を得ることが可能になる。
 第13観点に係るエアフィルタ用濾材の製造方法は、第12観点に係るエアフィルタ用濾材の製造方法であって、第1の多孔膜を支持する上流通気性支持材を第1の多孔膜よりも気流の上流側に配置するステップをさらに備えている。
 なお、プレ捕集材は、第1の多孔膜よりも気流の上流側に配置すればよく、上流通気性支持材よりも気流の上流側に配置してもよいし、上流通気性支持材よりも気流の下流側に配置してもよい。
 このエアフィルタ用濾材の製造方法によれば、得られるエアフィルタ用濾材の上流側における強度を向上させることが可能になる。
 第14観点に係るエアフィルタ用濾材の製造方法は、第12観点または第13観点に係るエアフィルタ用濾材の製造方法であって、第2の多孔膜を支持する下流通気性支持材を第2の多孔膜よりも気流の下流側に配置するステップをさらに備えている。
 このエアフィルタ用濾材の製造方法によれば、得られるエアフィルタ用濾材の下流側における強度を向上させることが可能になる。
 本発明に係るエアフィルタ用濾材、フィルタパック、または、エアフィルタユニットによれば、捕集効率が高く圧力損失が低いだけでなく、保塵量も高めることが可能になる。
 また、本発明に係るエアフィルタ用濾材の製造方法によれば、捕集効率が高く圧力損失が低いだけでなく、保塵量も高めたエアフィルタ用濾材を得ることが可能になる。
本実施形態に係る5層構造の濾材の層構成を示す概略断面図である。 変形例に係る6層構造の濾材の層構成を示す概略断面図である。 変形例に係る3層構造の濾材の層構成を示す概略断面図である。 本実施形態のフィルタパックの外観斜視図である。 本実施形態のエアフィルタユニットの外観斜視図である。
 以下、エアフィルタ用濾材(以降、単に濾材ともいう)、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法について、実施形態を例に挙げて説明する。
 (1)エアフィルタ用濾材
 図1に、本実施形態に係る5層構造のエアフィルタ用濾材1の概略断面図を示す。
 エアフィルタ用濾材1は、気体中の塵を捕集するエアフィルタ用濾材であって、気流の上流側から順に、プレ捕集材10と、任意の上流通気性支持材21と、第1の多孔膜31と、第2の多孔膜32と、任意の下流通気性支持材22と、を備えている。
 第1の多孔膜31は、フッ素樹脂を主として含んでいる。第2の多孔膜32は、フッ素樹脂を主として含み、第1の多孔膜31よりも気流の下流側に互いに隣接するように配置されている。上流通気性支持材21は、第1の多孔膜31よりも気流の上流側に配置され、第1の多孔膜31を支持する。下流通気性支持材22は、第2の多孔膜32よりも気流の下流側に配置され、第2の多孔膜32を支持する。プレ捕集材10は、第1の多孔膜31よりも気流の上流側(本実施形態では、上流通気性支持材21よりも気流の上流側)に配置され、気流中の塵の一部を捕集する。プレ捕集材10は、空気を流速5.3cm/秒で通過させたときの圧力損失が15Pa以上55Pa未満であり、粒子径0.3μmのNaClの捕集効率が25%以上80%未満であり、厚みが0.4mm以下であり、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められるPF値が7以上15以下である。第1の多孔膜31と第2の多孔膜32を積層したときのPF値に対するプレ捕集材10のPF値の割合である「プレ捕集材10のPF値/第1の多孔膜31と第2の多孔膜32を積層したときのPF値」の値が、0.20以上0.45以下である。
 以下、各層および各層間の関係について具体的に説明する。
 (2)多孔膜
 第1の多孔膜31および第2の多孔膜32はいずれも、主としてフッ素樹脂を含んで構成されており、図示しないフィブリル(繊維)とフィブリルに接続されたノード(結節部)とを有する多孔質な膜構造を有している。
 ここで、「主として」とは、複数種類の成分を含有する場合にはフッ素樹脂が最も多く含有されていることを意味する。第1の多孔膜31および第2の多孔膜32は、例えば、構成成分全体の50重量%を超えてフッ素樹脂が含有されていてもよい。すなわち、第1の多孔膜31および第2の多孔膜32は、フッ素樹脂と異なる成分を50重量%未満含有してもよい。
 フッ素樹脂と異なる成分としては、例えば、後述する繊維化しない非溶融加工性成分(B成分)である無機フィラーが挙げられる。第1の多孔膜31は気流の上流側(図1の上方)に配され、第2の多孔膜32は、第1の多孔膜31よりも気流の下流側(図1の下方)に配される。
 第1の多孔膜31と第2の多孔膜32とは、互いに同じ膜構造を有していてもよいし、互いに異なる膜構造を有していてもよい。
 第1の多孔膜31および第2の多孔膜32に用いられるフッ素樹脂は、1種類の成分からなってもよく、2種以上の成分からなってもよい。また、2種以上の成分からなるフッ素樹脂としては、例えば、繊維化し得るPTFE(以降、A成分ともいう)、繊維化しない非熱溶融加工性成分(以降、B成分ともいう)、および融点320℃未満の繊維化しない熱溶融加工可能な成分(以降、C成分ともいう)の3成分の混合物が挙げられる。第1の多孔膜31は、好ましくは、これら3種の成分の組み合わせからなる。これら3種の成分からなる第1の多孔膜31は、従来の繊維化し得るPTFE(高分子量PTFE)多孔膜と比べ、空隙が多く、膜厚の厚い膜構造を有していることで、気体中の微粒子を濾材の厚み方向の広い領域で捕集でき、これにより、保塵量を向上させることができる。このような観点からは、第1の多孔膜31だけでなく第1の多孔膜31および第2の多孔膜32の両方が、これら3種の成分からなることがより好ましい。これにより、濾材1全体の厚みを十分に確保でき、保塵量がより向上する。
 以下、上記3種の成分についてより詳細に説明する。なお、第1の多孔膜31および第2の多孔膜32のいずれにも該当する内容に関しては、これらを区別することなく、単に「多孔膜」との表現を使って説明する。
 (2-1)A成分:繊維化し得るPTFE
 繊維化し得るPTFEは、例えば、テトラフルオロエチレン(TFE)の乳化重合、または懸濁重合から得られた高分子量PTFEである。ここでいう高分子量とは、多孔膜作成時の延伸の際に繊維化しやすく、繊維長の長いフィブリルが得られるものであって、標準比重(SSG)が、2.130~2.230であり、溶融粘度が高いため実質的に溶融流動しない大きさの分子量をいう。繊維化し得るPTFEのSSGは、繊維化しやすく、繊維長の長いフィブリルが得られる観点から、2.130~2.190が好ましく、2.140~2.170が更に好ましい。SSGが高すぎると、A~Cの各成分の混合物の延伸性が悪化するおそれがあり、SSGが低すぎると、圧延性が悪化して、多孔膜の均質性が悪化し、多孔膜の圧力損失が高くなるおそれがある。また、繊維化しやすく、繊維長の長いフィブリルが得られる観点から、乳化重合で得られたPTFEが好ましい。標準比重(SSG)は、ASTM D 4895に準拠して測定される。
 繊維化性の有無、すなわち、繊維化し得るか否かは、TFEの重合体から作られた高分子量PTFE粉末を成形する代表的な方法であるペースト押出しが可能か否かによって判断できる。通常、ペースト押出しが可能であるのは、高分子量のPTFEが繊維化性を有するからである。ペースト押出しで得られた未焼成の成形体に実質的な強度や伸びがない場合、例えば伸びが0%で、引っ張ると切れるような場合は繊維化性がないとみなすことができる。
 上記高分子量PTFEは、変性ポリテトラフルオロエチレン(以下、変性PTFEという)であってもよいし、ホモポリテトラフルオロエチレン(以下、ホモPTFEという)であってもよいし、変性PTFEとホモPTFEの混合物であってもよい。ホモPTFEは、特に限定されず、特開昭53-60979号公報、特開昭57-135号公報、特開昭61-16907号公報、特開昭62-104816号公報、特開昭62-190206号公報、特開昭63-137906号公報、特開2000-143727号公報、特開2002-201217号公報、国際公開第2007/046345号パンフレット、国際公開第2007/119829号パンフレット、国際公開第2009/001894号パンフレット、国際公開第2010/113950号パンフレット、国際公開第2013/027850号パンフレット等で開示されているホモPTFEなら好適に使用できる。中でも、高い延伸特性を有する特開昭57-135号公報、特開昭63-137906号公報、特開2000-143727号公報、特開2002-201217号公報、国際公開第2007/046345号パンフレット、国際公開第2007/119829号パンフレット、国際公開第2010/113950号パンフレット等で開示されているホモPTFEが好ましい。
 変性PTFEは、TFEと、TFE以外のモノマー(以下、変性モノマーという)とからなる。変性PTFEには、変性モノマーにより均一に変性されたもの、重合反応の初期に変性されたもの、重合反応の終期に変性されたものなどが挙げられるが、特にこれらに限定されない。変性PTFEは、例えば、特開昭60-42446号公報、特開昭61-16907号公報、特開昭62-104816号公報、特開昭62-190206号公報、特開昭64-1711号公報、特開平2-261810号公報、特開平11-240917、特開平11-240918、国際公開第2003/033555号パンフレット、国際公開第2005/061567号パンフレット、国際公開第2007/005361号パンフレット、国際公開第2011/055824号パンフレット、国際公開第2013/027850号パンフレット等で開示されているものを好適に使用できる。中でも、高い延伸特性を有する特開昭61-16907号公報、特開昭62-104816号公報、特開昭64-1711号公報、特開平11-240917、国際公開第2003/033555号パンフレット、国際公開第2005/061567号パンフレット、国際公開第2007/005361号パンフレット、国際公開第2011/055824号パンフレット等で開示されている変性PTFEが好ましい。
 変性PTFEは、TFEに基づくTFE単位と、変性モノマーに基づく変性モノマー単位とを含む。変性モノマー単位は、変性PTFEの分子構造の一部分であって変性モノマーに由来する部分である。変性PTFEは、変性モノマー単位が全単量体単位の0.001~0.500重量%含まれることが好ましく、好ましくは、0.01~0.30重量%含まれる。全単量体単位は、変性PTFEの分子構造における全ての単量体に由来する部分である。
 変性モノマーは、TFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロピレン(HFP)等のパーフルオロオレフィン;クロロトリフルオロエチレン(CTFE)等のクロロフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン(VDF)等の水素含有フルオロオレフィン;パーフルオロビニルエーテル;パーフルオロアルキルエチレン(PFAE)、エチレン等が挙げられる。用いられる変性モノマーは1種であってもよいし、複数種であってもよい。
 パーフルオロビニルエーテルは、特に限定されず、例えば、下記一般式(1)で表されるパーフルオロ不飽和化合物等が挙げられる。
  CF2=CF-ORf・・・(1)
  式中、Rfは、パーフルオロ有機基を表す。
 本明細書において、パーフルオロ有機基は、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基である。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
 パーフルオロビニルエーテルとしては、例えば、上記一般式(1)において、Rfが炭素数1~10のパーフルオロアルキル基であるパーフルオロ(アルキルビニルエーテル)(PAVE)が挙げられる。パーフルオロアルキル基の炭素数は、好ましくは1~5である。PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。PAVEとしては、パーフルオロプロピルビニルエーテル(PPVE)、パーフルオロメチルビニルエーテル(PMVE)が好ましい。
 上記パーフルオロアルキルエチレン(PFAE)は、特に限定されず、例えば、パーフルオロブチルエチレン(PFBE)、パーフルオロヘキシルエチレン(PFHE)等が挙げられる。
 変性PTFEにおける変性モノマーとしては、HFP、CTFE、VDF、PAVE、PFAE及びエチレンからなる群より選択される少なくとも1種であることが好ましい。
 ホモPTFEは、特に、繊維化しやすく、繊維長の長いフィブリルが得られる観点から、繊維化し得るPTFEの50重量%を超えて含有されていることが好ましい。
 なお、繊維化し得るPTFEは、上記した成分を複数組み合わせたものであってよい。
 繊維化し得るPTFEは、多孔膜の繊維構造を維持する観点から、多孔膜の50重量%を超えて含有されているのが好ましい。
 (2-2)B成分:繊維化しない非熱溶融加工性成分
 繊維化しない非熱溶融加工性成分は、主に結節部において非繊維状の粒子として偏在し、繊維化し得るPTFEが繊維化されるのを抑制する働きをする。
 繊維化しない非熱溶融加工性成分としては、例えば、低分子量PTFE等の熱可塑性を有する成分、熱硬化性樹脂、無機フィラー、およびこれらの混合物が挙げられる。
 熱可塑性を有する成分は、融点が320℃以上であり、溶融粘度が高い方が好ましい。例えば低分子量PTFEは溶融粘度が高いため,融点以上の温度で加工しても結節部に留まることができる。本明細書において、低分子量PTFEとは、数平均分子量が60万以下、融点が320℃以上335℃以下、380℃での溶融粘度が100Pa・s~7.0×105Pa・sのPTFEである(特開平10-147617号公報参照)。
