WO2022163708A1 - 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 - Google Patents

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 Download PDF

Info

Publication number
WO2022163708A1
WO2022163708A1 PCT/JP2022/002903 JP2022002903W WO2022163708A1 WO 2022163708 A1 WO2022163708 A1 WO 2022163708A1 JP 2022002903 W JP2022002903 W JP 2022002903W WO 2022163708 A1 WO2022163708 A1 WO 2022163708A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
fluorine
represented
polymerization
Prior art date
Application number
PCT/JP2022/002903
Other languages
English (en)
French (fr)
Inventor
晋毅 南口
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2022163708A1 publication Critical patent/WO2022163708A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/32Oximes
    • C07C251/50Oximes having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals
    • C07C251/54Oximes having oxygen atoms of oxyimino groups bound to carbon atoms of substituted hydrocarbon radicals of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/40Lubricating compositions characterised by the base-material being a macromolecular compound containing nitrogen
    • C10M107/44Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/18Electric or magnetic purposes in connection with recordings on magnetic tape or disc

Definitions

  • the present invention relates to a fluorine-containing ether compound, a lubricant for magnetic recording media, and a magnetic recording medium.
  • Lubricants used in forming the lubricating layer of a magnetic recording medium include, for example, a polar group such as a hydroxyl group, an amino group, an imino group, and an isocyanate group at the end of a fluorine - based polymer having a repeating structure containing CF2. It has been proposed to contain a compound having For example, Patent Document 1 discloses a fluorine-containing ester compound having a terminal group containing an oxime group at the molecular terminal.
  • Patent Document 2 describes forming an activation treatment layer on the surface of a protective film layer made of a fluorine-based organic compound, and providing a lubricating layer made of a compound having an accumulated double bond thereon. .
  • Patent Document 2 describes forming an activated layer by introducing at least one group selected from a hydroxyl group, an amino group, and an imino group. Further, Patent Document 2 describes isocyanate as a compound having a cumulative double bond, which is an active moiety that causes a polyaddition reaction with the introduction group.
  • Patent Document 3 an ether bond (--O--), a methylene group ( --CH.sub.2--), and one hydrogen atom are substituted with a hydroxyl group, respectively, between the perfluoropolyether chain and both terminal groups.
  • a fluorine-containing ether compound is disclosed in which a linking group is arranged in combination with a methylene group (--CH(OH)--).
  • the magnetic recording/reproducing apparatus it is required to further reduce the flying height of the magnetic head. For this reason, it is desired to further reduce the thickness of the lubricating layer in the magnetic recording medium. Generally, however, reducing the thickness of the lubricating layer tends to lower the wear resistance of the magnetic recording medium.
  • the present invention has been made in view of the above circumstances, and a fluorine-containing lubricant that can form a lubricating layer having excellent wear resistance even if it is thin and can be suitably used as a material for a lubricant for magnetic recording media.
  • An object of the present invention is to provide an ether compound.
  • Another object of the present invention is to provide a lubricant for magnetic recording media containing the fluorine-containing ether compound of the present invention.
  • Another object of the present invention is to provide a magnetic recording medium having a lubricating layer containing the fluorine-containing ether compound of the present invention and having excellent reliability and durability.
  • a first aspect of the present invention provides the following fluorine-containing ether compound.
  • a fluorine-containing ether compound represented by the following formula (1) R 1 -R 2 -CH 2 -R 3 -CH 2 -R 4 (1)
  • R 1 is a terminal group represented by the following formula (2) containing an oxime group
  • R 2 is a divalent linking group having a polar group
  • R 3 is a per is a fluoropolyether chain
  • R4 is an end group with two or more polar groups.
  • each of X and Y is a hydrogen atom, an optionally substituted alkyl group having 1 to 12 carbon atoms, or an organic group having a double bond or a triple bond.
  • the fluorine-containing ether compound of the first aspect of the present invention preferably has the characteristics described in [2] to [11] below. It is also preferable to arbitrarily combine two or more of the features described in [2] to [11] below.
  • [2] The fluorine-containing ether compound according to [1], wherein the polar group contained in R 2 is a hydroxyl group.
  • [3] The fluorine-containing ether compound according to [1] or [2], wherein R 1 —R 2 —CH 2 — in formula (1) is represented by the following formula (3).
  • a is an integer of 0 to 3;
  • b is an integer of 0 to 3;
  • c is an integer of 1 to 4;
  • Formula (4 -3) d is an integer of 0 to 3, and e is an integer of 1 to 4; provided that at least one of a, b, and d is 1 or more.
  • Z is a hydrogen atom or an alkyl group having 2 to 6 carbon atoms and having at least one hydroxyl group;
  • the order of [D], [E], and [F] may be changed.
  • the ether bond (-O-) side in formulas (6-1) to (6-3) is the CH 2 side in formula (5).)
  • f is an integer of 0 to 3;
  • g is an integer of 0 to 3;
  • h is an integer of 1 to 4;
  • Formula (6 -3) i is an integer of 0 to 3 and
  • j is an integer of 1 to 4; provided that at least one of f, g, and i is 1 or more.
  • each polar group is bonded to a different carbon atom, and the carbon atoms to which the polar groups are bonded are bonded via a linking group containing a carbon atom to which no polar group is bonded.
  • [7] The fluorine-containing ether compound according to any one of [1] to [6], wherein X and/or Y in formula (2) is an alkyl group having a hydroxyl group.
  • a second aspect of the present invention provides the following lubricant for magnetic recording media.
  • a lubricant for magnetic recording media comprising the fluorine-containing ether compound according to any one of [1] to [11].
  • a third aspect of the present invention provides the following magnetic recording medium. [13] A magnetic recording medium in which at least a magnetic layer, a protective layer, and a lubricating layer are sequentially provided on a substrate, A magnetic recording medium, wherein the lubricating layer contains the fluorine-containing ether compound according to any one of [1] to [11].
  • the magnetic recording medium of the third aspect of the present invention preferably has the features described in [14] below. [14] The magnetic recording medium according to [13], wherein the lubricant layer has an average thickness of 0.5 nm to 2.0 nm.
  • the fluorine-containing ether compound of the present invention is a compound represented by the above formula (1) and is suitable as a material for lubricants for magnetic recording media. Since the lubricant for a magnetic recording medium of the present invention contains the fluorine-containing ether compound of the present invention, it is possible to form a lubricating layer having excellent wear resistance even when the thickness is small. Since the magnetic recording medium of the present invention is provided with a lubricating layer having excellent wear resistance, it has excellent reliability and durability.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the magnetic recording medium of the present invention
  • the fluorine-containing ether compound of this embodiment is represented by the following formula (1).
  • R 1 -R 2 -CH 2 -R 3 -CH 2 -R 4 (1) (In formula (1), R 1 is a terminal group represented by the following formula (2) containing an oxime group; R 2 is a divalent linking group having a polar group; R 3 is a per is a fluoropolyether chain; R4 is an end group with two or more polar groups.)
  • each of X and Y is a hydrogen atom, an optionally substituted alkyl group having 1 to 12 carbon atoms, or an organic group having a double bond or a triple bond.
  • the fluorine-containing ether compound of the present embodiment has a perfluoropolyether chain represented by R 3 (hereinafter sometimes abbreviated as “PFPE chain”) as shown in formula (1).
  • PFPE chain a perfluoropolyether chain represented by R 3 (hereinafter sometimes abbreviated as “PFPE chain”) as shown in formula (1).
  • the PFPE chain covers the surface of the protective layer and imparts lubricity to the lubricating layer to reduce the frictional force between the magnetic head and the protective layer.
  • R 1 in formula (1) is a terminal group represented by formula (2) containing an oxime group
  • R 2 is a divalent linking group having a polar group.
  • the nitrogen and oxygen atoms forming the oxime group are polar and have interactions (affinity) and intramolecular interactions with the protective layer.
  • a nitrogen atom forming an oxime group has a strong interaction with the protective layer and is equivalent to a hydroxyl group. Therefore, the oxime group contained in R1 promotes adsorption of the fluorine-containing ether compound to the protective layer.
  • the oxime group contained in R 1 has a rigid C ⁇ N bond.
  • the mobility of the polar group) is appropriately restricted to suppress aggregation of the fluorine-containing ether compound represented by the formula (1) on the protective layer.
  • the oxime group contained in R 1 and the polar group in the vicinity thereof acts on the protective layer preferentially over the two or more polar groups of R 4 to bring the fluorine-containing ether compound and the protective layer into close contact.
  • the lubricant containing the fluorine-containing ether compound represented by formula (1) can form a lubricating layer having sufficient coverage and excellent wear resistance even when the thickness is small.
  • the intramolecular interaction of the nitrogen atom forming the oxime group is weaker than that of the hydroxyl group. Therefore, in the nitrogen atoms of the fluorine-containing ether compound represented by formula (1), the interaction with the surface of the protective layer functions preferentially over the intramolecular interaction.
  • R 4 attached to the end of the PFPE chain represented by R 3 opposite to R 1 is a terminal group having two or more polar groups, and the mobility of the polar group is does not contain an oxime group that limits Therefore, R4 has high mobility due to intramolecular interactions of two or more polar groups.
  • the surface of the protective layer is less likely to be exposed, and the surface of the protective layer can be coated with high coverage for a long period of time.
  • the oxime group contained in R1 , the polar group possessed by R2 , and X and/or Y in formula (2) are polar
  • the synergistic effect of high adhesion with the protective layer due to having the polar group and high mobility due to the intramolecular interaction of the polar group of R4 results in a thin thickness.
  • excellent wear resistance can be obtained.
  • R 1 is a terminal group bonded to R 2 .
  • R 1 is a terminal group represented by formula (2) containing an oxime group.
  • each of X and Y is a hydrogen atom, an optionally substituted alkyl group having 1 to 12 carbon atoms, or an organic group having a double bond or triple bond.
  • the lubricating layer containing the fluorine-containing ether compound since R 1 contains an oxime group, the lubricating layer containing the fluorine-containing ether compound has good adhesion between the fluorine-containing ether compound and the protective layer. , which provides excellent wear resistance.
  • the number of oxime groups contained in R 1 is at least one, and may be two or more. That is, X and/or Y in Formula (2) may contain an oxime group.
  • the number of oxime groups contained in R 1 is preferably one because the fluorine-containing ether compound represented by formula (1) has good thermal stability.
  • X and Y in formula (2) since X and Y in formula (2) exhibit good interaction with the protective layer of the magnetic recording medium, it becomes a fluorine-containing ether compound capable of forming a lubricating layer with excellent wear resistance.
  • An alkyl group having 1 to 12 carbon atoms which may have a substituent as X and/or Y in formula (2) and an organic group having a double bond or a triple bond are oxygen atom, sulfur atom, nitrogen It may contain any of the atoms.
  • X and Y in formula (2) may be the same or different.
  • alkyl group optionally having a substituent
  • the alkyl group in the optionally substituted alkyl group having 1 to 12 carbon atoms is an alkyl group having 1 to 8 carbon atoms. is preferably a group, more preferably an alkyl group having 1 to 6 carbon atoms. Specific examples of alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl groups.
  • the alkyl group may be linear or branched.
  • the total number of carbon atoms contained in X and Y is preferably 2 to 8, preferably 2 to 6 is more preferable.
  • substituents in the optionally substituted alkyl group include halogeno group, alkoxy group, hydroxyl group, and cyano group.
  • alkyl group which may have a substituent has these substituents, it becomes a fluorine-containing ether compound capable of forming a lubricating layer having superior wear resistance.
  • the alkyl group having a halogeno group as a substituent is preferably an alkyl group having at least one fluoro group.
  • Alkyl groups having a fluoro group include, for example, a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group, an octafluoropentyl group and a tridecafluorooctyl group. and the like.
  • X and/or Y in formula (2) in R 1 is preferably an alkyl group having a hydroxyl group, and a group represented by formula (14) It is more preferable to have When X and/or Y in formula (2) in R 1 is an alkyl group having a hydroxyl group represented by formula (14), the affinity between the lubricating layer containing this fluorine-containing ether compound and the protective layer is enhanced. Better and preferred.
  • R 6 is a hydrogen atom or an alkyl group which may have a hydroxyl group; k represents an integer of 1 to 6; when k is 2 or more, each R 6 is the same may be, or may be different.
  • R6 is a hydrogen atom or an alkyl group which may have a hydroxyl group.
  • R 6 is preferably an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, more preferably an alkyl group having 1 to 4 carbon atoms or a hydrogen atom, and an alkyl group having 1 to 2 carbon atoms or a hydrogen atom is particularly preferred.
  • the left dotted line in formula (14) is bonded to the carbon atom forming the double bond of the oxime group contained in formula (2).
  • k represents an integer of 1 to 6, preferably an integer of 1 to 4, more preferably 2 or 3.
  • the number of carbon atoms in the formula (14) (the total number of carbon atoms and the number of k contained in R 6 ) is 1 to 12, preferably 1 to 8, more preferably 1 to 6. 1 to 4 are more preferable.
  • the number of carbon atoms in formula (14) is 1 to 8, the surface free energy of the entire molecule does not decrease due to the low ratio of fluorine atoms in the fluorine-containing ether compound molecule, which is preferable.
  • R 1 is specifically represented by the following formulas (12-1) to (12-6), formula Any one of the structures represented by (13-1) to (13-4) is preferable.
  • organic group with double bond or triple bond When X and/or Y in formula (2) is an organic group having a double bond or triple bond, the organic group has at least one double bond or triple bond, for example, aromatic groups containing aromatic heterocycles, groups containing alkenyl groups, groups containing alkynyl groups, and the like. When X and/or Y in Formula (2) is an organic group having a double bond or triple bond, the organic group may be a group containing one or more oxime groups.
  • the double or triple bond is preferably a carbon-carbon double bond or carbon-carbon triple bond.
  • the organic group having a double bond or triple bond includes a phenyl group, a methoxyphenyl group, a fluorinated phenyl group, a naphthyl group, a phenethyl group, a methoxyphenethyl group, a fluorinated phenethyl group, a benzyl group, and a methoxybenzyl group.
  • phenyl group, methoxyphenyl group, thienylethyl group, butenyl group, allyl group, propargyl group, phenethyl group, methoxyphenethyl group, and fluorinated phenethyl group are particularly preferred. Any one is preferable, and any one of a phenyl group, a methoxyphenyl group, an allyl group, a butenyl group, and a propargyl group is more preferable.
  • a fluorine-containing ether capable of forming a lubricating layer having superior wear resistance when the organic group having a double bond or triple bond is any one of a phenyl group, a methoxyphenyl group, an allyl group, a butenyl group and a propargyl group. become a compound.
  • the above organic group having a double bond or triple bond may have a substituent such as an alkyl group, an alkoxy group, a hydroxyl group, a mercapto group, a carboxy group, a carbonyl group, an amino group, and a cyano group.
  • a connecting group consisting of an ether bond and a methylene chain may be bonded between the atoms.
  • the above organic group having a double bond or triple bond has one ether bond and one methylene chain between the carbon atoms forming the double bond of the oxime group contained in formula (2). It is preferable that a linking group consisting of and is bonded.
  • It is a fluorine-containing ether compound capable of forming a lubricating layer having excellent wear resistance.
  • Examples of the linking group that is bonded to the carbon atom forming the double bond of the oxime group contained in formula ( 2 ) include an oxyethyl group (--O--CH.sub.2--CH.sub.2--) and an oxypropyl group (-- O—CH 2 —CH 2 —CH 2 —), oxybutyl group (—O—CH 2 —CH 2 —CH 2 —CH 2 —), and the like.
  • the number of carbon atoms in the methylene chain contained in the linking group is preferably 1-6, more preferably 1-4. It is preferable that the methylene chain has 1 to 6 carbon atoms, since the surface free energy of the entire molecule does not decrease due to the low proportion of fluorine atoms in the fluorine-containing ether compound molecule.
  • an optionally substituted alkyl group or an organic group having a double or triple bond has a linking group consisting of an ether bond and a methylene chain between the oxime group and the oxime group
  • R2 ) R 2 in formula (1) is a divalent linking group having a polar group. Since R 2 has a polar group, when a lubricant containing the fluorine-containing ether compound of the present embodiment is used to form a lubricating layer on the protective layer, a favorable interaction occurs between the lubricating layer and the protective layer. Occur.
  • the divalent linking group having a polar group forming R 2 can be appropriately selected depending on the performance required for the lubricant containing the fluorine-containing ether compound.
  • the polar group contained in R 2 is such that when a lubricating layer made of a lubricant containing a fluorine-containing ether compound is formed on the protective layer, a favorable interaction occurs between the lubricant and the protective layer.
  • Such polar groups include, for example, hydroxyl group (--OH), amino group (--NH 2 ), carboxy group (--COOH), aldehyde group (--CHO), carbonyl group (--CO--), sulfonic acid group (-- —SO 3 H) and the like.
  • a hydroxyl group is particularly preferred.
  • a hydroxyl group is a polar group that interacts strongly with a protective layer, especially a carbon-based protective layer. Therefore, when the polar group contained in R 2 is a hydroxyl group, the fluorine-containing ether compound has excellent adhesion to the surface of the protective layer.
  • a methylene group (--CH 2 --) is preferably arranged at the R 1 -side terminal of R 2 .
  • the methylene group of R 2 is bonded to the oxygen atom of the oxime group (>C ⁇ N—O—) contained in R 1 .
  • the rigid C ⁇ N bond of the oxime group in R 1 can moderately restrict the mobility of the polar group in R 2 .
  • the effect of suppressing aggregation of the fluorine-containing ether compound on the protective layer becomes remarkable.
  • R 1 -R 2 -CH 2 - is preferably represented by the following formula (3).
  • R 1 -[C]-[B]-[A]-CH 2 - (3) (In formula (3), [A] is represented by the following formula (4-1), [B] is represented by the following formula (4-2), and [C] is represented by the following formula (4-3).
  • the order of [A], [B], and [C] in formula (3) may be changed; the ether bond (-O-) side in formulas (4-1) to (4-3) is It is the CH2 side in formula (3).)
  • a is an integer of 0 to 3;
  • b is an integer of 0 to 3;
  • c is an integer of 1 to 4;
  • Formula (4 -3) d is an integer of 0 to 3, and e is an integer of 1 to 4; provided that at least one of a, b, and d is 1 or more.
  • Each of a in formula (4-1), b in formula (4-2) and d in formula (4-3) is an integer of 0 to 3. These may be, for example, 0, 1-2, 2-3, and so on.
  • a in formula (4-1), b in formula (4-2), and d in formula (4-3) are, in the lubricating layer containing the fluorine-containing ether compound, the relationship between the fluorine-containing ether compound and the protective layer. At least one is 1 or more in order to further improve adhesion. That is, formula (3) includes at least one of [A], [B], and [C].
  • the sum of a in formula (4-1), b in formula (4-2) and d in formula (4-3) is preferably 4 or less, more preferably 3 or less. , 2 or less.
  • the sum of a in formula (4-1), b in formula (4-2) and d in formula (4-3) is 4 or less, the polarity of the fluorine-containing ether compound becomes too high. , it is possible to prevent the occurrence of pick-up that adheres to the magnetic head as foreign matter (smear).
  • c in formula (4-2) and e in formula (4-3) are each an integer of 1 to 4; Preferably, c and e are each an integer from 1 to 3, most preferably 2.
  • c in formula (4-2) is an integer of 1 to 4
  • the distance between the hydroxyl group in formula (4-2) and R 1 is appropriate.
  • c in formula (4-2) is an integer of 1 to 4 and b is 2 or 3, the distance between hydroxyl groups in formula (4-2) is appropriate, which is preferable.
  • e in formula (4-3) is an integer of 1 to 4 and d is 2 or 3, the distance between hydroxyl groups in formula (4-3) is appropriate, which is preferable.
  • R 1 and R 2 when R 1 and/or R 2 contain hydroxyl groups and two or more polar groups of R 4 are hydroxyl groups, R 1 and R 2 contain The total number of hydroxyl groups is preferably equal to or less than the number of hydroxyl groups contained in R4 , and more preferably less than the number of hydroxyl groups contained in R4 .
  • the fluorine-containing ether compound can form a lubricating layer with superior wear resistance. This is because the number of hydroxyl groups on the R1 side and the R4 side of the PFPE chain represented by R3 is properly balanced.
  • the adsorption power of the hydroxyl groups contained in R 1 and / or R 2 to the protective layer does not decrease, and the fluorine-containing ether compound is formed. This is because a favorable interaction occurs between the lubricating layer and the protective layer included.
  • R 1 and/or R 2 contain hydroxyl groups
  • the total number of hydroxyl groups contained in R 1 and R 2 is preferably 1 or more, more preferably 2 or more.
  • the hydroxyl groups contained in R 1 and/or R 2 can form a lubricating layer with good adhesion to the protective layer. It becomes an ether compound.
  • R3 is a perfluoropolyether chain (PFPE chain).
  • PFPE chain perfluoropolyether chain
  • R3 is not particularly limited , and can be appropriately selected depending on the performance required of the lubricant containing the fluorine-containing ether compound.
  • Examples of the PFPE chain include perfluoromethylene oxide polymer, perfluoroethylene oxide polymer, perfluoro-n-propylene oxide polymer, perfluoroisopropylene oxide polymer, copolymers thereof, and the like.
  • the PFPE chain may be, for example, a structure represented by the following formula (Rf) derived from a perfluoroalkylene oxide polymer or copolymer.
  • Rf formula derived from a perfluoroalkylene oxide polymer or copolymer.
  • p2, p3, p4, and p5 represent an average degree of polymerization, each independently representing 0 to 30; provided, however, that p2, p3, p4, and p5 are not all 0 at the same time; p1 and p6 are average values indicating the number of —CF 2 — and each independently represents 1 to 3; the arrangement order of the repeating units in the formula (Rf) is not particularly limited.
  • formula (Rf) formula (Rf), p2, p3, p4, and p5 represent
  • p1 and p6 are average values indicating the number of —CF 2 — and each independently represents 1 to 3.
  • p1 and p6 are determined according to the structure of the repeating unit arranged at the ends of the chain structure in the polymer represented by the formula (Rf).
  • (CF 2 O), (CF 2 CF 2 O), (CF 2 CF 2 CF 2 O), and (CF 2 CF 2 CF 2 O) in formula (Rf) are repeating units. There are no particular restrictions on the arrangement order of the repeating units in formula (Rf). Also, the number of types of repeating units in the formula (Rf) is not particularly limited.
  • R 3 in formula (1) is preferably, for example, a PFPE chain represented by formula (Rf-1) below.
  • -(CF 2 ) p7 O-(CF 2 CF 2 O) p8 -(CF 2 CF 2 CF 2 O) p9 -(CF 2 ) p10 - (Rf-1) In the formula (Rf-1), p8 and p9 represent an average degree of polymerization, each independently representing 0.1 to 30; p7 and p10 are average values representing the number of —CF 2 —, each independently represents 1 to 2.
  • Formula (Rf-1) includes any of random copolymers, block copolymers, and alternating copolymers consisting of monomer units (CF 2 CF 2 O) and (CF 2 CF 2 CF 2 O). can be anything.
  • p8 and p9 which indicate the average degree of polymerization, each independently represents 0.1 to 30, preferably 0.1 to 20, more preferably 1 to 15.
  • p7 and p10 in the formula (Rf-1) are average values indicating the number of —CF 2 — and each independently represents 1 to 2.
  • p7 and p10 are determined according to the structure of the repeating unit arranged at the ends of the chain structure in the polymer represented by formula (Rf-1).
  • R 3 in formula (1) is also preferably any one of the following formulas (7) to (11).
  • R 3 in formula (1) is also preferably any one of the following formulas (7) to (11).
  • R 3 in formula (1) includes any of random copolymers, block copolymers, and alternating copolymers consisting of the monomer units (CF 2 —CF 2 —O) and (CF 2 —O).
  • m, n, w, x, y, and z in formulas (7) to (11) are 0.1 to 30, respectively, a lubricant containing this is easily applied, and a lubricating layer having good adhesion. is obtained.
  • Each of m, n, w, x, y, and z in formulas (7) to (11) is preferably 30 or less, more preferably 20 or less.
  • m, n, w, x, y, and z may each be 0.1-20, 1-15, 1-10, 2-8, 2-5, and the like.
  • R 3 in formula (1) is any one of formulas (7) to (11)
  • synthesis of the fluorine-containing ether compound is easy, which is preferable.
  • R 3 is the formula (7), it is more preferable because raw materials are readily available.
  • the ratio of the number of oxygen atoms (the number of ether bonds (-O-)) to the number of carbon atoms in the perfluoropolyether chain is , is appropriate. Therefore, it becomes a fluorine-containing ether compound having moderate hardness. Therefore, the fluorine-containing ether compound applied on the protective layer is less likely to aggregate on the protective layer, and a thinner lubricating layer can be formed with sufficient coverage.
  • the fluorine-containing ether compound provides a lubricating layer having good adhesion.
  • R4 ) R 4 in formula (1) is a terminal group containing no oxime group and having two or more polar groups. Since R 4 has two or more polar groups, when a lubricant containing the fluorine-containing ether compound of the present embodiment is used to form a lubricating layer on the protective layer, a suitable interaction occurs.
  • the terminal group having two or more polar groups forming R4 can be appropriately selected according to the performance required for the lubricant containing the fluorine-containing ether compound.
  • the polar group contained in R 4 is such that when a lubricating layer made of a lubricant containing a fluorine-containing ether compound is formed on the protective layer, a favorable interaction occurs between the lubricant and the protective layer.
  • Such polar groups include, for example, hydroxyl group (--OH), amino group (--NH 2 ), carboxy group (--COOH), aldehyde group (--CHO), carbonyl group (--CO--), sulfonic acid group (-- —SO 3 H) and the like.
  • a hydroxyl group is particularly preferred.
  • a hydroxyl group is a polar group that interacts strongly with a protective layer, especially a carbon-based protective layer. Therefore, when the polar group contained in R 4 is a hydroxyl group, the fluorine-containing ether compound has excellent adhesion to the surface of the protective layer.
  • R 4 Two or more polar groups contained in R 4 may be the same or different.
  • R 4 preferably contains two or more hydroxyl groups as polar groups, and more preferably two or more polar groups contained in R 4 are all hydroxyl groups.
  • the number of polar groups contained in R 4 is 2 or more, preferably 2-6, more preferably 2-4.
  • R 4 has two or more polar groups, a lubricating layer with high adhesion to the protective layer can be obtained.
  • the number of polar groups contained in R 4 is 6 or less, the polarity of the fluorine-containing ether compound becomes too high, which is preferable because it is possible to prevent the occurrence of pick-up that adheres to the magnetic head as foreign matter (smear). .
  • —CH 2 —R 4 is preferably represented by the following formula (5).
  • —CH 2 —[D]-[E]-[F]-OZ (5) In formula (5), [D] is represented by the following formula (6-1), [E] is represented by the following formula (6-2), and [F] is represented by the following formula (6-3).
  • Z is a hydrogen atom or an alkyl group having 2 to 6 carbon atoms and having at least one hydroxyl group; In formula (5), the order of [D], [E], and [F] may be changed. ;
  • the ether bond (-O-) side in formulas (6-1) to (6-3) is the CH 2 side in formula (5).)
  • f is an integer of 0 to 3;
  • g is an integer of 0 to 3;
  • h is an integer of 1 to 4;
  • Formula (6 -3) i is an integer of 0 to 3 and
  • j is an integer of 1 to 4; provided that at least one of f, g, and i is 1 or more.
  • f in formula (6-1), g in formula (6-2), and i in formula (6-3) are each an integer of 0 to 3. These may be, for example, 0, 1-2, 2-3, and so on.
  • f in formula (6-1), g in formula (6-2), and i in formula (6-3) represent the relationship between the fluorine-containing ether compound and the protective layer in the lubricating layer containing the fluorine-containing ether compound. At least one is 1 or more in order to further improve adhesion. That is, formula (5) includes at least one of [E], [F], and [G].
  • the sum of f in formula (6-1), g in formula (6-2) and i in formula (6-3) is preferably 4 or less, more preferably 3 or less. , 2 or less.