 低分子量PTFEの製造方法としては、TFEの懸濁重合から得られる高分子量PTFE粉末(モールディングパウダー)またはTFEの乳化重合から得られる高分子量PTFE粉末(ファインパウダー)と特定のフッ化物とを高温下で接触反応させて熱分解する方法(特開昭61-162503号公報参照)や、上記高分子量PTFE粉末や成形体に電離性放射線を照射する方法(特開昭48-78252号公報参照)、また連鎖移動剤とともにTFEを直接重合させる方法(国際公開第2004/050727号パンフレット,国際公開第2009/020187号パンフレット,国際公開第2010/114033号パンフレット等参照)等が挙げられている。低分子量PTFEは、繊維化し得るPTFEと同様、ホモPTFEであってもよく、前述の変性モノマーが含まれる変性PTFEでもよい。
 低分子量PTFEは繊維化性が無い。繊維化性の有無は、上述した方法で判断できる。低分子量PTFEは、ペースト押出しで得られた未焼成の成形体に実質的な強度や伸びがなく、例えば伸びが0%で、引っ張ると切れる。
 低分子量PTFEは、特に限定されないが、380℃での溶融粘度が1000Pa・s以上であることが好ましく、5000Pa・s以上であることがより好ましく、10000Pa・s以上であることがさらに好ましい。このように、溶融粘度が高いと、多孔膜の製造時に、C成分として繊維化しない熱溶融加工可能な成分が溶融しても、繊維化しない非熱溶融加工性成分は結節部に留まることができ、繊維化を抑えることができる。
 熱硬化性樹脂としては、例えば、エポキシ、シリコーン樹脂、ポリエステル、ポリウレタン、ポリイミド、フェノール、およびこれらの混合物等の各樹脂が挙げられる。熱硬化性樹脂は、後述する共凝析の作業性の観点から、未硬化状態で水分散された樹脂が望ましく用いられる。これら熱硬化性樹脂は、いずれも市販品として入手することもできる。
 無機フィラーとしては、タルク、マイカ、ケイ酸カルシウム、ガラス繊維、炭酸カルシウム、炭酸マグネシウム、炭素繊維、硫酸バリウム、硫酸カルシウム、およびこれらの混合物等が挙げられる。中でも、繊維化しうる高分子量のPTFEとの親和性および比重の点から、タルクが好ましく用いられる。無機フィラーは、多孔膜の製造時に安定な分散体を形成できる観点から、粒子径3μm以上20μm以下のものが好ましく用いられる。粒子径は、平均粒径であり、レーザー回折・散乱法によって測定される。これら無機フィラーは、いずれも市販品として入手することもできる。
 なお、繊維化しない非溶融加工性成分は、上記した成分を複数組み合わせたものであってよい。
 繊維化しない非熱溶融加工性成分は、多孔膜の1重量%以上50重量%以下含有されることが好ましい。繊維化しない非熱溶融加工性成分の含有量が50重量%以下であることで、多孔膜の繊維構造を維持させやすい。繊維化しない非熱溶融加工性成分は、好ましくは20重量%以上40重量%以下含有され、より好ましくは30重量%含有される。20重量%以上40重量%以下含有されることで、繊維化し得るPTFEの繊維化をより有効に抑えることができる。
 (2-3)C成分:融点320℃未満の繊維化しない熱溶融加工可能な成分
 融点320℃未満の繊維化しない熱溶融加工可能な成分(以下、繊維化しない熱溶融加工可能な成分ともいう)は、溶融時に流動性を有することにより、多孔膜の製造時(延伸時)に溶融して結節部において固まることができ、多孔膜全体の強度を高めて、後工程で圧縮等されることがあってもフィルタ性能の劣化を抑えることができる。
 繊維化しない熱溶融加工可能な成分は,380℃において10000Pa・s未満の溶融粘度を示すことが好ましい。なお、繊維化しない熱溶融加工可能な成分の融点は、示差走査熱量計(DSC)により昇温速度10℃/分で融点以上まで昇温して一度完全に溶融させ、10℃/分で融点以下まで冷却した後、10℃/分で再び昇温したときに得られる融解熱曲線のピークトップとする。
 繊維化しない熱溶融加工可能な成分としては、熱溶融可能なフルオロポリマー、ポリスチレン、ポリエチレンテレフタレート(PET)、ポリエステル,ポリアミド等の各樹脂、あるいはこれらの混合物であり、多孔膜の製造時の延伸温度における溶融性、流動性を十分に発揮しうるものが挙げられる。中でも、多孔膜製造時の延伸温度での耐熱性に優れ、耐薬品性に優れる点から、熱溶融可能なフルオロポリマーが好ましい。熱溶融可能なフルオロポリマーは、下記一般式(2)
  RCF=CR2・・・(2)
(式中、Rはそれぞれ独立して、H、F、Cl、炭素原子1~8個のアルキル、炭素原子6~8個のアリール、炭素原子3~10個の環状アルキル、炭素原子1~8個のパーフルオロアルキルから選択される。この場合に、全てのRが同じであってもよく、また、いずれか2つのRが同じで残る1つのRがこれらと異なってもよく、全てのRが互いに異なってもよい。)で示される少なくとも1種のフッ素化エチレン性不飽和モノマー、好ましくは2種以上のモノマー、から誘導される共重合単位を含むフルオロポリマーが挙げられる。
 一般式(2)で表される化合物の有用な例としては、限定されないが、フルオロエチレン、VDF、トリフルオロエチレン、TFE、HFP等のパーフルオロオレフィン、CTFE、ジクロロジフルオロエチレン等のクロロフルオロオレフィン、PFBE、PFHE等の(パーフルオロアルキル)エチレン、パーフルオロ-1,3-ジオキソールおよびその混合物等が挙げられる。
 また、フルオロポリマーは、少なくとも1種類の上記一般式(2)で示されるモノマーと、
 上記一般式(1)および/または下記一般式(3)
 R2C=CR2・・・(3)
(式中、Rは、それぞれ独立して、H、Cl、炭素原子1~8個のアルキル基、炭素原子6~8個のアリール基、炭素原子3~10個の環状アルキル基から選択される。この場合に、全てのRが同じであってもよく、また、いずれか2以上のRが同じでこれら2以上のRと残る他のRとが異なってもよく、全てのRが互いに異なってもよい。前記他のRは、複数ある場合は互いに異なってよい。)で示される少なくとも1種の共重合性コモノマーとの共重合から誘導されるコポリマーも含み得る。
 一般式(1)で表される化合物の有用な例としては、パーフルオロ(アルキルビニルエーテル)(PAVE)が挙げられる。このPAVEとしては、パーフルオロプロピルビニルエーテル(PPVE)、パーフルオロメチルビニルエーテル(PMVE)が好ましい。
 一般式(3)で表される化合物の有用な例としては、エチレン、プロピレン等が挙げられる。
 フルオロポリマーのより具体的な例としては、フルオロエチレンの重合から誘導されるポリフルオロエチレン、フッ化ビニリデン(VDF)の重合から誘導されるポリフッ化ビニリデン(PVDF)、クロロトリフルオロエチレン(CTFE)の重合から誘導されるポリクロロトリフルオロエチレン(PCTFE)、2種以上の異なる上記一般式(2)で示されるモノマーの共重合から誘導されるフルオロポリマー、少なくとも1種の上記一般式(2)のモノマーと、少なくとも1種の上記一般式(1)および/または少なくとも1種の上記一般式(3)で示されるモノマーの共重合から誘導されるフルオロポリマーが挙げられる。
 かかるポリマーの例は、VDFおよびヘキサフルオロプロピレン(HFP)から誘導される共重合体単位を有するポリマー、TFEおよびTFE以外の少なくとも1種の共重合性コモノマー(少なくとも3重量%)から誘導されるポリマーである。後者の種類のフルオロポリマーとしては、TFE/PAVE共重合体(PFA)、TFE/PAVE/CTFE共重合体、TFE/HFP共重合体(FEP)、TFE/エチレン共重合体(ETFE)、TFE/HFP/エチレン共重合体(EFEP)、TFE/VDF共重合体、TFE/VDF/HFP共重合体、TFE/VDF/CTFE共重合体等、あるいはこれらの混合物が挙げられる。
 なお、繊維化しない熱溶融加工可能な成分は、上記した成分を複数組み合わせたものであってよい。
 繊維化しない熱溶融加工可能な成分の多孔膜における含有量は、0.1重量%以上20重量%未満であることが好ましい。20重量%未満であることで、繊維化しない熱溶融加工可能な成分が多孔膜中の結節部以外の部分にも分散して多孔膜の圧力損失が高くなることが抑制される。また、20重量%未満であることで、後述する伸長面積倍率が40倍以上の高倍率での延伸を行いやすくなる。繊維化しない熱溶融加工可能な成分の多孔膜における含有量が0.1重量%以上であることで、後工程において圧縮力等が与えられたとしても多孔膜のフィルタ性能の劣化を十分に抑えるやすくなる。繊維化しない熱溶融加工可能な成分の多孔膜における含有量は、15重量%以下であるのが好ましく、10重量%以下であるのがより好ましい。また、繊維化しない熱溶融加工可能な成分の多孔膜における含有量は、多孔膜の強度を確保する観点から、0.5重量%以上であるのが好ましい。中でも、5重量%程度であるのが特に好ましい。
 繊維化しない熱溶融加工可能な成分の含有率は、伸長面積倍率40倍以上800倍以下での延伸を良好に行うために、10重量%以下であるのが好ましい。
 上記説明した3種の成分からなる多孔膜では、フィブリルは主にA成分からなり、結節部はA~Cの成分からなる。このような結節部は、多孔膜中で比較的大きく形成され、これにより厚みの厚い多孔膜が成形される。また、このような結節部は、繊維化しない熱溶融加工可能な成分を含むことで比較的固く、多孔膜を厚み方向に支える柱のような役割を果たすため、通気性支持材の積層や、後述するプリーツ加工などの後工程において厚み方向の圧縮力等を受けることがあっても多孔膜のフィルタ性能が低下することを抑えることが可能になる。
 (2-4)多孔膜の他の性質
 第1の多孔膜31および第2の多孔膜32は、次式に従って求まる充填率が1%以上20%以下であることが好ましく、2%以上10%以下であることがより好ましい。
 充填率(%)={1-(多孔膜中の空隙体積/多孔膜の体積)}×100
 第1の多孔膜31と第2の多孔膜32の各平均孔径は、1.6μmを超えることが好ましく、第1の多孔膜31の平均孔径が3.0μm以上3.9μm以下であり、第2の多孔膜32の平均孔径が1.6μmを超え3.0μm未満であることがより好ましい。これにより、第1の多孔膜31の保塵量を第2の多孔膜32の保塵量より大きくしやすくなり、濾材1全体の保塵量を向上させやすくなる。
 平均孔径は、ASTM F316-86に準じて測定される。平均孔径は、平均流路径ともいう。
 第1の多孔膜31の膜厚は、保塵量および捕集効率を高める観点から、10μmを超えることが好ましく、40μmを超えることがより好ましい。第1の多孔膜31の膜厚の上限値は、特に限定されないが、例えば100μmであってよい。また、第2の多孔膜32の膜厚は、例えば、第2の多孔膜32が上記3種の成分からなる場合は、10μmを超えるのが好ましく、40μmを超えるのがより好ましい。第2の多孔膜32の膜厚の上限値は、特に限定されないが、例えば100μmであってよい。
 膜厚は、測定対象を5枚重ねて全体の膜厚を測定し、その値を5で割った数値を1枚の膜厚とした。
 第1の多孔膜31と第2の多孔膜32とは、保塵量が等しくてもよいし異なっていてもよい。濾材1の捕集効率が高いままに濾材1の保塵量を大幅に向上させる観点から、第1の多孔膜31の保塵量と第2の多孔膜32の保塵量とに差を設け、第1の多孔膜31の保塵量が第2の多孔膜32の保塵量よりも大きいことが好ましい。
 なお、保塵量は、個数中位径0.25μmのポリアルファオレフィン(PAO)粒子を含む空気を流速5.3cm/秒で連続通風し、圧力損失が250Pa分だけ上昇したときの前記ポリアルファオレフィン粒子の保塵量をいい、以降の説明で、単に保塵量ともいう。
 第1の多孔膜31の保塵量と第2の多孔膜32の保塵量との比較は、例えば、1枚の多孔膜の10~50箇所で測定した保塵量の平均値を用いて行うことができる。各測定箇所における保塵量は、ポリアルファオレフィン粒子を用いて後述する要領に従って測定される。特に限定されないが、第1の多孔膜31の保塵量は、例えば、25g/m2以上35g/m2以下である。
 本実施形態の濾材1において、第1の多孔膜31の圧力損失と第2の多孔膜32の圧力損失とは互いに等しくてもよいし異なっていてもよいが、圧力損失が低く捕集効率が高い物性を維持させたたままで保塵量を高める観点から、第1の多孔膜31の圧力損失が第2の多孔膜32の圧力損失よりも小さいことが好ましい。
 また、第1の多孔膜31の捕集効率と第2の多孔膜32の捕集効率とは互いに等しくてもよいし異なっていてもよいが、圧力損失が低く捕集効率が高い物性を維持させたたままで保塵量を高める観点から、第2の多孔膜32の捕集効率のほうが第1の多孔膜31の捕集効率がよりも高いことが好ましい。
 このように、第1の多孔膜31の圧力損失を第2の多孔膜32の圧力損失よりも小さくし、第2の多孔膜32の捕集効率を第1の多孔膜31の捕集効率がよりも高くすることで、上流側の第1の多孔膜31では、微粒子を捕集し過ぎることなく、ある程度下流側に通過させることが可能になる。さらに、下流側の第2の多孔膜32では、十分な捕集を行うことが可能になる。これにより、濾材1の厚み方向の広域にわたって捕集を行うことができ、上流側の層で早期に目詰りが生じることを抑制できる。
 なお、圧力損失は、空気を流速5.3cm/秒で通過させたときの圧力損失をいい、以降の説明では、単に圧力損失ともいう。
 なお、捕集効率は、特に断った場合を除いて、粒子径0.3μmのNaCl粒子を含む空気を流速5.3cm/秒で通過させたときの前記粒子の捕集効率をいい、以降の説明で単に捕集効率ともいう。
 第1の多孔膜31の圧力損失と第2の多孔膜32の圧力損失の比較は、例えば、1枚の多孔膜の10~50箇所で測定した圧力損失の平均値を用いて行うことができる。各測定箇所における圧力損失は、後述する要領に従って測定される。第1の多孔膜31の圧力損失と第2の多孔膜32の圧力損失との差の大きさは、特に限定されないが、例えば10Pa以上130Pa以下であってよい。また、特に限定されないが、第1の多孔膜31の圧力損失は、30Pa以上90Pa以下でよく、40Pa以上80Pa以下でもよい。第2の多孔膜32の圧力損失は、40Pa以上160Pa以下でよく、50Pa以上100Pa以下でもよい。
 第1の多孔膜31の捕集効率と第2の多孔膜32の捕集効率の比較は、例えば、1枚の多孔膜の10~50箇所で測定した捕集効率の平均値を用いて行うことができる。各測定箇所における捕集効率は、粒子径0.3μmのNaCl粒子を用いて後述する要領に従って測定される。特に限定されないが、第1の多孔膜31の捕集効率は、例えば、95%以上99%以下であり、第2の多孔膜32の捕集効率は、例えば、99%以上99.99%以下である。
 上述のように、上流側の第1の多孔膜31と下流側の第2の多孔膜とを異ならせたことで保塵量を高められる理由は、第1の多孔膜が第2の多孔膜よりも平均孔径が広がっていることで、微粒子を下流側に流せるためであると考えられる。すなわち、上流側層である第1の多孔膜31の平均孔径が広がり、粗になった(具体的には、平均孔径が3.0μm以上3.9μm以下)ことで、微粒子を濾材1の深さ(厚み)方向に通過させ、濾材1の厚み方向により広い範囲で捕集が行われるようになり、その結果、保塵量を向上させることができたものと考えられる。特に、上記3種の成分を用いて作製した第1の多孔膜31および第2の多孔膜32を用いた場合は、厚みを稼げるため、捕集可能な厚み方向の領域を確保でき、保塵量が高められたとものと考えられる。
 第1の多孔膜31および第2の多孔膜32は、例えば、後述するエアフィルタ用濾材の製造方法に含まれる多孔膜を作製する方法に従って作製される。
 (3)通気性支持材
 上流通気性支持材21は、第1の多孔膜31の上流側に配置されており、第1の多孔膜31を支持する。このため第1の多孔膜31の膜厚が薄い等で自立が困難であっても、上流通気性支持材21の支持により第1の多孔膜31を立たせることが可能になる。
 下流通気性支持材22は、第2の多孔膜32の下流側に配置されており、第2の多孔膜32を支持する。なお、下流通気性支持材22は、濾材1の最下流側層を構成するように配置されている。第2の多孔膜32も同様に、膜厚が薄い等で自立が困難であっても、下流通気性支持材22の支持により第2の多孔膜32を立たせることが可能になる。
 上流通気性支持材21および下流通気性支持材22の材質及び構造は、特に限定されないが、例えば、不織布、織布、金属メッシュ、樹脂ネットなどが挙げられる。なかでも、強度、捕集性、柔軟性、作業性の点からは熱融着性を有する不織布が好ましい。不織布は、構成繊維の一部または全てが芯/鞘構造を有する不織布、低融点材料からなる繊維の層と高融点材料からなる繊維の層の2層からなる2層不織布、表面に熱融着性樹脂が塗布された不織布が好ましい。このような不織布としては、例えば、スパンボンド不織布が挙げられる。また、芯/鞘構造の不織布は、芯成分が鞘成分よりも融点が高いものが好ましい。例えば、芯/鞘の各材料の組み合わせとしては、例えば、PET/PE、高融点ポリエステル/低融点ポリエステルが挙げられる。2層不織布の低融点材料/高融点材料の組み合わせとしては、例えば、PE/PET、PP/PET、PBT/PET、低融点PET/高融点PETが挙げられる。表面に熱融着性樹脂が塗布された不織布としては、例えばPET不織布にEVA(エチレン酢酸ビニル共重合樹脂)が塗布されたもの、PET不織布にオレフィン樹脂が塗布されたものが挙げられる。
 不織布の材質は、特に限定されず、ポリオレフィン(PE、PP等)、ポリアミド、ポリエステル(PET等)、芳香族ポリアミド、またはこれらの複合材などを用いることができる。
 上流通気性支持材21は、加熱により上流通気性支持材21の一部が溶融することで、或いはホットメルト樹脂の溶融により、アンカー効果を利用して、或いは反応性接着剤等の接着を利用して、第1の多孔膜31に接合することができる。また、下流通気性支持材22も、同様に第2の多孔膜32に対して接合することができる。
 上流通気性支持材21と下流通気性支持材22とは、同種のものであってもよく、異なる種類のものであってもよい。
 上流通気性支持材21および下流通気性支持材22は、いずれも上述した多孔膜と比較すると、圧力損失、捕集効率および保塵量のいずれも極めて低く、実質的に0とみなすこともできるものであってもよい。
 上流通気性支持材21および下流通気性支持材22の各圧力損失は、例えば、いずれも、10Pa以下であることが好ましく、5Pa以下であることがより好ましく、1Pa以下であることがさらに好ましい。
 また、上流通気性支持材21および下流通気性支持材22の粒子径0.3μmのNaClの各捕集効率は、例えば、いずれも実質的に0あるいは略0とみなすことができるものであってもよい。
 また、上流通気性支持材21および下流通気性支持材22の各厚みは、例えば、いずれも、0.3mm以下であることが好ましく、0.25mm以下であることがより好ましい。
 また、上流通気性支持材21および下流通気性支持材22の各目付は、例えば、いずれも、20g/m2以上50g/m2以下あることが好ましい。
 (4)プレ捕集材
 プレ捕集材10は、第1の多孔膜31よりも上流側(本実施形態では、上流通気性支持材21の上流側)に配置されており、気流中の塵の一部を捕集することができる。
 プレ捕集材10は、圧力損失が15Pa以上55Pa未満であり、捕集効率が25%以上80%未満であり、厚みが0.4mm以下であり、PF値が7以上15以下である。
 プレ捕集材10は、特に限定されないが、メルトブローン法、エレクトロスピニング法、海島法およびこれらのハイブリット法の1つにより製造された繊維材料で構成された不織布あるいは繊維層構造体であることが好ましい。ハイブリット法には、例えば、メルトスピニング法あるいはエレクトレットブローン法が含まれる。海島法は、例えば、複数の吐出口から吐出させることで繊維を構成する場合において、吐出経路によって原料に違いを設け、一部の原料によって海部分を構成させ、他の異なる原料によって島部分を構成させ、断面が海島構造となるようにする方法である。ここで、海島の二成分または複数成分のポリマーを紡糸し、後加工にて海成分を溶かすことで、島部分を残して繊維とすることができる。なお、吐出経路による原料の組み合わせにより、かさ密度やストレッチ性等を調節することが可能である。
 メルトブローン法では、溶融されたポリマーを押出機によってノズルから吐出させながら、加熱された空気をノズルに沿うように吹き出すことで、糸を形成させる。ここで、ノズルからの単位時間当たりのポリマーの吐出量や加熱された空気の吹き出し速度等を調節することにより、より径の細い糸を得ることができる。また、当該糸の物性は、用いるポリマーの溶融粘度によっても変化させることができる。
 プレ捕集材10の圧力損失は、濾材1全体の圧力損失を低く抑える観点から、15Pa以上55Pa未満である。
 プレ捕集材10の塵の捕集効率は、25%以上80%未満であり、40%以上80%未満であることがより好ましい。プレ捕集材10の捕集効率が低すぎると、第1の多孔膜31や第2の多孔膜32の捕集負荷が高くなってしまい塵による目詰まりが早期に生じてしまう。また、プレ捕集材10の捕集効率が高すぎるとプレ捕集材10自体の目詰まりが無視できなくなり、やはり早期に目詰まりが生じてしまう。
 プレ捕集材10の厚さは、例えば0.4mm以下である。プレ捕集材10の厚さが0.4mmを超える場合、エアフィルタユニット60の構造に起因した圧力損失(構造抵抗)が大きくなってしまう。
 プレ捕集材10のPF値は、第1の多孔膜31や第2の多孔膜32への捕集負荷を抑えるためのプレ捕集材10の捕集効率と、濾材全体の圧力損失を抑えるためのプレ捕集材10の圧力損失と、のバランスを良好にして濾材全体の保塵量を高める観点から、7以上15以下であり、7以上13以下であることがより好ましい。ここで、PF値は、以下の式により定められる。
 PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)
 プレ捕集材10の繊維材料の材質は、特に限定されないが、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアミド(PA)、ポリアクリロニトリル(PAN)、ポリフッ化ビリニデン(PVdF)、ポリビニルアルコール(PVA)、ポリウレタン(PU)、およびこれらの混合物等が挙げられる。
 プレ捕集材10の不織布あるいは繊維層構造体における平均繊維径は、0.8μm以上2.0μm未満であることが好ましい。平均繊維径が0.8μmより小さい場合には、捕集効率は上昇するが、繊維が密な配置となるため、プレ捕集材10における圧力損失が大きく上昇してしまう。一方、平均繊維径が2μm以上の場合には、捕集効率を維持するために目付を大きくすると、プレ捕集材10の厚さが厚くなってしまい、プレ捕集材10における圧力損失が上昇してしまう。なお、この場合、目付は例えば5g/m2以上50g/m2以下であることが好ましい。繊維径は、小さすぎれば繊維間隔が密になりプレ捕集材の自体の目詰まりも無視できなくなり、また大きければ単位繊維あたりの捕集効率が低下するので、プレ捕集材10に必要な捕集効率を得るためには目付、厚みが大きくなってしまい構造抵抗が大きくなってしまうので好ましくない。
 また、プレ捕集材10が上記不織布である場合、繊維径分布の広がりを示す幾何標準偏差が、好ましくは2.5以下であり、より好ましくは2.0以下である。これは、幾何標準偏差が大きすぎると、単位繊維あたりの捕集効率が低い繊維の割合が増え、プレ捕集材に必要な捕集効率を得るためには目付、厚みを大きくする必要が出てくるためである。
 なお、平均繊維径は、次のようにして定まる。まず、試験サンプルの表面を走査型電子顕微鏡(SEM)で1000~5000倍で撮影し、撮影した1画像上で直交した2本の線を引き、これらの線と交わった繊維の像の太さを繊維径として得る。ここで、測定する繊維数は200本以上とする。こうして得られた繊維径について、横軸に繊維径、縦軸に累積頻度を採って対数正規プロットし、累積頻度が50%となる値を平均繊維径とする。繊維径の分布を表す幾何標準偏差は、上述の対数正規プロットの結果から、累積頻度50%の繊維径と累積頻度84%の繊維径を読み取り下記式より算出して得られる。
  幾何標準偏差[-]=累積頻度84%繊維径/累積頻度50%繊維径
 (5)濾材全体
 第1の多孔膜31と第2の多孔膜32を積層したときのPF値に対するプレ捕集材10のPF値の割合である「プレ捕集材10のPF値/第1の多孔膜31と第2の多孔膜32を積層したときのPF値」の値が、0.20以上0.45以下であり、より好ましくは0.20以上0.38以下である。濾材1全体において、プレ捕集材10と、第1の多孔膜31および第2の多孔膜32との関係を当該範囲とすることで、プレ捕集材10において目詰まりが早期に生じない程度にプレ捕集材10における塵の捕集を可能とし、下流側の第1の多孔膜31や第2の多孔膜32に対する捕集負担を適度に軽減させることができ、厚み方向における広い範囲でより多くの塵の捕集が可能となる。
 なお、ここで、上流通気性支持材21と第1の多孔膜31と第2の多孔膜32と下流通気性支持材22とが積層された状態でのPF値は、実質的に、第1の多孔膜31と第2の多孔膜32とが積層された状態でのPF値に等しい。これは、上流通気性支持材21、下流通気性支持材22が、圧力損失や捕集効率に実質的に寄与しないためである。
 また、濾材1の圧力損失は、200Pa未満であることが好ましく、70Pa以上195Pa以下であることがより好ましい。濾材1の圧力損失は、このような範囲にあることで、ガラス濾材からなるHEPAフィルタと比べ低く抑えられる。
 また、濾材1の捕集効率は、99.97%以上であることが好ましい。このような捕集効率を満たす濾材は、HEPAグレードのフィルタとして用いることができる。
 また、濾材1の保塵量は、40g/m2以上であることが好ましい。本実施形態の濾材1は、捕集効率と圧力損失のバランスを高いレベルで維持したままで、保塵量を大幅に(ガラス濾材の保塵量と同等以上に)向上させることが可能となっている。
 本実施形態の濾材1では、濾材1全体の圧力損失が200Pa未満となるような第1の多孔膜31と第2の多孔膜32とプレ捕集材10とを備え、捕集効率が99.97%以上であるという物性を維持しながら、保塵量を40g/m2以上に高めることが可能になっている。
 (6)変形例
 (6-1)
 図2を参照して、本実施形態のエアフィルタ用濾材1の変形例について説明する。
 上記エアフィルタ用濾材1では、気流の上流側から順に、プレ捕集材10と、任意の上流通気性支持材21と、第1の多孔膜31と、第2の多孔膜32と、任意の下流通気性支持材22と、を備えた5層構造の濾材の例を説明した。
 これに対して、例えば、図2に示すような6層構造のエアフィルタ用濾材2としてもよい。
 エアフィルタ用濾材2は、エアフィルタ用濾材1と同様に、気流の上流側から順に、プレ捕集材10と、任意の上流通気性支持材21と、第1の多孔膜31と、第2の多孔膜32と、任意の下流通気性支持材22と、を備えており、第1の多孔膜31と第2の多孔膜32との間に任意の中流通気性支持材23をさらに備えている。
 このエアフィルタ用濾材2において、プレ捕集材10と、上流通気性支持材21と、第1の多孔膜31と、第2の多孔膜32と、下流通気性支持材22とは、いずれも上記エアフィルタ用濾材1のものと同様である。
 中流通気性支持材23としては、上述した上流通気性支持材21や下流通気性支持材22と同様に通気性支持材の欄で説明したものを用いることができる。上流通気性支持材21と下流通気性支持材22と中流通気性支持材23とは、同種のものであってもよく、異なる種類のものであってもよい。
 当該エアフィルタ用濾材2の構成であっても、上記エアフィルタ用濾材1と同様に、圧力損失が200Pa未満で捕集効率が99.97%以上であるという物性を維持しながら、保塵量を40g/m2以上に高めることが可能になっている。