  • the sum of f in formula (6-1), g in formula (6-2) and i in formula (6-3) is 4 or less, the polarity of the fluorine-containing ether compound becomes too high. , it is possible to prevent the occurrence of pick-up that adheres to the magnetic head as foreign matter (smear).
  • h in formula (6-2) and j in formula (6-3) are each an integer of 1 to 4. Each of h and j is preferably an integer from 1 to 3, most preferably 2.
  • h in formula (6-2) is an integer of 1 to 4
  • the hydroxyl group in formula (6-2) and the hydroxyl group possessed by Z in formula (5) becomes appropriate.
  • h in formula (6-2) is an integer of 1 to 4 and g is 2 or 3
  • the distance between hydroxyl groups in formula (6-2) is appropriate, which is preferable.
  • j in formula (6-3) is an integer of 1 to 4 and i is 2 or 3, the distance between hydroxyl groups in formula (6-3) is appropriate, which is preferable.
  • Z is a hydrogen atom or an alkyl group having 2 to 6 carbon atoms and having at least one hydroxyl group.
  • Z is the alkyl group, it preferably has 2 to 4 carbon atoms.
  • the alkyl group may be linear or branched.
  • Z is preferably —(CH 2 ) ZA —OH (ZA is an integer of 2 to 6), and ZA in the formula is an integer of 2 to 4. is more preferable.
  • each polar group of R 4 is bonded to a different carbon atom, and the carbon atoms to which the polar groups are bonded include carbon atoms to which no polar group is bonded. It is preferably a terminal group bonded via a linking group. Such a terminal group for R 4 is preferable because it is less likely to aggregate on the protective layer and a thinner lubricating layer can be formed with a sufficient coverage.
  • R 4 is a terminal group containing two or more hydroxyl groups as polar groups and —CH 2 —R 4 is represented by the above formula (5)
  • each hydroxyl group in R 4 is bonded to a different carbon atom.
  • the carbon atoms to which the hydroxyl groups are bonded tend to be terminal groups that are bonded via a linking group containing a carbon atom to which no hydroxyl groups are bonded. That is, when [D] or [F] in formula (5) is directly bonded to -OZ, Z is not a hydrogen atom but an alkyl group having 2 to 6 carbon atoms and having at least one hydroxyl group. is preferred.
  • the total number of hydroxyl groups contained in the molecule is preferably 8 or less, more preferably 6 or less, even more preferably 5 or less, 4 or less is particularly preferred.
  • the total number of hydroxyl groups contained in the molecule is 8 or less, aggregation of the fluorine-containing ether compound on the protective layer due to intramolecular interaction of hydroxyl groups is unlikely to occur. Therefore, a lubricating layer having a small thickness can be formed with a better coverage, and better wear resistance can be obtained.
  • the total number of hydroxyl groups contained in the molecule is preferably 2 or more, more preferably 3 or more.
  • the total number of hydroxyl groups contained in the molecule is 2 or more, a synergistic effect of interaction with the protective layer due to the fluorine-containing ether compound containing hydroxyl groups together with oxime groups can be sufficiently obtained. Therefore, a lubricating layer having even better wear resistance can be obtained.
  • the total number of oxime groups and polar groups contained in the molecule is 8 or less, aggregation of the fluorine-containing ether compound on the protective layer due to intramolecular interaction of the polar groups is less likely to occur, which is preferable.
  • the total number of oxime groups and polar groups contained in the molecule is 4 or more, sufficient interaction between the polar groups and the protective layer can be obtained, and the protective layer can further interact with the polar groups. It becomes a fluorine-containing ether compound capable of forming a lubricating layer with excellent adhesion.
  • the fluorine-containing ether compound represented by formula (1) is preferably any one of the compounds represented by the following formulas (A) to (Z) and (AA) to (AG).
  • the repetition numbers ma ⁇ mz, mA ⁇ mC, na ⁇ nz, nA ⁇ nC, w, x, y, z in the formulas (A) ⁇ (Z), (AA) ⁇ (AG) are the average values Since it is a descriptive value, it is not necessarily an integer.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxymethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]—OZ, g is 1, h is 1, and Z is a hydrogen atom.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]—OZ, g is 1, h is 1, and Z is a hydrogen atom.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxypropyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]—OZ, g is 1, h is 1, and Z is a hydrogen atom.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a 1,2-dihydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]—OZ, g is 1, h is 1, and Z is a hydrogen atom.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a 1,3-dihydroxypropyl group bonded at the 2-position.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a 1,3-dihydroxypropyl group bonded at the 1-position.
  • R 2 is [A] and a is 1; R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]—OZ, g is 1, h is 1, and Z is a hydrogen atom.
  • R 1 is represented by formula (2), X is a hydroxymethyl group, and Y is a hydroxymethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]—OZ, g is 1, h is 1, and Z is a hydrogen atom.
  • the compound represented by formula (H) has R 1 represented by formula (2), X is a hydroxyethyl group, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]—OZ, g is 1, h is 1, and Z is a hydrogen atom.
  • the compound represented by formula (I) has R 1 represented by formula (2), X is a hydroxymethyl group, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]—OZ, g is 1, h is 1, and Z is a hydrogen atom.
  • the compound represented by formula (J) has R 1 represented by formula (2), X is a hydroxymethyl group, and Y is a hydroxypropyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]—OZ, g is 1, h is 1, and Z is a hydrogen atom.
  • R1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [B], b is 1, and c is 1;
  • R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]—OZ, g is 1, h is 2, and Z is a hydrogen atom.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [B], b is 1, and c is 2;
  • R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[E]-OZ, g is 1, h is 3, and Z is a hydrogen atom.
  • R1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 1 and Z is -(CH 2 ) 2 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[E]-OZ, g is 1, h is 1 and Z is -(CH 2 ) 2 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1; R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 2 and Z is -(CH 2 ) 2 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 2 and Z is -(CH 2 ) 3 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • R1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1; R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 3 and Z is -(CH 2 ) 2 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1; R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]-[D]-[F]-OZ, f is 1, g is 1, h is 1, i is 1, j is 1 and Z is -(CH 2 ) 2 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1; R3 is formula ( 7 ).
  • —CH 2 —R 4 is —CH 2 —[E]-[F]-OZ, g is 1, h is 2, i is 1, j is 2; Z is -CH 2 CH(CH 2 OH)CH 2 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 2; R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 1 and Z is -(CH 2 ) 2 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 1 -R 2 -CH 2 - is R 1 -[C]-[B]-CH 2 -, b is 1, c is 1, d is 1 and e is 1 be.
  • R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 1 and Z is -(CH 2 ) 2 OH.
  • R1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 2;
  • R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 2 and Z is -(CH 2 ) 2 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 3; R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 1 and Z is -(CH 2 ) 2 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 1 -R 2 -CH 2 - is R 1 -[C]-[A]-[B]-CH 2 -, a is 1, b is 1, c is 1, d is 1 and e is 1;
  • R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 1 and Z is -(CH 2 ) 2 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a 2-(3-butenyloxy)ethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 2 and Z is -(CH 2 ) 3 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a 2-butoxyethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 2 and Z is -(CH 2 ) 3 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a 2-(2-propynyloxy)ethyl group.
  • R 2 is [A] and a is 1; R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 2 and Z is -(CH 2 ) 3 OH.
  • R 1 is represented by formula (2), X is a hydrogen atom, and Y is a 2-(4-methoxyphenoxy)ethyl group.
  • R 2 is [A] and a is 1;
  • R3 is formula ( 7 ).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 2 and Z is -(CH 2 ) 3 OH.
  • R1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R 3 is formula (8).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 2 and Z is -(CH 2 ) 2 OH.
  • R1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R 3 is formula (9).
  • R1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R 3 is formula (10).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ, f is 2 and Z is -(CH 2 ) 2 OH.
  • R1 is represented by formula (2), X is a hydrogen atom, and Y is a hydroxyethyl group.
  • R 2 is [A] and a is 1;
  • R 3 is formula (11).
  • -CH 2 -R 4 is -CH 2 -[D]-OZ
  • f is 2 and Z is -(CH 2 ) 2 OH.
  • ma and na represent an average degree of polymerization, ma represents 1 to 30, and na represents 0.1 to 30.
  • mb and nb represent an average degree of polymerization, mb represents 1 to 30, and nb represents 0.1 to 30.
  • C mc and nc represent an average degree of polymerization, mc represents 1 to 30, and nc represents 0.1 to 30.
  • D md and nd represent an average degree of polymerization, md represents 1 to 30, and nd represents 0.1 to 30.
  • mi and ni represent an average degree of polymerization, mi represents 1 to 30, and ni represents 0.1 to 30.
  • mj and nj represent an average degree of polymerization, mj represents 1 to 30, and nj represents 0.1 to 30.
  • K mk and nk represent an average degree of polymerization, mk represents 1 to 30, and nk represents 0.1 to 30.
  • L In the formula (L), ml and nl indicate an average degree of polymerization, ml represents 1 to 30, and nl represents 0.1 to 30.
  • ma to mz and mA to mC may be 1-20, 1-10, or 1-5.
  • na to nz, nA to nC, w, x, y, and z may be 0.1-20, 1-10, or 1-5.
  • the compound represented by the formula (1) is any one of the compounds represented by the above formulas (A) to (Z) and (AA) to (AG), the raw material is easily available and the thickness is thin. It is preferable because it can form a lubricating layer that provides excellent wear resistance.
  • the fluorine-containing ether compound of the present embodiment preferably has a number average molecular weight (Mn) within the range of 500-10,000.
  • Mn number average molecular weight
  • the lubricant containing the fluorine-containing ether compound of the present embodiment is difficult to evaporate. Therefore, it is possible to prevent the lubricant from evaporating and transferring to the magnetic head, thereby forming a lubricating layer in which pick-up and spin-off are unlikely to occur.
  • the fluorine-containing ether compound has a number average molecular weight of 1,000 or more.
  • the fluorine-containing ether compound when the number average molecular weight is 10,000 or less, the fluorine-containing ether compound has an appropriate viscosity, and a thin lubricating layer can be easily formed by applying a lubricant containing this.
  • the number-average molecular weight of the fluorine-containing ether compound is more preferably 3000 or less because the viscosity becomes easy to handle when applied to lubricants.
  • the molecular weight is optionally 500 to 3000, 600 to 2800, 700 to 2500, 800 to 2300, 900 to 2000, 1000 to 1800, It may be 1100-1600 or 1200-1500.
  • the number average molecular weight (Mn) of the fluorine-containing ether compound is a value measured by 1 H-NMR and 19 F-NMR using AVANCEIII400 manufactured by Bruker Biospin.
  • NMR nuclear magnetic resonance
  • the sample was diluted with a solvent such as hexafluorobenzene, d-acetone, d-tetrahydrofuran, or the like, and used for the measurement.
  • the 19 F-NMR chemical shift standard was ⁇ 164.7 ppm for the hexafluorobenzene peak
  • the 1 H-NMR chemical shift standard was 2.2 ppm for the acetone peak.
  • the method for producing the fluorine-containing ether compound of the present embodiment is not particularly limited, and it can be produced using a conventionally known production method.
  • the fluorine-containing ether compound of the present embodiment can be produced, for example, using the production method shown below. First, prepare a fluorine-based compound in which hydroxymethyl groups (--CH 2 OH) are arranged at both ends of a perfluoropolyether chain corresponding to R 3 in Formula (1).
  • the hydroxyl group of the hydroxymethyl group arranged at one end of the fluorine-based compound is substituted with the group consisting of R 1 -R 2 - in formula (1) (first reaction).
  • the hydroxyl group of the hydroxymethyl group located at the other terminal is substituted with the terminal group consisting of —R 4 in formula (1) (second reaction).
  • the first reaction and the second reaction can be carried out using conventionally known methods, and can be appropriately determined according to the types of R 1 , R 2 and R 4 in formula (1). Either of the first reaction and the second reaction may be performed first.
  • the compound represented by Formula (1) is obtained by the above method.
  • an epoxy compound to produce the fluorine-containing ether compound represented by formula (1) above it is preferable to use an epoxy compound to produce the fluorine-containing ether compound represented by formula (1) above.
  • This epoxy compound may be purchased commercially or synthesized.
  • an oxime compound having a structure corresponding to the terminal group represented by R 1 of the fluorine-containing ether compound to be produced epichlorohydrin, epibromohydrin, 2-(2-bromoethyl)oxirane can be synthesized using any selected from You may synthesize an epoxy compound by the method of oxidizing an unsaturated bond.
  • the fluorine-containing ether compound of the present embodiment is a compound represented by the above formula (1). Therefore, when a lubricant containing this is used to form a lubricant layer on the protective layer, the surface of the protective layer is coated with the PFPE chains represented by R3 in formula ( 1 ), and the magnetic head and the protective layer are coated. Frictional force with is reduced.
  • the fluorine-containing ether compound of the present embodiment represented by formula (1) when the nitrogen atom of the oxime group in R 1 (and X and/or Y in formula (2) have a polar group, The polar group thereof), the polar group contained in R 2 , and two or more polar groups contained in R 4 interact with the protective layer, so that the PFPE chain adheres to the protective layer, and the lubricating layer and the protective layer are tightly bound. Furthermore, in the lubricating layer containing the fluorine-containing ether compound represented by formula (1), even if a scratch is formed in the lubricating layer, the scratch is immediately removed due to the high mobility resulting from the intramolecular interaction of the polar group of R4 . be repaired. Due to these synergistic effects, by using the lubricant containing the fluorine-containing ether compound of the present embodiment, a lubricating layer having excellent wear resistance can be obtained even if the thickness is small.
  • the lubricant for magnetic recording media of this embodiment contains a fluorine-containing ether compound represented by formula (1).
  • the lubricant of the present embodiment may optionally contain a known material used as a lubricant material within a range that does not impair the characteristics due to the inclusion of the fluorine-containing ether compound represented by formula (1). They can be mixed and used according to need.
  • the known material used by mixing with the lubricant of the present embodiment preferably has a number average molecular weight of 1,000 to 10,000.
  • the inclusion of the fluorine-containing ether compound represented by formula (1) in the lubricant of the present embodiment is preferably 50% by mass or more, more preferably 70% by mass or more.
  • the upper limit can be arbitrarily selected, and for example, it may be 99% by mass or less, 95% by mass or less, 90% by mass or less, or 85% by mass or less. .
  • the lubricant of the present embodiment contains the fluorine-containing ether compound represented by formula (1), it can cover the surface of the protective layer with a high coverage even if the thickness is thin, and has excellent wear resistance.
  • a lubricating layer can be formed. More specifically, since the lubricant of the present embodiment contains the fluorine-containing ether compound represented by formula (1), the oxime group in R 1 in formula (1), the polar group in R 2 , and The interaction between two or more polar groups contained in R4 and the protective layer can form a lubricating layer that provides excellent wear resistance.
  • the lubricant of the present embodiment contains the fluorine-containing ether compound represented by formula (1), the fluorine-containing ether compound in the lubricant that is present without adhering (adsorbing) to the protective layer is Hard to agglomerate. Therefore, in the lubricating layer formed using the lubricant of the present embodiment, the fluorine-containing ether compound can be prevented from aggregating and adhering to the magnetic head as foreign matter (smear), thereby suppressing pickup.
  • the magnetic recording medium of this embodiment has at least a magnetic layer, a protective layer, and a lubricating layer sequentially provided on a substrate.
  • one or more underlayers can be provided between the substrate and the magnetic layer, if necessary.
  • An adhesion layer and/or a soft magnetic layer can also be provided between the underlayer and the substrate.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the magnetic recording medium of the present invention.
  • the magnetic recording medium 10 of the present embodiment includes an adhesive layer 12, a soft magnetic layer 13, a first underlayer 14, a second underlayer 15, a magnetic layer 16, a protective layer 17, and an adhesive layer 12 on a substrate 11.
  • a lubricating layer 18 is sequentially provided.
  • the substrate 11 can be selected arbitrarily.
  • a non-magnetic substrate or the like in which a film made of NiP or a NiP alloy is formed on a substrate made of a metal such as Al or an alloy material such as an Al alloy can be preferably used.
  • a non-magnetic substrate made of a non-metallic material such as glass, ceramics, silicon, silicon carbide, carbon, or resin may be used.
  • a non-magnetic substrate on which a film made of is formed may be used.
  • the adhesion layer 12 prevents the progress of corrosion of the substrate 11 that occurs when the substrate 11 and the soft magnetic layer 13 provided on the adhesion layer 12 are arranged in contact with each other.
  • the material of the adhesion layer 12 can be arbitrarily selected, for example, it can be appropriately selected from Cr, Cr alloy, Ti, Ti alloy, CrTi, NiAl, AlRu alloy, and the like.
  • the adhesion layer 12 can be formed by, for example, a sputtering method.
  • the soft magnetic layer 13 can be selected arbitrarily, and preferably has a structure in which a first soft magnetic film, an intermediate layer made of a Ru film, and a second soft magnetic film are laminated in this order.
  • the soft magnetic layer 13 has a structure in which the soft magnetic films above and below the intermediate layer are antiferro-coupling (AFC) coupled by sandwiching an intermediate layer made of a Ru film between two layers of soft magnetic films. preferably.
  • AFC antiferro-coupling
  • Examples of materials for the first soft magnetic film and the second soft magnetic film include CoZrTa alloy and CoFe alloy. Any one of Zr, Ta, and Nb is preferably added to the CoFe alloy used for the first soft magnetic film and the second soft magnetic film. This promotes amorphization of the first soft magnetic film and the second soft magnetic film, makes it possible to improve the orientation of the first underlayer (seed layer), and increases the flying height of the magnetic head. can be reduced.
  • the soft magnetic layer 13 can be formed by sputtering, for example.
  • the first underlayer 14 controls the orientation and crystal size of the second underlayer 15 and the magnetic layer 16 provided thereon.
  • Examples of the first underlayer 14 include a Cr layer, a Ta layer, a Ru layer, a CrMo alloy layer, a CoW alloy layer, a CrW alloy layer, a CrV alloy layer, and a CrTi alloy layer.
  • the first underlayer 14 can be formed by, for example, a sputtering method.
  • the second underlayer 15 is controlled so that the orientation of the magnetic layer 16 is good.
  • the second underlayer 15 can be arbitrarily selected, and is preferably a layer made of Ru or Ru alloy.
  • the second underlayer 15 may be a single layer, or may be composed of a plurality of layers. When the second underlayer 15 is composed of multiple layers, all layers may be composed of the same material, or at least one layer may be composed of different materials.
  • the second underlayer 15 can be formed by, for example, a sputtering method.
  • the magnetic layer 16 is composed of a magnetic film having an axis of easy magnetization oriented perpendicularly or horizontally with respect to the substrate surface.
  • the magnetic layer 16 is optional and is preferably a layer containing Co and Pt.
  • the magnetic layer 16 may be a layer containing oxides, Cr, B, Cu, Ta, Zr, etc. in order to further improve SNR (Signal to Noise Ratio) characteristics. Examples of oxides contained in the magnetic layer 16 include SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3 , TiO 2 and the like.
  • the magnetic layer 16 may be composed of one layer, or may be composed of a plurality of magnetic layers made of materials with different compositions.
  • the first magnetic layer contains Co, Cr, and Pt, and is oxidized. It is preferably a granular structure made of a material containing matter.
  • the oxide contained in the first magnetic layer it is preferable to use, for example, oxides of Cr, Si, Ta, Al, Ti, Mg, Co, and the like. Among these, TiO 2 , Cr 2 O 3 , SiO 2 and the like can be particularly preferably used.
  • the first magnetic layer is preferably made of a composite oxide to which two or more kinds of oxides are added.
  • Cr 2 O 3 —SiO 2 , Cr 2 O 3 —TiO 2 , SiO 2 —TiO 2 and the like can be particularly preferably used.
  • the first magnetic layer is composed of Co, Cr, Pt, oxides, and one or more selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re. Elements can be preferably included.
  • the same material as the first magnetic layer can be used for the second magnetic layer.
  • the second magnetic layer preferably has a granular structure.
  • the third magnetic layer preferably has a non-granular structure made of a material containing Co, Cr, Pt and no oxide.
  • the third magnetic layer preferably contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn. can contain.
  • the magnetic layer 16 When the magnetic layer 16 is composed of a plurality of magnetic layers, it is preferable to provide a non-magnetic layer between adjacent magnetic layers. When the magnetic layer 16 is composed of three layers, the first magnetic layer, the second magnetic layer, and the third magnetic layer, the magnetic layer between the first magnetic layer and the second magnetic layer and between the second magnetic layer and the third magnetic layer It is preferable to provide a non-magnetic layer between them.
  • Non-magnetic layers provided between adjacent magnetic layers of the magnetic layer 16 are, for example, Ru, Ru alloy, CoCr alloy, CoCrX1 alloy (X1 is Pt, Ta, Zr, Re, Ru, Cu, Nb, Ni, Mn, represents one or more elements selected from Ge, Si, O, N, W, Mo, Ti, V, and B.), etc. can be preferably used.
  • Non-magnetic layers provided between adjacent magnetic layers of the magnetic layer 16 preferably use an alloy material containing oxides, metal nitrides, or metal carbides.
  • SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2 and the like can be preferably used as oxides.
  • AlN, Si 3 N 4 , TaN, CrN, and the like, for example, can be preferably used as metal nitrides.
  • TaC, BC, SiC, etc. can be preferably used as the metal carbide.
  • the non-magnetic layer can be formed, for example, by sputtering.
  • the magnetic layer 16 is preferably a magnetic layer for perpendicular magnetic recording in which the axis of easy magnetization is oriented perpendicular to the substrate surface.
  • the magnetic layer 16 may be a magnetic layer for longitudinal magnetic recording.
  • the magnetic layer 16 may be formed by any conventionally known method such as a vapor deposition method, an ion beam sputtering method, a magnetron sputtering method, or the like.
  • the magnetic layer 16 is usually formed by a sputtering method.
  • the protective layer 17 protects the magnetic layer 16 .
  • the protective layer 17 may be composed of a single layer, or may be composed of a plurality of layers. Examples of materials for the protective layer 17 include carbon, nitrogen-containing carbon, and silicon carbide.
  • a carbon-based protective layer can be preferably used, and an amorphous carbon protective layer is particularly preferred. If the protective layer 17 is a carbon-based protective layer, interaction with the polar groups (especially hydroxyl groups) contained in the fluorine-containing ether compound in the lubricating layer 18 is further enhanced, which is preferable.
  • the adhesion between the carbon-based protective layer and the lubricating layer 18 can be adjusted by using hydrogenated carbon and/or nitrogenated carbon as the carbon-based protective layer and adjusting the hydrogen content and/or nitrogen content in the carbon-based protective layer.
  • the hydrogen content in the carbon-based protective layer is preferably 3 to 20 atomic % as measured by hydrogen forward scattering spectroscopy (HFS).
  • the nitrogen content in the carbon-based protective layer is preferably 4 to 15 atomic % when measured by X-ray photoelectron spectroscopy (XPS).
  • the hydrogen and/or nitrogen contained in the carbon-based protective layer need not be contained uniformly throughout the carbon-based protective layer.
  • the carbon-based protective layer is preferably a composition gradient layer in which, for example, the protective layer 17 on the lubricating layer 18 side contains nitrogen and the protective layer 17 on the magnetic layer 16 side contains hydrogen. In this case, the adhesion between the magnetic layer 16 and lubricating layer 18 and the carbon-based protective layer is further improved.
  • the film thickness of the protective layer 17 can be arbitrarily selected, it is preferably 1 nm to 7 nm. When the film thickness of the protective layer 17 is 1 nm or more, the performance as the protective layer 17 is sufficiently obtained. It is preferable from the viewpoint of thinning the protective layer 17 that the film thickness of the protective layer 17 is 7 nm or less.
  • a sputtering method using a target material containing carbon a sputtering method using a target material containing carbon, a CVD (chemical vapor deposition) method using a hydrocarbon raw material such as ethylene or toluene, an IBD (ion beam deposition) method, or the like can be used.
  • a carbon-based protective layer is formed as the protective layer 17, it can be formed by, for example, a DC magnetron sputtering method.
  • a plasma CVD method when forming a carbon-based protective layer as the protective layer 17, it is preferable to form an amorphous carbon protective layer by a plasma CVD method.
  • the amorphous carbon protective layer formed by the plasma CVD method has a uniform surface and a small roughness.
  • Lubricating layer 18 prevents contamination of magnetic recording medium 10 .
  • the lubricating layer 18 reduces the frictional force of the magnetic head of the magnetic recording/reproducing device that slides on the magnetic recording medium 10 , thereby improving the durability of the magnetic recording medium 10 .
  • the lubricating layer 18 is formed on and in contact with the protective layer 17, as shown in FIG.
  • Lubricating layer 18 contains the fluorine-containing ether compound described above.
  • the lubricating layer 18 is particularly bonded to the protective layer 17 with high bonding strength when the protective layer 17 arranged under the lubricating layer 18 is a carbon-based protective layer. As a result, even if the thickness of the lubricating layer 18 is small, it is easy to obtain the magnetic recording medium 10 in which the surface of the protective layer 17 is covered with a high coverage rate, and contamination of the surface of the magnetic recording medium 10 can be effectively prevented.
  • the average film thickness of the lubricating layer 18 can be arbitrarily selected, and is preferably 0.5 nm (5 ⁇ ) to 2.0 nm (20 ⁇ ), more preferably 0.5 nm (5 ⁇ ) to 1.0 nm (10 ⁇ ). more preferred.
  • the average thickness of the lubricating layer 18 is 0.5 nm or more, the lubricating layer 18 is formed with a uniform thickness without being island-like or network-like. Therefore, the surface of the protective layer 17 can be covered with the lubricating layer 18 at a high coverage rate. Further, by setting the average film thickness of the lubricating layer 18 to 2.0 nm or less, the lubricating layer 18 can be made sufficiently thin, and the flying height of the magnetic head can be made sufficiently small.
  • the environmental substances adsorbed to the surface of the magnetic recording medium 10 pass through the gaps in the lubricating layer 18 and reach the lower layer of the lubricating layer 18. invade.
  • Environmental substances that have entered the lower layer of the lubricating layer 18 are adsorbed and combined with the protective layer 17 to generate contaminants.
  • this contaminant adheres (transfers) to the magnetic head as smear, damaging the magnetic head or degrading the magnetic recording/reproducing characteristics of the magnetic recording/reproducing apparatus. .
  • Examples of environmental substances that generate contaminants include siloxane compounds (cyclic siloxane, linear siloxane), ionic impurities, hydrocarbons with relatively high molecular weights such as octacosane, and plasticizers such as dioctyl phthalate.
  • Examples of metal ions contained in ionic impurities include sodium ions and potassium ions.
  • Examples of inorganic ions contained in ionic impurities include chloride ions, bromide ions, nitrate ions, sulfate ions, and ammonium ions.
  • Examples of organic ions contained in ionic impurities include oxalate ions and formate ions.
  • Method for Forming a Lubricating Layer A method for forming the lubricating layer 18 can be selected arbitrarily. A method of applying a solution and drying it may be mentioned.
  • the lubricating layer forming solution can be obtained, for example, by dispersing and dissolving the magnetic recording medium lubricant of the above-described embodiment in a solvent, and adjusting the viscosity and concentration suitable for the coating method.
  • the solvent used for the lubricating layer forming solution include fluorine-based solvents such as Vertrel (registered trademark) XF (trade name, manufactured by DuPont-Mitsui Fluorochemicals).