 なお、エアフィルタ用濾材1およびエアフィルタ用濾材2では、用いられる多孔膜の数は2つである場合を例に挙げて説明したが、これに限られず、3つ以上であってもよい。この場合には、複数の多孔膜は、気流の下流側から上流側にかけて、圧力損失の大きさが順に小さくなるよう配置されることが好ましい。
 (6-2)
 上記エアフィルタ用濾材1では、気流の上流側から順に、プレ捕集材10と、任意の上流通気性支持材21と、第1の多孔膜31と、第2の多孔膜32と、任意の下流通気性支持材22と、を備えた5層構造の濾材の例を説明した。
 これに対して、例えば、図3に示すような3層構造のエアフィルタ用濾材3としてもよい。
 エアフィルタ用濾材2は、エアフィルタ用濾材1と同様に、気流の上流側から順に、プレ捕集材10と、第1の多孔膜31と、第2の多孔膜32と、を備えている。
 このエアフィルタ用濾材2において、プレ捕集材10と、第1の多孔膜31と、第2の多孔膜32とは、いずれも上記エアフィルタ用濾材1のものと同様である。
 エアフィルタ用濾材3は、上記エアフィルタ用濾材1と比べて、任意の上流通気性支持材21および任意の下流通気性支持材22が設けられていない点で、強度が弱く、自立しにくい構造ではあるが、用いられる場所の構造や設置環境によっては強度が求められないこともあり、エアフィルタ用濾材として用いることができる。
 当該エアフィルタ用濾材3の構成であっても、上記エアフィルタ用濾材1と同様に、圧力損失が200Pa未満で捕集効率が99.97%以上であるという物性を維持しながら、保塵量を40g/m2以上に高めることが可能になっている。
 なお、エアフィルタ用濾材3においても、用いられる多孔膜の数は2つに限定されず、3つ以上であってもよい。この場合には、複数の多孔膜は、気流の下流側から上流側にかけて、圧力損失の大きさが順に小さくなるよう配置されることが好ましい。
 (7)用途の例
 エアフィルタ用濾材は、例えば次のような用途に用いられる。
 ULPAフィルタ(Ultra low Penetration Air Filter)(半導体製造用)、HEPAフィルタ(病院、半導体製造用)、円筒カートリッジフィルタ(産業用)、バグフィルタ(産業用)、耐熱バグフィルタ(排ガス処理用)、耐熱プリーツフィルタ(排ガス処理用)、SINBRAN(登録商標)フィルタ(産業用)、触媒フィルタ(排ガス処理用)、吸着剤付フィルタ(HDD組込み用)、吸着剤付ベントフィルタ(HDD組込み用)、ベントフィルタ(HDD組込み用等)、掃除機用フィルタ(掃除機用)、汎用複層フェルト材、ガスタービン用カートリッジフィルタ(ガスタービン向け互換品用)、クーリングフィルタ(電子機器筐体用)等の分野;
 凍結乾燥用の容器等の凍結乾燥用材料、電子回路やランプ向けの自動車用換気材料、容器キャップ向け等の容器用途、電子機器向け等の保護換気用途、医療用換気用途等の換気/内圧調整分野;
 半導体液ろ過フィルタ(半導体製造用)、親水性フィルタ(半導体製造用)、化学薬品向けフィルタ(薬液処理用)、純水製造ライン用フィルタ(純水製造用)、逆洗型液ろ過フィルタ(産業排水処理用)等の液濾過分野。
 (8)フィルタパック
 次に、図4を参照して、本実施形態のフィルタパックについて説明する。
 図4は、本実施形態のフィルタパック40の外観斜視図である。
 フィルタパック40は、上記説明したエアフィルタ用濾材(例えば、エアフィルタ用濾材1やエアフィルタ用濾材2等)を備えている。フィルタパック40のエアフィルタ用濾材は、山折りおよび谷折りが交互に繰り返されたジグザグ形状に加工(プリーツ加工)された加工済み濾材である。プリーツ加工は、例えば、ロータリー式折り機によって行うことができる。濾材の折り幅は、特に限定されないが、例えば25mm以上280mm以下である。フィルタパック40は、プリーツ加工が施されていることで、エアフィルタユニットに用いられた場合の濾材の折り込み面積を増やすことができ、これにより、捕集効率の高いエアフィルタユニットを得ることができる。
 フィルタパック40は、濾材のほか、エアフィルタユニットに用いられた場合のプリーツ間隔を保持するためのスペーサ(不図示)をさらに備えていてもよい。スペーサの材質は特に限定されないが、ホットメルト樹脂を好ましく用いることができる。
 (9)エアフィルタユニット
 次に、図5を参照して、エアフィルタユニット60について説明する。
 図5は、本実施形態のエアフィルタユニット60の外観斜視図である。
 エアフィルタユニット60は、上記説明したエアフィルタ用濾材またはフィルタパックと、エアフィルタ用濾材またはフィルタパックを保持する枠体50と、を備えている。言い換えると、エアフィルタユニットは、濾材が枠体に保持されるように作製されてもよいし、フィルタパック40が枠体50に保持されるように作製されてもよい。図5に示すエアフィルタユニット60は、フィルタパック40と枠体50を用いて作製したものである。
 枠体50は、例えば、板材を組み合わせてあるいは樹脂を成形して作られ、フィルタパック40と枠体50の間は好ましく歯シール剤によりシールされる。シール剤は、フィルタパック40と枠体50の間のリークを防ぐためのものであり、例えば、エポキシ、アクリル、ウレタン系などの樹脂製のものが用いられる。
 フィルタパック40と枠体50とを備えるエアフィルタユニット60は、平板状に延在する1つのフィルタパック40を枠体50の内側に収納するように保持させたミニプリーツ型のエアフィルタユニットであってもよく、平板状に延在するフィルタパックを複数並べて枠体に保持させたVバンク型エアフィルタユニットあるいはシングルヘッダー型エアフィルタユニットであってもよい。
 一方、濾材と枠体とを備えるエアフィルタユニットは、濾材を交互に折り返した波型形状にするとともに、交互に折り返されて形成された濾材の谷部に、例えばコルゲート加工されたセパレータが配置されたセパレータ型のエアフィルタユニットであってもよい。
 (10)エアフィルタ用濾材の製造方法
 次に、本実施形態のエアフィルタ用濾材の製造方法について説明する。
 本実施形態の濾材の製造方法は、気体中の塵を捕集するエアフィルタ用濾材の製造方法であって、
(a)フッ素樹脂を主として含む、第1の多孔膜および第2の多孔膜を得るステップと、
(b)前記第1の多孔膜を前記第2の多孔膜よりも気流の上流側に配置するステップと、
(c)気流中の塵の一部を捕集するプレ捕集材を前記第1の多孔膜よりも気流の上流側に配置するステップと、
を備え、
 前記プレ捕集材は、空気を流速5.3cm/秒で通過させたときの圧力損失が15Pa以上55Pa未満であり、粒子径0.3μmのNaClの捕集効率が25%以上80%未満であり、厚みが0.4mm以下であり、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められるPF値が7以上15以下であり、
 前記第1の多孔膜と前記第2の多孔膜を積層したときのPF値に対する前記プレ捕集材のPF値の割合である「プレ捕集材のPF値/第1の多孔膜と第2の多孔膜を積層したときのPF値」の値が、0.20以上0.45以下であり、
 前記第1の多孔膜と前記第2の多孔膜と前記プレ捕集材とが、熱ラミネートされることで一体化するステップをさらに備えている。
 (a)のステップで用いられるフッ素樹脂には、上記説明したエアフィルタ用濾材に用いたのと同様のものが用いられる。なお、第1の多孔膜および第2の多孔膜は、フッ素樹脂と異なる他の成分をさらに含有させていてもよい。
 なお、プレ捕集材の上記PF値は、7以上13以下であることが好ましい。
 また、(d)前記第1の多孔膜を支持する上流通気性支持材を前記第1の多孔膜よりも気流の上流側に配置するステップをさらに備えていてもよい。そして、前記第1の多孔膜と前記第2の多孔膜と前記上流通気性支持材と前記プレ捕集材とが、熱ラミネートされることで一体化するステップをさらに備えていてもよい。
 また、(e)前記第2の多孔膜を支持する下流通気性支持材を前記第2の多孔膜よりも気流の下流側に配置するステップをさらに備えていてもよい。そして、前記第1の多孔膜と前記第2の多孔膜と前記下流通気性支持材と前記プレ捕集材とが、熱ラミネートされることで一体化するステップをさらに備えていてもよい。
 さらに、上記(d)および(e)のステップをさらに備え、前記第1の多孔膜と前記第2の多孔膜と前記上流通気性支持材と前記下流通気性支持材と前記プレ捕集材とが、熱ラミネートされることで一体化するステップをさらに備えていてもよい。
 ここで、(a)のステップで、上記説明した3種の成分を用いて第1の多孔膜および第2の多孔膜を作製する方法を例に挙げて説明する。
 上記説明したA~Cの3種の成分の形態は、特に限定されず、例えば、後述する組成物、混合粉末、成形用材料である。まず、多孔膜の原料となる組成物、混合粉末、成形用材料について説明する。
 組成物、混合粉末、成形用材料はいずれも、上記した、A成分、B成分、C成分を含み、C成分を、全体の0.1重量%以上20重量%未満含有する。A成分、B成分、C成分はそれぞれ、多孔膜について上述した、繊維化し得るPTFE、繊維化しない非熱溶融加工性成分、繊維化しない熱熔融加工可能な成分と同様である。
 成形用材料は、例えば、気体中の微粒子を捕集するフィルタ用濾材に用いられる多孔膜を成形するための多孔膜成形用材料である。
 多孔膜の原料の形態は、後述する混合粉末であってもよく、粉末でない混合物であってもよく、また、後述する成形用材料あるいは組成物であってもよい。混合粉末としては、例えば、後述する実施例で用いられる共凝析によって得られるファインパウダーや、3種の原料のうち2種を共凝析で混合し、もう1種の成分を混合機を用いて混合した粉体、3種の原料を混合機で混合した粉体などが挙げられる。粉末でない混合物としては、例えば、多孔体(例えば多孔膜)等の成形体、3種の成分を含む水性分散体が挙げられる。
 成形用材料は、組成物を成形するために、加工のための調整を行ったものをいい、例えば、加工助剤(液体潤滑剤等)等を添加したもの、粒度を調整したもの、予備的な成形を行ったものである。成形用材料は、例えば、上記3種の成分に加え、公知の添加剤等を含んでもよい。公知の添加剤としては、例えば、カーボンナノチューブ、カーボンブラック等の炭素材料、顔料、光触媒、活性炭、抗菌剤、吸着剤、防臭剤等が挙げられる。
 組成物は、種々の方法により製造することができ、例えば、組成物が混合粉末である場合、A成分の粉末、B成分の粉末、およびC成分の粉末を一般的な混合機等で混合する方法、A成分、B成分、およびC成分をそれぞれ含む3つの水性分散液を共凝析すること(上記ステップa))によって共凝析粉末を得る方法、A成分、B成分、C成分のいずれか2成分を含む水性分散液を予め共凝析することにより得られた混合粉末を残る1成分の粉末と一般的な混合機等で混合する方法、等により製造できる。このような方法であれば、いずれの製法であっても、好適な延伸材料を得ることができる。なかでも、3種の異なる成分が均一に分散し易い点で、組成物は、A成分、B成分、およびC成分をそれぞれ含む3つの水性分散液を共凝析することにより得られるものであることが好ましい。
 共凝析によって得られる混合粉末のサイズは、特に限定されず、例えば、平均粒径が100μm以上1000μm以下であり、300μm以上800μm以下であることが好ましい。この場合、平均粒径は、JIS K6891に準拠して測定される。共凝析によって得られる混合粉末の見掛密度は、特に限定されず、例えば、0.40g/ml以上0.60g/ml以下であり、0.45g/ml以上0.55g/ml以下であることが好ましい。見掛密度は、JIS K6892に準拠して測定される。
 上記共凝析の方法としては、例えば、
(i)A成分の水性分散液、B成分の水性分散液、およびC成分の水性分散液を混合した後に凝析する方法、
(ii)A成分、B成分、C成分のうちいずれか1つの成分の水性分散液に、残る2成分の粉末を添加した後に凝析する方法、
(iii)A成分、B成分、C成分のうちいずれか1つの成分の粉末を、残る2成分の水性分散液を混合した混合水性分散液に添加した後に凝析する方法、
(iv)予めA成分、B成分、C成分のうちいずれか2つの成分の各水性分散液を混合した後に凝析させて得られた2成分の混合粉末を、残る1成分の水性分散液に添加した後に凝析する方法、
が挙げられる。
 上記共凝析の方法としては、3種の成分が均一に分散し易い点で、上記(i)の方法が好ましい。
 上記(i)~(iv)の方法による共凝析では、例えば、硝酸、塩酸、硫酸等の酸;塩化マグネシウム、塩化カルシウム、塩化ナトリウム、硫酸アルミニウム、硫酸マグネシウム、硫酸バリウム、炭酸水素ナトリウム、炭酸ナトリウム等の金属塩;アセトン、メタノール等の有機溶剤、のいずれかを添加して凝析させることが好ましい。
 上記A成分の混合前の形態は、特に限定されないが、上述の繊維化し得るPTFEの水性分散液であってもよいし、粉体であってもよい。粉末(特に、上述のファインパウダー)としては、例えば、三井・デュポンフロロケミカル社製「テフロン6-J」(以下テフロンは登録商標)、「テフロン6C-J」、「テフロン62-J」等、ダイキン工業社製「ポリフロンF106」、「ポリフロンF104」、「ポリフロンF201」、「ポリフロンF302」等、旭硝子社製「フルオンCD123」、「フルオンCD1」、「フルオンCD141」、「フルオンCD145」等、デュポン社製「Teflon60」、「Teflon60 X」、「Teflon601A」、「Teflon601 X」、「Teflon613A」、「Teflon613A X」、「Teflon605XT X」、「Teflon669 X」等が挙げられる。ファインパウダーは、TFEの乳化重合から得られる繊維化し得るPTFEの水性分散液(重合上がりの水性分散液)を凝析、乾燥することで得てもよい。
 繊維化し得るPTFEの水性分散液としては、上述の重合上がりの水性分散液であってもよいし、市販品の水性分散液であってもよい。重合上がりの繊維化し得るPTFE水性分散液の好ましい作製方法としては、ホモPTFEを開示するものとして列挙した上記公報等に開示されている作製方法が挙げられる。市販品の繊維化し得るPTFEの水性分散液としては、ダイキン工業社製「ポリフロンD-110」、「ポリフロンD-210」、「ポリフロンD-210C」、「ポリフロンD-310」等、三井・デュポンフロロケミカル社製「テフロン31-JR」、「テフロン34-JR」等、旭硝子社製「フルオンAD911L」、「フルオンAD912L」、「AD938L」等の水性分散液が挙げられる。市販品の繊維化し得るPTFEの水性分散液はいずれも、安定性を保つために、水性分散液中のPTFE 100重量部に対して、非イオン性界面活性剤等を2~10重量部添加しているため、共凝析によって得られる混合粉末に非イオン性界面活性剤が残留しやすく、多孔体が着色する等の問題を起こすおそれがある。このため、繊維化し得るPTFEの水性分散液としては、重合上がりの水性分散液が好ましい。
 B成分の混合前の形態は、特に限定されないが、B成分が低分子量PTFEである場合、混合前の形態は特に限定されないが、水性分散体であってもよいし、粉体(一般的にPTFEマイクロパウダー、またはマイクロパウダーと呼ばれる)であってもよい。低分子量PTFEの粉体としては、例えば、三井・デュポンフロロケミカル社製「MP1300-J」等、ダイキン工業社製「ルブロンL-5」、「ルブロンL-5F」等、旭硝子社製「フルオンL169J」、「フルオンL170J」、「フルオンL172J」等、喜多村社製「KTL-F」、「KTL-500F」等が挙げられる。
 低分子量PTFEの水性分散液としては、上述のTFEの乳化重合から得られた重合上がりの水性分散液であってもよいし、市販品の水性分散液であってもよい。また、マイクロパウダーを界面活性剤を使うなどして水中に分散したものも使用できる。重合上がりの繊維化し得るPTFE水性分散液の好ましい作製方法としては、特開平7-165828号公報、特開平10-147617号公報、特開2006-063140号公報、特開2009-1745号公報、国際公開第2009/020187号パンフレット等に開示されている作製方法が挙げられる。市販品の繊維化し得るPTFEの水性分散液としては、ダイキン工業社製「ルブロンLDW-410」等の水性分散液が挙げられる。市販品の低分子量PTFEの水性分散液は安定性を保つために、水性分散液中のPTFE 100重量部に対して、非イオン性界面活性剤等を2~10重量部添加しているため、共凝析によって得られる混合粉末に非イオン性界面活性剤が残留しやすく、多孔体が着色する等の問題を起こすおそれがある。このため、低分子量PTFEの水性分散液としては、重合上がりの水性分散液が好ましい。
 また、B成分として無機フィラーを用いる場合も混合前の形態は特に限定されないが、水性分散体が好ましい。無機フィラーとしては、日本タルク株式会社製「タルクP2」、富士タルク工業社製「LMR-100」等が挙げられる。これらは適宜シランカップリング剤などによる表面処理等を施し水中に粉体を分散して用いられる。中でも、水への分散性の理由から、ジェットミルによる2次粉砕品(「タルクP2」など)が好ましく用いられる。
 C成分としては、例えば、FEP,PFAなどのフッ素樹脂の他,アクリル,ウレタン,PET等の各樹脂が挙げられる。混合前の形態は特に限定されないが水性分散体が好ましい。水性分散体は、乳化重合によって得られる樹脂の場合は、その重合上がり分散体をそのまま使えるほか,樹脂粉を界面活性剤などを使い、水分中に分散した物も使用できる。C成分は、多孔膜において0.1重量%以上20重量%未満含有されるよう、所定量が水中に分散されて水性分散体が調製される。
 共凝析の方法は、特に限定されないが、3つの水性分散体を混合したのち機械的な撹拌力を作用させるのが好ましい。
 共凝析後は、脱水、乾燥を行なって、液体潤滑剤(押出助剤)を混合し、押出を行う。液体潤滑剤としては、PTFEの粉末の表面を濡らすことが可能であり、共凝析により得られた混合物をフィルム状に成形した後に除去可能な物質であるものであれば、特に限定されない。例えば、流動パラフィン、ナフサ、ホワイトオイル、トルエン、キシレンなどの炭化水素油、アルコール類、ケトン類、エステル類などが挙げられる。
 共凝析により得られた混合物は、液体潤滑剤と混合された後、従来公知の方法で押出、圧延されることにより、フィルム状物に成形される。押出は、ペースト押出、ラム押出等により行えるが、好ましくはペースト押出により行われる。ペースト押出により押し出されたシート状の押出物は、加熱下、例えば40℃以上80℃以下の温度条件の下、カレンダーロール等を用いて圧延される。得られるフィルム状の圧延物の厚さは、目的の多孔膜の厚さに基づいて設定され、通常100μm以上400μm以下である。
 次いで、圧延物である未焼成フィルムから液体潤滑剤が除去される。液体潤滑剤の除去は、加熱法又は抽出法により、或いはこれらの組み合わせにより行われる。加熱法による場合の加熱温度は、繊維化しない熱溶融加工性成分の融点より低ければ特に限定されず、例えば、100℃以上250℃以下である。
 液体潤滑剤が除去された圧延物は、繊維化しない熱溶融加工性成分の融点以上かつ繊維化しない非熱溶融加工性成分の分解温度以下の温度下で延伸される。この過程で繊維化しない熱溶融加工性成分が溶融し、後に結節部において固まることで、多孔膜の厚み方向の強度が強化される。この時の延伸温度は、延伸を行う炉の温度、又は圧延物を搬送する加熱ローラの温度によって設定されてもよく、或いは、これらの設定を組み合わせることで実現されてもよい。
 延伸は、第1の方向への延伸と、好ましくは、第1の方向と直交する第2の方向への延伸とを含む。多孔膜をエンボス加工されたエアフィルタ用濾材に用いる場合は、第2の方向への延伸も行うのが好ましい。本実施形態では、第1の方向は、圧延物の長手方向(縦方向)であり、第2の方向は、圧延物の幅方向(横方向)である。
 前記圧延物は40倍以上800倍以下の伸長面積倍率で延伸される。第1の方向への延伸速度は、好ましくは10%/秒以上600%/秒以下であり、より好ましくは10%/秒以上150%/秒以下である。延伸時の温度は、好ましくは200℃以上350℃以下、より好ましくは280℃以上310℃以下である。
 第2の方向への延伸速度は、好ましくは10%/秒以上600%/秒以下である。延伸時の温度は、好ましくは200℃以上400℃以下、より好ましくは250℃以上350℃以下である。第2の方向への延伸は、第1の方向への延伸と同時又は別に行なってよい。
 前記圧延物(フッ素樹脂未焼成物ともいう)の延伸に関して、延伸時の温度、延伸倍率、延伸速度が延伸物の物性に影響を与えることが知られている。フッ素樹脂未焼成物のS-Sカーブ(引張張力と伸びの関係を示すグラフ)は、他の樹脂とは異なる特異な特性を示す。通常、樹脂材料は伸びに伴って引張張力も上昇する。弾性領域の範囲、破断点などは、材料、評価条件によって異なる一方で、引張張力は、伸び量に伴って上昇傾向を示すのが極めて一般的である。これに対してフッ素樹脂未焼成物は、引張張力は、ある伸び量においてピークを示した後、緩やかな減少傾向を示す。このことは、フッ素樹脂未焼成物には、「延伸された部位よりも延伸されていない部位の方が強くなる領域」が存在することを示している。
 このことを延伸時の挙動に置き換えると、一般的な樹脂の場合、延伸時は、延伸面内で最も弱い部分が伸び始めるが、延伸された部分の方が延伸されていない部分より強くなるため、次に弱い未延伸部が延伸されていくことで、延伸された領域が広がって、全体的に延伸される。一方、フッ素樹脂未焼成物の場合、伸び始める部分が、上記「延伸された部位よりも延伸されていない部位の方が強くなる領域」に差し掛かると、既に伸びた部分が更に延伸され、この結果、延伸されなかった部分がノード(結節部、未延伸部)として残る。延伸速度が遅くなると、この現象は顕著になり、より大きいノード(結節部、未延伸部)が残る。このような現象を延伸時に利用することにより、種々の用途に応じて延伸体の物性調整が行われている。
 本実施形態では、より低密度の延伸体を得ることが好ましく、低延伸速度を特に第1の延伸に適用することが有効である。ここで、大きいノード(結節部、未延伸部)を残し、低充填率の成形体を得ようとする場合、従来のPTFEのみを原料とした場合は、第1の延伸の延伸速度を150%/秒以下、好ましくは80%/秒以下とし、第2の方向への延伸を500%/秒以下とする必要がある。しかし、このようにして得られた成形体の低充填率構造は外力によって容易に損なわれる。
 本実施形態では、繊維化しない非熱溶融加工性成分が存在することにより、低延伸速度による上記現象がより顕著になる。この結果、適用できる延伸速度の範囲として、第1の延伸の延伸速度を600%/秒以下、好ましくは150%/秒以下、第2の方向への延伸を600%/秒以下まで拡げることができる。また、繊維化しない熱溶融加工可能な成分が存在することで、その構造を後加工の後も維持できる。
 こうして得られた多孔膜は、機械的強度、寸法安定性を得るために、好ましくは熱固定される。熱固定の際の温度は、PTFEの融点以上又はPTFEの融点未満であってよく、好ましくは250℃以上400℃以下である。
 なお、多孔膜としてPTFE多孔膜を作製する場合は、公知の方法を用いることができる。
 なお、第1の多孔膜とは異なる物性の第2の多孔膜を得る場合には、第1の多孔膜の作製時よりも第2の多孔膜の作製時の方がフッ素樹脂100重量部に対する液体潤滑剤の量が減るように変更することで、得られる多孔膜の平均孔径を小さくすることができ、圧力損失が第1の多孔膜よりも大きく捕集効率が第1の多孔膜よりも高い第2の多孔膜を得ることができる。この場合、フッ素樹脂100重量部に対する液体潤滑剤の量の差(液体潤滑剤量差または助剤量差)が、1重量部以上4重量部以下であることが好ましい。助剤量差が1重量部以上であることで、2つの多孔膜の間で適度な平均孔径の差を生じさせることができる。助剤量差が4重量部以下であることで、延伸の均一性が悪化するのを抑制できる。延伸の均一性とは、延伸加工によって作成された多孔膜において、捕集効率、圧力損失等の特性のバラつきが少なく、多孔膜全体にわたってこれら特性が均一になっていることをいう。液体潤滑剤量差は、例えば、2重量部である。
 第1の多孔膜の作製時および第2の多孔膜の作製時に用いられる液体潤滑剤の量は、それぞれ、フッ素樹脂100重量部に対して30重量部以上37重量部以下であることが好ましい。30重量部以上用いることで、圧力損失を低くでき、濾材全体として圧力損失を200Pa未満にすることができる。また、37重量部以下用いることで、後述する生テープの成形性を確保でき、第1の多孔膜の孔径が大きくなりすぎて微粒子が捕集されずに通過して下流側に流れ、下流側の第2の多孔膜の負担が大きくなりすぎることを抑制できる。
 特に、第1の多孔膜の作製時に用いられる液体潤滑剤量は、フッ素樹脂100重量部に対し、例えば34~36重量部であることが好ましい。例えば、液体潤滑剤量差1~4重量部を満たす範囲で、第2の多孔膜を作製するのに31~34重量部未満用いるのに対し、第1の多孔膜を作製するのに34~36重量部未満用いることで、濾材の保塵量を大幅に高めることができる。
 第1の多孔膜、第2の多孔膜は、公知の方法で、未焼成フィルム(以降、生テープともいう)を作製し、その後二軸延伸することで作製することができる。
 なお、2つの多孔膜の平均孔径の差を生じさせることは、上記3種の成分の配合比を、2枚の多孔膜の間で異ならせることで達成させてもよい。
 なお、圧力損失が15Pa以上55Pa未満であり、捕集効率が25%以上80%未満であり、厚みが0.4mm以下であり、PF値が7以上15以下であるプレ捕集材に対して、「プレ捕集材のPF値/第1の多孔膜と第2の多孔膜を積層したときのPF値」の値を0.20以上0.45以下とすることが可能な物性を有する第1の多孔膜および第2の多孔膜が仮に販売されているのであれば、当該多孔膜を商業的に入手してもよい。
 (b)、(c)、(d)、(e)の各ステップにおいて、配置する手法は特に限定されない。
 第1の多孔膜と第2の多孔膜とプレ捕集材とが、熱ラミネートされることで一体化するステップは、特に限定されず、1回の熱ラミネートにより第1の多孔膜と第2の多孔膜とプレ捕集材との全てを一体化させる場合だけでなく、互いに隣り合うもの同士を熱ラミネートによって一体化させ、これを繰り返すことで第1の多孔膜と第2の多孔膜とプレ捕集材との全てを一体化させるようにしてもよい。
 第1の多孔膜と第2の多孔膜と上流通気性支持材とプレ捕集材とが、熱ラミネートされることで一体化するステップは、特に限定されず、1回の熱ラミネートにより第1の多孔膜と第2の多孔膜と上流通気性支持材とプレ捕集材との全てを一体化させる場合だけでなく、互いに隣り合うもの同士を熱ラミネートによって一体化させ、これを繰り返すことで第1の多孔膜と第2の多孔膜と上流通気性支持材とプレ捕集材との全てを一体化させるようにしてもよい。
 下流通気性支持材の一体化は、上流通気性支持材と同様である。
 図1に示す5層構造のエアフィルタ用濾材1における各層の積層方法は、特に限定されない。例えば、第1の多孔膜と第2の多孔膜を接合させる場合には、第1の多孔膜および第2の多孔膜となる各生テープをそれぞれ作製し、別々に乾燥した後、これらを重ねて二軸延伸(縦延伸、横延伸)を行うことで接合させることができる。この場合、第1の多孔膜と第2の多孔膜は、重ねた状態で延伸を行うごとに加熱され、熱が計2回加わるので、2枚の多孔膜は良好に接着し、後の加工によって2枚の多孔膜が境界で剥離すること等が抑えられる。また、この方法に代えて、縦延伸後に、2枚の多孔膜となる2枚のフィルムを重ねて横延伸することでも接合できる。また、多孔膜同士の接合は、PTFEの融点付近まで加熱することでも可能である。そして、上流通気性支持材、下流通気性支持材としては、上述した不織布、織布、金属メッシュ、樹脂ネット等を用いることができる。ここで、上流通気性支持材として不織布等を用いる場合は、加熱による上流通気性支持材の一部溶融又はホットメルト樹脂の溶融によるアンカー効果を利用して、或いは反応性接着剤等を用いた接着を利用して、上流通気性支持材を第1の多孔膜に接合させることができる。下流通気性支持材も、同様にして第2の多孔膜に対して接合させることができる。また、プレ捕集材として不織布等を用いる場合にも、加熱によるプレ捕集材の一部溶融又はホットメルト樹脂の溶融によるアンカー効果を利用して、或いは反応性接着剤等を用いた接着を利用して、プレ捕集材を上流通気性支持材に接合させることができる。