  • the method of applying the lubricating layer-forming solution is not particularly limited, and examples thereof include a spin coating method, a spray method, a paper coating method, a dipping method, and the like.
  • the dipping method for example, the following method can be used. First, the substrate 11 on which the layers up to the protective layer 17 are formed is immersed in a lubricating layer forming solution placed in an immersion tank of a dip coater. Next, the substrate 11 is pulled up from the immersion bath at a predetermined speed. As a result, the lubricating layer forming solution is applied to the surface of the protective layer 17 of the substrate 11 .
  • the lubricating layer forming solution can be uniformly applied to the surface of the protective layer 17 , and the lubricating layer 18 can be formed on the protective layer 17 with a uniform film thickness.
  • the heat treatment temperature can be arbitrarily selected, but is preferably 100 to 180.degree. When the heat treatment temperature is 100° C. or higher, the effect of improving the adhesion between the lubricating layer 18 and the protective layer 17 can be sufficiently obtained. Further, by setting the heat treatment temperature to 180° C. or less, thermal decomposition of the lubricating layer 18 can be prevented.
  • the heat treatment time is preferably 10 to 120 minutes.
  • the magnetic recording medium 10 of the present embodiment has at least a magnetic layer 16, a protective layer 17, and a lubricating layer 18 successively provided on a substrate 11.
  • FIG. In the magnetic recording medium 10 of this embodiment, a lubricating layer 18 containing the fluorine-containing ether compound is formed on and in contact with the protective layer 17 .
  • the lubricating layer 18 has good adhesion to the protective layer 17, and can cover the surface of the protective layer 17 with a high coverage even if the thickness is small, and has excellent wear resistance.
  • the surface of the protective layer 17 is covered with the lubricating layer 18 at a high coverage rate. Therefore, environmental substances that generate contaminants such as ionic impurities are prevented from entering through gaps in the lubricating layer 18 . Therefore, the magnetic recording medium 10 of this embodiment has less contaminants on its surface.
  • the lubricating layer 18 in the magnetic recording medium 10 of the present embodiment is less likely to generate foreign matter (smear) and can suppress pickup. As described above, the magnetic recording medium 10 of this embodiment has excellent reliability and durability.
  • Example 1 The compound represented by the above formula (A) was produced by the method shown below. First, a compound represented by the following formula (15) and epibromohydrin were reacted in dichloromethane to synthesize a compound represented by the following formula (16). A compound represented by the following formula (15) was synthesized by the method shown below. The hydroxy group on one side of ethylene glycol was protected with dihydropyran and oxidized with Dess-Martin periodinane in dichloromethane to give the compound. Then, the resulting compound was synthesized by reacting hydroxylamine and potassium carbonate in a 50% aqueous ethanol solution.
  • HOCH 2 CF 2 O(CF 2 CF 2 O) m (CF 2 O) n CF 2 CH 2 OH (in the formula, m indicating the average degree of polymerization is 4.0) was added to a 100 mL eggplant flask under a nitrogen gas atmosphere. 5, and n indicating the average degree of polymerization is 4.5. 2.54 g and 12 mL of t-butanol were charged and stirred at room temperature until uniform. 0.674 g of potassium tert-butoxide was further added to this homogeneous liquid, and the mixture was stirred at 70° C. for 8 hours for reaction to obtain a reaction product.
  • the resulting reaction product was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate. The organic layer was washed with water and dried over anhydrous sodium sulfate. After filtering off the drying agent, the filtrate was concentrated and the residue was purified by silica gel column chromatography to obtain 9.17 g of a compound represented by the following formula (17) as an intermediate.
  • the resulting reaction product was cooled to 25° C., 33 g of 10% hydrogen chloride/methanol solution (hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 2 hours. .
  • the reaction solution was gradually transferred to a separatory funnel containing 100 mL of brine and extracted with 200 mL of ethyl acetate three times.
  • the organic layer was washed with 100 mL of brine, 100 mL of saturated aqueous sodium bicarbonate, and 100 mL of brine in that order, and dehydrated with anhydrous sodium sulfate.
  • Example 2 The same procedure as in Example 1 was carried out, except that 2.75 g of the compound represented by the following formula (20) was used instead of the compound represented by the formula (16). Via the compound represented by the formula (B) (in formula (B), mb indicating the average degree of polymerization is 4.5, and nb indicating the average degree of polymerization is 4.5). 4.32 g was obtained.
  • the compound represented by formula (20) was synthesized by reacting the compound represented by formula (19) with epibromohydrin in dichloromethane.
  • the compound represented by formula (19) was produced by the method shown below.
  • the hydroxy group on one side of 1,3-propanediol was protected with dihydropyran and oxidized with Dess-Martin periodinane in dichloromethane to give the compound.
  • the resulting compound was synthesized by reacting hydroxylamine and potassium carbonate in a 50% aqueous ethanol solution.
  • Example 3 The same procedure as in Example 1 was carried out, except that 2.92 g of the compound represented by the following formula (23) was used instead of the compound represented by the formula (16). through the compound represented by the formula (C) (in formula (C), mc indicating the average degree of polymerization is 4.5, and nc indicating the average degree of polymerization is 4.5). 4.37 g was obtained.
  • the compound represented by formula (23) was synthesized by reacting the compound represented by formula (22) with epibromohydrin in dichloromethane.
  • the compound represented by formula (22) was produced by the method shown below.
  • the hydroxy group on one side of 1,4-butanediol was protected with dihydropyran and oxidized with Dess-Martin periodinane in dichloromethane to give the compound.
  • the resulting compound was synthesized by reacting hydroxylamine and potassium carbonate in a 50% aqueous ethanol solution.
  • Example 4 The same procedure as in Example 1 was carried out, except that 2.41 g of the compound represented by the following formula (26) was used instead of the compound represented by the formula (16). through the compound represented by the formula (D) (in formula (D), md indicating the average degree of polymerization is 4.5, and nd indicating the average degree of polymerization is 4.5). 4.38 g was obtained.
  • the compound represented by formula (26) was synthesized by reacting the compound represented by formula (25) with epibromohydrin in dichloromethane.
  • the compound represented by formula (25) is synthesized by reacting a compound obtained by oxidizing Solketal with Dess-Martin periodinane in dichloromethane with hydroxylamine and potassium carbonate in a 50% aqueous ethanol solution. did.
  • Example 5 The same procedure as in Example 1 was carried out, except that 2.58 g of the compound represented by the following formula (29) was used instead of the compound represented by the formula (16). Via the compound represented by the compound represented by the formula (E) (in the formula (E), me indicating the average degree of polymerization is 4.5, and ne indicating the average degree of polymerization is 4.5). 4.43 g was obtained.
  • the compound represented by formula (29) was synthesized by reacting the compound represented by formula (28) with epibromohydrin in dichloromethane.
  • the compound represented by formula (28) is a compound obtained by oxidizing (2,2-dimethyl-1,3-dioxan-5-yl)methanol in dichloromethane using Dess-Martin periodinane, It was synthesized by reacting hydroxylamine and potassium carbonate in a 50% ethanol aqueous solution.
  • Example 6 The same procedure as in Example 1 was carried out, except that 2.58 g of the compound represented by the following formula (32) was used instead of the compound represented by the formula (16). through the compound represented by the formula (F) (in formula (F), mf indicating the average degree of polymerization is 4.5, and nf indicating the average degree of polymerization is 4.5). 4.43 g was obtained.
  • the compound represented by formula (32) was synthesized by reacting the compound represented by formula (31) with epibromohydrin in dichloromethane.
  • the compound represented by formula (31) is a compound obtained by oxidizing (2,2-dimethyl-1,3-dioxan-4-yl)methanol in dichloromethane using Dess-Martin periodinane, It was synthesized by reacting hydroxylamine and potassium carbonate in a 50% ethanol aqueous solution.
  • Example 7 The same procedure as in Example 1 was carried out, except that 3.95 g of the compound represented by the following formula (35) was used instead of the compound represented by the formula (16). through the compound represented by the formula (G) (wherein mg indicating the average degree of polymerization is 4.5, and ng indicating the average degree of polymerization is 4.5). 4.38 g was obtained.
  • the compound represented by formula (35) was synthesized by reacting the compound represented by formula (34) with epibromohydrin in dichloromethane.
  • the compound represented by formula (34) was synthesized by protecting the hydroxy group of 1,3-dihydroxyacetone with dihydropyran and reacting it with hydroxylamine and potassium carbonate in a 50% aqueous ethanol solution.
  • Example 8 The same procedure as in Example 1 was carried out, except that 4.29 g of the compound represented by the following formula (38) was used instead of the compound represented by the formula (16). Via the intermediate represented by the compound represented by the formula (H) (in the formula (H), mh indicating the average degree of polymerization is 4.5, nh indicating the average degree of polymerization is 4.5.) 4.48 g of was obtained.
  • the compound represented by formula (38) was synthesized by reacting the compound represented by formula (37) with epibromohydrin in dichloromethane.
  • the compound represented by formula (37) was synthesized by protecting the hydroxy group of 1,5-dihydroxy-3-pentanone with dihydropyran and reacting it with hydroxylamine and potassium carbonate in a 50% aqueous ethanol solution.
  • Example 9 The same procedure as in Example 1 was carried out, except that 4.12 g of the compound represented by the following formula (41) was used instead of the compound represented by the formula (16). through the compound represented by the formula (I) (in formula (I), mi indicating the average degree of polymerization is 4.5, and ni indicating the average degree of polymerization is 4.5). 4.43 g was obtained.
  • the compound represented by formula (41) was synthesized by reacting the compound represented by formula (40) with epibromohydrin in dichloromethane.
  • the compound represented by formula (40) was synthesized by protecting the hydroxy group of 1,4-dihydroxy-2-butanone with dihydropyran and reacting it with hydroxylamine and potassium carbonate in a 50% aqueous ethanol solution.
  • mi and ni indicate an average degree of polymerization, mi represents 4.5, and ni represents 4.5.
  • Example 10 The same procedure as in Example 1 was carried out, except that 4.29 g of the compound represented by the following formula (44) was used instead of the compound represented by the formula (16). through the compound represented by the formula (J) (in formula (J), mj indicating the average degree of polymerization is 4.5, and nj indicating the average degree of polymerization is 4.5). 4.48 g was obtained.
  • the compound represented by formula (44) was synthesized by reacting the compound represented by formula (43) with epibromohydrin in dichloromethane.
  • the compound represented by formula (43) was synthesized by protecting the hydroxy group of 1,5-dihydroxy-2-pentanone with dihydropyran and reacting it with hydroxylamine and potassium carbonate in a 50% aqueous ethanol solution.
  • Example 11 The same procedure as in Example 2 was performed except that a compound obtained by reacting a compound represented by formula (19) with 2-(2-bromoethyl)oxirane was used instead of the compound represented by formula (20). Operation was performed to obtain a compound represented by the following formula (46) as an intermediate.
  • Example 12 Same as Example 2, except that a compound obtained by reacting a compound represented by formula (19) with 2-(3-bromopropyl)oxirane was used instead of the compound represented by formula (20). A compound represented by the following (47) was obtained as an intermediate. Then, a compound synthesized in the same manner as in formula (18) using a compound represented by formula (47) and using 5-hexene-1-ol instead of 3-buten-1-ol was obtained by formula The same operation as in Example 2 was performed except that the compound represented by (18) was used in place of the compound represented by formula (L) (in formula (L), ml indicating the average degree of polymerization is 4.0). 5 and nl indicating the average degree of polymerization is 4.5.) was obtained in an amount of 4.52 g.
  • Example 13 The same operation as in Example 2 was performed except that 1.21 g of the compound represented by formula (48) was used instead of the compound represented by formula (18) to obtain the compound represented by formula (M) ( In formula (M), mm indicating the average degree of polymerization is 4.5, and nm indicating the average degree of polymerization is 4.5.) was obtained in an amount of 4.43 g.
  • the compound represented by formula (48) was synthesized by oxidizing the double bond of the compound in which the hydroxy group of ethylene glycol monoallyl ether was protected with dihydropyran.
  • Example 14 The same operation as in Example 2 was performed except that 1.30 g of the compound represented by the formula (49) was used instead of the compound represented by the formula (18) to obtain the compound represented by the formula (N) ( In formula (N), mn indicating the average degree of polymerization is 4.5, and nn indicating the average degree of polymerization is 4.5.) was obtained in an amount of 4.48 g.
  • a compound represented by the formula (49) was synthesized by reacting a compound obtained by protecting one hydroxy group of ethylene glycol with dihydropyran and 2-(2-bromoethyl)oxirane.
  • Example 15 The same operation as in Example 2 was performed except that 1.66 g of the compound represented by the formula (50) was used instead of the compound represented by the formula (18) to obtain the compound represented by the formula (O) ( In the formula (O), mo representing the average degree of polymerization is 4.5, and no representing the average degree of polymerization is 4.5.) was obtained in an amount of 4.69 g.
  • the compound represented by the formula (50) was synthesized by reacting a compound obtained by protecting one hydroxy group of ethylene glycol with dihydropyran and bis(2,3-epoxypropyl) ether.
  • Example 16 The same operation as in Example 2 was performed except that 1.74 g of the compound represented by the formula (51) was used instead of the compound represented by the formula (18) to obtain the compound represented by the formula (P) ( In formula (P), mp indicating the average degree of polymerization is 4.5, and np indicating the average degree of polymerization is 4.5.) was obtained in an amount of 4.74 g.
  • the compound represented by formula (51) was synthesized by reacting a compound obtained by protecting one hydroxy group of 1,3-propanediol with dihydropyran and bis(2,3-epoxypropyl) ether.
  • Example 17 The same operation as in Example 2 was performed except that 1.74 g of the compound represented by formula (52) was used instead of the compound represented by formula (18) to obtain the compound represented by formula (Q) ( In formula (Q), mq indicating the average degree of polymerization is 4.5, and nq indicating the average degree of polymerization is 4.5.) was obtained in an amount of 4.74 g.
  • the compound represented by formula (52) is synthesized by reacting a compound obtained by protecting one hydroxy group of ethylene glycol with dihydropyran and a compound synthesized by oxidizing the double bond of allyl-3-butenyl ether. did.
  • Example 18 The same operation as in Example 2 was performed except that 2.10 g of the compound represented by the formula (53) was used instead of the compound represented by the formula (18) to obtain the compound represented by the formula (R) ( In the formula (R), mr indicating the average degree of polymerization is 4.5, and nr indicating the average degree of polymerization is 4.5.) was obtained in an amount of 4.95 g.
  • the compound represented by formula (53) is obtained by reacting a compound obtained by protecting one hydroxy group of ethylene glycol with dihydropyran and a compound synthesized by oxidizing the double bond of 1,3-diallyloxy-2-propanol. I let it synthesize.
  • Example 19 The same operation as in Example 2 was performed except that 2.27 g of the compound represented by the formula (54) was used instead of the compound represented by the formula (18) to obtain the compound represented by the formula (S) ( In the formula (S), ms indicating the average degree of polymerization is 4.5, and ns indicating the average degree of polymerization is 4.5.) was obtained 5.04 g.
  • the compound represented by the formula (54) is obtained by reacting a compound obtained by protecting one hydroxy group of ethylene glycol with dihydropyran and a compound synthesized by oxidizing the double bond of 1,3-dibutenyloxy-2-propanol. Synthesized.
  • Example 20 The same operation as in Example 2 was performed except that 1.99 g of the compound represented by the formula (55) was used instead of the compound represented by the formula (18) to obtain the compound represented by the formula (T) ( In the formula (T), mt indicating the average degree of polymerization is 4.5, and nt indicating the average degree of polymerization is 4.5.) was obtained in an amount of 5.04 g.
  • the compound represented by formula (55) is obtained by reacting a compound synthesized by oxidizing the double bond of 4-pentenyl ether with (2,2-dimethyl-1,3-dioxan-5-yl)methanol. Synthesized.
  • Example 21 The same procedure as in Example 13 was carried out, except that 3.64 g of the compound represented by formula (56) was used instead of the compound represented by formula (20). Via the compound represented by the formula (U) (in formula (U), mu indicating the average degree of polymerization is 4.5, and nu indicating the average degree of polymerization is 4.5). 4.69 g was obtained.
  • the compound represented by formula (56) was synthesized by reacting the compound represented by formula (19) with a compound synthesized by oxidizing the double bond of allyl ether.
  • mu and nu indicate an average degree of polymerization, mu represents 4.5, and nu represents 4.5.
  • Example 22 The same procedure as in Example 13 was carried out, except that 3.81 g of the compound represented by formula (58) was used instead of the compound represented by formula (20). Via the compound represented by the formula (V) (in formula (V), mv indicating the average degree of polymerization is 4.5, and nv indicating the average degree of polymerization is 4.5). 4.78 g was obtained.
  • the compound represented by formula (58) was synthesized by reacting the compound represented by formula (19) with a compound synthesized by oxidizing the double bond of 3-butenyl ether.
  • Example 23 In the same manner as in Example 15 except that 3.64 g of the compound represented by the formula (56) was used instead of the compound represented by the formula (20), the compound represented by the formula (W) ( In formula (W), mw indicating the average degree of polymerization is 4.5, and nw indicating the average degree of polymerization is 4.5.) was obtained in an amount of 4.95 g.
  • Example 24 The same procedure as in Example 13 was carried out, except that 4.53 g of the compound represented by formula (60) was used instead of the compound represented by formula (20). Via the compound represented by the compound represented by the formula (X) (in formula (X), mx indicating the average degree of polymerization is 4.5, and nx indicating the average degree of polymerization is 4.5.) 4.95 g was obtained.
  • the compound represented by formula (60) was synthesized by reacting the compound represented by formula (19) with a compound synthesized by oxidizing the double bond of 1,3-diallyloxy-2-propanol.
  • mx and nx indicate an average degree of polymerization, mx represents 4.5 and nx represents 4.5.
  • Example 25 The same procedure as in Example 13 was carried out, except that 4.53 g of the compound represented by formula (62) was used instead of the compound represented by formula (20). Via the compound represented by the formula (Y) (in formula (Y), my indicating the average degree of polymerization is 4.5, and ny indicating the average degree of polymerization is 4.5). 4.95 g was obtained.
  • the compound represented by formula (62) was synthesized by reacting the compound represented by formula (19) with a compound synthesized by oxidizing the double bond of 1,3-dibutenyloxy-2-propanol.
  • Example 26 The same procedure as in Example 16 was carried out, except that 2.39 g of the compound represented by formula (65) was used instead of the compound represented by formula (20). Via the compound shown, the compound represented by the formula (Z) (in formula (Z), mz indicating the average degree of polymerization is 4.5, and nz indicating the average degree of polymerization is 4.5). .92 g was obtained.
  • the compound represented by formula (65) was synthesized by reacting the compound represented by formula (64) with epibromohydrin in dichloromethane.
  • the compound represented by formula (64) was obtained by oxidizing 3-(3-butene-1-yloxy)-1-propanol in dichloromethane with Dess-Martin periodinane and adding 50% ethanol. It was synthesized by reacting hydroxylamine and potassium carbonate in an aqueous solution.
  • Example 27 The same procedure as in Example 16 was carried out, except that 2.41 g of the compound represented by formula (68) was used instead of the compound represented by formula (20). Via the compound shown, the compound represented by the formula (AA) (in formula (AA), mA indicating the average degree of polymerization is 4.5, and nA indicating the average degree of polymerization is 4.5.) .93 g was obtained.
  • the compound represented by formula (68) was synthesized by reacting the compound represented by formula (67) with epibromohydrin in dichloromethane.
  • the compound represented by the formula (67) is obtained by oxidizing 3-butoxypropanol with Dess-Martin periodinane in dichloromethane and reacting it with hydroxylamine and potassium carbonate in a 50% aqueous ethanol solution. I let it synthesize.
  • Example 28 The same procedure as in Example 16 was carried out, except that 2.20 g of the compound represented by formula (71) was used instead of the compound represented by formula (20). Via the compound shown, the compound represented by the formula (AB) (in formula (AB), mB indicating the average degree of polymerization is 4.5, and nB indicating the average degree of polymerization is 4.5.) 4 .87 g was obtained.
  • the compound represented by formula (71) was synthesized by reacting the compound represented by formula (70) with epibromohydrin in dichloromethane.
  • the compound represented by the formula (70) is obtained by oxidizing 3-(2-propynyloxy)propanol in dichloromethane with Dess-Martin periodinane, and adding hydroxylamine in a 50% aqueous ethanol solution. and potassium carbonate.
  • Example 29 The same procedure as in Example 16 was carried out, except that 3.01 g of the compound represented by formula (74) was used instead of the compound represented by formula (20). Via the compound shown, the compound represented by the formula (AC) (in the formula (AC), mC indicating the average degree of polymerization is 4.5, and nC indicating the average degree of polymerization is 4.5). .11 g was obtained.
  • the compound represented by formula (74) was synthesized by reacting the compound represented by formula (73) with epibromohydrin in dichloromethane.
  • the compound represented by the formula (73) is obtained by oxidizing 3-(4-methoxyphenoxy)propanol with Dess-Martin periodinane in dichloromethane in a 50% aqueous ethanol solution to give hydroxylamine. and potassium carbonate.
  • Example 30 HOCH 2 CF 2 O(CF 2 CF 2 O) m (CF 2 O) n CF 2 CH 2 OH (in the formula, m representing the average degree of polymerization is 4.5, and n representing the average degree of polymerization is 4.5). 5.) instead of the fluoropolyether represented by HOCH 2 CF 2 O(CF 2 CF 2 O) w CF 2 CH 2 OH (wherein w representing the average degree of polymerization is 7.0 .) Except for using the fluoropolyether represented by ), the same operation as in Example 15 was performed, and the compound represented by the formula (AD) was obtained as an intermediate through the compound represented by the following formula (76). (In the formula (AD), w representing the average degree of polymerization is 7.0.) was obtained in an amount of 4.65 g.
  • Table 1 shows the structures of R 1 (X and Y in formula (2)) when the compounds of Examples 1 to 33 thus obtained are applied to formula (1).
  • R 2 when applied to formula (1) (a in [A] in formula (3), b, c in [B], d, e in [C]), and the structure of R 3 Table 2 shows.
  • Comparative Example 4" A compound represented by the following formula (AK) was synthesized by the method described in Patent Document 3. That is, the compound represented by the formula (33) described in Patent Document 3 is HOCH 2 CF 2 O(CF 2 CF 2 O) m (CF 2 O) n CF 2 CH 2 OH (wherein the average degree of polymerization is m is 4.5, and n, which indicates the average degree of polymerization, is 4.5.).
  • Table 4 shows the number average molecular weights (Mn) of the compounds of Examples 1 to 33 and Comparative Examples 1 to 4 thus obtained.
  • lubricating layer forming solutions were prepared by the method shown below. Using the lubricating layer forming solution thus obtained, lubricating layers of magnetic recording media were formed by the method described below, and magnetic recording media of Examples 1 to 33 and Comparative Examples 1 to 4 were obtained.
  • Magnetic recording medium A magnetic recording medium was prepared by sequentially forming an adhesion layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer on a substrate having a diameter of 65 mm.
  • the protective layer was made of carbon.
  • the lubricating layer-forming solutions of Examples 1 to 33 and Comparative Examples 1 to 4 were each applied by dipping onto the protective layer of the magnetic recording medium on which each layer up to the protective layer was formed. The dipping method was performed under conditions of an immersion speed of 10 mm/sec, an immersion time of 30 sec, and a lifting speed of 1.2 mm/sec. Thereafter, the magnetic recording medium coated with the lubricating layer forming solution is placed in a constant temperature bath at 120° C. and heated for 10 minutes to remove the solvent in the lubricating layer forming solution, thereby forming a lubricating layer on the protective layer. A magnetic recording medium was obtained.
  • the film thickness of the lubricating layer of the magnetic recording media of Examples 1 to 33 and Comparative Examples 1 to 4 thus obtained was measured using FT-IR (trade name: Nicolet iS50, manufactured by Thermo Fisher Scientific). It was measured. Table 4 shows the results.
  • the magnetic recording media of Examples 1 to 33 and Comparative Examples 1 to 4 were subjected to the wear resistance test described below.
  • Abrasion resistance test Using a pin-on-disk type friction and wear tester, an alumina ball with a diameter of 2 mm as a contact is slid on the lubricating layer of the magnetic recording medium at a load of 40 gf and a sliding speed of 0.25 m / sec. The coefficient of friction of the surface of was measured. Then, the sliding time until the coefficient of friction on the surface of the lubricating layer increased sharply was measured. The sliding time until the coefficient of friction suddenly increased was measured four times for the lubricating layer of each magnetic recording medium, and the average value (time) was used as an index of the wear resistance of the lubricant coating.
  • Table 4 shows the friction coefficient increase time of magnetic recording media using the compounds of Examples 1-33 and the compounds of Comparative Examples 1-4. Evaluation of the friction coefficient increase time was performed as follows. It is understood that the larger the friction coefficient increase time, the better the wear resistance. ⁇ (excellent): 650 sec or more ⁇ (good): 550 sec or more and less than 650 sec ⁇ (acceptable): 450 sec or more and less than 550 sec ⁇ (improper): less than 450 sec
  • the time until the coefficient of friction suddenly increases can be used as an indicator of the wear resistance of the lubricating layer for the reasons given below. This is because the lubricating layer of the magnetic recording medium wears out as the magnetic recording medium is used, and when the lubricating layer is lost due to wear, the contactor and the protective layer come into direct contact with each other, resulting in a sharp increase in the coefficient of friction. be. It is considered that the time until this coefficient of friction suddenly increases has a correlation with the friction test.
  • the magnetic recording media of Examples 1 to 33 were evaluated as ⁇ (good) or ⁇ (excellent) in terms of friction coefficient increase time, compared with the magnetic recording media of Comparative Examples 1 to 4. , the sliding time was long until the coefficient of friction suddenly increased, and the wear resistance was good. This is because, in the magnetic recording media of Examples 1 to 33, the surface of the protective layer is difficult to be exposed for the following reasons [1] and [2], and the surface of the protective layer is covered with a high coverage for a long period of time. presumed to be
  • the magnetic recording media of Examples 1 to 3, 11 to 20, 23, and 26 to 33 were excellent in terms of friction coefficient increase time. 21, 22, 24 and 25, the wear resistance was better.
  • Table 3 in the magnetic recording media of Examples 1 to 3, 11 to 20, 23, and 26 to 33, the total number of hydroxyl groups [—OH] contained in R 1 and R 2 was Using compounds (A) ⁇ (C), (K) ⁇ (T), (W), (Z), (AA) ⁇ (AG) equal to or less than the total number of hydroxyl groups [-OH] there is
  • the total number of hydroxyl groups [--OH] contained in R 1 and R 2 was ], more compounds (D) to (J), (U), (V), (X), and (Y) are used.
  • the lubricant for a magnetic recording medium containing the fluorine-containing ether compound of the present invention it is possible to form a lubricating layer capable of realizing excellent wear resistance even when the thickness is small. That is, according to the present invention, a lubricating layer having excellent abrasion resistance can be formed even when the thickness is small, and a fluorine-containing ether compound suitable as a material for lubricants for magnetic recording media can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)