 図2に示す6層構造のエアフィルタ用濾材2における各層の積層方法は、特に限定されない。例えば、2枚の多孔膜をそれぞれ作製し、そのうちの1枚の多孔膜を上流通気性支持材と中流通気性支持材とによって挟み、熱ラミネートすることで3層構造体を得ることができる。そして、当該3層構造体に対して残る一方の多孔膜を、横延伸をしながら熱ラミネートすること接合させることができる。当該第2の多孔膜に対してさらに下流通気性支持材を熱ラミネートすることで、第2の多孔膜に対して下流通気性支持材を接合させることができる。また、プレ捕集材として不織布等を用いる場合にも、加熱によるプレ捕集材の一部溶融又はホットメルト樹脂の溶融によるアンカー効果を利用して、或いは反応性接着剤等を用いた接着を利用して、プレ捕集材を上流通気性支持材に接合させることができる。
 図3に示す3層構造のエアフィルタ用濾材3における各層の積層方法は、特に限定されない。例えば、上述した第1の多孔膜と第2の多孔膜を接合させる場合には、5層構造のエアフィルタ用濾材1の場合と同様にして接合させることが可能である。そして、プレ捕集材として不織布等を用いる場合にも、加熱によるプレ捕集材の一部溶融又はホットメルト樹脂の溶融によるアンカー効果を利用して、或いは反応性接着剤等を用いた接着を利用して、プレ捕集材を第1の多孔膜の上流側に接合させることができる。
 なお、貼り合わせにより得られるエアフィルタ用濾材の膜厚は、第1の多孔膜、第2の多孔膜、上流通気性支持材、下流通気性支持材、プレ捕集材、(エアフィルタ用濾材2の場合にはさらに中流通気性支持材)に対して圧力が加わるため、各膜厚の単純な合計にはならず、各膜厚の単純な合計の85%以上100%以下の範囲に収まることになる。
 以下、実施例および比較例を示して、本発明を具体的に説明する。
 (実施例1)
 SSGが2.160のPTFE水性分散体(PTFE-A)66.5重量%(ポリマー換算)、380℃におけるフローテスター法を用いて測定される溶融粘度が20000Pa・sの低分子量PTFE水性分散体(PTFE-B)28.5重量%(ポリマー換算)、および融点が215℃のFEP水性分散体5重量%(ポリマー換算)、を混合し、凝析剤として1%硝酸アルミニウム水溶液500mlを添加し、攪拌することにより共凝析を行った。そして、生成した粉をふるいを用いて水切りをした後、さらに、熱風乾燥炉で135℃で18時間乾燥し、上記3成分の混合粉末を得た。
 次いで、混合粉末100重量部あたり、液体潤滑剤(押出助剤)として炭化水素油(出光興産社製「IPソルベント2028」)を20℃において35重量部を加えて混合した。次に、得られた混合物をペースト押出装置を用いて押し出してシート形状の成形体を得た。ペースト押出装置の先端部には、短手方向長さ2mm×長手方向長さ150mmの矩形状の押出口が形成されたシートダイを取り付けた。このシート形状の成形体を70℃に加熱したカレンダーロールによりフィルム状に成形しフッ素樹脂フィルムを得た。このフィルムを200℃の熱風乾燥炉に通して炭化水素油を蒸発除去し、平均厚さ300μm、平均幅150mmの帯状の未焼成フッ素樹脂フィルム(第1の生テープ)を得た。また、液体潤滑剤の混合量を33重量部とした点を除き、第1の生テープと同様にして、平均厚さ300μm、平均幅150mmの帯状の未焼成フッ素樹脂フィルム(第2の生テープ)を得た。
 次に、第1の生テープと第2の生テープを重ねて、長手方向(縦方向)に延伸倍率6.5倍に延伸した。延伸温度は300℃であった。次に、重ねて延伸した生テープを、連続クリップできるテンターを用いて幅方向(横方向)に延伸倍率13.5倍に延伸し、熱固定を行った。このときの延伸温度は290℃、熱固定温度は390℃であった。これにより、第1の多孔膜31と第2の多孔膜32が重なった複層多孔膜を得た。
 図1に示す上流通気性支持材21、下流通気性支持材22として、PETを芯に、PEを鞘に用いた芯/鞘構造の繊維からなるスパンボンド不織布(平均繊維径20μm、目付40g/m2、厚さ0.2mm)を用いた。
 得られた複層多孔膜を、第1の多孔膜31側に配置された上流通気性支持材21としてのスパンボンド不織布と、第2の多孔膜32側に配置された下流通気性支持材22としてのスパンボンド不織布と、で挟み、ラミネート装置を用いて熱融着により接合し、実施例1のフッ素樹脂積層体を得た。
 プレ捕集材10として、平均繊維径が1.6μmの繊維であるPPからなるメルトブローン不織布(目付30g/m2、厚さ0.25mm)を用いた。
 上記実施例1のフッ素樹脂積層体と、上流通気性支持材21側に配置されたプレ捕集材10であるメルトブローン不織布とを、エチレン-酢酸ビニル共重合体(EVA)ホットメルト接着剤を2g/m2使用して、110℃で熱ラミネートを行い、図1に示す層構成を有するエアフィルタ用濾材1を得た。濾材1の厚さは0.68mmであった。
 濾材1は、圧力損失が170Paであり、捕集効率が99.991%であった。熱ラミネートによる圧力損失の上昇はなかった。この圧力損失および捕集効率は、概ねプレ捕集材10と第1の多孔膜31と第2の多孔膜32による特性である。
 作製した濾材1を、ロータリー式折り機で260mm毎に山折り、谷折りになるようにプリーツ加工を行い、図4に示すようなジグザグ形状の加工済み濾材をつくった。この後、アルミニウム板をコルゲート加工したセパレータを濾材1の谷部に挿入し、縦590mm×横590mmのフィルタパック40を得た。このときのプリーツ数は79であった。
 得られたフィルタパック40を外寸610mm×610mm(縦×横)、内寸580mm×580mm(縦×横)、奥行き290mmのアルミニウム製の枠体50に固定した。フィルタパックの周囲をウレタン接着剤で枠体50と接着してシールして、エアフィルタユニット60を得た。
 (実施例2)
 実施例1の第1の多孔膜31と第2の多孔膜32との間に、実施例1とは目付や厚みが異なる上流通気性支持材21、下流通気性支持材22としてのスパンボンド不織布と、中流通気性支持材23としてのスパンボンド不織布をさらに設け、熱ラミネートさせた点(図2に示す濾材2の構成とした点)以外は、実施例1と同様である。
 具体的には、実施例1の第2の生テープを縦方向、横方向に延伸して得られる第2の多孔膜32を、下流通気性支持材22と中流通気性支持材23とで挟み、ラミネート装置を用いて熱融着により接合し、実施例2の第1フッ素樹脂積層体を得た。さらに、実施例1の第1の生テープを縦方向、横方向に延伸して得られる第1の多孔膜31を、実施例2の第1フッ素樹脂積層体と上流通気性支持材21とで挟み、ラミネート装置を用いて熱融着により接合し、実施例2の第2フッ素樹脂積層体を得た。そして、プレ捕集材10であるメルトブローン不織布と、実施例2の第2フッ素樹脂積層体とを、エチレン-酢酸ビニル共重合体(EVA)ホットメルト接着剤を使用しつつ、ラミネート装置を用いて110℃で熱ラミネートを行うことで接合し、図2に示す層構成を有するエアフィルタ用濾材2を得た。
 また、プリーツ加工によるフィルタパック40やエアフィルタユニット60を得る工程は実施例1と同様である。
 (実施例3)
 実施例1のプレ捕集材10としてのメルトブローン不織布の代わりに、平均繊維径が1.7μmの繊維であるPPからなるメルトブローン不織布(目付10g/m2、厚さ0.07mm)を用いた点以外は、実施例1と同様である。この実施例3では、目付が小さいメルトブローン不織布を用いている。
 (実施例4)
 実施例1のプレ捕集材10としてのメルトブローン不織布の代わりに、平均繊維径が1.8μmの繊維であるPPからなるメルトブローン不織布(目付50g/m2、厚さ0.37mm)を用いた点以外は、実施例1と同様である。この実施例4では、目付が大きく厚みのあるメルトブローン不織布を用いている。
 (実施例5)
 実施例2の第1の多孔膜31の代わりに、実施例2の第2の多孔膜32と同じ物性を有する多孔膜を用いた点以外は、実施例2と同様である。
 (実施例6)
 実施例1の第1の多孔膜31の代わりに、実施例1の第2の多孔膜32と同じ物性を有する多孔膜を用いた点、および、実施例1の上流通気性支持材21、下流通気性支持材22としてのスパンボンド不織布の代わりに、スパンボンド不織布(平均繊維径20μm、目付30g/m2、厚さ0.16mm)を用いた点以外は、実施例1と同様である。
 (実施例7)
 実施例1の上流通気性支持材21としてのスパンボンド不織布を用いなかった点以外は、実施例1と同様である。
 具体的には、実施例1と同様に、第1の生テープと第2の生テープを重ねて、長手方向(縦方向)に延伸し、幅方向(横方向)に延伸し、熱固定を行うことで、第1の多孔膜31と第2の多孔膜32が重なった複層多孔膜を得た。そして、実施例1と同様の下流通気性支持材22としてのスパンボンド不織布を、複層多孔膜の第2の多孔膜32側に対して配置し、ラミネート装置を用いて熱融着により接合し、実施例7のフッ素樹脂積層体を得た。そして、実施例1と同様のプレ捕集材10を、実施例7のフッ素樹脂積層体の第1の多孔膜31側に対して、エチレン-酢酸ビニル共重合体(EVA)ホットメルト接着剤を2g/m2使用して、110℃で熱ラミネートを行うことで接合させ、実施例7のエアフィルタ用濾材を得た。
 (実施例8)
 実施例1の上流通気性支持材21および下流通気性支持材22としてのスパンボンド不織布を用いなかった点以外は、実施例1と同様である。
 具体的には、実施例1と同様に、第1の生テープと第2の生テープを重ねて、長手方向(縦方向)に延伸し、幅方向(横方向)に延伸し、熱固定を行うことで、第1の多孔膜31と第2の多孔膜32が重なった複層多孔膜を得た。そして、実施例1と同様のプレ捕集材10を、複層多孔膜の第1の多孔膜31側に対して、エチレン-酢酸ビニル共重合体(EVA)ホットメルト接着剤を2g/m2使用して、110℃で熱ラミネートを行うことで接合させ、図3に示す層構成を有するエアフィルタ用濾材3を得た。
 (実施例9)
 実施例1のプレ捕集材10としてのメルトブローン不織布の代わりに、平均繊維径が0.32μmの繊維であるポリプロピレン(PP)からなるメルトブローン不織布(目付0.7g/m2、厚み0.002mm)を用いた点以外は、実施例1と同様である。
 (比較例1)
 実施例1と同様の第1の多孔膜31、第2の多孔膜32、上流通気性支持材21、下流通気性支持材22を用い、「第1の多孔膜31と第2の多孔膜32が重なった複層多孔膜」を、上流通気性支持材21としてのスパンボンド不織布と、下流通気性支持材22としてのスパンボンド不織布とで挟み、ラミネート装置を用いて熱融着により接合し、フッ素樹脂積層体を得た。
 こうして得られたフッ素樹脂積層体は、圧力損失が131Paであり、捕集効率が99.997%であった。この圧力損失および捕集効率は、上流通気性支持材21、下流通気性支持材22は実質的に寄与しないため、概ね、第1の多孔膜31および第2の多孔膜32による特性である。
 また、プリーツ加工によるフィルタパック40やエアフィルタユニット60を得る工程は実施例1と同様である。
 (比較例2)
 平均分子量650万のPTFEファインパウダー(ダイキン工業株式会社製「ポリフロンファインパウダーF106」)1kg当たり押出液状潤滑剤として炭化水素油(出光興産株式会社製「IPソルベント2028」)を20℃において33.5質量%加えて混合した。次に、得られた混合物をペースト押出装置を用いて押し出して丸棒形状の成形体を得た。この丸棒形状の成型体を70℃に加熱したカレンダーロールによりフィルム状に成形しPTFEフィルムを得た。このフィルムを250℃の熱風乾燥炉に通して炭化水素油を蒸発除去し、平均厚さ200μm、平均幅150mmの帯状の未焼成PTFEフィルムを得た。次に、未焼成PTFEフィルムを長手方向に延伸倍率5倍で延伸した。延伸温度は250℃であった。次に、延伸した未焼成フィルムを連続クリップできるテンターを用いて幅方向に延伸倍率32倍で延伸し、熱固定を行った。このときの延伸温度は290℃、熱固定温度は390℃であった。これにより、PTFE多孔膜(充填率が4.0%、平均繊維径が0.069μm、厚さ0.009mm)を得た。
 通気性支持層として、PETを芯に、PEを鞘に用いた芯/鞘構造の繊維からなるスパンボンド不織布(平均繊維径20μm、目付け40g/m2、厚さ0.20mm)を用いた。
 得られたPTFE多孔膜の両面に、上流通気性支持材21および下流通気性支持材22としての上記スパンボンド不織布を、ラミネート装置を用いて熱融着により接合して、PTFE積層体を得た。こうして得られたPTFE積層体は、上述した測定方法によれば、圧力損失が118Paであり、捕集効率が99.998%であった。この圧力損失及び捕集効率は、略PTFE多孔膜の特性である。
 また、プリーツ加工によるフィルタパック40やエアフィルタユニット60を得る工程は実施例1と同様である。
 (比較例3)
 比較例2のPTFE積層体に対してプレ捕集材10をさらに設けた点以外は、比較例2と同様である。
 ここで、プレ捕集材10としては、平均繊維径が1.6μmの繊維であるPPからなるメルトブローン不織布(目付30g/m2、厚さ0.25mm)を用いた。比較例2のPTFE積層体と、プレ捕集材10であるメルトブローン不織布とを、エチレン-酢酸ビニル共重合体(EVA)ホットメルト接着剤を2g/m2使用して、110℃で熱ラミネートを行い、PP積層体(厚さ0.14mm)を得た。