Abstract

下記式で表される含フッ素エーテル化合物とする。R1-R2-CH2-R3-CH2-R4(式中、R1はオキシム基を含む式(2)で表される末端基;R2は極性基を有する2価の連結基;R3はパーフルオロポリエーテル鎖;R4は2以上の極性基を有する末端基;式(2)中、XおよびYはそれぞれ、水素原子、置換基を有してもよい炭素数1~12のアルキル基、二重結合または三重結合を有する有機基のいずれか。)

Description

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
 本発明は、含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体に関する。
  本願は、2021年1月29日に、日本に出願された特願2021-013857号に基づき優先権を主張し、その内容をここに援用する。
 磁気記録再生装置の記録密度を向上させるために、高記録密度に適した磁気記録媒体の開発が進められている。
 従来、磁気記録媒体として、基板上に記録層を形成し、記録層上にカーボン等の保護層を形成したものがある。保護層は、記録層に記録された情報を保護するとともに、磁気ヘッドの摺動性を高める。しかし、記録層上に保護層を設けただけでは、磁気記録媒体の耐久性は十分に得られない。このため、一般に、保護層の表面に潤滑剤を塗布して潤滑層を形成している。
 磁気記録媒体の潤滑層を形成する際に用いられる潤滑剤としては、例えば、CFを含む繰り返し構造を有するフッ素系のポリマーの末端に、水酸基、アミノ基、イミノ基、イソシアネート基などの極性基を有する化合物を含有するものが提案されている。
 例えば、特許文献1には、分子末端にオキシム基を含む末端基を有する含フッ素エステル化合物が開示されている。
 特許文献2には、フッ素系有機化合物からなる保護膜層の表面に、活性化処理層を形成し、その上に、累積二重結合を有する化合物からなる潤滑層を設けることが記載されている。特許文献2には、水酸基、アミノ基、イミノ基のうちより選ばれる少なくとも1種の基を導入することによって活性化処理層を形成することが記載されている。また、特許文献2には、上記導入基と重付加反応を起こす活性部分である累積二重結合を有する化合物としてイソシアネートが記載されている。
 また、特許文献3には、パーフルオロポリエーテル鎖と、両末端基との間にそれぞれ、エーテル結合(-O-)とメチレン基(-CH-)と1つの水素原子が水酸基で置換されたメチレン基(-CH(OH)-)とを組み合わせた連結基を配置した含フッ素エーテル化合物が開示されている。
特開2005-263746号公報 特公平7-99576号公報 国際公開第2019/054148号
 磁気記録再生装置においては、より一層、磁気ヘッドの浮上量を小さくすることが要求されている。このため、磁気記録媒体における潤滑層の厚みを、より薄くすることが求められている。
 しかし、一般的に潤滑層の厚みを薄くすると、磁気記録媒体の耐摩耗性が低下する傾向がある。
 本発明は、上記事情を鑑みてなされたものであり、厚みが薄くても優れた耐摩耗性を有する潤滑層を形成でき、磁気記録媒体用潤滑剤の材料として好適に用いることができる含フッ素エーテル化合物を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含む潤滑層を有する優れた信頼性および耐久性を有する磁気記録媒体を提供することを目的とする。
 本発明者は、上記課題を解決するために鋭意研究を重ねた。
 その結果、パーフルオロポリエーテル鎖の第1端部に、極性基を有する2価の連結基を介してオキシム基を含む特定の末端基が結合され、第2端部に、2以上の極性基を有する末端基が結合された含フッ素エーテル化合物を用いればよいことを見出し、本発明を想到した。
 すなわち、本発明は以下の事項に関する。
 本発明の第一の態様は、以下の含フッ素エーテル化合物を提供する。
[1] 下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
 R-R-CH-R-CH-R   (1)
(式(1)中、Rは、オキシム基を含む下記式(2)で表される末端基である;Rは、極性基を有する2価の連結基である;Rは、パーフルオロポリエーテル鎖である;Rは、2以上の極性基を有する末端基である。)
Figure JPOXMLDOC01-appb-C000004

(式(2)中、XおよびYはそれぞれ、水素原子、置換基を有してもよい炭素数1~12のアルキル基、二重結合または三重結合を有する有機基のいずれかである。)
 本発明の第一の態様の前記含フッ素エーテル化合物は、以下の[2]~[11]に記載される特徴を有することが好ましい。以下の[2]~[11]に記載される特徴は、2つ以上を任意に組み合わせることも好ましい。
[2] 前記Rに含まれる極性基が水酸基である、[1]に記載の含フッ素エーテル化合物。
[3] 前記式(1)において、R-R-CH-が下記式(3)で表される、[1]または[2]に記載の含フッ素エーテル化合物。
 R-[C]-[B]-[A]-CH- (3)
(式(3)中、[A]は下記式(4-1)で表され、[B]は下記式(4-2)で表され、[C]は下記式(4-3)で表される;式(3)において[A]、[B]、[C]の並び順は入れ替えてもよい;式(4-1)~(4-3)におけるエーテル結合(-O-)側が、式(3)中のCH側である。)
Figure JPOXMLDOC01-appb-C000005

(式(4-1)中、aは0~3の整数である;式(4-2)中、bは0~3の整数であり、cは1~4の整数である;式(4-3)中、dは0~3の整数であり、eは1~4の整数である;ただし、a、b、dの少なくとも1つは1以上である。)
[4] 前記Rに含まれる極性基が水酸基である、[1]~[3]のいずれかに記載の含フッ素エーテル化合物。
[5] 前記式(1)において、-CH-Rが下記式(5)で表される、[1]~[4]のいずれかに記載の含フッ素エーテル化合物。
 -CH-[D]-[E]-[F]-O-Z (5)
(式(5)中、[D]は下記式(6-1)で表され、[E]は下記式(6-2)で表され、[F]は下記式(6-3)で表される;Zは水素原子、または水酸基を少なくとも1つ有する炭素数2~6のアルキル基である;式(5)において[D]、[E]、[F]の並び順は入れ替えてもよい;式(6-1)~(6-3)におけるエーテル結合(-O-)側が、式(5)中のCH側である。)
Figure JPOXMLDOC01-appb-C000006

(式(6-1)中、fは0~3の整数である;式(6-2)中、gは0~3の整数であり、hは1~4の整数である;式(6-3)中、iは0~3の整数であり、jは1~4の整数である;ただし、f、g、iの少なくとも1つは1以上である。)
[6] 前記Rにおいて、各極性基がそれぞれ異なる炭素原子に結合し、前記極性基の結合している炭素原子同士が、極性基の結合していない炭素原子を含む連結基を介して結合している、[1]~[5]のいずれかに記載の含フッ素エーテル化合物。
[7] 前記式(2)中のXおよび/またはYが、水酸基を有するアルキル基である、[1]~[6]のいずれかに記載の含フッ素エーテル化合物。
[8] 分子中に含まれる水酸基の数が8以下である、[1]~[7]のいずれかに記載の含フッ素エーテル化合物。
[9] 分子中に含まれる水酸基の数が6以下である、[1]~[8]のいずれかに記載の含フッ素エーテル化合物。
[10] 前記Rが、下記式(7)~(11)のいずれかで表される、[1]~[9]のいずれかに記載の含フッ素エーテル化合物。
-CFO-(CFCFO)-(CFO)-CF- (7)
(式(7)中のm、nは平均重合度を示し、それぞれ0.1~30を表す。)
-CFO-(CFCFO)-CF- (8)
(式(8)中のwは平均重合度を示し、0.1~30を表す。)
-CFCFO-(CFCFCFO)-CFCF- (9)
(式(9)中のxは平均重合度を示し、0.1~30を表す。)
-CFCFCFO-(CFCFCFCFO)-CFCFCF- (10)
(式(10)中のyは平均重合度を示し、0.1~30を表す。)
-CF(CF)-(OCF(CF)CF-OCF(CF)- (11)
(式(11)中のzは平均重合度を示し、0.1~30を表す。)
[11] 数平均分子量が500~10000の範囲内である、[1]~[10]のいずれかに記載の含フッ素エーテル化合物。
 本発明の第二の態様は、以下の磁気記録媒体用潤滑剤を提供する。
[12] [1]~[11]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
 本発明の第三の態様は、以下の磁気記録媒体を提供する。
[13] 基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
 前記潤滑層が、[1]~[11]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
 本発明の第三の態様の磁気記録媒体は、以下の[14]に記載される特徴を有することが好ましい。
[14] 前記潤滑層の平均膜厚が、0.5nm~2.0nmである、[13]に記載の磁気記録媒体。
 本発明の含フッ素エーテル化合物は、上記式(1)で表される化合物であり、磁気記録媒体用潤滑剤の材料として好適である。
 本発明の磁気記録媒体用潤滑剤は、本発明の含フッ素エーテル化合物を含むため、厚みが薄くても、優れた耐摩耗性を有する潤滑層を形成できる。
 本発明の磁気記録媒体は、優れた耐摩耗性を有する潤滑層が設けられているため、優れた信頼性および耐久性を有する。
本発明の磁気記録媒体の好ましい一実施形態を示した概略断面図である。
 以下、本発明の含フッ素エーテル化合物、磁気記録媒体用潤滑剤(以下、「潤滑剤」と略記する場合がある。)および磁気記録媒体の好ましい例について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、本発明の趣旨を逸脱しない範囲で、数、量、比率、材料、構成等について、付加、省略、置換、変更が可能である。
[含フッ素エーテル化合物]
 本実施形態の含フッ素エーテル化合物は、下記式(1)で表される。
 R-R-CH-R-CH-R   (1)
(式(1)中、Rは、オキシム基を含む下記式(2)で表される末端基である;Rは、極性基を有する2価の連結基である;Rは、パーフルオロポリエーテル鎖である;Rは、2以上の極性基を有する末端基である。)
Figure JPOXMLDOC01-appb-C000007

(式(2)中、XおよびYはそれぞれ、水素原子、置換基を有してもよい炭素数1~12のアルキル基、二重結合または三重結合を有する有機基のいずれかである。)
 ここで、本実施形態の含フッ素エーテル化合物を含む潤滑剤を用いて、磁気記録媒体の保護層上に潤滑層を形成した場合に、厚みが薄くても、優れた耐摩耗性が得られる理由について説明する。
 本実施形態の含フッ素エーテル化合物は、式(1)に示すように、Rで表されるパーフルオロポリエーテル鎖(以下、「PFPE鎖」と略記する場合がある。)を有する。PFPE鎖は、本実施形態の含フッ素エーテル化合物を含む潤滑層において、保護層の表面を被覆するとともに、潤滑層に潤滑性を付与して磁気ヘッドと保護層との摩擦力を低減させる。
 また、式(1)におけるRは、オキシム基を含む式(2)で表される末端基であり、Rは、極性基を有する2価の連結基である。オキシム基を形成している窒素原子および酸素原子は、極性を有し、保護層との相互作用(親和性)および分子内相互作用を有する。オキシム基を形成している窒素原子は、保護層に対する相互作用が強く、水酸基と同等である。したがって、Rに含まれるオキシム基は、含フッ素エーテル化合物の保護層への吸着を促進する。
 また、Rに含まれるオキシム基は、剛直なC=N結合を有している。剛直なC=N結合は、オキシム基を形成している窒素原子およびその近傍にある極性基(Rの有する極性基、および式(2)中のXおよび/またはYが極性基を有する場合にはその極性基)の運動性を適度に制限し、保護層上での式(1)で表される含フッ素エーテル化合物の凝集を抑制する。このことから、Rに含まれるオキシム基およびその近傍にある極性基(Rの有する極性基、および式(2)中のXおよび/またはYが極性基を有する場合にはその極性基)は、本実施形態の含フッ素エーテル化合物を含む潤滑剤において、Rの有する2以上の極性基よりも優先的に保護層へ作用し、含フッ素エーテル化合物と保護層とを密着させる。その結果、式(1)で表される含フッ素エーテル化合物を含む潤滑剤は、厚みが薄くても十分な被覆率を有し、優れた耐摩耗性を有する潤滑層を形成できる。
 しかも、オキシム基を形成している窒素原子の分子内相互作用は、水酸基と比較して弱い。このため、式(1)で表される含フッ素エーテル化合物の有する窒素原子においては、分子内相互作用よりも保護層表面に対する相互作用が優先して機能する。したがって、式(1)で表される含フッ素エーテル化合物は、オキシム基(>C=N-O-)を、水酸基を有する2価の連結基に代えた含フッ素エーテル化合物と比較して、保護層上で凝集しにくく、保護層上で面方向に広がって均一に延在した状態で配置されやすく、厚みの薄い潤滑層を十分な被覆率で形成できる。
 また、式(1)において、Rで表されるPFPE鎖のRと反対側の端部に結合されたRは、2以上の極性基を有する末端基であり、極性基の運動性を制限するオキシム基を含まない。したがって、Rは、2以上の極性基の分子内相互作用に起因する高い運動性を有する。このことにより、式(1)で表される含フッ素エーテル化合物を含む潤滑層では、磁気ヘッドと潤滑層との接触によって潤滑層に傷が形成されても、即座に傷が修復される。よって、式(1)で表される含フッ素エーテル化合物を含む潤滑層は、磁気ヘッドが接触しても保護層表面が露出しにくく、高い被覆率で保護層表面を長期間被覆できる。
 このように、式(1)に示す含フッ素エーテル化合物を含む潤滑層では、Rに含まれるオキシム基と、Rの有する極性基、および式(2)中のXおよび/またはYが極性基を有する場合にはその極性基を有することに起因する保護層との高い密着性と、Rの有する極性基の分子内相互作用に起因する高い運動性との相乗効果によって、厚みが薄くても、優れた耐摩耗性が得られる。
(R
 式(1)で表される本実施形態の含フッ素エーテル化合物において、RはRに結合された末端基である。Rは、オキシム基を含む式(2)で表される末端基である。式(2)中、XおよびYはそれぞれ、水素原子、置換基を有してもよい炭素数1~12のアルキル基、二重結合または三重結合を有する有機基のいずれかである。
 式(1)で表される含フッ素エーテル化合物では、Rにオキシム基が含まれているため、含フッ素エーテル化合物を含む潤滑層において、含フッ素エーテル化合物と保護層との密着性が良好となり、優れた耐摩耗性が得られる。
 Rに含まれるオキシム基の数は、少なくとも1つであり、2以上であってもよい。すなわち、式(2)中のXおよび/またはYは、オキシム基を含んでいてもよい。Rに含まれるオキシム基の数は、熱安定性の良好な式(1)で表される含フッ素エーテル化合物となるため、1つであることが好ましい。
 本実施形態では、式(2)中のXおよびYが、磁気記録媒体の保護層と良好な相互作用を示すため、優れた耐摩耗性を有する潤滑層を形成できる含フッ素エーテル化合物となる。式(2)中のXおよび/またはYとしての置換基を有してもよい炭素数1~12のアルキル基、および二重結合または三重結合を有する有機基は、酸素原子、硫黄原子、窒素原子のいずれかを含むものであってもよい。式(2)中のXとYとは、同じであってもよいし、異なっていてもよい。
(置換基を有してもよいアルキル基)
 置換基を有してもよい炭素数1~12のアルキル基(以下、「置換基を有してもよいアルキル基」と呼ぶ場合がある。)におけるアルキル基は、炭素数1~8のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。具体的には、アルキル基として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基が挙げられる。アルキル基は、直鎖であってもよいし、分岐を有していてもよい。
 式(2)中のXおよびYが両方とも置換基を有してもよいアルキル基である場合、XおよびYに含まれる炭素数の合計は、2~8であることが好ましく、2~6であることがより好ましい。
 置換基を有してもよいアルキル基における置換基としては、例えば、ハロゲノ基、アルコキシ基、水酸基、シアノ基などが挙げられる。置換基を有してもよいアルキル基がこれらの置換基を有する場合、より優れた耐摩耗性を有する潤滑層を形成できる含フッ素エーテル化合物となる。
 置換基としてハロゲノ基を有するアルキル基としては、少なくとも1つのフルオロ基を有するアルキル基であることが好ましい。フルオロ基を有するアルキル基としては、例えば、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、オクタフルオロペンチル基、トリデカフルオロオクチル基などが挙げられる。
 式(1)で表される含フッ素エーテル化合物では、Rにおける式(2)中のXおよび/またはYが、水酸基を有するアルキル基であることが好ましく、式(14)で示される基であることがより好ましい。Rにおける式(2)中のXおよび/またはYが、式(14)で示される水酸基を有するアルキル基であると、この含フッ素エーテル化合物を含む潤滑層と保護層との親和性がより一層良好となり、好ましい。
Figure JPOXMLDOC01-appb-C000008

(式(14)中、Rは、水素原子、または水酸基を有してもよいアルキル基である;kは1~6の整数を表す;kが2以上である場合、Rはそれぞれ同じであってもよく、異なっていてもよい。)
 式(14)中、Rは、水素原子、または水酸基を有してもよいアルキル基である。Rは、炭素数1~6のアルキル基または水素原子であることが好ましく、炭素数1~4のアルキル基または水素原子であることがより好ましく、炭素数1~2のアルキル基または水素原子であることが特に好ましい。式(14)で表される基は、式(14)における左側の点線が、式(2)に含まれるオキシム基の二重結合を形成している炭素原子と結合される。
 式(14)中、kは1~6の整数を表し、1~4の整数であることが好ましく、2または3であることがより好ましい。kが1~6の整数であると、オキシム基の有する剛直なC=N結合と、式(14)中の水酸基との距離が適正となり、C=N結合によって式(14)中の水酸基の運動性が適度に制限され、好ましい。
 式(14)中の炭素数(Rに含まれる炭素数とkの数との合計数)は、1~12であり、1~8であることが好ましく、1~6であることがより好ましく、1~4であることがさらに好ましい。式(14)中の炭素数が1~8であると、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低いことによる分子全体の表面自由エネルギーの低下がなく、好ましい。
 式(2)中のXおよび/またはYが、式(14)で示されるアルキル基である場合、Rは、具体的には、下記式(12-1)~(12-6)、式(13-1)~(13-4)で表されるいずれかの構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(二重結合または三重結合を有する有機基)
 式(2)中のXおよび/またはYが、二重結合または三重結合を有する有機基である場合の有機基は、二重結合または三重結合を少なくとも1つ有するものであって、例えば、芳香族炭化水素を含む基、芳香族複素環を含む基、アルケニル基を含む基、アルキニル基を含む基などが挙げられる。式(2)中のXおよび/またはYが、二重結合または三重結合を有する有機基である場合の有機基は、1以上のオキシム基を含む基であってもよい。二重結合または三重結合は、炭素-炭素二重結合または炭素-炭素三重結合であることが好ましい。
 具体的には、二重結合または三重結合を有する有機基としては、フェニル基、メトキシフェニル基、フッ化フェニル基、ナフチル基、フェネチル基、メトキシフェネチル基、フッ化フェネチル基、ベンジル基、メトキシベンジル基、ナフチルメチル基、メトキシナフチル基、ピロリル基、ピラゾリル基、メチルピラゾリルメチル基、イミダゾリル基、フリル基、フルフリル基、オキサゾリル基、イソオキサゾリル基、チエニル基、チエニルエチル基、チアゾリル基、メチルチアゾリルエチル基、イソチアゾリル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、インドリニル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾピラゾリル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、キノリル基、イソキノリル基、キナゾリニル基、キノキサリニル基、フタラジニル基、シンノリニル基、ビニル基、アリル基、ブテニル基、1-プロピニル基、プロパルギル基(2-プロピニル基)、ブチニル基、メチルブチニル基、ペンチニル基、メチルペンチニル基、ヘキシニル基などが挙げられる。
 二重結合または三重結合を有する有機基としては、上記の中でも特に、フェニル基、メトキシフェニル基、チエニルエチル基、ブテニル基、アリル基、プロパルギル基、フェネチル基、メトキシフェネチル基、フッ化フェネチル基のいずれかであることが好ましく、フェニル基、メトキシフェニル基、アリル基、ブテニル基、プロパルギル基のいずれかであることがさらに好ましい。二重結合または三重結合を有する有機基が、フェニル基、メトキシフェニル基、アリル基、ブテニル基、プロパルギル基のいずれかである場合、より優れた耐摩耗性を有する潤滑層を形成できる含フッ素エーテル化合物となる。
 上記の二重結合または三重結合を有する有機基は、アルキル基、アルコキシ基、水酸基、メルカプト基、カルボキシ基、カルボニル基、アミノ基、シアノ基などの置換基を有していてもよい。
 Xおよび/またはYとしての置換基を有してもよいアルキル基、および二重結合または三重結合を有する有機基は、式(2)に含まれるオキシム基の二重結合を形成している炭素原子との間に、エーテル結合とメチレン鎖とからなる連結基が結合されたものであってもよい。特に、上述した二重結合または三重結合を有する有機基は、式(2)に含まれるオキシム基の二重結合を形成している炭素原子との間に、1つのエーテル結合と1つのメチレン鎖とからなる連結基が結合されたものであることが好ましい。この場合、二重結合または三重結合と、オキシム基の有する剛直なC=N結合との距離が適正となり、C=N結合によって二重結合または三重結合の運動性が適度に制限され、より凝集しにくく、優れた耐摩耗性を有する潤滑層を形成できる含フッ素エーテル化合物となる。
 式(2)に含まれるオキシム基の二重結合を形成している炭素原子と結合される連結基としては、例えば、オキシエチル基(-O-CH-CH-)、オキシプロピル基(-O-CH-CH-CH-)、オキシブチル基(-O-CH-CH-CH-CH-)などが挙げられる。連結基に含まれるメチレン鎖の炭素数は、1~6であることが好ましく、1~4であることがより好ましい。メチレン鎖の炭素数が1~6であると、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低いことによる分子全体の表面自由エネルギーの低下がなく、好ましい。
 置換基を有してもよいアルキル基、二重結合または三重結合を有する有機基が、オキシム基との間に、エーテル結合とメチレン鎖とからなる連結基を有する場合、以下に示す理由により、オキシム基の二重結合を形成している炭素原子が、上記連結基のメチレン鎖と結合していることが好ましい。すなわち、オキシム基の有する剛直なC=N結合によって、置換基を有してもよいアルキル基の運動性または、二重結合または三重結合を有する有機基の運動性を、適度に制限する機能が、上記連結基に含まれるエーテル結合によって妨げられにくいためである。このことにより、含フッ素エーテル化合物の保護層への吸着が促進され、より優れた耐摩耗性が得られる。
(R
 式(1)におけるRは、極性基を有する2価の連結基である。Rが極性基を有するため、本実施形態の含フッ素エーテル化合物を含む潤滑剤を用いて、保護層上に潤滑層を形成した場合、潤滑層と保護層との間に好適な相互作用が発生する。Rを形成している極性基を有する2価の連結基は、含フッ素エーテル化合物を含む潤滑剤に求められる性能等に応じて適宜選択できる。
 Rに含まれる極性基は、含フッ素エーテル化合物を含む潤滑剤からなる潤滑層を、保護層上に成膜した場合に、潤滑剤と保護層との間に好適な相互作用が発生するものであることが好ましい。このような極性基としては、例えば、水酸基(-OH)、アミノ基(-NH)、カルボキシ基(-COOH)、アルデヒド基(-CHO)、カルボニル基(-CO-)、スルフォン酸基(-SOH)等が挙げられる。これらの中でも、水酸基が特に好ましい。水酸基は、保護層、とりわけ炭素系保護層との相互作用が強い極性基である。このため、Rに含まれる極性基が水酸基であると、保護層表面との密着性に優れる含フッ素エーテル化合物となる。
 RのR側の末端には、メチレン基(-CH-)が配置されていることが好ましい。RのR側の末端にメチレン基が配置されている場合、Rのメチレン基と、Rに含まれるオキシム基(>C=N-O-)の酸素原子とが結合される。このことにより、R中のオキシム基の有する剛直なC=N結合によって、Rの有する極性基の運動性を適度に制限できる。その結果、保護層上での含フッ素エーテル化合物の凝集を抑制する効果が顕著となる。これに対し、例えば、RのR側の末端に、カルボニル基(-C(=O)-)が配置されている場合、分子内相互作用によって保護層上での含フッ素エーテル化合物の凝集が促進されるとともに、光および熱に対する安定性が低下するため好ましくない。
 Rが、極性基として水酸基を有する2価の連結基である場合、R-R-CH-は、下記式(3)で表されることが好ましい。
 R-[C]-[B]-[A]-CH- (3)
(式(3)中、[A]は下記式(4-1)で表され、[B]は下記式(4-2)で表され、[C]は下記式(4-3)で表される;式(3)において[A]、[B]、[C]の並び順は入れ替えてもよい;式(4-1)~(4-3)におけるエーテル結合(-O-)側が、式(3)中のCH側である。)
Figure JPOXMLDOC01-appb-C000011

(式(4-1)中、aは0~3の整数である;式(4-2)中、bは0~3の整数であり、cは1~4の整数である;式(4-3)中、dは0~3の整数であり、eは1~4の整数である;ただし、a、b、dの少なくとも1つは1以上である。)
 式(4-1)中のa、式(4-2)中のbおよび式(4-3)中のdはそれぞれ、0~3の整数である。これらは、例えば0や、1~2や、2~3などであってよい。式(4-1)中のa、式(4-2)中のbおよび式(4-3)中のdは、含フッ素エーテル化合物を含む潤滑層において、含フッ素エーテル化合物と保護層との密着性をより向上させるために、少なくとも1つが1以上である。すなわち、式(3)は、[A]、[B]、[C]の少なくとも1つを含む。
 式(4-1)中のaと式(4-2)中のbと式(4-3)中のdとの合計は、4以下であることが好ましく、3以下であることがより好ましく、2以下であることがさらに好ましい。式(4-1)中のaと式(4-2)中のbと式(4-3)中のdとの合計が4以下であると、含フッ素エーテル化合物の極性が高くなりすぎて、異物(スメア)として磁気ヘッドに付着するピックアップが発生することを防止できる。
 式(4-2)中のcおよび式(4-3)中のeはそれぞれ1~4の整数である。cおよびeは、それぞれ1~3の整数であることが好ましく、2であることが最も好ましい。式(4-2)中のcが1~4の整数であると、式(4-2)中の水酸基とRとの距離が適切となる。また、式(4-2)中のcが1~4の整数であると、bが2または3である場合に、式(4-2)中の水酸基同士の距離が適切となり、好ましい。式(4-3)中のeが1~4の整数であると、dが2または3である場合に、式(4-3)中の水酸基同士の距離が適切となり、好ましい。
 式(1)で表される含フッ素エーテル化合物では、Rおよび/またはRに水酸基が含まれ、かつRの2以上の極性基が水酸基である場合、RとRに含まれる水酸基の合計数が、Rに含まれる水酸基数と同じまたはそれより少ないことが好ましく、Rに含まれる水酸基数より少ないことがより好ましい。RとRに含まれる水酸基の合計数が、Rに含まれる水酸基数と同じまたはそれより少ないと、より優れた耐摩耗性を有する潤滑層を形成できる含フッ素エーテル化合物となる。これは、Rで表されるPFPE鎖のR側とR側とにおける水酸基数のバランスが適正となるためである。具体的には、Rの有する2以上の水酸基同士の分子内相互作用によって、Rおよび/またはRに含まれる水酸基による保護層に対する吸着力が低下することがなく、含フッ素エーテル化合物を含む潤滑層と保護層との間に好適な相互作用が発生するためである。
 また、Rおよび/またはRに水酸基が含まれる場合、RとRに含まれる水酸基の合計数は、1以上であることが好ましく、2以上であることがより好ましい。RとRに含まれる水酸基の合計数が1以上であると、Rおよび/またはRに含まれる水酸基によって、保護層との良好な密着性が得られる潤滑層を形成できる含フッ素エーテル化合物となる。
(R
 上記式(1)で表される本実施形態の含フッ素エーテル化合物において、Rはパーフルオロポリエーテル鎖(PFPE鎖)である。Rは、特に限定されるものではなく、含フッ素エーテル化合物を含む潤滑剤に求められる性能などに応じて適宜選択できる。PFPE鎖としては、例えば、パーフルオロメチレンオキシド重合体、パーフルオロエチレンオキシド重合体、パーフルオロ-n-プロピレンオキシド重合体、パーフルオロイソプロピレンオキシド重合体、これらの共重合体からなるものなどが挙げられる。
 PFPE鎖は、例えば、パーフルオロアルキレンオキシドの重合体または共重合体に由来する下記式(Rf)で表される構造であってもよい。
-(CFp1O(CFO)p2(CFCFO)p3(CFCFCFO)p4(CFCFCFCFO)p5(CFp6- (Rf)
(式(Rf)中、p2、p3、p4、p5は平均重合度を示し、それぞれ独立に0~30を表す;ただし、p2、p3、p4、p5のすべてが同時に0になることはない;p1、p6は-CF-の数を示す平均値であり、それぞれ独立に1~3を表す;式(Rf)における繰り返し単位の配列順序には、特に制限はない。)
 式(Rf)中、p2、p3、p4、p5は平均重合度を示し、それぞれ独立に0~30を表し、0~20であることが好ましく、0~15であることがより好ましい。
 式(Rf)中、p1、p6は-CF-の数を示す平均値であり、それぞれ独立に1~3を表す。p1、p6は、式(Rf)で表される重合体において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
 式(Rf)における(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)は、繰り返し単位である。式(Rf)における繰り返し単位の配列順序には、特に制限はない。また、式(Rf)における繰り返し単位の種類の数にも、特に制限はない。
 式(1)におけるRは、例えば、下記式(Rf-1)で表されるPFPE鎖であることが好ましい。
-(CFp7O-(CFCFO)p8-(CFCFCFO)p9-(CFp10- (Rf-1)
(式(Rf-1)中、p8、p9は平均重合度を示し、それぞれ独立に0.1~30を表す;p7、p10は-CF-の数を示す平均値であり、それぞれ独立に1~2を表す。)
 式(Rf-1)における繰り返し単位である(CFCFO)と(CFCFCFO)との配列順序には、特に制限はない。式(Rf-1)は、モノマー単位(CFCFO)と(CFCFCFO)とからなるランダム共重合体、ブロック共重合体、及び、交互共重合体のいずれを含むものであってもよい。式(Rf-1)において、平均重合度を示すp8およびp9は、それぞれ独立に0.1~30を表し、0.1~20であることが好ましく、1~15であることがより好ましい。式(Rf-1)におけるp7およびp10は-CF-の数を示す平均値であり、それぞれ独立に1~2を表す。p7およびp10は、式(Rf-1)で表される重合体において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
 式(1)におけるRは、下記式(7)~(11)のいずれかであることも好ましい。なお、式(7)における繰り返し単位である(CFCFO)と(CFO)との配列順序には、特に制限はない。式(7)は、モノマー単位(CF-CF-O)と(CF-O)とからなるランダム共重合体、ブロック共重合体、および、交互共重合体のいずれを含むものであってもよい。
-CFO-(CFCFO)-(CFO)-CF- (7)
(式(7)中のm、nは平均重合度を示し、それぞれ0.1~30を表す。)
-CFO-(CFCFO)-CF- (8)
(式(8)中のwは平均重合度を示し、0.1~30を表す。)
-CFCFO-(CFCFCFO)-CFCF- (9)
(式(9)中のxは平均重合度を示し、0.1~30を表す。)
-CFCFCFO-(CFCFCFCFO)-CFCFCF- (10)
(式(10)中のyは平均重合度を示し、0.1~30を表す。)
-CF(CF)-(OCF(CF)CF-OCF(CF)- (11)
(式(11)中のzは平均重合度を示し、0.1~30を表す。)
 式(7)~式(11)におけるm、n、w、x、y、zがそれぞれ0.1~30である場合、これを含む潤滑剤が塗布しやすく、良好な密着性を有する潤滑層が得られるものとなる。式(7)~式(11)におけるm、n、w、x、y、zは、それぞれ30以下であることが好ましく、それぞれ20以下であることがより好ましい。例えばm、n、w、x、y、zは、それぞれ、0.1~20や、1~15や、1~10や、2~8や、2~5などであっても良い。
 式(1)におけるRが、式(7)~式(11)のいずれかである場合、含フッ素エーテル化合物の合成が容易であり好ましい。Rが式(7)である場合、原料入手が容易であるため、より好ましい。
 また、Rが、式(7)~式(11)のいずれかである場合、パーフルオロポリエーテル鎖中の、炭素原子数に対する酸素原子数(エーテル結合(-O-)数)の割合が、適正となる。このため、適度な硬さを有する含フッ素エーテル化合物となる。よって、保護層上に塗布された含フッ素エーテル化合物が、保護層上で凝集しにくく、より一層厚みの薄い潤滑層を十分な被覆率で形成できる。また、Rが式(7)~(11)のいずれかである場合、良好な密着性を有する潤滑層が得られる含フッ素エーテル化合物となる。
(R
 式(1)におけるRは、オキシム基を含まず、2以上の極性基を有する末端基である。Rが2以上の極性基を有するため、本実施形態の含フッ素エーテル化合物を含む潤滑剤を用いて、保護層上に潤滑層を形成した場合、潤滑層と保護層との間に好適な相互作用が発生する。Rを形成している2以上の極性基を有する末端基は、含フッ素エーテル化合物を含む潤滑剤に求められる性能等に応じて適宜選択できる。
 Rに含まれる極性基は、含フッ素エーテル化合物を含む潤滑剤からなる潤滑層を、保護層上に成膜した場合に、潤滑剤と保護層との間に好適な相互作用が発生するものであることが好ましい。このような極性基としては、例えば、水酸基(-OH)、アミノ基(-NH)、カルボキシ基(-COOH)、アルデヒド基(-CHO)、カルボニル基(-CO-)、スルフォン酸基(-SOH)等が挙げられる。これらの中でも、水酸基が特に好ましい。水酸基は、保護層、とりわけ炭素系保護層との相互作用が強い極性基である。このため、Rに含まれる極性基が水酸基であると、保護層表面との密着性に優れる含フッ素エーテル化合物となる。
 Rに含まれる2以上の極性基は、同じであってもよいし、異なっていてもよい。Rは、極性基として2以上の水酸基を含むことが好ましく、Rに含まれる2以上の極性基がすべて水酸基であることがより好ましい。
 Rに含まれる極性基の数は2以上であり、2~6であることが好ましく、2~4であることがより好ましい。Rが2以上の極性基を有することにより、保護層との密着性の高い潤滑層が得られる。また、Rに含まれる極性基の数が6以下であると、含フッ素エーテル化合物の極性が高くなりすぎて、異物(スメア)として磁気ヘッドに付着するピックアップが発生することを防止できるため好ましい。
 Rが極性基として2以上の水酸基を含む末端基である場合、-CH-Rは、下記式(5)で表されることが好ましい。
-CH-[D]-[E]-[F]-O-Z (5)
(式(5)中、[D]は下記式(6-1)で表され、[E]は下記式(6-2)で表され、[F]は下記式(6-3)で表される;Zは水素原子、または水酸基を少なくとも1つ有する炭素数2~6のアルキル基である;式(5)において[D]、[E]、[F]の並び順は入れ替えてもよい;式(6-1)~(6-3)におけるエーテル結合(-O-)側が、式(5)中のCH側である。)
Figure JPOXMLDOC01-appb-C000012