 これにより、4層構成を有するエアフィルタ用濾材を得た。濾材の厚さは0.569mmであった。
 また、プリーツ加工によるフィルタパック40やエアフィルタユニット60を得る工程は実施例1と同様である。
 (比較例4)
 ガラス濾材は、例えば、特開2007-7586号公報、特開平5-123513号公報、特許第3014440号公報に記載された方法を用いて製造することができる。
 ガラス濾材は、ガラス繊維を水中に分散したスラリーから、水中のガラス繊維を抄紙機を用いて搬送して抄くことができる。抄紙機としては、一般紙や湿式不織布を製造するためのもの、例えば、長網抄紙機、円網抄紙機、傾斜ワイヤー式抄紙機等のうちの同一又は異種の2機を組み合わせたコンビネーションマシンが用いられる。バインダによる繊維同士の結合は、バインダを直接ガラス繊維上に付着させることでなされてもよく、バインダを溶剤に溶かしたバインダ溶液にガラス繊維を含浸させ、乾燥させることでなされてもよい。バインダは、アクリル樹脂、フェノール樹脂等、公知のものが用いられる。
 上述のようなガラス濾材としては、比較例4では、北越製紙社製S320MのHEPAフィルタ濾材を用いた。
 また、プリーツ加工によるフィルタパック40やエアフィルタユニット60を得る工程は実施例1と同様である。
 (比較例5)
 プレ捕集材10を設けていない点以外は、実施例5と同様である。
 具体的には、実施例5の各層の物性を備える第1の多孔膜31、第2の多孔膜32、上流通気性支持材21、下流通気性支持材22、中流通気性支持材23を用い、実施例2の第2フッ素樹脂積層体の積層工程と同様に積層させることで、比較例5のエアフィルタ濾材を得た。
 また、プリーツ加工によるフィルタパック40やエアフィルタユニット60を得る工程は実施例1と同様である。
 (比較例6)
 実施例1のプレ捕集材10としてのメルトブローン不織布の代わりに、PF値が大きいメルトブローン不織布(目付2g/m2、厚み0.02mm)を用いた点以外は、実施例1と同様である。
 (比較例7)
 実施例1のプレ捕集材10としてのメルトブローン不織布の代わりに、PF値が大きいメルトブローン不織布(目付32g/m2、厚み0.26mm)を用いた点、実施例1の上流通気性支持材21としてのスパンボンド不織布の代わりに目付や厚みが異なる上流通気性支持材21を用いた点(実施例2の上流通気性支持材と同様)、実施例1の下流通気性支持材22としてのスパンボンド不織布の代わりに目付や厚みが異なる下流通気性支持材22を用いた点(実施例2の下流通気性支持材と同様)以外は、実施例1と同様である。
 (比較例8)
 実施例1のプレ捕集材10としてのメルトブローン不織布の代わりに、PF値が小さいメルトブローン不織布(目付28g/m2、厚み0.23mm)を用いた点、実施例1の上流通気性支持材21としてのスパンボンド不織布の代わりに目付や厚みが異なる上流通気性支持材21を用いた点(実施例2の上流通気性支持材と同様)、実施例1の下流通気性支持材22としてのスパンボンド不織布の代わりに目付や厚みが異なる下流通気性支持材22を用いた点(実施例2の下流通気性支持材と同様)以外は、実施例1と同様である。
 (圧力損失)
 濾材の測定サンプルを、直径100mmのフィルタホルダにセットし、コンプレッサで入口側を加圧し、流速計で空気の透過する流量を5.3cm/秒に調整した。そして、この時の圧力損失をマノメータで測定した。
 (粒子径0.3μmのNaCl粒子の捕集効率)
 JIS B9928 附属書5(規定)NaClエアロゾルの発生方法(加圧噴霧法)記載の方法に準じて、アトマイザーで発生させたNaCl粒子を、静電分級器(TSI社製)で、粒子径0.3μmに分級し、アメリシウム241を用いて粒子帯電を中和した後、透過する流量を5.3cm/秒に調整し、パーティクルカウンター(TSI社製、CNC)を用いて、測定試料である濾材の前後での粒子数を求め、次式により捕集効率を算出した。
 捕集効率(%)=(CO/CI)×100
 CO=測定試料が捕集したNaCl 0.3μmの粒子数
 CI=測定試料に供給されたNaCl 0.3μmの粒子数
 (PF値)
 粒子径0.3μmのNaCl粒子を用いて、濾材の圧力損失及び捕集効率(粒子径0.3μmのNaCl粒子の捕集効率)とから、次式に従いPF値を求めた。
 PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)
 なお、100-捕集効率(%)の値は、透過率(%)として知られる値である。
 (ポリアルファオレフィンの保塵量)
 ポリアルファオレフィン(PAO)粒子(液体粒子)透過時の圧力損失上昇試験で評価した。即ち、PAO粒子を含んだ空気を有効濾過面積50cm2のサンプル濾材に流速5.3cm/秒で連続通風したときの圧力損失を差圧計(U字管マノメータ)で経時的に測定し、圧力損失が250Pa分だけ上昇したときに、濾材に保持されているPAO粒子の濾材の単位面積当たりの重量である保塵量(g/m2)を求めた。なお、PAO粒子は、ラスキンノズルで発生させたPAO粒子(個数中位径0.25μm)を用い、PAO粒子の濃度は、約100万~600万個/cm3とした。
 HEPA濾材に関して、保塵量の定義がないが、フィルタの初期圧力損失は一般的にHEPAユニットでは約250Pa以下とされており、フィルタの交換時期としては、一般的にフィルタの初期圧力損失の2倍を超えた時点が推奨されている。また、標準的なHEPA用ガラス濾材の初期圧力損失は約250~300Paである。そのため、濾材の保塵量評価のための上記試験の終点を、圧力損失が250Pa分だけ上昇した時点とした。
 (平均孔径)
 ASTM F316-86の記載に準じて測定される平均孔径(mean flow pore size)を多孔膜の平均孔径(平均流路径)とした。実際の測定は、コールターポロメータ(Coulter Porometer)[コールター・エレクトロニクス(Coulter Electronics)社(英国)製]で測定を行った。
 (多孔膜の膜厚)
 膜厚計(1D-110MH型、ミツトヨ社製)を使用し、測定対象を5枚重ねて全体の膜厚を測定し、その値を5で割った数値を1枚の膜厚とした。
 (多孔膜以外の接合前の各層の膜厚及び濾材全体の膜厚)
 ABSデジマチックインジケータ(ミツトヨ社製、ID-C112CX)をゲージスタンドに固定し、測定対象に0.3Nの荷重をかけたときの厚さの値を読み取った。
 各実施例および各比較例のエアフィルタ用濾材(フィルタパックやエアフィルタユニットとする前の状態のもの)について、各エアフィルタ用濾材の作製に用いられた各材の物性と合わせて、以下の表1、表2、表3、表4、表5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1~表5から分かるように、いずれの実施例においても、濾材全体の圧力損失を200Pa以下に抑えつつ、濾材全体の捕集効率を99.97以上に維持させた場合であっても、濾材全体の保塵量を40g/m2以上にすることができるという、これまでに無い保塵量を達成できていることが分かる。
 ここで、例えば、実施例1と比較例1はいずれも第1の多孔膜と第2の多孔膜を備えており、実施例1は比較例1の濾材全体に対して上流側にプレ捕集材10をさらに設けた構造となっている。ここで、比較例1の濾材全体のPF値(34.5)に対する実施例1のプレ捕集材10のPF値(7.7)の割合(7.7/34.5=0.223)が0.20以上0.45以下の範囲内にあるため、プレ捕集材10において目詰まりが早期に生じない程度にプレ捕集材10における塵の捕集を可能とし、下流側の第1の多孔膜31や第2の多孔膜32に対する捕集負担を適度に軽減させることができており、厚み方向における広い範囲でより多くの塵の捕集が可能となっており、保塵量を高めることが可能となっている。
 また、プレ捕集材としてよりPF値の高いもの(PF値14.2)を採用した実施例9であっても、十分な保塵量を達成することができたが、さらにPF値を高めたプレ捕集材を用いた比較例6や比較例7(それぞれPF値17.2、PF値16.2)では、保塵量は40g/m2を下回った。これは、比較例6や比較例7の例では、プレ捕集材によって集塵の多くを捕集できるものの、プレ捕集材自体の目詰まりが生じやすく、より下流側の第1の多孔膜や第2の多孔膜を十分に活用仕切ることができていない(第1の多孔膜や第2の多孔膜に目詰まりが生じるよりも先にプレ捕集材に目詰まりが生じている)ものと思われる。
 他方で、PF値が低いプレ捕集材を用いた比較例8(PF値4.6)であっても、保塵量は40g/m2を下回った。これは、比較例8の例では、プレ捕集材における目詰まりを抑制できているものの、より下流側の第1の多孔膜や第2の多孔膜に負担が集中することにより、第1の多孔膜や第2の多孔膜における目詰まりが早期に生じているものと思われる。
 なお、ここで、比較例1の濾材全体のPF値(34.5)は、上流通気性支持材21および下流通気性支持材22が圧力損失や捕集効率に実質的に影響を与えないため、実質的に第1の多孔膜31および第2の多孔膜32による寄与分に等しい。したがって、比較例1の濾材全体のPF値に対する実施例1のプレ捕集材のPF値の割合は、実質的に、実施例1の第1の多孔膜と第2の多孔膜を積層したときのPF値に対する実施例1のプレ捕集材のPF値の割合に等しい。
 また、第2の多孔膜よりも第1の多孔膜の方が圧力損失が小さく捕集効率が低い実施例1、実施例2と、第1の多孔膜と第2の多孔膜の物性が等しい実施例5、実施例6と、をそれぞれ比べると、上流側の多孔膜と下流側の多孔膜とで特定の差を設けた方が、より保塵量を増大させることができていることが分かる。
 また、実施例3、実施例4を比較すると、プレ捕集材10の目付を高めて厚みを増すと、圧力損失が増大するものの保塵量をより高めることができることが分かる。また、プレ捕集材10の目付を下げて厚みも薄くすると、圧力損失を抑制できることができることが分かる。
 また、実施例7では上流通気性支持材21が省略されており、実施例8では上流通気性支持材21および下流通気性支持材22の両方が省略されているが、これらの例であっても、十分な保塵量を達成できていることが分かる。
 以上、エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしたものも含まれる。
 1 エアフィルタ用濾材
 2 エアフィルタ用濾材
 3 エアフィルタ用濾材
10 プレ捕集材
21 上流通気性支持材
22 下流通気性支持材
23 中流通気性支持材
31 第1の多孔膜
32 第2の多孔膜
40 フィルタパック
50 枠体
60 エアフィルタユニット

Claims (14)

  1.  気体中の塵を捕集するエアフィルタ用濾材であって、
     フッ素樹脂を主として含む第1の多孔膜と、
     フッ素樹脂を主として含み、前記第1の多孔膜よりも気流の下流側に配置されている第2の多孔膜と、
     前記第1の多孔膜よりも気流の上流側に配置され、気流中の塵の一部を捕集するプレ捕集材と、
    を備え、
     前記プレ捕集材は、空気を流速5.3cm/秒で通過させたときの圧力損失が15Pa以上55Pa未満であり、粒子径0.3μmのNaClの捕集効率が25%以上80%未満であり、厚みが0.4mm以下であり、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められるPF値が7以上15以下であり、
     前記第1の多孔膜と前記第2の多孔膜を積層したときのPF値に対する前記プレ捕集材のPF値の割合である「プレ捕集材のPF値/第1の多孔膜と第2の多孔膜を積層したときのPF値」の値が、0.20以上0.45以下である、
    エアフィルタ用濾材。
  2.  前記第1の多孔膜よりも気流の上流側に配置され、前記第1の多孔膜を支持する上流通気性支持材をさらに備えた、
    請求項1に記載のエアフィルタ用濾材。
  3.  前記第2の多孔膜よりも気流の下流側に配置され、前記第2の多孔膜を支持する下流通気性支持材をさらに備えた、
    請求項1または2に記載のエアフィルタ用濾材。
  4.  空気を流速5.3cm/秒で通過させたときの圧力損失は、前記第2の多孔膜よりも前記第1の多孔膜の方が小さく、
     粒子径0.3μmのNaClの捕集効率は、前記第1の多孔膜よりも前記第2の多孔膜の方が高い、
    請求項1から3のいずれか1項に記載のエアフィルタ用濾材。
  5.  前記第1の多孔膜は、
      前記圧力損失が30Pa以上90Pa以下であり、
      前記捕集効率が95%以上99%以下であり、
      個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速5.3cm/秒で連続通風し、圧力損失が250Pa分だけ上昇したときの前記ポリアルファオレフィン粒子の保塵量が25g/m2以上35g/m2以下である、
    請求項1から4のいずれか1項に記載のエアフィルタ用濾材。
  6.  前記第1の多孔膜と前記第2の多孔膜を積層したときのPF値に対する前記プレ捕集材のPF値の割合である「プレ捕集材のPF値/第1の多孔膜と第2の多孔膜を積層したときのPF値」の値が、0.20以上0.38以下である、
    請求項1から5のいずれか1項に記載のエアフィルタ用濾材。
  7.  前記第1の多孔膜および前記第2の多孔膜は、繊維化し得るポリテトラフルオロエチレンと、繊維化しない非熱溶融加工性成分と、融点320℃未満の繊維化しない熱溶融加工可能な成分と、から主としてなる、
    請求項1から6のいずれか1項に記載のエアフィルタ用濾材。
  8.  エアフィルタ用濾材は、個数中位径0.25μmのポリアルファオレフィン粒子を含む空気を流速5.3cm/秒で連続通風し、圧力損失が250Pa分だけ上昇したときの前記ポリアルファオレフィン粒子の保塵量が40g/m2以上である、
    請求項1から7のいずれか1項に記載のエアフィルタ用濾材。
  9.  エアフィルタ用濾材は、
      空気を流速5.3cm/秒で通過させたときの圧力損失が200Pa未満であり、
      粒子径0.3μmのNaCl粒子を含む空気を流速5.3cm/秒で通過させたときの前記粒子の捕集効率が99.97%以上である、
    請求項1から8のいずれか1項に記載のエアフィルタ用濾材。
  10.  請求項1から9のいずれか1項に記載のエアフィルタ用濾材を備え、
     前記エアフィルタ用濾材が山折りおよび谷折りが交互に繰り返されたジグザグ形状に加工されて構成されているフィルタパック。
  11.  請求項1から9のいずれか1項に記載のエアフィルタ用濾材または請求項10に記載のフィルタパックと、
     前記エアフィルタ用濾材または前記フィルタパックを保持する枠体と、
    を備えたエアフィルタユニット。
  12.  気体中の塵を捕集するエアフィルタ用濾材の製造方法であって、
    (a)フッ素樹脂を主として含む、第1の多孔膜および第2の多孔膜を得るステップと、
    (b)前記第1の多孔膜を前記第2の多孔膜よりも気流の上流側に配置するステップと、
    (c)気流中の塵の一部を捕集するプレ捕集材を前記第1の多孔膜よりも気流の上流側に配置するステップと、
    を備え、
     前記プレ捕集材は、空気を流速5.3cm/秒で通過させたときの圧力損失が15Pa以上55Pa未満であり、粒子径0.3μmのNaClの捕集効率が25%以上80%未満であり、厚みが0.4mm以下であり、次式:PF値={-log((100-捕集効率(%))/100)}/(圧力損失(Pa)/1000)で定められるPF値が7以上15以下であり、
     前記第1の多孔膜と前記第2の多孔膜を積層したときのPF値に対する前記プレ捕集材のPF値の割合である「プレ捕集材のPF値/第1の多孔膜と第2の多孔膜を積層したときのPF値」の値が、0.20以上0.45以下であり、
     前記第1の多孔膜と前記第2の多孔膜と前記プレ捕集材とが、熱ラミネートされることで一体化するステップをさらに備えている、
    エアフィルタ用濾材の製造方法。
  13.  前記第1の多孔膜を支持する上流通気性支持材を前記第1の多孔膜よりも気流の上流側に配置するステップをさらに備えた、
    請求項12に記載のエアフィルタ用濾材の製造方法。
  14.  前記第2の多孔膜を支持する下流通気性支持材を前記第2の多孔膜よりも気流の下流側に配置するステップをさらに備えた、
    請求項12または13に記載のエアフィルタ用濾材の製造方法。
PCT/JP2015/085992 2014-12-26 2015-12-24 エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法 WO2016104589A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/538,597 US10226730B2 (en) 2014-12-26 2015-12-24 Filter medium for air filter, filter pack, air filter unit, and method for producing filter medium for air filter
EP15873157.0A EP3238804B1 (en) 2014-12-26 2015-12-24 Filtering material for air filter, filter pack, air filter unit and method of manufacturing filtering material for air filter
CN201580070721.2A CN107106955B (zh) 2014-12-26 2015-12-24 空气过滤器用滤材、过滤器组件、空气过滤器单元以及空气过滤器用滤材的制造方法
US16/235,143 US10406471B2 (en) 2014-12-26 2018-12-28 Filter medium for air filter, filter pack, air filter unit, and method for producing filter medium for air filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014266290 2014-12-26
JP2014-266290 2014-12-26
JP2015-145306 2015-07-22
JP2015145306A JP6115596B2 (ja) 2014-12-26 2015-07-22 エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/538,597 A-371-Of-International US10226730B2 (en) 2014-12-26 2015-12-24 Filter medium for air filter, filter pack, air filter unit, and method for producing filter medium for air filter
US16/235,143 Division US10406471B2 (en) 2014-12-26 2018-12-28 Filter medium for air filter, filter pack, air filter unit, and method for producing filter medium for air filter

Publications (1)

Publication Number Publication Date
WO2016104589A1 true WO2016104589A1 (ja) 2016-06-30

Family

ID=56150602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085992 WO2016104589A1 (ja) 2014-12-26 2015-12-24 エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法

Country Status (1)

Country Link
WO (1) WO2016104589A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166106A (ja) * 2016-03-18 2017-09-21 住友電工ファインポリマー株式会社 繊維集合体、綿状体、紡糸、フェルト、不織布、フィルタユニット、及びフィルタユニットの製造方法
EP3569300A4 (en) * 2017-01-12 2020-10-21 Daikin Industries, Ltd. AIR FILTER MEDIUM
EP3858456A4 (en) * 2018-09-28 2022-07-20 Daikin Industries, Ltd. AIR FILTER FILTER MEDIA, FILTER CARTRIDGE, AIR FILTER UNIT, AND METHODS OF MAKING THE SAME
WO2022255453A1 (ja) * 2021-06-04 2022-12-08 ダイキン工業株式会社 エアフィルタ濾材、プリーツ状濾材、エアフィルタユニット、マスク用濾材、および、エアフィルタ濾材の再生方法
EP3815768B1 (en) * 2018-09-28 2023-11-22 Daikin Industries, Ltd. Method for producing a filter pack and method for producing an air filter unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331722A (ja) * 2005-05-24 2006-12-07 Nitto Denko Corp 燃料電池用フィルター濾材およびそれを用いた燃料電池用フィルター
JP2009136863A (ja) * 2007-11-14 2009-06-25 Nitto Denko Corp フィルタ濾材とその製造方法ならびにフィルタユニット
JP2013094717A (ja) * 2011-10-31 2013-05-20 Nitto Denko Corp エアフィルタ濾材
WO2013157647A1 (ja) * 2012-04-20 2013-10-24 ダイキン工業株式会社 Ptfeを主成分とする組成物、混合粉末、成形用材料、及びフィルタ用濾材、エアフィルタユニット、並びに多孔膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331722A (ja) * 2005-05-24 2006-12-07 Nitto Denko Corp 燃料電池用フィルター濾材およびそれを用いた燃料電池用フィルター
JP2009136863A (ja) * 2007-11-14 2009-06-25 Nitto Denko Corp フィルタ濾材とその製造方法ならびにフィルタユニット
JP2013094717A (ja) * 2011-10-31 2013-05-20 Nitto Denko Corp エアフィルタ濾材
WO2013157647A1 (ja) * 2012-04-20 2013-10-24 ダイキン工業株式会社 Ptfeを主成分とする組成物、混合粉末、成形用材料、及びフィルタ用濾材、エアフィルタユニット、並びに多孔膜の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166106A (ja) * 2016-03-18 2017-09-21 住友電工ファインポリマー株式会社 繊維集合体、綿状体、紡糸、フェルト、不織布、フィルタユニット、及びフィルタユニットの製造方法
EP3569300A4 (en) * 2017-01-12 2020-10-21 Daikin Industries, Ltd. AIR FILTER MEDIUM
US11426690B2 (en) 2017-01-12 2022-08-30 Daikin Industries, Ltd. Air filter medium
EP3858456A4 (en) * 2018-09-28 2022-07-20 Daikin Industries, Ltd. AIR FILTER FILTER MEDIA, FILTER CARTRIDGE, AIR FILTER UNIT, AND METHODS OF MAKING THE SAME
EP3815768B1 (en) * 2018-09-28 2023-11-22 Daikin Industries, Ltd. Method for producing a filter pack and method for producing an air filter unit
WO2022255453A1 (ja) * 2021-06-04 2022-12-08 ダイキン工業株式会社 エアフィルタ濾材、プリーツ状濾材、エアフィルタユニット、マスク用濾材、および、エアフィルタ濾材の再生方法
JP2022186658A (ja) * 2021-06-04 2022-12-15 ダイキン工業株式会社 エアフィルタ濾材、プリーツ状濾材、エアフィルタユニット、マスク用濾材、および、エアフィルタ濾材の再生方法
JP7219412B2 (ja) 2021-06-04 2023-02-08 ダイキン工業株式会社 エアフィルタ濾材、プリーツ状濾材、エアフィルタユニット、マスク用濾材、および、エアフィルタ濾材の再生方法

Similar Documents

Publication Publication Date Title
JP6115596B2 (ja) エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
JP5835389B2 (ja) エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
JP6458817B2 (ja) ポリテトラフルオロエチレンを主成分とする混合粉末及び成形用材料
JP6372507B2 (ja) エアフィルタ用濾材、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
WO2016104589A1 (ja) エアフィルタ用濾材、フィルタパック、エアフィルタユニット、およびエアフィルタ用濾材の製造方法
WO2018131573A1 (ja) エアフィルタ濾材
JP7227507B2 (ja) エアフィルタ濾材、フィルタパック、エアフィルタユニット、およびこれらの製造方法
WO2020017472A1 (ja) エアフィルタ濾材、フィルタパック、およびエアフィルタユニット
JP7401831B2 (ja) エアフィルタ濾材、エアフィルタパック、および、エアフィルタユニット
WO2022168877A1 (ja) エアフィルタ濾材、エアフィルタ濾材の製造方法、マスク用濾材、および、プリーツ状マスク用濾材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873157

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15538597

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015873157

Country of ref document: EP