(式(6-1)中、fは0~3の整数である;式(6-2)中、gは0~3の整数であり、hは1~4の整数である;式(6-3)中、iは0~3の整数であり、jは1~4の整数である;ただし、f、g、iの少なくとも1つは1以上である。)
 式(6-1)中のf、式(6-2)中のgおよび式(6-3)中のiはそれぞれ、0~3の整数である。これらは、例えば0や、1~2や、2~3などであってよい。式(6-1)中のf、式(6-2)中のgおよび式(6-3)中のiは、含フッ素エーテル化合物を含む潤滑層において、含フッ素エーテル化合物と保護層との密着性をより向上させるために、少なくとも1つが1以上である。すなわち、式(5)は、[E]、[F]、[G]の少なくとも1つを含む。
 式(6-1)中のfと式(6-2)中のgと式(6-3)中のiとの合計は、4以下であることが好ましく、3以下であることがより好ましく、2以下であることがさらに好ましい。式(6-1)中のfと式(6-2)中のgと式(6-3)中のiとの合計が4以下であると、含フッ素エーテル化合物の極性が高くなりすぎて、異物(スメア)として磁気ヘッドに付着するピックアップが発生することを防止できる。
 式(6-2)中のhおよび式(6-3)中のjはそれぞれ1~4の整数である。hおよびjは、それぞれ1~3の整数であることが好ましく、2であることが最も好ましい。式(6-2)中のhが1~4の整数であると、式(6-2)中の水酸基と、式(5)中のZが有する水酸基(Zが水素原子である場合には-O-Z)との距離が適切となる。また、式(6-2)中のhが1~4の整数であると、gが2または3である場合に、式(6-2)中の水酸基同士の距離が適切となり、好ましい。式(6-3)中のjが1~4の整数であると、iが2または3である場合に、式(6-3)中の水酸基同士の距離が適切となり、好ましい。
 式(5)中、Zは水素原子、または水酸基を少なくとも1つ有する炭素数2~6のアルキル基である。Zが前記アルキル基である場合、炭素数は2~4であることがより好ましい。前記アルキル基は、直鎖であってもよいし、分岐していてもよい。前記アルキル基が直鎖アルキル基である場合、Zは-(CHZA-OH(ZAは2~6の整数)であることが好ましく、前記式中のZAが2~4の整数であることがより好ましい。
 本実施形態の含フッ素エーテル化合物において、Rは、各極性基がそれぞれ異なる炭素原子に結合し、前記極性基の結合している炭素原子同士が、極性基の結合していない炭素原子を含む連結基を介して結合している末端基であることが好ましい。Rがこのような末端基であると、保護層上で凝集しにくく、より一層厚みの薄い潤滑層を十分な被覆率で形成できるため好ましい。
 Rが極性基として2以上の水酸基を含む末端基であって、-CH-Rが上記式(5)で表される場合、R中の各水酸基がそれぞれ異なる炭素原子に結合し、前記水酸基の結合している炭素原子同士が、水酸基の結合していない炭素原子を含む連結基を介して結合している末端基となりやすいため、好ましい。
 すなわち、式(5)において[D]または[F]が直接-O-Zに結合する場合には、Zは水素原子ではなく、水酸基を少なくとも1つ有する炭素数2~6のアルキル基であることが好ましい。
 式(1)で表される含フッ素エーテル化合物では、分子中に含まれる水酸基の合計数が8以下であることが好ましく、6以下であることがより好ましく、5以下であることがさらに好ましく、4以下であることが特に好ましい。分子中に含まれる水酸基の合計数が8以下であると、水酸基の分子内相互作用による保護層上での含フッ素エーテル化合物の凝集が生じにくい。よって、厚みの薄い潤滑層をより良好な被覆率で形成でき、より優れた耐摩耗性が得られる。
 式(1)で表される含フッ素エーテル化合物では、分子中に含まれる水酸基の合計数が2以上であることが好ましく、3以上であることがより好ましい。分子中に含まれる水酸基の合計数が2以上であると、含フッ素エーテル化合物がオキシム基とともに水酸基を含むことによる保護層との相互作用の相乗効果が十分に得られる。したがって、より一層耐摩耗性の良好な潤滑層が得られる。
 式(1)で表される含フッ素エーテル化合物では、分子中に含まれるオキシム基(>C=N-O-)の数と極性基の数との合計数が、4~8であることが好ましく、5~7であることがより好ましい。分子中に含まれるオキシム基の数と極性基の数との合計数が、8以下であると、極性基の分子内相互作用による保護層上での含フッ素エーテル化合物の凝集が生じにくく、好ましい。また、分子中に含まれるオキシム基の数と極性基の数との合計数が、4以上であると、極性基と保護層との相互作用が十分に得られ、より一層、保護層との密着性に優れる潤滑層を形成できる含フッ素エーテル化合物となる。
 式(1)で表される含フッ素エーテル化合物は、具体的には、下記式(A)~(Z)、(AA)~(AG)で表されるいずれかの化合物であることが好ましい。なお、式(A)~(Z)、(AA)~(AG)中の繰り返し数ma~mz、mA~mC、na~nz、nA~nC、w、x、y、zは、平均値を示す値であるため、必ずしも整数とはならない。
 式(A)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシメチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが水素原子である。
 式(B)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが水素原子である。
 式(C)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシプロピル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが水素原子である。
 式(D)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yが1,2-ジヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが水素原子である。
 式(E)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yが2位で結合した1,3-ジヒドロキシプロピル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが水素原子である。
 式(F)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yが1位で結合した1,3-ジヒドロキシプロピル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが水素原子である。
 式(G)で表される化合物は、Rが式(2)で表され、Xがヒドロキシメチル基であり、Yがヒドロキシメチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが水素原子である。
 式(H)で表される化合物は、Rが式(2)で表され、Xがヒドロキシエチル基であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが水素原子である。
 式(I)で表される化合物は、Rが式(2)で表され、Xがヒドロキシメチル基であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが水素原子である。
 式(J)で表される化合物は、Rが式(2)で表され、Xがヒドロキシメチル基であり、Yがヒドロキシプロピル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが水素原子である。
 式(K)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[B]であり、bが1であり、cが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが2であり、Zが水素原子である。
 式(L)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[B]であり、bが1であり、cが2である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが3であり、Zが水素原子である。
 式(M)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが1であり、Zが-(CHOHである。
 式(N)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-O-Zであり、gが1であり、hが1であり、Zが-(CHOHである。
 式(O)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
 式(P)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
 式(Q)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-[D]-O-Zであり、fが1であり、gが1であり、hが1であり、Zが-(CHOHである。
 式(R)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが3であり、Zが-(CHOHである。
 式(S)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-[D]-[F]-O-Zであり、fが1であり、gが1であり、hが1であり、iが1であり、jが1であり、Zが-(CHOHである。
 式(T)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[E]-[F]-O-Zであり、gが1であり、hが2であり、iが1であり、jが2であり、Zが-CHCH(CHOH)CHOHである。
 式(U)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが2である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが1であり、Zが-(CHOHである。
 式(V)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。R-R-CH-が、R-[C]-[B]-CH-であり、bが1であり、cが1であり、dが1であり、eが1である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが1であり、Zが-(CHOHである。
 式(W)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが2である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
 式(X)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが3である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが1であり、Zが-(CHOHである。
 式(Y)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。R-R-CH-が、R-[C]-[A]-[B]-CH-であり、aが1であり、bが1であり、cが1であり、dが1であり、eが1である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが1であり、Zが-(CHOHである。
 式(Z)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yが2-(3-ブテニルオキシ)エチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
 式(AA)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yが2-ブトキシエチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
 式(AB)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yが2-(2-プロピニルオキシ)エチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
 式(AC)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yが2-(4-メトキシフェノキシ)エチル基である。Rが[A]であり、aが1である。Rが式(7)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
 式(AD)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(8)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
 式(AE)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(9)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
 式(AF)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(10)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
 式(AG)で表される化合物は、Rが式(2)で表され、Xが水素原子であり、Yがヒドロキシエチル基である。Rが[A]であり、aが1である。Rが式(11)である。-CH-Rが、-CH-[D]-O-Zであり、fが2であり、Zが-(CHOHである。
Figure JPOXMLDOC01-appb-C000013

(式(A)中、ma、naは平均重合度を示し、maは1~30を表し、naは0.1~30を表す。)
(式(B)中、mb、nbは平均重合度を示し、mbは1~30を表し、nbは0.1~30を表す。)
(式(C)中、mc、ncは平均重合度を示し、mcは1~30を表し、ncは0.1~30を表す。)
(式(D)中、md、ndは平均重合度を示し、mdは1~30を表し、ndは0.1~30を表す。)
Figure JPOXMLDOC01-appb-C000014

(式(E)中、me、neは平均重合度を示し、meは1~30を表し、neは0.1~30を表す。)
(式(F)中、mf、nfは平均重合度を示し、mfは1~30を表し、nfは0.1~30を表す。)
(式(G)中、mg、ngは平均重合度を示し、mgは1~30を表し、ngは0.1~30を表す。)
(式(H)中、mh、nhは平均重合度を示し、mhは1~30を表し、nhは0.1~30を表す。)
Figure JPOXMLDOC01-appb-C000015

(式(I)中、mi、niは平均重合度を示し、miは1~30を表し、niは0.1~30を表す。)
(式(J)中、mj、njは平均重合度を示し、mjは1~30を表し、njは0.1~30を表す。)
(式(K)中、mk、nkは平均重合度を示し、mkは1~30を表し、nkは0.1~30を表す。)
(式(L)中、ml、nlは平均重合度を示し、mlは1~30を表し、nlは0.1~30を表す。)
Figure JPOXMLDOC01-appb-C000016

(式(M)中、mm、nmは平均重合度を示し、mmは1~30を表し、nmは0.1~30を表す。)
(式(N)中、mn、nnは平均重合度を示し、mnは1~30を表し、nnは0.1~30を表す。)
(式(O)中、mo、noは平均重合度を示し、moは1~30を表し、noは0.1~30を表す。)
(式(P)中、mp、npは平均重合度を示し、mpは1~30を表し、npは0.1~30を表す。)
Figure JPOXMLDOC01-appb-C000017

(式(Q)中、mq、nqは平均重合度を示し、mqは1~30を表し、nqは0.1~30を表す。)
(式(R)中、mr、nrは平均重合度を示し、mrは1~30を表し、nrは0.1~30を表す。)
(式(S)中、ms、nsは平均重合度を示し、msは1~30を表し、nsは0.1~30を表す。)
(式(T)中、mt、ntは平均重合度を示し、mtは1~30を表し、ntは0.1~30を表す。)
Figure JPOXMLDOC01-appb-C000018

(式(U)中、mu、nuは平均重合度を示し、muは1~30を表し、nuは0.1~30を表す。)
(式(V)中、mv、nvは平均重合度を示し、mvは1~30を表し、nvは0.1~30を表す。)
(式(W)中、mw、nwは平均重合度を示し、mwは1~30を表し、nwは0.1~30を表す。)
(式(X)中、mx、nxは平均重合度を示し、mxは1~30を表し、nxは0.1~30を表す。)
(式(Y)中、my、nyは平均重合度を示し、myは1~30を表し、nyは0.1~30を表す。)
Figure JPOXMLDOC01-appb-C000019

(式(Z)中、mz、nzは平均重合度を示し、mzは1~30を表し、nzは0.1~30を表す。)
(式(AA)中、mA、nAは平均重合度を示し、mAは1~30を表し、nAは0.1~30を表す。)
(式(AB)中、mB、nBは平均重合度を示し、mBは1~30を表し、nBは0.1~30を表す。)
(式(AC)中、mC、nCは平均重合度を示し、mCは1~30を表し、nCは0.1~30を表す。)
Figure JPOXMLDOC01-appb-C000020

(式(AD)中、wは平均重合度を示し、wは0.1~30を表す。)
(式(AE)中、xは平均重合度を示し、xは0.1~30を表す。)
(式(AF)中、yは平均重合度を示し、yは0.1~30を表す。)
(式(AG)中、zは平均重合度を示し、zは0.1~30を表す。)
 上記式において、ma~mz、mA~mCは、1~20であってもよく、1~10であってもよく、1~5であってもよい。na~nz、nA~nC、w、x、y、zは、0.1~20であってもよく、1~10であってもよく、1~5であってもよい。
 式(1)で表される化合物が、上記式(A)~(Z)、(AA)~(AG)で表されるいずれかの化合物であると、原料が入手しやすく、しかも厚みが薄くても優れた耐摩耗性が得られる潤滑層を形成でき、好ましい。
 本実施形態の含フッ素エーテル化合物は、数平均分子量(Mn)が500~10000の範囲内であることが好ましい。数平均分子量が500以上であると、本実施形態の含フッ素エーテル化合物を含む潤滑剤が蒸散しにくいものとなる。このため、潤滑剤が蒸散して磁気ヘッドに移着することを防止でき、ピックアップおよびスピンオフの生じにくい潤滑層を形成できる。含フッ素エーテル化合物の数平均分子量は、1000以上であることがより好ましい。また、数平均分子量が10000以下であると、含フッ素エーテル化合物の粘度が適正なものとなり、これを含む潤滑剤を塗布することによって、容易に厚みの薄い潤滑層を形成できる。含フッ素エーテル化合物の数平均分子量は、潤滑剤に適用した場合に扱いやすい粘度となるため、3000以下であることがより好ましい。前記分子量は必要に応じて、500~3000であったり、600~2800であったり、700~2500であったり、800~2300であったり、900~2000であったり、1000~1800であったり、1100~1600であったり、1200~1500であったりしてもよい。
 含フッ素エーテル化合物の数平均分子量(Mn)は、ブルカー・バイオスピン社製AVANCEIII400によるH-NMRおよび19F-NMRによって測定された値である。NMR(核磁気共鳴)の測定においては、試料をヘキサフルオロベンゼン、d-アセトン、d-テトラヒドロフランなどの単独または混合溶媒へ希釈し、測定に使用した。19F-NMRケミカルシフトの基準は、ヘキサフルオロベンゼンのピークを-164.7ppmとし、H-NMRケミカルシフトの基準は、アセトンのピークを2.2ppmとした。
「製造方法」
 本実施形態の含フッ素エーテル化合物の製造方法は、特に限定されるものではなく、従来公知の製造方法を用いて製造できる。本実施形態の含フッ素エーテル化合物は、例えば、以下に示す製造方法を用いて製造できる。
 まず、式(1)におけるRに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。
 次いで、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基を、式(1)におけるR-R-からなる基に置換する(第1反応)。その後、他方の末端に配置されたヒドロキシメチル基の水酸基を、式(1)における-Rからなる末端基に置換する(第2反応)。
 第1反応および第2反応は、従来公知の方法を用いて行うことができ、式(1)におけるR、R、Rの種類などに応じて適宜決定できる。また、第1反応と第2反応のうち、どちらの反応を先に行ってもよい。
 以上の方法により、式(1)で表される化合物が得られる。
 本実施形態においては、上記式(1)で表される含フッ素エーテル化合物を製造するために、エポキシ化合物を用いることが好ましい。このエポキシ化合物は、市販品を購入してもよいし、合成してもよい。エポキシ化合物を合成する場合、製造する含フッ素エーテル化合物のRで表される末端基に対応する構造を有するオキシム化合物と、エピクロロヒドリン、エピブロモヒドリン、2-(2-ブロモエチル)オキシランから選ばれるいずれかとを用いて合成できる。エポキシ化合物は、不飽和結合を酸化する方法により合成してもよい。
 本実施形態の含フッ素エーテル化合物は、上記式(1)で表される化合物である。したがって、これを含む潤滑剤を用いて保護層上に潤滑層を形成すると、式(1)においてRで表されるPFPE鎖によって、保護層の表面が被覆されるとともに、磁気ヘッドと保護層との摩擦力が低減される。
 また、式(1)で表される本実施形態の含フッ素エーテル化合物では、R中のオキシム基の窒素原子(および式(2)中のXおよび/またはYが極性基を有する場合にはその極性基)、Rに含まれる極性基、およびRに含まれる2以上の極性基と、保護層との相互作用によって、PFPE鎖が保護層上に密着され、潤滑層と保護層とが強固に結合される。さらに、式(1)に示す含フッ素エーテル化合物を含む潤滑層では、Rの有する極性基の分子内相互作用に起因する高い運動性によって、潤滑層に傷が形成されても即座に傷が修復される。これらの相乗効果により、本実施形態の含フッ素エーテル化合物を含む潤滑剤を用いることにより、厚みが薄くても、優れた耐摩耗性を有する潤滑層が得られる。
[磁気記録媒体用潤滑剤]
 本実施形態の磁気記録媒体用潤滑剤は、式(1)で表される含フッ素エーテル化合物を含む。
 本実施形態の潤滑剤は、式(1)で表される含フッ素エーテル化合物を含むことによる特性を損なわない範囲内であれば、潤滑剤の材料として使用されている公知の材料を、必要に応じて混合して用いることができる。
 公知の材料の具体例としては、例えば、FOMBLIN(登録商標) ZDIAC、FOMBLIN ZDEAL、FOMBLIN AM-2001(以上、Solvay Solexis社製)、Moresco A20H(Moresco社製)などが挙げられる。本実施形態の潤滑剤と混合して用いる公知の材料は、数平均分子量が1000~10000であることが好ましい。
 本実施形態の潤滑剤が、式(1)で表される含フッ素エーテル化合物の他の材料を含む場合、本実施形態の潤滑剤中の式(1)で表される含フッ素エーテル化合物の含有量が50質量%以上であることが好ましく、70質量%以上であることがより好ましい。上限は任意に選択でき、例を挙げれば、99質量%以下であっても良く、95質量%以下であっても良く、90質量%以下であっても、85質量%以下であっても良い。
 本実施形態の潤滑剤は、式(1)で表される含フッ素エーテル化合物を含むため、厚みを薄くしても、高い被覆率で保護層の表面を被覆でき、優れた耐摩耗性を有する潤滑層を形成できる。より詳細には、本実施形態の潤滑剤は、式(1)で表される含フッ素エーテル化合物を含むため、式(1)におけるR中のオキシム基、Rに含まれる極性基、およびRに含まれる2以上の極性基と、保護層との相互作用によって、優れた耐摩耗性が得られる潤滑層を形成できる。
 また、本実施形態の潤滑剤は、式(1)で表される含フッ素エーテル化合物を含むため、保護層に密着(吸着)せずに存在している潤滑剤中の含フッ素エーテル化合物が、凝集しにくい。よって、本実施形態の潤滑剤を用いて形成した潤滑層では、含フッ素エーテル化合物が凝集して、異物(スメア)として磁気ヘッドに付着することを防止でき、ピックアップが抑制される。
[磁気記録媒体]
 本実施形態の磁気記録媒体は、基板上に、少なくとも磁性層と保護層と潤滑層が順次設けられたものである。
 本実施形態の磁気記録媒体では、基板と磁性層との間に、必要に応じて1層または2層以上の下地層を設けることができる。また、下地層と基板との間に付着層および/または軟磁性層を設けることもできる。
 図1は、本発明の磁気記録媒体の一実施形態を示した概略断面図である。
 本実施形態の磁気記録媒体10は、基板11上に、付着層12と、軟磁性層13と、第1下地層14と、第2下地層15と、磁性層16と、保護層17と、潤滑層18とが順次設けられた構造をなしている。
「基板」
 基板11は、任意に選択できる。基板11としては、例えば、Alなどの金属、もしくはAl合金などの合金材料からなる基体上に、NiPまたはNiP合金からなる膜が形成された、非磁性基板等を好ましく用いることができる。
 基板11としては、ガラス、セラミックス、シリコン、シリコンカーバイド、カーボン、樹脂などの非金属材料からなる非磁性基板を用いてもよいし、これらの非金属材料からなる基体上に、さらにNiPまたはNiP合金からなる膜を形成した非磁性基板を用いてもよい。
「付着層」
 付着層12は、基板11と、付着層12上に設けられる軟磁性層13とを接して配置した場合に生じる、基板11の腐食の進行を防止する。
 付着層12の材料は、任意に選択でき、例えば、Cr、Cr合金、Ti、Ti合金、CrTi、NiAl、AlRu合金等から適宜選択できる。付着層12は、例えば、スパッタリング法により形成できる。
「軟磁性層」
 軟磁性層13は、任意に選択でき、第1軟磁性膜と、Ru膜からなる中間層と、第2軟磁性膜とが順に積層された構造を有していることが好ましい。軟磁性層13は、2層の軟磁性膜の間に、Ru膜からなる中間層を挟み込むことによって、中間層の上下の軟磁性膜がアンチ・フェロ・カップリング(AFC)結合した構造を有していることが好ましい。
 第1軟磁性膜および第2軟磁性膜の材料としては、例えば、CoZrTa合金、CoFe合金などが挙げられる。
 第1軟磁性膜および第2軟磁性膜に使用されるCoFe合金には、Zr、Ta、Nbの何れかを添加することが好ましい。これにより、第1軟磁性膜および第2軟磁性膜の非晶質化が促進され、第1下地層(シード層)の配向性を向上させることが可能になるとともに、磁気ヘッドの浮上量を低減することが可能となる。
 軟磁性層13は、例えば、スパッタリング法により形成できる。
「第1下地層」
 第1下地層14は、その上に設けられる第2下地層15および磁性層16の配向と結晶サイズを制御する。
 第1下地層14としては、例えば、Cr層、Ta層、Ru層、あるいは、CrMo合金層、CoW合金層、CrW合金層、CrV合金層、CrTi合金層などが挙げられる。
 第1下地層14は、例えば、スパッタリング法により形成できる。
「第2下地層」
 第2下地層15は、磁性層16の配向が良好になるように制御する。第2下地層15は任意に選択でき、RuまたはRu合金からなる層であることが好ましい。
 第2下地層15は、1層からなる層であってもよいし、複数層から構成されていてもよい。第2下地層15が複数層からなる場合、全ての層が同じ材料から構成されていてもよいし、少なくとも一層が異なる材料から構成されていてもよい。
 第2下地層15は、例えば、スパッタリング法により形成できる。
「磁性層」
 磁性層16は、磁化容易軸が基板面に対して垂直または水平方向を向いた磁性膜からなる。磁性層16は任意に選択でき、好ましくは、CoとPtを含む層である。磁性層16は、さらにSNR(Signal to Noise Ratio)特性を改善するために、酸化物、Cr、B、Cu、Ta、Zr等を含む層であってもよい。
 磁性層16に含有される酸化物の例としては、SiO、SiO、Cr、CoO、Ta、TiO等が挙げられる。
 磁性層16は、1層から構成されていてもよいし、組成の異なる材料からなる複数の磁性層から構成されていてもよい。
 例えば、磁性層16が、下から順に積層された第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層は、Co、Cr、Ptを含み、さらに酸化物を含んだ材料からなるグラニュラー構造であることが好ましい。第1磁性層に含有される酸化物としては、例えば、Cr、Si、Ta、Al、Ti、Mg、Co等の酸化物を用いることが好ましい。その中でも、特に、TiO、Cr、SiO等を好適に用いることができる。第1磁性層は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも、特に、Cr-SiO、Cr-TiO、SiO-TiO等を好適に用いることができる。
 第1磁性層は、Co、Cr、Pt、及び、酸化物の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を好ましく含むことができる。
 第2磁性層には、第1磁性層と同様の材料を用いることができる。第2磁性層は、グラニュラー構造であることが好ましい。
 第3磁性層は、Co、Cr、Ptを含み、酸化物を含まない材料からなる非グラニュラー構造であることが好ましい。第3磁性層は、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を好ましく含むことができる。
 磁性層16が複数の磁性層で形成されている場合、隣接する磁性層の間には、非磁性層を設けることが好ましい。磁性層16が、第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層と第2磁性層との間と、第2磁性層と第3磁性層との間に、非磁性層を設けることが好ましい。
 磁性層16の隣接する磁性層間に設けられる非磁性層は、例えば、Ru、Ru合金、CoCr合金、CoCrX1合金(X1は、Pt、Ta、Zr、Re、Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Bの中から選ばれる1種または2種以上の元素を表す。)等を好適に用いることができる。
 磁性層16の隣接する磁性層間に設けられる非磁性層には、酸化物、金属窒化物、または金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiO等を好ましく用いることができる。金属窒化物として、例えば、AlN、Si、TaN、CrN等を好ましく用いることができる。金属炭化物として、例えば、TaC、BC、SiC等を好ましく用いることができる。
 非磁性層は、例えば、スパッタリング法により形成できる。
 磁性層16は、より高い記録密度を実現するために、磁化容易軸が基板面に対して垂直方向を向いた垂直磁気記録の磁性層であることが好ましい。磁性層16は、面内磁気記録の磁性層であってもよい。
 磁性層16は、蒸着法、イオンビームスパッタ法、マグネトロンスパッタ法等、従来公知のいかなる方法によって形成してもよい。磁性層16は、通常、スパッタリング法により形成される。
「保護層」
 保護層17は、磁性層16を保護する。保護層17は、一層から構成されていてもよいし、複数層から構成されていてもよい。保護層17の材料としては、炭素、窒素を含む炭素、炭化ケイ素などが挙げられる。
 保護層17としては、炭素系保護層を好ましく用いることができ、特にアモルファス炭素保護層が好ましい。保護層17が炭素系保護層であると、潤滑層18中の含フッ素エーテル化合物に含まれる極性基(特に水酸基)との相互作用が一層高まるため、好ましい。
 炭素系保護層と潤滑層18との付着力は、炭素系保護層を水素化炭素および/または窒素化炭素とし、炭素系保護層中の水素含有量および/または窒素含有量を調節することにより制御可能である。炭素系保護層中の水素含有量は、水素前方散乱法(HFS)で測定したときに3~20原子%であることが好ましい。また、炭素系保護層中の窒素含有量はX線光電子分光分析法(XPS)で測定したときに、4~15原子%であることが好ましい。
 炭素系保護層に含まれる水素および/または窒素は、炭素系保護層全体に均一に含有されている必要はない。炭素系保護層は、例えば、保護層17の潤滑層18側に窒素を含有させ、保護層17の磁性層16側に水素を含有させた組成傾斜層とすることが好適である。この場合、磁性層16および潤滑層18と、炭素系保護層との付着力が、より一層向上する。
 保護層17の膜厚は任意に選択できるが、1nm~7nmとするのがよい。保護層17の膜厚が1nm以上であると、保護層17としての性能が充分に得られる。保護層17の膜厚が7nm以下であると、保護層17の薄膜化の観点から好ましい。
 保護層17の成膜方法としては、炭素を含むターゲット材を用いるスパッタ法、エチレンやトルエン等の炭化水素原料を用いるCVD(化学蒸着法)法、IBD(イオンビーム蒸着)法等を用いることができる。
 保護層17として炭素系保護層を形成する場合、例えばDCマグネトロンスパッタリング法により成膜できる。特に、保護層17として炭素系保護層を形成する場合、プラズマCVD法により、アモルファス炭素保護層を成膜することが好ましい。プラズマCVD法により成膜したアモルファス炭素保護層は、表面が均一で、粗さが小さいものとなる。
「潤滑層」
 潤滑層18は、磁気記録媒体10の汚染を防止する。また、潤滑層18は、磁気記録媒体10上を摺動する磁気記録再生装置の磁気ヘッドの摩擦力を低減させて、磁気記録媒体10の耐久性を向上させる。
 潤滑層18は、図1に示すように、保護層17上にかつ接して形成されている。潤滑層18は、上述の含フッ素エーテル化合物を含む。
 潤滑層18は、潤滑層18の下に配置されている保護層17が、炭素系保護層である場合、特に、保護層17と高い結合力で結合される。その結果、潤滑層18の厚みが薄くても、高い被覆率で保護層17の表面が被覆された磁気記録媒体10が得られやすく、磁気記録媒体10の表面の汚染を効果的に防止できる。
 潤滑層18の平均膜厚は、任意に選択でき、0.5nm(5Å)~2.0nm(20Å)であることが好ましく、0.5nm(5Å)~1.0nm(10Å)であることがより好ましい。潤滑層18の平均膜厚が0.5nm以上であると、潤滑層18がアイランド状または網目状とならずに均一の膜厚で形成される。このため、潤滑層18によって、保護層17の表面を高い被覆率で被覆できる。また、潤滑層18の平均膜厚を2.0nm以下にすることで、潤滑層18を充分に薄膜化でき、磁気ヘッドの浮上量を十分小さくできる。
 保護層17の表面が潤滑層18によって十分に高い被覆率で被覆されていない場合、磁気記録媒体10の表面に吸着した環境物質が、潤滑層18の隙間を通り抜けて、潤滑層18の下層に侵入する。潤滑層18の下層に侵入した環境物質は、保護層17と吸着、結合し、汚染物質を生成する。そして、磁気記録再生の際に、この汚染物質(凝集成分)がスメアとして磁気ヘッドに付着(転写)して、磁気ヘッドを破損したり、磁気記録再生装置の磁気記録再生特性を低下させたりする。
 汚染物質を生成させる環境物質としては、例えば、シロキサン化合物(環状シロキサン、直鎖シロキサン)、イオン性不純物、オクタコサン等の比較的分子量の高い炭化水素、フタル酸ジオクチル等の可塑剤等が挙げられる。イオン性不純物に含まれる金属イオンとしては、例えば、ナトリウムイオン、カリウムイオン等を挙げることができる。イオン性不純物に含まれる無機イオンとしては、例えば、塩素イオン、臭素イオン、硝酸イオン、硫酸イオン、アンモニウムイオン等を挙げることができる。イオン性不純物に含まれる有機物イオンとしては、例えば、シュウ酸イオン、蟻酸イオン等を挙げることができる。
「潤滑層の形成方法」
 潤滑層18を形成する方法としては任意に選択できるが、例えば、基板11上に保護層17までの各層が形成された製造途中の磁気記録媒体を用意し、保護層17上に潤滑層形成用溶液を塗布し、乾燥させる方法が挙げられる。
 潤滑層形成用溶液は、例えば、上述の実施形態の磁気記録媒体用潤滑剤を必要に応じて、溶媒に分散溶解させ、塗布方法に適した粘度および濃度とすることにより得られる。
 潤滑層形成用溶液に用いられる溶媒としては、例えば、バートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)等のフッ素系溶媒等が挙げられる。
 潤滑層形成用溶液の塗布方法は、特に限定されないが、例えば、スピンコート法、スプレイ法、ペーパーコート法、ディップ法等が挙げられる。
 ディップ法を用いる場合、例えば、以下に示す方法を用いることができる。まず、ディップコート装置の浸漬槽に入れられた潤滑層形成用溶液中に、保護層17までの各層が形成された基板11を浸漬する。次いで、浸漬槽から基板11を所定の速度で引き上げる。このことにより、潤滑層形成用溶液を基板11の保護層17上の表面に塗布する。
 ディップ法を用いることで、潤滑層形成用溶液を保護層17の表面に均一に塗布することができ、保護層17上に均一な膜厚で潤滑層18を形成できる。
 本実施形態においては、潤滑層18を形成した基板11に熱処理を施すことが好ましい。熱処理を施すことにより、潤滑層18と保護層17との密着性が向上し、潤滑層18と保護層17との付着力が向上する。
 熱処理温度は任意に選択できるが、100~180℃とすることが好ましい。熱処理温度が100℃以上であると、潤滑層18と保護層17との密着性を向上させる効果が十分に得られる。また、熱処理温度を180℃以下にすることで、潤滑層18の熱分解を防止できる。熱処理時間は10~120分とすることが好ましい。
 本実施形態の磁気記録媒体10は、基板11上に、少なくとも磁性層16と、保護層17と、潤滑層18とが順次設けられたものである。本実施形態の磁気記録媒体10では、保護層17上に接して上述の含フッ素エーテル化合物を含む潤滑層18が形成されている。この潤滑層18は、保護層17との密着性が良好であり、厚みが薄くても、高い被覆率で保護層17の表面を被覆でき、優れた耐摩耗性を有する。
 本実施形態の磁気記録媒体10では、潤滑層18によって高い被覆率で保護層17の表面が被覆されている。このため、イオン性不純物などの汚染物質を生成させる環境物質が、潤滑層18の隙間から侵入することが防止される。したがって、本実施形態の磁気記録媒体10は、表面上に存在する汚染物質が少ないものである。また、本実施形態の磁気記録媒体10における潤滑層18は、異物(スメア)を生じさせにくく、ピックアップを抑制できる。
 以上のことから、本実施形態の磁気記録媒体10は、優れた信頼性および耐久性を有する。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例のみに限定されない。
「潤滑剤の製造」
(実施例1)
 以下に示す方法により、上記式(A)で示される化合物を製造した。
 まず、下記式(15)で表される化合物とエピブロモヒドリンとを、ジクロロメタン中で反応させて下記式(16)で表される化合物を合成した。
 下記式(15)で表される化合物は、以下に示す方法により合成した。エチレングリコールの片側のヒドロキシ基をジヒドロピランで保護し、デス・マーチンペルヨージナンを用いてジクロロメタン中で酸化させて化合物を得た。次いで、得られた化合物を50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000021
 次に、窒素ガス雰囲気下で100mLナスフラスコに、HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)で表されるフルオロポリエーテル(数平均分子量1000、分子量分布1.1)20.0gと、式(16)で示される化合物2.54gと、t-ブタノール12mLとを仕込み、室温で均一になるまで撹拌した。この均一の液に、さらにカリウムtert-ブトキシド0.674gを加え、70℃で8時間撹拌して反応させ、反応生成物を得た。
 得られた反応生成物を25℃に冷却し、水100mLが入った分液漏斗に移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体として下記式(17)で示される化合物9.17gを得た。
Figure JPOXMLDOC01-appb-C000022

(式(17)中、ma、naは平均重合度を示し、maは4.5を表し、naは4.5を表す。)
 窒素ガス雰囲気下で200mLナスフラスコに、上記式(17)で示される化合物6.06gと、下記式(18)で示される化合物1.32gと、t-ブタノール50mLとを仕込み、室温で均一になるまで撹拌した。この均一の液に、カリウムtert-ブトキシドを0.168g加え、70℃で16時間撹拌して反応させ、反応生成物を得た。
 式(18)で示される化合物は、3-ブテン-1-オールのヒドロキシ基を、ジヒドロピランで保護した化合物の二重結合を酸化させて合成した。
Figure JPOXMLDOC01-appb-C000023
 得られた反応生成物を25℃に冷却し、10%の塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)33gを加え、室温で2時間撹拌した。反応液を食塩水100mLが入った分液漏斗に少しずつ移し、酢酸エチル200mLで3回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、式(A)で示される化合物(式(A)中、平均重合度を示すmaは4.5であり、平均重合度を示すnaは4.5である。)を4.18g得た。
 得られた化合物(A)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(A);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(1H)、3.4~3.9(20H)、7.4(1H)
(実施例2)
 式(16)で示される化合物の代わりに、下記式(20)で示される化合物を2.75g用いたこと以外は、実施例1と同様な操作を行い、中間体として、下記式(21)で示される化合物を経て、式(B)で示される化合物(式(B)中、平均重合度を示すmbは4.5であり、平均重合度を示すnbは4.5である。)を4.32g得た。
 式(20)で示される化合物は、式(19)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(19)で示される化合物は、以下に示す方法により製造した。1,3-プロパンジオールの片側のヒドロキシ基をジヒドロピランで保護し、デス・マーチンペルヨージナンを用いてジクロロメタン中で酸化させて化合物を得た。次いで、得られた化合物を50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000024

(式(21)中、mb、nbは平均重合度を示し、mbは4.5を表し、nbは4.5を表す。)
 得られた化合物(B)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(B);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(1H)、2.5(2H)、3.4~3.9(20H)、7.4(1H)
(実施例3)
 式(16)で示される化合物の代わりに、下記式(23)で示される化合物を2.92g用いたこと以外は、実施例1と同様な操作を行い、中間体として、下記式(24)で示される化合物を経て、式(C)で示される化合物(式(C)中、平均重合度を示すmcは4.5であり、平均重合度を示すncは4.5である。)を4.37g得た。
 式(23)で示される化合物は、式(22)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(22)で示される化合物は、以下に示す方法により製造した。1,4-ブタンジオールの片側のヒドロキシ基をジヒドロピランで保護し、デス・マーチンペルヨージナンを用いてジクロロメタン中で酸化させて化合物を得た。次いで、得られた化合物を50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000025

(式(24)中、mc、ncは平均重合度を示し、mcは4.5を表し、ncは4.5を表す。)
 得られた化合物(C)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(C);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(3H)、2.5(2H)、3.4~3.9(20H)、7.4(1H)
(実施例4)
 式(16)で示される化合物の代わりに、下記式(26)で示される化合物を2.41g用いたこと以外は、実施例1と同様な操作を行い、中間体として、下記式(27)で示される化合物を経て、式(D)で示される化合物(式(D)中、平均重合度を示すmdは4.5であり、平均重合度を示すndは4.5である。)を4.38g得た。
 式(26)で示される化合物は、式(25)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(25)で示される化合物は、ソルケタールを、デス・マーチンペルヨージナンを用いてジクロロメタン中で酸化させて得た化合物を、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000026

(式(27)中、md、ndは平均重合度を示し、mdは4.5を表し、ndは4.5を表す。)
 得られた化合物(D)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(D);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(1H)、3.4~3.9(22H)、7.4(1H)
(実施例5)
 式(16)で示される化合物の代わりに、下記式(29)で示される化合物を2.58g用いたこと以外は、実施例1と同様な操作を行い、中間体として、下記式(30)で示される化合物を経て、式(E)で示される化合物(式(E)中、平均重合度を示すmeは4.5であり、平均重合度を示すneは4.5である。)を4.43g得た。
 式(29)で示される化合物は、式(28)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(28)で示される化合物は、(2,2-ジメチル-1,3-ジオキサン-5-イル)メタノールを、デス・マーチンペルヨージナンを用いてジクロロメタン中で酸化させて得た化合物を、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000027

(式(30)中、me、neは平均重合度を示し、meは4.5を表し、neは4.5を表す。)
 得られた化合物(E)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(E);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(1H)、2.5(1H)、3.4~3.9(23H)、7.4(1H)
(実施例6)
 式(16)で示される化合物の代わりに、下記式(32)で示される化合物を2.58g用いたこと以外は、実施例1と同様な操作を行い、中間体として、下記式(33)で示される化合物を経て、式(F)で示される化合物(式(F)中、平均重合度を示すmfは4.5であり、平均重合度を示すnfは4.5である。)を4.43g得た。
 式(32)で示される化合物は、式(31)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(31)で示される化合物は、(2,2-ジメチル-1,3-ジオキサン-4-イル)メタノールを、デス・マーチンペルヨージナンを用いてジクロロメタン中で酸化させて得た化合物を、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000028

(式(33)中、mf、nfは平均重合度を示し、mfは4.5を表し、nfは4.5を表す。)
 得られた化合物(F)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(F);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(2H)、2.2~2.4(2H)、2.5(1H)、3.4~3.9(21H)、7.4(1H)
(実施例7)
 式(16)で示される化合物の代わりに、下記式(35)で示される化合物を3.95g用いたこと以外は、実施例1と同様な操作を行い、中間体として、下記式(36)で示される化合物を経て、式(G)で示される化合物(式(G)中、平均重合度を示すmgは4.5であり、平均重合度を示すngは4.5である。)を4.38g得た。
 式(35)で示される化合物は、式(34)で表される化合物と、エピブロモヒドリンを、ジクロロメタン中で反応させて合成した。
 式(34)で示される化合物は、1,3-ジヒドロキシアセトンのヒドロキシ基を、ジヒドロピランで保護し、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000029

(式(36)中、mg、ngは平均重合度を示し、mgは4.5を表し、ngは4.5を表す。)
 得られた化合物(G)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(G);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(1H)、3.4~3.9(23H)
(実施例8)
 式(16)で示される化合物の代わりに、下記式(38)で示される化合物を4.29g用いたこと以外は、実施例1と同様な操作を行い、中間体として、下記式(39)で示される中間体を経て、式(H)で示される化合物(式(H)中、平均重合度を示すmhは4.5であり、平均重合度を示すnhは4.5である。)を4.48g得た。
 式(38)で示される化合物は、式(37)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(37)で示される化合物は、1,5-ジヒドロキシ-3-ペンタノンのヒドロキシ基をジヒドロピランで保護し、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000030

(式(39)中、mh、nhは平均重合度を示し、mhは4.5を表し、nhは4.5を表す。)
 得られた化合物(H)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(H);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(1H)、2.5(4H)、3.4~3.9(23H)
(実施例9)
 式(16)で示される化合物の代わりに、下記式(41)で示される化合物を4.12g用いたこと以外は、実施例1と同様な操作を行い、中間体として、下記式(42)で示される化合物を経て、式(I)で示される化合物(式(I)中、平均重合度を示すmiは4.5であり、平均重合度を示すniは4.5である。)を4.43g得た。
 式(41)で示される化合物は、式(40)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(40)で示される化合物は、1,4-ジヒドロキシ-2-ブタノンのヒドロキシ基をジヒドロピランで保護し、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000031

(式(42)中、mi、niは平均重合度を示し、miは4.5を表し、niは4.5を表す。)
 得られた化合物(I)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(I);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(1H)、2.5(2H)、3.4~3.9(23H)
(実施例10)
 式(16)で示される化合物の代わりに、下記式(44)で示される化合物を4.29g用いたこと以外は、実施例1と同様な操作を行い、中間体として、下記式(45)で示される化合物を経て、式(J)で示される化合物(式(J)中、平均重合度を示すmjは4.5であり、平均重合度を示すnjは4.5である。)を4.48g得た。
 式(44)で示される化合物は、式(43)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(43)で示される化合物は、1,5-ジヒドロキシ-2-ペンタノンのヒドロキシ基をジヒドロピランで保護し、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000032

(式(45)中、mj、njは平均重合度を示し、mjは4.5を表し、njは4.5を表す。)
 得られた化合物(J)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(J);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(3H)、2.2~2.4(1H)、2.5(2H)、3.4~3.9(23H)
(実施例11)
 式(20)で示される化合物の代わりに、式(19)で示される化合物と2-(2-ブロモエチル)オキシランを反応させて得られた化合物を用いたこと以外は、実施例2と同様な操作を行い、中間体として、下記式(46)で示される化合物を得た。
 そして、式(46)で示される化合物を用いたことと、3-ブテン-1-オールの代わりに4-ペンテン-1-オールを用いて式(18)と同様に合成した化合物を、式(18)で示される化合物の代わりに用いたこと以外は、実施例2と同様な操作を行い、式(K)で示される化合物(式(K)中、平均重合度を示すmkは4.5であり、平均重合度を示すnkは4.5である。)を4.42g得た。
Figure JPOXMLDOC01-appb-C000033

(式(46)中、mk、nkは平均重合度を示し、mkは4.5を表し、nkは4.5を表す。)
 得られた化合物(K)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(K);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(3H)、2.5(2H)、3.4~3.9(22H)、7.4(1H)
(実施例12)
 式(20)で示される化合物の代わりに、式(19)で示される化合物と2-(3-ブロモプロピル)オキシランを反応させて得られた化合物を用いたこと以外は、実施例2と同様な操作を行い、中間体として、下記(47)で示される化合物を得た。
 そして、式(47)で示される化合物を用いたことと、3-ブテン-1-オールの代わりに、5-ヘキセン-1-オールを用いて式(18)と同様に合成した化合物を、式(18)で示される化合物の代わりに用いたこと以外は、実施例2と同様な操作を行い、式(L)で示される化合物(式(L)中、平均重合度を示すmlは4.5であり、平均重合度を示すnlは4.5である。)を4.52g得た。
Figure JPOXMLDOC01-appb-C000034

(式(47)中、ml、nlは平均重合度を示し、mlは4.5を表し、nlは4.5を表す。)
 得られた化合物(L)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(L);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(3H)、2.2~2.4(3H)、2.5(2H)、3.4~3.9(22H)、7.4(1H)
(実施例13)
 式(18)で表される化合物の代わりに、式(48)で示される化合物を1.21g用いたこと以外は、実施例2と同様な操作を行い、式(M)で示される化合物(式(M)中、平均重合度を示すmmは4.5であり、平均重合度を示すnmは4.5である。)を4.43g得た。
 式(48)で示される化合物は、エチレングリコールモノアリルエーテルのヒドロキシ基を、ジヒドロピランで保護した化合物の二重結合を酸化させて合成した。
Figure JPOXMLDOC01-appb-C000035
 得られた化合物(M)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(M);H-NMR(CDCOCD);
δ[ppm]2.5(2H)、3.4~3.9(24H)、7.4(1H)
(実施例14)
 式(18)で表される化合物の代わりに、式(49)で示される化合物を1.30g用いたこと以外は、実施例2と同様な操作を行い、式(N)で示される化合物(式(N)中、平均重合度を示すmnは4.5であり、平均重合度を示すnnは4.5である。)を4.48g得た。
 式(49)で示される化合物は、エチレングリコールの片側のヒドロキシ基をジヒドロピランで保護した化合物と、2-(2-ブロモエチル)オキシランとを反応させて合成した。
Figure JPOXMLDOC01-appb-C000036
 得られた化合物(N)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(N);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(1H)、2.5(2H)、3.4~3.9(24H)、7.4(1H)
(実施例15)
 式(18)で表される化合物の代わりに、式(50)で示される化合物を1.66g用いたこと以外は、実施例2と同様な操作を行い、式(O)で示される化合物(式(O)中、平均重合度を示すmoは4.5であり、平均重合度を示すnoは4.5である。)を4.69g得た。
 式(50)で示される化合物は、エチレングリコールの片側のヒドロキシ基をジヒドロピランで保護した化合物と、ビス(2,3-エポキシプロピル)エーテルとを反応させて合成した。
Figure JPOXMLDOC01-appb-C000037
 得られた化合物(O)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(O);H-NMR(CDCOCD);
δ[ppm]2.5(2H)、3.4~3.9(30H)、7.4(1H)
(実施例16)
 式(18)で表される化合物の代わりに、式(51)で示される化合物を1.74g用いたこと以外は、実施例2と同様な操作を行い、式(P)で示される化合物(式(P)中、平均重合度を示すmpは4.5であり、平均重合度を示すnpは4.5である。)を4.74g得た。
 式(51)で示される化合物は、1,3-プロパンジオールの片側のヒドロキシ基をジヒドロピランで保護した化合物と、ビス(2,3-エポキシプロピル)エーテルとを反応させて合成した。
Figure JPOXMLDOC01-appb-C000038
 得られた化合物(P)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(P);H-NMR(CDCOCD);
δ[ppm]1.8(2H)、2.5(2H)、3.4~3.9(30H)、7.4(1H)
(実施例17)
 式(18)で表される化合物の代わりに、式(52)で示される化合物を1.74g用いたこと以外は、実施例2と同様な操作を行い、式(Q)で示される化合物(式(Q)中、平均重合度を示すmqは4.5であり、平均重合度を示すnqは4.5である。)を4.74g得た。
 式(52)で示される化合物は、エチレングリコールの片側のヒドロキシ基をジヒドロピランで保護した化合物と、アリル-3-ブテニルエーテルの二重結合を酸化させて合成した化合物とを反応させて合成した。
Figure JPOXMLDOC01-appb-C000039
 得られた化合物(Q)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(Q);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(1H)、2.2~2.4(1H)、2.5(2H)、3.4~3.9(32H)、7.4(1H)
(実施例18)
 式(18)で表される化合物の代わりに、式(53)で示される化合物を2.10g用いたこと以外は、実施例2と同様な操作を行い、式(R)で示される化合物(式(R)中、平均重合度を示すmrは4.5であり、平均重合度を示すnrは4.5である。)を4.95g得た。
 式(53)で示される化合物は、エチレングリコールの片側のヒドロキシ基をジヒドロピランで保護した化合物と、1,3-ジアリルオキシ-2-プロパノールの二重結合を酸化させて合成した化合物とを反応させて合成した。
Figure JPOXMLDOC01-appb-C000040
 得られた化合物(R)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(R);H-NMR(CDCOCD);
δ[ppm]2.5(2H)、3.4~3.9(36H)、7.4(1H)
(実施例19)
 式(18)で表される化合物の代わりに、式(54)で示される化合物を2.27g用いたこと以外は、実施例2と同様な操作を行い、式(S)で示される化合物(式(S)中、平均重合度を示すmsは4.5であり、平均重合度を示すnsは4.5である。)を5.04g得た。
 式(54)で示される化合物は、エチレングリコールの片側のヒドロキシ基をジヒドロピランで保護した化合物と、1,3-ジブテニルオキシ-2-プロパノールの二重結合を酸化させて合成した化合物を反応させて合成した。
Figure JPOXMLDOC01-appb-C000041
 得られた化合物(S)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(S);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(2H)、2.2~2.4(2H)、2.5(2H)、3.4~3.9(36H)、7.4(1H)
(実施例20)
 式(18)で表される化合物の代わりに、式(55)で示される化合物を1.99g用いたこと以外は、実施例2と同様な操作を行い、式(T)で示される化合物(式(T)中、平均重合度を示すmtは4.5であり、平均重合度を示すntは4.5である。)を5.04g得た。
 式(55)で示される化合物は、4-ペンテニルエーテルの二重結合を酸化させて合成した化合物と、(2,2-ジメチル-1,3-ジオキサン-5-イル)メタノールとを反応させて合成した。
Figure JPOXMLDOC01-appb-C000042
 得られた化合物(T)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(T);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(4H)、2.2~2.4(1H)、2.5(2H)、3.4~3.9(37H)、7.4(1H)
(実施例21)
 式(20)で表される化合物の代わりに、式(56)で示される化合物を3.64g用いたこと以外は、実施例13と同様な操作を行い、中間体として、下記式(57)で示される化合物を経て、式(U)で示される化合物(式(U)中、平均重合度を示すmuは4.5であり、平均重合度を示すnuは4.5である。)を4.69g得た。
 式(56)で示される化合物は、式(19)で表される化合物と、アリルエーテルの二重結合を酸化させて合成した化合物とを反応させて合成した。
Figure JPOXMLDOC01-appb-C000043

(式(57)中、mu、nuは平均重合度を示し、muは4.5を表し、nuは4.5を表す。)
 得られた化合物(U)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(U);H-NMR(CDCOCD);
δ[ppm]2.5(2H)、3.4~3.9(30H)、7.4(1H)
(実施例22)
 式(20)で表される化合物の代わりに、式(58)で示される化合物を3.81g用いたこと以外は、実施例13と同様な操作を行い、中間体として、下記式(59)で示される化合物を経て、式(V)で示される化合物(式(V)中、平均重合度を示すmvは4.5であり、平均重合度を示すnvは4.5である。)を4.78g得た。
 式(58)で示される化合物は、式(19)で表される化合物と、3-ブテニルエーテルの二重結合を酸化させて合成した化合物とを反応させて合成した。
Figure JPOXMLDOC01-appb-C000044

(式(59)中、mv、nvは平均重合度を示し、mvは4.5を表し、nvは4.5を表す。)
 得られた化合物(V)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(V);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(2H)、2.2~2.4(2H)、2.5(2H)、3.4~3.9(30H)、7.4(1H)
(実施例23)
 式(20)で表される化合物の代わりに、式(56)で示される化合物を3.64g用いたこと以外は、実施例15と同様な操作を行い、式(W)で示される化合物(式(W)中、平均重合度を示すmwは4.5であり、平均重合度を示すnwは4.5である。)を4.95g得た。
 得られた化合物(W)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(W);H-NMR(CDCOCD);
δ[ppm]2.5(2H)、3.4~3.9(36H)、7.4(1H)
(実施例24)
 式(20)で表される化合物の代わりに、式(60)で示される化合物を4.53g用いたこと以外は、実施例13と同様な操作を行い、中間体として、下記式(61)で示される化合物を経て、式(X)で示される化合物(式(X)中、平均重合度を示すmxは4.5であり、平均重合度を示すnxは4.5である。)を4.95g得た。
 式(60)で示される化合物は、式(19)で表される化合物と、1,3-ジアリルオキシ-2-プロパノールの二重結合を酸化させて合成した化合物とを反応させて合成した。
Figure JPOXMLDOC01-appb-C000045

(式(61)中、mx、nxは平均重合度を示し、mxは4.5を表し、nxは4.5を表す。)
 得られた化合物(X)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(X);H-NMR(CDCOCD);
δ[ppm]2.5(2H)、3.4~3.9(36H)、7.4(1H)
(実施例25)
 式(20)で表される化合物の代わりに、式(62)で示される化合物を4.53g用いたこと以外は、実施例13と同様な操作を行い、中間体として、下記式(63)で示される化合物を経て、式(Y)で示される化合物(式(Y)中、平均重合度を示すmyは4.5であり、平均重合度を示すnyは4.5である。)を4.95g得た。
 式(62)で示される化合物は、式(19)で表される化合物と、1,3-ジブテニルオキシ-2-プロパノールの二重結合を酸化させて合成した化合物とを反応させて合成した。
Figure JPOXMLDOC01-appb-C000046

(式(63)中、my、nyは平均重合度を示し、myは4.5を表し、nyは4.5を表す。)
 得られた化合物(Y)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(Y);H-NMR(CDCOCD);
δ[ppm]1.6~2.0(2H)、2.2~2.4(2H)、2.5(2H)、3.4~3.9(36H)、7.4(1H)
(実施例26)
 式(20)で示される化合物の代わりに、式(65)で示される化合物を2.39g用いたこと以外は、実施例16と同様な操作を行い、中間体として、下記式(66)で示される化合物を経て、式(Z)で示される化合物(式(Z)中、平均重合度を示すmzは4.5であり、平均重合度を示すnzは4.5である。)を4.92g得た。
 式(65)で示される化合物は、式(64)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(64)で示される化合物は、3-(3-ブテン-1-イロキシ)-1-プロパノールを、デス・マーチンペルヨージナンを用いてジクロロメタン中で酸化させて得た化合物を、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000047

(式(66)中、mz、nzは平均重合度を示し、mzは4.5を表し、nzは4.5を表す。)
 得られた化合物(Z)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(Z);H-NMR(CDCOCD);
δ[ppm]1.8(2H)、2.5(2H)、3.4~3.9(33H)、5.0~5.1(1H)、5.1~5.2(1H)、5.8~6.0(1H)、7.4(1H)
(実施例27)
 式(20)で示される化合物の代わりに、式(68)で示される化合物を2.41g用いたこと以外は、実施例16と同様な操作を行い、中間体として、下記式(69)で示される化合物を経て、式(AA)で示される化合物(式(AA)中、平均重合度を示すmAは4.5であり、平均重合度を示すnAは4.5である。)を4.93g得た。
 式(68)で示される化合物は、式(67)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(67)で示される化合物は、3-ブトキシプロパノールを、デス・マーチンペルヨージナンを用いてジクロロメタン中で酸化させて得た化合物を、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000048

(式(69)中、mA、nAは平均重合度を示し、mAは4.5を表し、nAは4.5を表す。)
 得られた化合物(AA)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(AA);H-NMR(CDCOCD);
δ[ppm]0.9~1.1(5H)、1.8(2H)、2.5(2H)、3.4~3.9(33H)、7.4(1H)
(実施例28)
 式(20)で示される化合物の代わりに、式(71)で示される化合物を2.20g用いたこと以外は、実施例16と同様な操作を行い、中間体として、下記式(72)で示される化合物を経て、式(AB)で示される化合物(式(AB)中、平均重合度を示すmBは4.5であり、平均重合度を示すnBは4.5である。)を4.87g得た。
 式(71)で示される化合物は、式(70)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(70)で示される化合物は、3-(2-プロピニルオキシ)プロパノールを、デス・マーチンペルヨージナンを用いてジクロロメタン中で酸化させて得た化合物を、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000049

(式(72)中、mB、nBは平均重合度を示し、mBは4.5を表し、nBは4.5を表す。)
 得られた化合物(AB)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(AB);H-NMR(CDCOCD);
δ[ppm]1.8(2H)、2.5(2H)、2.7(1H)、3.4~3.9(31H)、7.4(1H)
(実施例29)
 式(20)で示される化合物の代わりに、式(74)で示される化合物を3.01g用いたこと以外は、実施例16と同様な操作を行い、中間体として、下記式(75)で示される化合物を経て、式(AC)で示される化合物(式(AC)中、平均重合度を示すmCは4.5であり、平均重合度を示すnCは4.5である。)を5.11g得た。
 式(74)で示される化合物は、式(73)で表される化合物と、エピブロモヒドリンとを、ジクロロメタン中で反応させて合成した。
 式(73)で示される化合物は、3-(4-メトキシフェノキシ)プロパノールを、デス・マーチンペルヨージナンを用いてジクロロメタン中で酸化させて得た化合物を、50%エタノール水溶液中で、ヒドロキシルアミンと炭酸カリウムに反応させて合成した。
Figure JPOXMLDOC01-appb-C000050

(式(75)中、mC、nCは平均重合度を示し、mCは4.5を表し、nCは4.5を表す。)
 得られた化合物(AC)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(AC);H-NMR(CDCOCD);
δ[ppm]1.8(2H)、2.5(2H)、3.4~3.9(32H)、6.8(4H)、7.4(1H)
(実施例30)
 HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)で表されるフルオロポリエーテルの代わりに、HOCHCFO(CFCFO)CFCHOH(式中、平均重合度を示すwは7.0である。)で表されるフルオロポリエーテルを用いたこと以外は、実施例15と同様な操作を行い、中間体として、下記式(76)で示される化合物を経て、式(AD)で示される化合物(式(AD)中、平均重合度を示すwは7.0である。)を4.65g得た。
Figure JPOXMLDOC01-appb-C000051

(式(76)中、平均重合度を示すwは7.0である。)
 得られた化合物(AD)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(AD);H-NMR(CDCOCD);
δ[ppm]2.5(2H)、3.4~3.9(30H)、7.4(1H)
(実施例31)
 HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)で表されるフルオロポリエーテルの代わりに、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中、平均重合度を示すxは4.5である。)で表されるフルオロポリエーテルを用いたこと以外は、実施例15と同様な操作を行い、中間体として、下記式(77)で示される化合物を経て、式(AE)で示される化合物(式(AE)中、平均重合度を示すxは4.5である。)を4.77g得た。
Figure JPOXMLDOC01-appb-C000052

(式(77)中、平均重合度を示すxは4.5である。)
 得られた化合物(AE)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(AE);H-NMR(CDCOCD);
δ[ppm]2.5(2H)、3.4~3.9(30H)、7.4(1H)
(実施例32)
 HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)で表されるフルオロポリエーテルの代わりに、HOCHCFCFCFO(CFCFCFCFO)CFCFCFCHOH(式中、平均重合度を示すyは3.0である。)で表されるフルオロポリエーテルを用いたこと以外は、実施例15と同様な操作を行い、中間体として、下記式(78)で示される化合物を経て、式(AF)で示される化合物(式(AF)中、平均重合度を示すyは3.0である。)を4.77g得た。
Figure JPOXMLDOC01-appb-C000053


(式(78)中、平均重合度を示すyは3.0である。)
 得られた化合物(AF)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(AF);H-NMR(CDCOCD);
δ[ppm]2.5(2H)、3.4~3.9(30H)、7.4(1H)
(実施例33)
 HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)で表されるフルオロポリエーテルの代わりに、HOCHCF(CF)(OCF(CF)CFOCF(CF)CHOH(式中、平均重合度を示すzは4.5である。)で表されるフルオロポリエーテルを用いたこと以外は、実施例15と同様な操作を行い、中間体として、下記式(79)で示される化合物を経て、式(AG)で示される化合物(式(AG)中、平均重合度を示すzは4.5である。)を4.77g得た。
Figure JPOXMLDOC01-appb-C000054

(式(79)中、平均重合度を示すzは4.5である。)
 得られた化合物(AG)のH-NMR測定を行い、以下の結果により構造を同定した。
化合物(AG);H-NMR(CDCOCD);
δ[ppm]2.5(2H)、3.4~3.9(30H)、7.4(1H)
 このようにして得られた実施例1~33の化合物を、式(1)に当てはめたときのRの構造(式(2)におけるX、Y)を表1に示す。また、式(1)に当てはめたときのRの構造(式(3)中の[A]におけるa、[B]におけるb、c、[C]におけるd、e)、Rの構造を表2に示す。式(1)に当てはめたときのRの構造(式(5)中の[D]におけるf、[E]におけるg、h、[F]におけるi、j、および式(5)中のZ)、RとRに含まれる水酸基[-OH]の合計数、Rに含まれる水酸基[-OH]の数、分子中に含まれるオキシム基[>C=N-O-]と水酸基[-OH]の合計数を表3に示す。
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
「比較例1」
 下記式(AH)で表される化合物を特許文献1に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000058

(式(AH)中、平均重合度を示すjAは4.5であり、平均重合度を示すkAは4.5である。)
「比較例2」
 下記式(AI)で表される化合物の市販品を用いた。
Figure JPOXMLDOC01-appb-C000059

(式(AI)中、平均重合度を示すjBは4.5であり、平均重合度を示すkBは4.5である。)
「比較例3」
 下記式(AJ)で表される化合物を特許文献3に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000060

(式(AJ)中、平均重合度を示すjCは4.5であり、平均重合度を示すkCは4.5である。)
「比較例4」
 下記式(AK)で表される化合物を特許文献3に記載の方法で合成した。すなわち、特許文献3に記載の式(33)で示される化合物を、HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)で表されるフルオロポリエーテルと反応させた。
Figure JPOXMLDOC01-appb-C000061

(式(AK)中、平均重合度を示すjDは4.5であり、平均重合度を示すkDは4.5である。)
 このようにして得られた実施例1~33および比較例1~4の化合物の数平均分子量(Mn)を表4に示す。
Figure JPOXMLDOC01-appb-T000062
 次に、以下に示す方法により、実施例1~33および比較例1~4で得られた化合物を用いて潤滑層形成用溶液を調製した。そして、得られた潤滑層形成用溶液を用いて、以下に示す方法により、磁気記録媒体の潤滑層を形成し、実施例1~33および比較例1~4の磁気記録媒体を得た。
「潤滑層形成用溶液」
 実施例1~33および比較例1~4で得られた化合物を、それぞれバートレル(登録商標)XFに溶解し、保護層上に塗布した時の膜厚が9Åになるようにバートレル(登録商標)XFで希釈し、潤滑層形成用溶液とした。
「磁気記録媒体」
 直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けた磁気記録媒体を用意した。保護層は、炭素からなるものとした。
 保護層までの各層の形成された磁気記録媒体の保護層上に、実施例1~33および比較例1~4の潤滑層形成用溶液を、それぞれディップ法により塗布した。なお、ディップ法は、浸漬速度10mm/sec、浸漬時間30sec、引き上げ速度1.2mm/secの条件で行った。
 その後、潤滑層形成用溶液を塗布した磁気記録媒体を、120℃の恒温槽に入れ、10分間加熱して潤滑層形成用溶液中の溶媒を除去することにより、保護層上に潤滑層を形成し、磁気記録媒体を得た。
 このようにして得られた実施例1~33および比較例1~4の磁気記録媒体の有する潤滑層の膜厚を、FT-IR(商品名:Nicolet iS50、Thermo Fisher Scientific社製)を用いて測定した。その結果を表4に示す。
 次に、実施例1~33および比較例1~4の磁気記録媒体に対して、以下に示す耐摩耗性試験を行なった。
(耐摩耗性試験)
 ピンオンディスク型摩擦摩耗試験機を用い、接触子としての直径2mmのアルミナの球を、荷重40gf、摺動速度0.25m/secで、磁気記録媒体の潤滑層上で摺動させ、潤滑層の表面の摩擦係数を測定した。そして、潤滑層の表面の摩擦係数が急激に増大するまでの摺動時間を測定した。摩擦係数が急激に増大するまでの摺動時間は、各磁気記録媒体の潤滑層について4回ずつ測定し、その平均値(時間)を潤滑剤塗膜の耐摩耗性の指標とした。
 実施例1~33の化合物および比較例1~4の化合物を用いた磁気記録媒体の摩擦係数増大時間を表4に示す。摩擦係数増大時間の評価は、以下のとおりとした。摩擦係数増大時間は、数値が大きいほど、耐摩耗性が良いと理解される。
◎(優):650sec以上
○(良):550sec以上、650sec未満
△(可):450sec以上、550sec未満
×(不可):450sec未満
 摩擦係数が急激に増大するまでの時間は、以下に示す理由により、潤滑層の耐摩耗性の指標として用いることができる。磁気記録媒体の潤滑層は、磁気記録媒体を使用することにより摩耗が進行し、摩耗により潤滑層が無くなると、接触子と保護層とが直接接触して、摩擦係数が急激に増大するためである。本摩擦係数が急激に増大するまでの時間は、フリクション試験とも相関があると考えられる。
 表4に示すように、実施例1~33の磁気記録媒体は、摩擦係数増大時間の結果が○(良)または◎(優)であり、比較例1~4の磁気記録媒体と比較して、摩擦係数が急激に増大するまでの摺動時間が長く、耐摩耗性が良好であった。
 これは、実施例1~33の磁気記録媒体では、以下の[1]、[2]の理由により、保護層表面が露出されにくく、高い被覆率で保護層表面が長期間被覆されることによるものであると推定される。
[1]潤滑層を形成している式(1)で表される含フッ素エーテル化合物中のRおよびRに起因する保護層に対する強い相互作用によって、保護層との良好な密着性が得られるため。
[2]式(1)で表される含フッ素エーテル化合物中のRに含まれる水酸基の分子内相互作用に起因する高い運動性によって、潤滑層に傷が形成されても、即座に修復されるため。
 特に、実施例1~3、11~20、23、26~33の磁気記録媒体は、表4に示すように、摩擦係数増大時間の結果が◎(優)であり、実施例4~10、21、22、24、25の磁気記録媒体と比較して、耐摩耗性がより良好であった。表3に示すように、実施例1~3、11~20、23、26~33の磁気記録媒体では、RとRに含まれる水酸基[-OH]の合計数が、Rに含まれる水酸基[-OH]の合計数と同じまたはそれより少ない化合物(A)~(C)、(K)~(T)、(W)、(Z)、(AA)~(AG)を用いている。これに対し、実施例4~10、21、22、24、25の磁気記録媒体では、RとRに含まれる水酸基[-OH]の合計数が、Rに含まれる水酸基[-OH]の合計数よりも多い化合物(D)~(J)、(U)、(V)、(X)、(Y)を用いている。
 このことから、実施例1~3、11~20、23、26~33の磁気記録媒体では、Rで表されるPFPE鎖のR側とR側とにおける水酸基数のバランスが適正であることにより、Rの有する2以上の水酸基同士の分子内相互作用によって、RおよびRに含まれる水酸基による保護層に対する吸着力が低下することがなく、潤滑層と保護層との間により好適な相互作用が発生したものと推察される。
 本発明の含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を用いることにより、厚みが薄くても、優れた耐摩耗性を実現できる潤滑層を形成できる。
 すなわち、本発明によれば、厚みが薄くても優れた耐摩耗性を有する潤滑層を形成でき、磁気記録媒体用潤滑剤の材料として好適な含フッ素エーテル化合物を提供できる。
 10・・・磁気記録媒体、11・・・基板、12・・・付着層、13・・・軟磁性層、14・・・第1下地層、15・・・第2下地層、16・・・磁性層、17・・・保護層、18・・・潤滑層。

Claims (14)

  1.  下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
     R-R-CH-R-CH-R   (1)
    (式(1)中、Rは、オキシム基を含む下記式(2)で表される末端基である;Rは、極性基を有する2価の連結基である;Rは、パーフルオロポリエーテル鎖である;Rは、2以上の極性基を有する末端基である。)
    Figure JPOXMLDOC01-appb-C000001

    (式(2)中、XおよびYはそれぞれ、水素原子、置換基を有してもよい炭素数1~12のアルキル基、二重結合または三重結合を有する有機基のいずれかである。)
  2.  前記Rに含まれる極性基が水酸基である、請求項1に記載の含フッ素エーテル化合物。
  3.  前記式(1)において、R-R-CH-が下記式(3)で表される、請求項1または請求項2に記載の含フッ素エーテル化合物。
     R-[C]-[B]-[A]-CH- (3)
    (式(3)中、[A]は下記式(4-1)で表され、[B]は下記式(4-2)で表され、[C]は下記式(4-3)で表される;式(3)において[A]、[B]、[C]の並び順は入れ替えてもよい;式(4-1)~(4-3)におけるエーテル結合側が、式(3)中のCH側である。)
    Figure JPOXMLDOC01-appb-C000002

    (式(4-1)中、aは0~3の整数である;式(4-2)中、bは0~3の整数であり、cは1~4の整数である;式(4-3)中、dは0~3の整数であり、eは1~4の整数である;ただし、a、b、dの少なくとも1つは1以上である。)
  4.  前記Rに含まれる極性基が水酸基である、請求項1~請求項3のいずれか一項に記載の含フッ素エーテル化合物。
  5.  前記式(1)において、-CH-Rが下記式(5)で表される、請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
     -CH-[D]-[E]-[F]-O-Z (5)
    (式(5)中、[D]は下記式(6-1)で表され、[E]は下記式(6-2)で表され、[F]は下記式(6-3)で表される;Zは水素原子、または水酸基を少なくとも1つ有する炭素数2~6のアルキル基である;式(5)において[D]、[E]、[F]の並び順は入れ替えてもよい;式(6-1)~(6-3)におけるエーテル結合側が、式(5)中のCH側である。)
    Figure JPOXMLDOC01-appb-C000003

    (式(6-1)中、fは0~3の整数である;式(6-2)中、gは0~3の整数であり、hは1~4の整数である;式(6-3)中、iは0~3の整数であり、jは1~4の整数である;ただし、f、g、iの少なくとも1つは1以上である。)
  6.  前記Rにおいて、各極性基がそれぞれ異なる炭素原子に結合し、前記極性基の結合している炭素原子同士が、極性基の結合していない炭素原子を含む連結基を介して結合している、請求項1~請求項5のいずれか一項に記載の含フッ素エーテル化合物。
  7.  前記式(2)中のXおよび/またはYが、水酸基を有するアルキル基である、請求項1~請求項6のいずれか一項に記載の含フッ素エーテル化合物。
  8.  分子中に含まれる水酸基の数が8以下である、請求項1~請求項7のいずれか一項に記載の含フッ素エーテル化合物。
  9.  分子中に含まれる水酸基の数が6以下である、請求項1~請求項8のいずれか一項に記載の含フッ素エーテル化合物。
  10.  前記Rが、下記式(7)~(11)のいずれかで表される、請求項1~請求項9のいずれか一項に記載の含フッ素エーテル化合物。
    -CFO-(CFCFO)-(CFO)-CF- (7)
    (式(7)中のm、nは平均重合度を示し、それぞれ0.1~30を表す。)
    -CFO-(CFCFO)-CF- (8)
    (式(8)中のwは平均重合度を示し、0.1~30を表す。)
    -CFCFO-(CFCFCFO)-CFCF- (9)
    (式(9)中のxは平均重合度を示し、0.1~30を表す。)
    -CFCFCFO-(CFCFCFCFO)-CFCFCF- (10)
    (式(10)中のyは平均重合度を示し、0.1~30を表す。)
    -CF(CF)-(OCF(CF)CF-OCF(CF)- (11)
    (式(11)中のzは平均重合度を示し、0.1~30を表す。)
  11.  数平均分子量が500~10000の範囲内である、請求項1~請求項10のいずれか一項に記載の含フッ素エーテル化合物。
  12.  請求項1~請求項11のいずれか一項に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
  13.  基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
     前記潤滑層が、請求項1~請求項11のいずれか一項に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
  14.  前記潤滑層の平均膜厚が、0.5nm~2.0nmである、請求項13に記載の磁気記録媒体。
PCT/JP2022/002903 2021-01-29 2022-01-26 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 WO2022163708A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-013857 2021-01-29
JP2021013857 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163708A1 true WO2022163708A1 (ja) 2022-08-04

Family

ID=82654562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002903 WO2022163708A1 (ja) 2021-01-29 2022-01-26 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Country Status (1)

Country Link
WO (1) WO2022163708A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123315A (ja) * 1990-09-13 1992-04-23 Mitsubishi Kasei Corp 磁気記録媒体の製造方法
JPH0753919A (ja) * 1993-08-11 1995-02-28 Shin Etsu Chem Co Ltd 常温硬化性組成物
JPH11249285A (ja) * 1998-03-04 1999-09-17 Shin Etsu Chem Co Ltd ペリクル用接着剤およびそれを用いたペリクル
JP2005263746A (ja) * 2004-03-22 2005-09-29 Sony Corp 含フッ素エステル化合物、潤滑剤及び記録媒体
JP2005263747A (ja) * 2004-03-22 2005-09-29 Sony Corp 含フッ素エステル化合物、潤滑剤及び記録媒体
WO2019054148A1 (ja) * 2017-09-13 2019-03-21 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04123315A (ja) * 1990-09-13 1992-04-23 Mitsubishi Kasei Corp 磁気記録媒体の製造方法
JPH0753919A (ja) * 1993-08-11 1995-02-28 Shin Etsu Chem Co Ltd 常温硬化性組成物
JPH11249285A (ja) * 1998-03-04 1999-09-17 Shin Etsu Chem Co Ltd ペリクル用接着剤およびそれを用いたペリクル
JP2005263746A (ja) * 2004-03-22 2005-09-29 Sony Corp 含フッ素エステル化合物、潤滑剤及び記録媒体
JP2005263747A (ja) * 2004-03-22 2005-09-29 Sony Corp 含フッ素エステル化合物、潤滑剤及び記録媒体
WO2019054148A1 (ja) * 2017-09-13 2019-03-21 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Similar Documents

Publication Publication Date Title
JP7213813B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7149947B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP6763014B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7177782B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7138646B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7138644B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021132252A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2020184653A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023286626A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7447903B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022163708A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022039079A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7338631B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023276954A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022138478A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023085256A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023085271A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022215726A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7342875B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022215703A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023033055A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224095A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024071392A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023112813A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP2024090085A (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP