WO2023112813A1 - 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 - Google Patents

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 Download PDF

Info

Publication number
WO2023112813A1
WO2023112813A1 PCT/JP2022/045229 JP2022045229W WO2023112813A1 WO 2023112813 A1 WO2023112813 A1 WO 2023112813A1 JP 2022045229 W JP2022045229 W JP 2022045229W WO 2023112813 A1 WO2023112813 A1 WO 2023112813A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
represented
fluorine
compound
Prior art date
Application number
PCT/JP2022/045229
Other languages
English (en)
French (fr)
Inventor
優 丹治
剛 加藤
大輔 柳生
直也 福本
綾乃 浅野
夏実 吉村
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to JP2023567736A priority Critical patent/JPWO2023112813A1/ja
Priority to CN202280082541.6A priority patent/CN118382611A/zh
Publication of WO2023112813A1 publication Critical patent/WO2023112813A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/11Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same saturated acyclic carbon skeleton
    • C07C255/13Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound oxygen atoms bound to the same saturated acyclic carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/19Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and carboxyl groups, other than cyano groups, bound to the same saturated acyclic carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/54Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and etherified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/50Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
    • C10M105/54Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen containing carbon, hydrogen, halogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/56Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
    • C10M105/58Amines, e.g. polyalkylene polyamines, quaternary amines
    • C10M105/60Amines, e.g. polyalkylene polyamines, quaternary amines having amino groups bound to an acyclic or cycloaliphatic carbon atom
    • C10M105/62Amines, e.g. polyalkylene polyamines, quaternary amines having amino groups bound to an acyclic or cycloaliphatic carbon atom containing hydroxy groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds

Definitions

  • the present invention relates to a fluorine-containing ether compound, a lubricant for magnetic recording media, and a magnetic recording medium.
  • Lubricants used in forming the lubricating layer of magnetic recording media include, for example, compounds having polar groups such as hydroxyl groups and amino groups at the ends of fluorine-based polymers having a repeating structure containing —CF 2 —. It is proposed to contain For example, Patent Documents 1, 2, and 3 disclose a skeleton in which three perfluoropolyether chains are linked via a linking group having one or more polar groups, and methylene A fluorine-containing ether compound is disclosed in which terminal groups each having a polar group are bonded via a group ( --CH.sub.2-- ).
  • Patent Documents 4 and 5 a divalent linking group having a polar group is bonded to both ends of a perfluoropolyether chain, and at least one of the end groups is an organic group having a cyano group.
  • a fluorine-containing ether compound to which is attached is disclosed.
  • Patent Document 6 a perfluoropolyether chain, a methylene group (—CH 2 —), and a divalent linking group having a polar group are bonded in this order on both sides of an aliphatic hydrocarbon chain having a hydroxyl group, A fluorine-containing ether compound is disclosed in which a terminal group which is an organic group having a cyano group is bonded to at least one of them.
  • Magnetic recording/reproducing devices are required to further reduce the flying height of the magnetic head. For this reason, it is desired to further reduce the thickness of the lubricating layer in the magnetic recording medium.
  • reducing the thickness of the lubricating layer tends to reduce the corrosion resistance of the magnetic recording medium.
  • projections and the like which cause a decrease in flying stability of the magnetic head, are likely to be formed. For these reasons, there is a demand for a lubricating layer that is highly effective in suppressing corrosion of the magnetic recording medium even if it is thin, and that provides good flying stability of the magnetic head.
  • the present invention includes the following aspects.
  • a first aspect of the present invention provides the following fluorine-containing ether compound.
  • a fluorine-containing ether compound represented by the following formula (1).
  • R 3a , R 3b , and R 3c are perfluoropolyether chains;
  • R 3a , R 3b , and R 3c may be partially or entirely the same, each may be different;
  • R 2 , R 4a , R 4b , and R 5 are divalent divalent groups having at least one polar group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and a sulfo group; is a linking group; some or all of R 2 , R 4a , R 4b and R 5 may be the same or
  • the fluorine-containing ether compound of the first aspect of the present invention preferably has the characteristics described in [2] to [12] below. It is also preferable to arbitrarily combine two or more of the features described in [2] to [12] below.
  • at least one of R 1 and R 6 is a group in which a cyano group is bonded to a carbon atom constituting a phenyl group or an alkyl group having 1 to 6 carbon atoms, [ 1].
  • both R 1 and R 6 are groups in which a cyano group is bonded to a carbon atom constituting a phenyl group or an alkyl group having 1 to 6 carbon atoms, [1] The fluorine-containing ether compound according to any one of to [4]. [6] Any one of [1] to [5], wherein R 2 , R 4a , R 4b , and R 5 in the above formula (1) are each independently a linking group represented by the following formula (2) The fluorine-containing ether compound according to 1.
  • p represents an integer of 1 to 3; p qs each independently represent an integer of 1 to 4, and p r each independently represent an integer of 1 to 4 the leftmost oxygen atom in formula (2) is positioned opposite to R 3b in formula (1); the rightmost oxygen atom in formula (2) is R 3b in formula (1) placed on the side).
  • R 2 and R 5 are each independently a linking group represented by the following formula (3-1) or (3-2), The fluorine-containing ether compound according to any one of the above.
  • s represents an integer of 1 to 3; in formula (3-1), the leftmost oxygen atom is bonded to R 1 or R 6 , and the rightmost oxygen atom is attached to the CH2 adjacent to R3a or R3c .
  • t represents an integer of 2 to 4; in formula (3-2), the oxygen atom on the left is bonded to R 1 or R 6 , and the oxygen atom on the right is R 3a or attached to CH2 adjacent to R3c .
  • R 4a and R 4b are each independently a linking group represented by the following formula (3-1) or (3-3), The fluorine-containing ether compound according to any one of the above.
  • s represents an integer of 1 to 3; in formula (3-1), the leftmost oxygen atom is bonded to CH2 adjacent to R 3a or R 3c , and the rightmost is attached to the CH2 adjacent to R3b .
  • u represents an integer of 2 to 4; in formula (3-3), the oxygen atom on the left side is bonded to CH 2 adjacent to R 3a or R 3c , and the oxygen atom on the right side The atom is attached to the CH2 adjacent to R3b .
  • R 3a and R 3c are the same, R 4a and R 4b are the same, R 1 -R 2 - and R 6 -R 5 - are the same , the fluorine-containing ether compound according to any one of [1] to [8].
  • R 3a , R 3b and R 3c are each independently selected from perfluoropolyether chains represented by the following formulas (4-1) to (4-4).
  • the fluorine-containing ether compound according to any one of [1] to [10], which is one of -CF 2 -(OCF 2 CF 2 ) h -(OCF 2 ) i -OCF 2 - (4-1)
  • h and i represent an average degree of polymerization, h represents 1 to 20, and i represents 0 to 20.
  • j indicates an average degree of polymerization and represents 1 to 15.
  • a second aspect of the present invention provides the following lubricant for magnetic recording media.
  • a lubricant for magnetic recording media comprising the fluorine-containing ether compound according to any one of [1] to [12].
  • a third aspect of the present invention provides the following magnetic recording medium.
  • the lubricant layer has an average thickness of 0.5 nm to 2.0 nm.
  • the fluorine-containing ether compound of the present invention is a compound represented by the above formula (1). Therefore, the fluorine-containing ether compound of the present invention can be preferably used as a material for lubricants for magnetic recording media. Since the lubricant for a magnetic recording medium of the present invention contains the fluorine-containing ether compound of the present invention, it is highly effective in suppressing the corrosion of the magnetic recording medium even when the thickness is small, and the lubrication provides good flying stability of the magnetic head. It can form layers.
  • the magnetic recording medium of the present invention contains the fluorine-containing ether compound of the present invention, has a high effect of suppressing corrosion of the magnetic recording medium, and has a lubricating layer with good floating stability of the magnetic head. Therefore, the magnetic recording medium of the present invention has good flying stability of the magnetic head and excellent reliability and durability. In addition, since the magnetic recording medium of the present invention has a lubricating layer that has a good floating stability of the magnetic head and is highly effective in suppressing corrosion, the thickness of the protective layer and/or the lubricating layer can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a magnetic recording medium of the present invention
  • fluorine-containing materials having polar groups such as hydroxyl groups at the ends of chain structures have been used as materials for lubricants for magnetic recording media (hereinafter sometimes abbreviated as "lubricants") that are applied to the surface of protective layers.
  • lubricants for magnetic recording media
  • Ether compounds are used.
  • the polar groups in the fluorine-containing ether compound bond with active sites on the protective layer to improve the adhesion of the lubricating layer to the protective layer.
  • fluorine-containing ether compounds having polar groups not only at the ends of the chain structure but also in the chain structure are preferably used as materials for lubricants.
  • the main reason for the insufficient anti-corrosion effect of the magnetic recording medium and insufficient flying stability of the magnetic head in a thin lubricating layer formed using a conventional lubricant is the state of the lubricant contained in the lubricating layer. It is presumed that this is because the lubricating layer covers the protective layer unevenly due to its bulkiness. Therefore, in order to realize a lubricant that can form a lubricating layer with a uniform coating state on the protective layer even if the thickness is small, the present inventors have found that the polar group in the fluorine-containing ether compound contained in the lubricant and the protective layer Focusing on the binding with the above active site, we have made extensive studies.
  • a perfluoropolyether chain is arranged in the center of the chain structure, and a divalent linking group having a polar group, a perfluoropolyether chain, and a divalent linking group having a polar group are attached to both ends of the chain structure. are bonded in this order via a methylene group (—CH 2 —), both ends are bonded to a terminal group which is an organic group having 1 to 50 carbon atoms or a hydrogen atom, and at least one terminal group is a carbon It has been found that a fluorine-containing ether compound, which is a group in which a cyano group is bonded to a carbon atom possessed by an organic group having 1 to 8 atoms, may be used.
  • the lubricating layer containing the fluorine-containing ether compound is less likely to generate polar groups that do not bond with the functional groups (active sites) present on the protective layer, and has excellent adhesion to the protective layer. From this, the lubricant containing the fluorine-containing ether compound can form a lubricating layer that evenly coats the protective layer even if it is thin, and has a high effect of suppressing corrosion of the magnetic recording medium. It is presumed that a lubricating layer with good floating stability can be obtained.
  • At least one terminal group contains a cyano group (--CN). Free rotation of the bond between the carbon atom constituting the cyano group contained in the terminal group and the carbon atom adjacent to the carbon atom constituting the cyano group is difficult. For this reason, the cyano group contained in at least one terminal group and the polar group of the divalent linking group in the fluorine-containing ether compound adjacent to the terminal group containing the cyano group are difficult to interact with each other. . Therefore, the cyano group contained in at least one terminal group in the fluorine-containing ether compound and the polar group of the divalent linking group adjacent to the terminal group containing the cyano group inhibit interaction with each other with the protective layer. Very little ability.
  • the divalent linking groups having polar groups respectively arranged between the two terminal groups and the perfluoropolyether chain are adjacent to each other with the perfluoropolyether chain interposed therebetween.
  • the distance from the divalent linking group having a polar group is appropriate. Therefore, the polar groups possessed by the divalent linking groups respectively arranged between the two terminal groups and the perfluoropolyether chain are the polar groups possessed by the divalent linking groups adjacent across the perfluoropolyether chain. difficult to interact with.
  • the polar groups possessed by the divalent linking groups respectively arranged between the two terminal groups and the perfluoropolyether chain are the polar groups possessed by the divalent linking groups adjacent across the perfluoropolyether chain. Therefore, the interaction with the protective layer is less likely to be inhibited.
  • polar groups are provided between the perfluoropolyether chain arranged in the center of the chain structure and the two perfluoropolyether chains arranged on the terminal group side, respectively.
  • a divalent linking group is arranged. The distance between these two divalent linking groups is justified by the centrally located perfluoropolyether chain of the chain structure.
  • the distance between these two divalent linking groups and the divalent linking group having a polar group adjacent to each other across the perfluoropolyether chain arranged on the terminal group side is arranged on the terminal group side It is justified by two perfluoropolyether chains separated by Therefore, the polar groups of the two divalent linking groups adjacent to the perfluoropolyether chain arranged in the center of the chain structure are less likely to interfere with the protective layer.
  • the polar group of the divalent linking group in the fluorine-containing ether compound all binds to the active site on the protective layer, at least one terminal They are less likely to be inhibited by the polar groups of the cyano groups or other divalent linking groups contained in the groups, and independently exhibit good interaction with the protective layer.
  • the polar group and the cyano group contained in the fluorine-containing ether compound are each adsorbed to different sites on the protective layer. Therefore, the cyano group contained in at least one terminal group of the fluorine-containing ether compound and the polar group of the divalent linking group can be independently bonded to the functional group (active point) on the protective layer.
  • the cyano group contained in at least one terminal group and the polar group of the divalent linking group inhibit bonding with the active site on the protective layer. It is considered that each of them is likely to be involved in bonding with the active sites on the protective layer.
  • the cyano group contained in at least one end group and the polar group of the divalent linking group are each independently a positively charged site on the protective layer or a negatively charged site. Binds to sites (active sites).
  • the lubricant containing the fluorine-containing ether compound polar groups that do not bond with active sites on the protective layer are less likely to occur, and the number of polar groups that do not participate in bonding with active sites on the protective layer is suppressed.
  • the lubricant containing the fluorine-containing ether compound is unlikely to be bulky, has excellent adhesion to the protective layer, and can form a lubricating layer that evenly coats the protective layer even if the thickness is small. Presumed.
  • the polar groups contained in the fluorine-containing ether compound are less likely to agglomerate. Further, each of the three perfluoropolyether chains contained in the fluorine-containing ether compound is adhered to the protective layer by the polar groups of the divalent linking groups at both ends. Therefore, the fluorine-containing ether compound applied on the protective layer tends to wet and spread over the protective layer, and is unlikely to become bulky in the lubricating layer. Therefore, the lubricant containing the fluorine-containing ether compound has good adhesion to the protective layer, and can form a lubricating layer that evenly covers the protective layer even if the thickness is small.
  • Lubricants containing the fluorine-containing ether compound described above can form a lubricating layer that evenly covers the protective layer even when the thickness is small due to the synergistic effect obtained based on the molecular structure of the fluorine-containing ether compound described above. It is presumed that a lubricating layer having a high effect of suppressing corrosion of the magnetic recording medium and having good floating stability of the magnetic head can be obtained. Furthermore, the present inventors formed a thin lubricating layer having a thickness of 9.0 ⁇ to 9.5 ⁇ on the protective layer using a lubricant containing the above fluorine-containing ether compound, and the effect of suppressing the corrosion of the magnetic recording medium was obtained. It was confirmed that the flying stability of the magnetic head was high, and the present invention was conceived.
  • fluorine-containing ether compound the lubricant for magnetic recording media, and the magnetic recording media of the present invention are described in detail below.
  • this invention is not limited only to embodiment shown below.
  • the present invention can add, omit, replace, and change the number, amount, position, ratio, material, configuration, etc. within the scope of the present invention.
  • the fluorine-containing ether compound of this embodiment is represented by the following formula (1).
  • R 3a , R 3b , and R 3c are perfluoropolyether chains;
  • R 3a , R 3b , and R 3c may be partially or entirely the same, each may be different;
  • R 2 , R 4a , R 4b and R 5 are divalent divalent groups having at least one polar group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group and a sulfo group; is a linking group; some or all of R 2 , R 4a , R 4b and R 5 may be the same or different;
  • the terminal is an oxygen atom;
  • R 1 and R 6 are an organic group having 1 to 50 carbon atoms or a hydrogen atom, and at least one of the carbon atoms of the organic group having 1 to 8 carbon atoms A group in which a cyano group is bonded to an atom.
  • the fluorine-containing ether compound of the present embodiment has a perfluoropolyether chain represented by R3b (hereinafter sometimes referred to as "PFPE chain”) at the center of the chain structure. are placed.
  • PFPE chain perfluoropolyether chain represented by R3b
  • a divalent linking group having a polar group represented by R 4a and R 4b a divalent linking group having a polar group represented by R 4a and R 4b
  • a PFPE chain represented by R 3a and R 3c a PFPE chain represented by R 3a and R 3c
  • R 2 and R 5 and a divalent linking group having a polar group are linked in this order via a methylene group ( --CH.sub.2-- ).
  • terminal groups represented by R 1 and R 6 which are organic groups having 1 to 50 carbon atoms or hydrogen atoms are bonded to both ends. At least one of the terminal groups represented by R 1 and R 6 is a group in which a cyano group is bonded to a carbon atom possessed by an organic group having 1 to 8 carbon atoms (hereinafter referred to as a "terminal having a cyano group It is sometimes referred to as “base”.
  • R 3a , R 3b and R 3c are perfluoropolyether chains.
  • the PFPE chains represented by R 3a , R 3b , and R 3c cover the surface of the protective layer when the lubricant containing the fluorine-containing ether compound of the present embodiment is applied onto the protective layer to form a lubricating layer.
  • the lubricating layer is provided with lubricating properties to reduce the frictional force between the magnetic head and the protective layer.
  • the PFPE chains represented by R 3a , R 3b , and R 3c are appropriately selected according to the performance required for the lubricant containing the fluorine-containing ether compound.
  • R 3a , R 3b and R 3c may be the same, or may be different from each other.
  • R 3a , R 3b and R 3c , R 3a and R 3c are preferably the same, more preferably R 3a , R 3b and R 3c are all the same. This is because the fluorine-containing ether compound coats the protective layer in a more uniform state, resulting in a lubricating layer with better adhesion.
  • “the PFPE chains are the same” includes the case where the structures of the repeating units of the PFPE chains are the same and the average degrees of polymerization are different.
  • the fluorine-containing ether compound represented by formula (1) comprises three PFPE chains bonded via a divalent linking group having a polar group represented by R 4a and R 4b and a methylene group (-CH 2 -). (R 3a , R 3b , and R 3c ). Therefore, for example, compared with a fluorine-containing ether compound in which the number of PFPE chains bonded via a divalent linking group having a polar group and a methylene group (—CH 2 —) is 2 or less, PFPE chains are The number of divalent linking groups having polar groups that are brought into close contact with the protective layer is large. Therefore, the fluorine-containing ether compound represented by formula (1) can form a lubricating layer with good adhesion to the protective layer, compared to the case where the number of PFPE chains is two or less.
  • PFPE chains represented by R 3a , R 3b and R 3c include those composed of perfluoroalkylene oxide polymers or copolymers.
  • Perfluoroalkylene oxides include, for example, perfluoromethylene oxide, perfluoroethylene oxide, perfluoro-n-propylene oxide, and perfluorobutylene oxide.
  • R 3a , R 3b , and R 3c in formula (1) are each independently a PFPE chain represented by the following formula (4) derived from a perfluoroalkylene oxide polymer or copolymer. . -(CF 2 ) w1 -O-(CF 2 O) w2 -(CF 2 CF 2 O) w3 -(CF 2 CF 2 CF 2 O) w4 -(CF 2 CF 2 CF 2 CF 2 O) w5 -( CF 2 ) w6 ⁇ (4) (in the formula (4), w2, w3, w4, and w5 represent an average degree of polymerization, each independently representing 0 to 20; provided that all of w2, w3, w4, and w5 are It is not 0 at the same time; w1 and w6 are average values representing the number of CF 2 , each independently representing 1 to 3; the sequence of repeating units in formula (4) is not particularly limited. .)
  • w2, w3, w4, and w5 represent average degrees of polymerization, each independently representing 0 to 20, preferably 0 to 15, more preferably 0 to 10. All of w2, w3, w4, and w5 in equation (4) are not 0 at the same time.
  • w1 and w6 are average values indicating the number of CF 2 and each independently represents 1 to 3.
  • w1 and w6 are determined according to the structure of the repeating unit arranged at the ends of the chain structure in the PFPE chain represented by formula (4).
  • (CF 2 O), (CF 2 CF 2 O), (CF 2 CF 2 CF 2 O), and (CF 2 CF 2 CF 2 CF 2 O) in formula (4) are repeating units. There is no particular limitation on the arrangement order of the repeating units in formula (4). Also, the number of types of repeating units in formula (4) is not particularly limited.
  • the PFPE chains represented by R 3a , R 3b and R 3c are each independently any one selected from PFPE chains represented by the following formulas (4-1) to (4-4). more preferred.
  • R 3a , R 3b , and R 3c are each independently any one selected from PFPE chains represented by formulas (4-1) to (4-4), lubrication having good lubricity It becomes a fluorine-containing ether compound from which a layer can be obtained.
  • R 3a , R 3b , and R 3c are each independently any one selected from PFPE chains represented by formulas (4-1) to (4-4), the carbon in the PFPE chain
  • the ratio of the number of oxygen atoms (the number of ether bonds (--O--)) to the number of atoms is appropriate. Therefore, it becomes a fluorine-containing ether compound having moderate hardness. Therefore, the fluorine-containing ether compound applied on the protective layer is less likely to aggregate on the protective layer, and a thinner lubricating layer can be formed with sufficient coverage.
  • the fluorine-containing ether compound since the fluorine-containing ether compound has appropriate flexibility, it is possible to form a lubricating layer with better floating stability of the magnetic head.
  • h and i represent an average degree of polymerization, h represents 1 to 20, and i represents 0 to 20.
  • j indicates an average degree of polymerization and represents 1 to 15.
  • k represents an average degree of polymerization and represents 1 to 10.
  • formula (4-1) there is no particular limitation on the arrangement order of the repeating units (OCF 2 CF 2 ) and (OCF 2 ).
  • the number h of (OCF 2 CF 2 ) and the number i of (OCF 2 ) may be the same or different.
  • the PFPE chain represented by formula (4-1) may be a polymer of (OCF 2 CF 2 ) (in other words, i in formula (4-1) is 0). Further, the PFPE chain represented by formula (4-1) may be a random copolymer, a block copolymer, or an alternating copolymer consisting of (OCF 2 CF 2 ) and (OCF 2 ). good.
  • h indicating the average degree of polymerization is 1 to 20, i is 0 to 20, j is 1 to 15, and k is 1 to 10, so good lubrication It becomes a fluorine-containing ether compound that provides a lubricating layer having properties. Further, in the formulas (4-1) to (4-3), since h and i indicating the average degree of polymerization are 20 or less, j is 15 or less, and k is 10 or less, the viscosity of the fluorine-containing ether compound is high. It does not become too thick, and the lubricant containing this becomes easy to apply, which is preferable.
  • h, i, j, and k which indicate the average degree of polymerization, are preferably from 1 to 10 because the fluorine-containing ether compound easily wets and spreads on the protective layer and easily provides a lubricating layer having a uniform film thickness. , more preferably 1.5 to 8, and even more preferably 2 to 7.
  • Formula (4-4) there is no particular limitation on the arrangement order of the repeating units (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O).
  • the number w8 of (CF 2 CF 2 CF 2 O) and the number w9 of (CF 2 CF 2 O) indicating the average degree of polymerization may be the same or different.
  • Formula (4-4) includes any of random copolymers, block copolymers, and alternating copolymers consisting of monomer units (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O). There may be.
  • w8 and w9 which indicate the average degree of polymerization, each independently represents 1-20, preferably 1-15, more preferably 1-10.
  • w7 and w10 are average values indicating the number of CF 2 , each independently representing 1-2.
  • w7 and w10 are determined according to the structure of the repeating unit arranged at the ends of the chain structure in the PFPE chain represented by formula (4-4).
  • R 4a and R 4b are at least one polar group selected from the group consisting of a hydroxyl group, an amino group, a carboxyl group, and a sulfo group (hereinafter simply " It is a divalent linking group having a polar group.
  • R4a is located between the PFPE chain represented by R3a and the PFPE chain represented by R3b .
  • R4b is located between the PFPE chain represented by R3b and the PFPE chain represented by R3c .
  • R 4a and R 4b adhere the fluorine-containing ether compound to the protective layer.
  • the lubricant containing the fluorine-containing ether compound of the present embodiment can form a thin lubricating layer with a sufficient coverage.
  • R 4a and R 4b may be the same or different.
  • the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, and a lubricating layer having better adhesion can be formed.
  • the fluorine-containing ether compound can be produced easily and efficiently.
  • "R 4a and R 4b are the same” means that an atom contained in R 4a is and the atoms contained in R4b are arranged symmetrically.
  • the divalent linking groups represented by R 4a and R 4b preferably have oxygen atoms at both ends thereof.
  • the oxygen atoms placed at both ends of the divalent linking groups represented by R 4a and R 4b are methylene groups (—CH 2 —) placed on both sides of R 4a and R 4b and ether bonds (—O -) is formed.
  • ether bonds impart appropriate flexibility to the fluorine-containing ether compound represented by formula (1), and the affinity between the polar groups of the divalent linking groups represented by R 4a and R 4b and the protective layer. increase sex.
  • each of the divalent linking groups represented by R 4a and R 4b one or more polar groups are bonded to the carbon atoms of the alkylene group having 3 to 6 carbon atoms, and oxygen atoms are bonded to both ends.
  • the alkylene group having 3 to 6 carbon atoms is preferably an alkylene group having 3 to 4 carbon atoms.
  • the alkylene group having 3 to 6 carbon atoms preferably has a linear structure.
  • R 4a and R 4b are groups in which a polar group is bonded to a carbon atom located near the center of a straight-chain alkylene group having 3 to 6 carbon atoms, and oxygen atoms are bonded to both ends. is preferably This is because the fluorine-containing ether compound coats the protective layer in a more uniform state, resulting in a lubricating layer with better adhesion.
  • the polar group possessed by R 4a and R 4b is at least one selected from the group consisting of a hydroxyl group (--OH), an amino group (--NH 2 ), a carboxy group (--COOH) and a sulfo group (--SO 3 H). is.
  • the polar group is a hydroxyl group. That is, each of R 4a and R 4b preferably has one or more hydroxyl groups.
  • a hydroxyl group has a large interaction with a protective layer, especially a protective layer made of a carbon-based material.
  • each of R 4a and R 4b is a fluorine-containing ether compound having one or more hydroxyl groups
  • the lubricating layer containing this has even higher adhesion to the protective layer.
  • R 4a and R 4b is preferably independently a linking group represented by the following formula (2).
  • p represents an integer of 1 to 3; p qs each independently represent an integer of 1 to 4, and p r each independently represent an integer of 1 to 4 the leftmost oxygen atom in formula (2) is positioned opposite to R 3b in formula (1); the rightmost oxygen atom in formula (2) is R 3b in formula (1) placed on the side).
  • p represents an integer of 1 to 3, preferably 1 or 2, more preferably 1.
  • p in formula (2) is 2 or 3
  • the combination of q and r in the multiple repeating units (-(CH 2 ) q -CH(OH)-(CH 2 ) r -O-) is They may be the same or different.
  • p qs each independently represent an integer of 1 to 4, preferably 1 or 2, more preferably 1.
  • the leftmost oxygen atom in formula (2) is positioned opposite R3b in formula (1). That is, the leftmost oxygen atom in formula (2) is located on the molecular terminal side ( R1 or R6 side) of R4a or R4b with R3b as the center.
  • p r's each independently represent an integer of 1 to 4, preferably 1 or 2, more preferably 1.
  • the rightmost oxygen atom in formula (2) is placed on the R3b side in formula (1). That is, the rightmost oxygen atom in formula (2) is located on the molecular center side ( R3b side) of R4a or R4b with R3b as the center.
  • R 4a and R 4b are preferably each independently a linking group represented by the following formula (3-1) or (3-3).
  • formula (3-1) the leftmost oxygen atom is bonded to the CH 2 adjacent to R 3a or R 3c , and the rightmost oxygen atom is bonded to the CH 2 adjacent to R 3b .
  • formula (3-3) the oxygen atom on the left side is bonded to CH 2 adjacent to R 3a or R 3c , and the oxygen atom on the right side is bonded to CH 2 adjacent to R 3b .
  • R 4a and R 4b is a linking group represented by formula (3-1) or (3-3) because synthesis of the fluorine-containing ether compound represented by formula (1) is easy.
  • s represents an integer of 1 to 3; in formula (3-1), the leftmost oxygen atom is bonded to CH2 adjacent to R 3a or R 3c , and the rightmost is attached to the CH2 adjacent to R3b .
  • u represents an integer of 2 to 4; in formula (3-3), the oxygen atom on the left side is bonded to CH 2 adjacent to R 3a or R 3c , and the oxygen atom on the right side The atom is attached to the CH2 adjacent to R3b .
  • s represents an integer of 1 to 3, preferably 1 or 2, more preferably 1.
  • R 4a and R 4b are formula (3-1) and s is 1, synthesis of the fluorine-containing ether compound represented by formula (1) is easier, which is preferable.
  • R 4a and R 4b are the linking groups represented by the formula (3-1) and s is 1, it has a glycerin structure with excellent flexibility, so that the adsorptivity to the protective layer is high. , it becomes a fluorine-containing ether compound capable of forming a lubricating layer with better floating stability of the magnetic head.
  • the linking group represented by formula (3-3) has a structure in which 1 to 3 methylene groups are added to the skeleton of glycerin (--OCH 2 CH(OH)CH 2 O--). Therefore, the lubricating layer containing the fluorine-containing ether compound in which R 4a and R 4b are represented by formula (3-3) has good hydrophobicity compared to the case where u is 1 in formula (3-3). become a thing. As a result, the lubricating layer can effectively prevent the intrusion of water, which causes corrosion of the magnetic recording medium, and is highly effective in suppressing the corrosion of the magnetic recording medium.
  • u represents an integer of 2 to 4, preferably an integer of 2 to 3, more preferably 2.
  • R 2 and R 5 are divalent divalent compounds having at least one polar group selected from the group consisting of a hydroxyl group, an amino group, a carboxy group, and a sulfo group. It is a linking group.
  • R 2 is bonded to R 1 through an ether bond when the terminal on the side bonded to R 1 is an oxygen atom and R 1 is an organic group.
  • R 5 is bonded to R 6 via an ether bond when the terminal on the side bonded to R 6 is an oxygen atom and R 6 is an organic group.
  • R1 is a hydrogen atom
  • the terminal oxygen atom of R2 and R1 form a hydroxyl group
  • R6 is a hydrogen atom
  • the terminal oxygen atom of R5 and R6 form a hydroxyl group.
  • R 2 , R 4a , R 4b and R 5 in the fluorine-containing ether compound represented by formula (1) may be the same or different. Therefore, R2 and R5 may be the same or different.
  • R 2 and R 5 are the same, the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, and a lubricating layer having better adhesion can be formed.
  • “R 2 and R 5 are the same” means the skeleton (—R 3a —CH 2 —R 4a —CH 2 -R 3b -CH 2 -R 4b -CH 2 -R 3c -), the atoms contained in R 2 and the atoms contained in R 5 are arranged symmetrically.
  • each of R 2 and R 5 has one or more polar groups. , a favorable interaction occurs between the lubricating layer and the protective layer.
  • R 2 and R 5 can be appropriately selected depending on the performance required for the lubricant containing the fluorine-containing ether compound.
  • the polar group possessed by R 2 and R 5 is at least one selected from the group consisting of a hydroxyl group (--OH), an amino group (--NH 2 ), a carboxy group (--COOH) and a sulfo group (--SO 3 H). is. Among these, it is particularly preferable that the polar group is a hydroxyl group. That is, each of R 2 and R 5 preferably has one or more hydroxyl groups. A hydroxyl group has a large interaction with a protective layer, especially a protective layer made of a carbon-based material.
  • the lubricating layer containing the fluorine-containing ether compound has even higher adhesion to the protective layer.
  • the total number of hydroxyl groups contained in R 2 and R 5 in formula (1) is preferably 2 to 6, More preferably 2-5, most preferably 2-4.
  • the total number of hydroxyl groups is 2 or more, the interaction between the hydroxyl groups of R 2 and/or R 5 and the protective layer can be obtained more effectively. As a result, it becomes a fluorine-containing ether compound capable of forming a lubricating layer having high adhesion to the protective layer.
  • the total number of hydroxyl groups is 6 or less, the number of polar groups not participating in bonding between the lubricating layer and the active sites on the protective layer is reduced.
  • the lubricating layer containing the fluorine-containing ether compound has sufficiently high hydrophobicity. Therefore, it is possible to prevent water, which causes corrosion of the magnetic recording medium, from being attracted to the lubricating layer. Therefore, it is possible to form a lubricating layer that can more effectively suppress contamination and corrosion of the magnetic recording medium.
  • the divalent linking group represented by R 2 has an oxygen atom at the end bonded to R 1 , and an oxygen atom at the other end (the end bonded to CH 2 adjacent to R 2 ) is preferably arranged.
  • the divalent linking group represented by R 5 has an oxygen atom at the end that bonds to R 6 , and the other end (the end that bonds to CH 2 adjacent to R 5 ) also has Oxygen atoms are preferably arranged.
  • R 1 and R 6 are an organic group having 1 to 50 carbon atoms
  • the oxygen atoms placed at both ends of the divalent linking group represented by R 2 and R 5 are forms an ether bond (--O--) with the atom bonded to.
  • Each of the divalent linking groups represented by R 2 and R 5 has one or more polar groups bonded to the carbon atoms of the alkylene group having 3 to 8 carbon atoms, and oxygen atoms bonded to both ends. is preferably a group containing The alkylene group having 3 to 8 carbon atoms is preferably an alkylene group having 3 to 5 carbon atoms. The alkylene group having 3 to 8 carbon atoms preferably has a linear structure. This is because the fluorine-containing ether compound coats the protective layer more uniformly, and a lubricating layer having better adhesion can be formed.
  • R 2 and R 5 are each independently preferably a linking group represented by the following formula (2).
  • p represents an integer of 1 to 3; p qs each independently represent an integer of 1 to 4, and p r each independently represent an integer of 1 to 4 the leftmost oxygen atom in formula (2) is positioned opposite to R 3b in formula (1); the rightmost oxygen atom in formula (2) is R 3b in formula (1) placed on the side).
  • R 2 and R 5 are linking groups represented by formula (2)
  • p represents an integer of 1 to 3, and 1 or 2 One is preferred, and one is more preferred.
  • p in formula (2) is 2 or 3
  • the combination of q and r in the multiple repeating units (-(CH 2 ) q -CH(OH)-(CH 2 ) r -O-) is They may be the same or different.
  • p qs each independently represent an integer of 1 to 4, preferably 1 or 2, more preferably 1.
  • the leftmost oxygen atom in formula (2) is positioned opposite R3b in formula (1). That is, when R 2 and R 5 are linking groups represented by formula (2), the leftmost oxygen atom in formula (2) is the molecular terminal side of R 2 or R 5 ( R 1 or R 6 side).
  • p r's each independently represent an integer of 1 to 4, preferably 1 or 2, more preferably 1.
  • the rightmost oxygen atom in formula (2) is placed on the R3b side in formula (1). That is, when R 2 and R 5 are linking groups represented by formula (2), the oxygen atom on the rightmost side in formula (2) is on the molecular center side of R 2 or R 5 with R 3b as the center ( R 3b side).
  • R 2 and R 5 are each independently preferably a linking group represented by the following formula (3-1) or (3-2).
  • formula (3-1) the leftmost oxygen atom is bonded to R 1 or R 6 and the rightmost oxygen atom is bonded to CH 2 adjacent to R 3a or R 3c .
  • formula (3-2) the oxygen atom on the left is bonded to R 1 or R 6 and the oxygen atom on the right is bonded to CH 2 adjacent to R 3a or R 3c .
  • s represents an integer of 1 to 3; in formula (3-1), the leftmost oxygen atom is bonded to R 1 or R 6 , and the rightmost oxygen atom is attached to the CH2 adjacent to R3a or R3c .
  • t represents an integer of 2 to 4; in formula (3-2), the oxygen atom on the left is bonded to R 1 or R 6 , and the oxygen atom on the right is R 3a or attached to CH2 adjacent to R3c .
  • R 2 and R 5 are a linking group represented by formula (3-1) or (3-2), because synthesis of the fluorine-containing ether compound represented by formula (1) is easy. Further, when R 2 and R 5 are linking groups represented by formula (3-1) or (3-2), and R 1 and R 6 are organic groups, R 2 and R 1 , and R5 and R6 are ether-bonded. In addition, ether linkages will be placed between R2 and the CH2 adjacent to R2 and between R5 and the CH2 adjacent to R5 . As a result, it becomes a fluorine-containing ether compound having moderate flexibility, and can form a lubricating layer having better corrosion resistance and flying stability.
  • Each of the linking groups represented by formulas (3-1) and (3-2) has a hydroxyl group that has a particularly large interaction with the protective layer among polar groups.
  • methylene groups --CH.sub.2--
  • R 2 and R 5 are the linking groups represented by the formula (3-1) or (3-2)
  • a lubricating layer having even higher adhesion to the protective layer is formed for the following reasons. It becomes a fluorine-containing ether compound that can be formed.
  • the linking groups represented by formulas (3-1) and ( 3-2 ) a methylene group and R 2 or At least the terminal oxygen atom (--O--) of R 5 is arranged. Therefore, the distance between the hydroxyl groups contained in the linking groups represented by formulas (3-1) and (3-2) and the cyano groups of R 1 and/or R 6 is appropriate. Also, when R 1 and R 6 are organic groups, the ether linkages connecting R 1 and R 2 and R 5 and R 6 slightly inhibit free rotation of the end groups. Therefore, the cyano groups of R 1 and/or R 6 and the hydroxyl groups of the linking groups represented by formulas (3-1) and (3-2) are unlikely to interact with each other.
  • the hydroxyl groups possessed by the linking groups represented by formulas (3-1) and (3-2) and the terminal groups represented by R 1 and/or R 6 are independent of each other and have good adhesion to the protective layer. It exhibits interaction and tends to be independently bonded with a large number of functional groups (active sites) present on the protective layer.
  • hydroxyl groups possessed by the linking groups represented by formulas (3-1) and (3-2) have adsorption ability due to interaction of hydrogen atoms with negatively charged sites on the protective layer via hydrogen bonds. show.
  • the cyano group possessed by R 1 and/or R 6 has a negatively charged nitrogen atom, and therefore exhibits adsorption ability by interacting with a positively charged site on the protective layer. Therefore, the cyano groups of R 1 and/or R 6 and the hydroxyl groups of the linking groups represented by formulas (3-1) and (3-2) adsorb to different sites on the protective layer. .
  • R 2 and R 5 are linking groups represented by formula (3-1) or (3-2), the cyano group of R 1 and/or R 6 and the The polar group possessed by the divalent linking group can independently interact with the functional group (active site) on the protective layer.
  • R 2 and R 5 are the linking groups represented by the formula (3-1), synthesis of the fluorine-containing ether compound represented by the formula (1) is facilitated, which is preferable.
  • s is an integer of 1-3. Since s in the linking group represented by the formula (3-1) is 1 or more, when R 2 and R 5 are the linking groups represented by the formula (3-1), the polar group particularly interacts with the protective layer. It contains one or more hydroxyl groups having a large action. As a result, it becomes a fluorine-containing ether compound that provides a lubricating layer having even better adhesion to the protective layer. In addition, since s in formula (3-1) is 3 or less, the linking group represented by formula (3-1) has a large number of hydroxyl groups in the linking group represented by formula (3-1). It is possible to prevent corrosion of a magnetic recording medium having a lubricating layer containing the fluorine ether compound from becoming too polar.
  • the linking group represented by the formula (3-1) when s in the formula (3-1) is 2 or 3, hydroxyl groups contained in the linking group represented by the formula (3-1) distance is appropriate. As a result, even if the number of hydroxyl groups contained in R 2 and / or R 5 is plural, the hydroxyl groups contained in R 2 and / or R 5 are likely to participate in bonding with the active sites on the protective layer. become a thing.
  • s is preferably 1 or 2.
  • the fluorine-containing ether compound is easier to synthesize, which is more preferable.
  • the linking group represented by formula (3-2) has a structure in which 1 to 3 methylene groups are added to the skeleton of glycerin (--OCH 2 CH(OH)CH 2 O--). Therefore, the lubricating layer containing the fluorine-containing ether compound in which R 2 and R 5 are represented by formula (3-2) has good hydrophobicity compared to the case where t in formula (3-2) is 1. become a thing. As a result, the lubricating layer can effectively prevent the intrusion of water, which causes corrosion of the magnetic recording medium, and is highly effective in suppressing the corrosion of the magnetic recording medium.
  • t is an integer of 2 to 4, preferably an integer of 2 to 3, and more preferably 2. Since t in formula (3-2) is from 2 to 4, the methylene group contained in formula (3-2) improves the hydrophobicity of the fluorine-containing ether compound, and a higher corrosion inhibition effect can be obtained. become a thing.
  • the divalent linking group (eg, R 5 ) that bonds to the other terminal group is preferably a linking group represented by formula (3-2).
  • the hydrogen atom as the other terminal group (eg, R 6 ) in formula (3-2) is a linking group represented by formula (3-2)
  • the hydroxyl group formed by bonding with the oxygen atom on the left side of has an appropriate distance from the hydroxyl group contained in the linking group represented by formula (3-2).
  • the hydroxyl group formed by bonding the hydrogen atom, which is the other terminal group, to R5 or R2 , and the hydroxyl group contained in R5 or R2 participate in bonding with the active sites on the protective layer, respectively. becomes easy.
  • R 2 and R 5 are linking groups represented by formula (3-1) or (3-2), R 2 and R 5 are more preferably the same because the coating state becomes more uniform and a lubricating layer having better adhesion can be formed.
  • R 1 and R 6 are terminal groups bonded to terminal oxygen atoms of R 2 or R 5 .
  • Terminal groups represented by R 1 and R 6 are each independently an organic group having 1 to 50 carbon atoms or a hydrogen atom.
  • At least one of R 1 and R 6 is a group in which a cyano group is bonded to a carbon atom possessed by an organic group having 1 to 8 carbon atoms (a terminal group having a cyano group).
  • R 1 and R 6 may be the same or different.
  • the cyano group contained in the terminal group having a cyano group exhibits moderate interaction with the protective layer. For this reason, the terminal group having a cyano group improves the adhesion to the protective layer and has a high effect of suppressing the corrosion of the magnetic recording medium even when the thickness is small, and the lubrication agent has good flying stability of the magnetic head. It has the function of forming layers.
  • the type of terminal group having a cyano group can be appropriately selected according to the performance required of the lubricant containing the fluorine-containing ether compound.
  • the number of cyano groups possessed by the terminal group having a cyano group is not particularly limited, and may be one or two or more.
  • the fluorine-containing ether compound can form a lubricating layer with better adhesion to the protective layer, which is preferable.
  • the terminal group having a cyano group has one cyano group, because the fluorine-containing ether compound can be produced relatively easily.
  • a terminal group having a cyano group is a group in which a cyano group is bonded to a carbon atom of an organic group having 1 to 8 carbon atoms.
  • the fluorine-containing ether compound represented by formula (1) since the number of carbon atoms in the organic group is 1 to 8, the terminal group having a cyano group is unlikely to cause steric hindrance, and the affinity between the cyano group and the protective layer is improved. It becomes a fluorine-containing ether compound with good properties.
  • Examples of the organic group in the terminal group having a cyano group include a phenyl group or an alkyl group having 1 to 8 carbon atoms having a linear or branched structure, and a phenyl group or a linear or branched An alkyl group having a chain structure and having 1 to 6 carbon atoms is preferred.
  • the organic group in the terminal group having a cyano group is a phenyl group or an alkyl group having 1 to 6 carbon atoms having a linear or branched structure
  • the cyano group possessed by R 1 and/or R 6 With this, the interaction with the polar group of the adjacent linking group (R 2 or R 5 ) is more effectively suppressed, resulting in a fluorine-containing ether compound having a high affinity between the cyano group and the protective layer.
  • the organic group in the terminal group having a cyano group is preferably a hydrocarbon group having 3 or more carbon atoms.
  • the fluorine-containing ether compound has excellent hydrophobicity as compared with the case where the organic group is a hydrocarbon group having 2 or less carbon atoms. As a result, it is possible to effectively prevent the intrusion of water, which causes corrosion of the magnetic recording medium, and form a lubricating layer with a higher corrosion inhibiting effect on the magnetic recording medium.
  • the organic group in the terminal group having a cyano group is preferably a linear alkyl group.
  • R 1 and / or R The cyano group of 6 is likely to be close to the protective layer, and the cyano group is likely to interact with the active sites on the protective layer.
  • the fluorine-containing ether compound can form a lubricating layer that has a high adsorptive force to the protective layer and provides better floating stability of the magnetic head.
  • the organic group in the terminal group having a cyano group when it is a branched alkyl group, it preferably has a plurality of cyano groups. In this case, even if the organic group in the terminal group having a cyano group is bulkier than in the case of a linear alkyl group, since the number of cyano groups in the terminal group is large, and the cyano group are likely to interact with each other.
  • the organic group in the terminal group having a cyano group may have a polar site such as a carbonyl group in addition to the cyano group.
  • a polar site such as a carbonyl group in addition to the cyano group.
  • the interaction between the polar site of the terminal group and the protective layer will The group becomes more likely to come close to the protective layer, and the cyano group of the terminal group becomes more likely to interact with the active site on the protective layer.
  • the fluorine-containing ether compound can form a lubricating layer having a high adsorptive force to the protective layer and a better floating stability of the magnetic head.
  • Terminal groups having a cyano group include, for example, any one of organic groups represented by the following formulas (5-1) to (5-11).
  • the dotted lines in formulas (5-1) to (5-11) are bonds bonded to R 2 or R 5 in formula (1).
  • the terminal group having a cyano group in the fluorine-containing ether compound of this embodiment is not limited to organic groups represented by formulas (5-1) to (5-11).
  • terminal group having a cyano group among the terminal groups represented by formulas (5-1) to (5-11), formulas (5-1), (5-2), (5-6) to (5 -11), more preferably terminal groups represented by formulas (5-1), (5-2), (5-9) to (5-11). This is because the fluorine-containing ether compound is relatively easy to produce.
  • Terminal groups represented by formulas (5-1) to (5-4) have linear aliphatic nitriles, for example, terminal groups represented by formulas (5-5) to (5-11) high liquidity compared to Therefore, even if part of the lubricating layer containing the fluorine-containing ether compound is deformed due to wear and the fluorine-containing ether compound in the lubricating layer moves to another location and forms a projection, the restoration returns to its original position. Powerful.
  • the linear aliphatic nitrile since the linear aliphatic nitrile has high fluidity, it has a high ability to interact with the active sites on the protective layer, and has a high adsorptive power to the protective layer. From these facts, the fluorine-containing ether compounds having terminal groups represented by formulas (5-1) to (5-4) can form a lubricating layer that provides better floating stability of the magnetic head.
  • fluorine-containing ether compounds having terminal groups represented by formulas (5-9) to (5-11) are, for example, compounds containing terminal groups represented by formulas (5-1) to (5-8).
  • Ability of the cyano group of R 1 and/or R 6 and the polar group of the adjacent linking group (R 2 or R 5 ) to inhibit mutual interaction with the protective layer, compared to fluorine ether compounds is small.
  • the aromatic nitriles having terminal groups represented by formulas (5-9) to (5-11) have a phenyl group as an organic group in the terminal group.
  • the lubricating layer containing the fluorine-containing ether compound has good hydrophobicity and can effectively prevent the intrusion of water, which causes corrosion of the magnetic recording medium. From these facts, the fluorine-containing ether compounds having terminal groups represented by formulas (5-9) to (5-11) can form a lubricating layer having a higher corrosion-inhibiting effect on magnetic recording media.
  • R 1 and R 6 when both terminal groups represented by R 1 and R 6 are terminal groups having a cyano group, R 1 and R 6 are the same may or may not be the same.
  • R 1 and R 6 when R 1 and R 6 are the same, the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, and a lubricating layer having better adhesion can be formed.
  • R 1 and R 6 are the same” means the skeleton (—R 3a —CH 2 —R 4a —CH 2 -R 3b -CH 2 -R 4b -CH 2 -R 3c -), the atom contained in R 1 bonded to the methylene group via R 2 is bonded to the methylene group via R 5 and the atoms contained in R 6 are arranged symmetrically.
  • the fluorine-containing ether compound represented by formula (1) when only one of the terminal groups represented by R 1 and R 6 (for example, R 1 ) is a terminal group having a cyano group, it has a cyano group
  • the other terminal group (for example, R 6 ) that is not a terminal group may be any group as long as it is an organic group having 1 to 50 carbon atoms or a hydrogen atom, and is not particularly limited.
  • the terminal hydrogen atom e.g., R 6
  • the terminal hydrogen atom is a divalent linking group having a polar group ( For example, it combines with the terminal oxygen atom of R 5 ) to form a hydroxyl group. This hydroxyl group further improves the adhesion between the lubricating layer containing the fluorine-containing ether compound and the protective layer.
  • the other terminal group having no cyano group is preferably an organic group having at least one double bond or triple bond, such as an aromatic ring-containing group, an unsaturated heterocyclic ring-containing group, an alkenyl group and a group containing an alkynyl group.
  • the lubricating layer containing the fluorine-containing ether compound has good hydrophobicity. As a result, the lubricating layer can effectively prevent the intrusion of water, which causes corrosion of the magnetic recording medium, and is highly effective in suppressing the corrosion of the magnetic recording medium.
  • the other terminal group is an organic group having at least one double bond or triple bond
  • specific examples thereof include a phenyl group, a methoxyphenyl group, a fluorophenyl group, a naphthyl group, a phenethyl group, and a methoxyphenethyl group.
  • phenethyl fluoride group benzyl group, methoxybenzyl group, naphthylmethyl group, methoxynaphthyl group, pyrrolyl group, pyrazolyl group, methylpyrazolylmethyl group, imidazolyl group, furyl group, furfuryl group, oxazolyl group, isoxazolyl group, thienyl group, thienylethyl group, thiazolyl group, methylthiazolylethyl group, isothiazolyl group, pyridyl group, pyrimidinyl group, pyridazinyl group, pyrazinyl group, indolinyl group, benzofuranyl group, benzothienyl group, benzimidazolyl group, benzoxazolyl group, benzothiazolyl group , a benzopyrazolyl group, a benzoisoxazolyl group, a benzois
  • the other terminal group may be an optionally substituted alkyl group.
  • the alkyl group preferably has 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 4 carbon atoms.
  • the substituent include an alkoxy group, a hydroxyl group, a mercapto group, a carboxy group, a carbonyl group, an amino group and a fluoro group.
  • the other terminal group is an optionally substituted alkyl group
  • specific examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, trifluoromethyl group, perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, octafluoropentyl group, tridecafluorooctyl group, hydroxymethyl group (-CH 2 OH) , hydroxyethyl group (--CH 2 CH 2 OH), hydroxypropyl group (--CH 2 CH 2 CH 2 OH), hydroxybutyl group (--CH 2 CH 2 CH 2 CH 2 OH) and the like.
  • the other terminal group is, among the above, a hydrogen atom, a phenyl group, a methoxyphenyl group, a naphthyl group, a phenethyl group, a methoxyphenethyl group, a phenethyl fluoride group, a thienylethyl group, an allyl group, a butenyl group, a propargyl group, a hydroxy It is preferably an ethyl group, more preferably a hydrogen atom, a phenyl group, a methoxyphenyl group, a naphthyl group, a thienylethyl group, an allyl group, a butenyl group or a hydroxyethyl group, and a methoxyphenyl group. or an allyl group is particularly preferred. In this case, it becomes a fluorine-containing ether compound capable of forming a lubricating layer having superior corrosion resistance.
  • the number of hydroxyl groups contained in one molecule increases the adhesion to the protective layer, forming a lubricating layer that provides better floating stability of the magnetic head. Therefore, it is preferably 4 or more, more preferably 5 or more, and even more preferably 6 or more.
  • the number of hydroxyl groups contained in one molecule is too high to prevent water, which causes corrosion, from being induced on the surface of the protective layer. , is preferably 8 or less, more preferably 7 or less, and most preferably 6 or less.
  • R 3a and R 3c in formula (1) are the same, R 4a and R 4b are the same, R 1 -R 2 - and R 6 -R 5 - are preferably the same.
  • R 3a and R 3c in formula (1) are the same, R 4a and R 4b are the same, R 1 -R 2 - and R 6 -R 5 - are preferably the same.
  • the fluorine-containing ether compound can be produced easily and efficiently.
  • the fluorine-containing ether compound has a symmetrical structure centering on R3b arranged in the center of the molecule, it is likely to uniformly wet and spread on the protective layer.
  • all three PFPE chains represented by R 3a , R 3b and R 3c in formula (1) are the same.
  • a fluorine-containing ether compound in which R 4a and R 4b are of formula (3-1) and s is a linking group represented by 1 is more preferable because it can be produced more easily and efficiently.
  • the fluorine-containing ether compound represented by the formula (1) is preferably any one of the compounds represented by the following formulas (A) to (V).
  • the compound represented by the formula (1) is one of the compounds represented by the following formulas (A) to (V)
  • the raw material is easily available, and even if the thickness is thin, corrosion of the magnetic recording medium does not occur. It is possible to form a lubricating layer having a high effect of suppressing the magnetic head and providing better floating stability of the magnetic head.
  • Rf 1 , Rf 2 and Rf 3 representing PFPE chains have the following structures. That is, in the compounds represented by formulas (A) to (R), (U), and (V) below, Rf 1 is a PFPE chain represented by formula (4-1). In the compounds represented by formulas (S) and (U) below, Rf 2 is a PFPE chain represented by formula (4-2). In the compound represented by formula (T) below, Rf 3 is a PFPE chain represented by formula (4-3).
  • h and i in Rf 1 , j in Rf 2 , and k in Rf 3 representing the PFPE chain in formulas (A) to (V) are values indicating the average degree of polymerization, and are not necessarily integers. do not have.
  • h is 1-20, and may be, for example, 1-10 or 2-5.
  • i is 0 to 20, and may be 1 to 10 or 2 to 5, for example.
  • j is 1-15, and may be, for example, 2-10 or 3-5.
  • k is 1-10, and may be, for example, 1-8 or 1-5.
  • R 2 and R 5 are linking groups represented by formula (3-1) or (3-2) above.
  • R 4a and R 4b are connecting groups represented by formula (3-1) or (3-3) above.
  • R 3a and R 3c are the same, R 4a and R 4b are the same, R 1 - R 2 - and R 6 -R 5 - are the same.
  • R 1 and R 6 in formula (1) are terminal groups represented by formula (5-1) above.
  • R 2 , R 4a , R 4b and R 5 are linking groups represented by formula (3-1) above, and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 in formula (1) are terminal groups represented by the above formula (5-1).
  • R 2 and R 5 are linking groups represented by formula (3-1) above, and s is 2;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 in formula (1) are terminal groups represented by the above formula (5-1).
  • R 2 and R 5 are linking groups represented by formula (3-1) above, and s is 3;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 in formula (1) are terminal groups represented by the above formula (5-2).
  • R 1 and R 6 are terminal groups represented by the above formula (5-6).
  • R 1 and R 6 are terminal groups represented by the above formula (5-7).
  • R 1 and R 6 in formula (1) are terminal groups represented by the above formula (5-8).
  • R 2 , R 4a , R 4b and R 5 in the formula (1) are all connecting groups represented by the above formula (3-1). and s is 1.
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 in formula (1) are terminal groups represented by the above formula (5-1).
  • R 2 and R 5 are connecting groups represented by the above formula (3-2), and t is 2;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 in formula (1) are terminal groups represented by formula (5-9) above.
  • R 2 , R 4a , R 4b and R 5 are linking groups represented by formula (3-1) above, and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 in formula (1) are terminal groups represented by the above formula (5-10).
  • R 2 and R 5 are linking groups represented by formula (3-1) above, and s is 2;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 in formula (1) are terminal groups represented by formula (5-1) above, and R 2 and R 5 is a linking group represented by the above formula (3-1).
  • s is 1 in R 2 and s is 2 in R 5 .
  • s in R2 is 1 and s in R5 is 3.
  • s in R2 is 2 and s in R5 is 3.
  • R 4a and R 4b are connecting groups represented by the above formula (3-1) and s is 1.
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by formula (5-1) above.
  • R 6 is a terminal group represented by the above formula (5-9).
  • R 2 is a linking group represented by the above formula (3-1) and s is 2;
  • R 5 is a linking group represented by the above formula (3-1) and s is 1;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by formula (5-1) above.
  • R 6 is a 2-hydroxyethyl group.
  • R 2 is a linking group represented by the above formula (3-1) and s is 2;
  • R 5 is a linking group represented by the above formula (3-1) and s is 1;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by formula (5-1) above.
  • R6 is an allyl group.
  • R 2 is a linking group represented by the above formula (3-1) and s is 2;
  • R 5 is a linking group represented by formula (3-1) above, and s is 1;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by formula (5-1) above.
  • R 6 is a p-methoxyphenyl group.
  • R 2 is a linking group represented by the above formula (3-1) and s is 2;
  • R 5 is a linking group represented by the above formula (3-1) and s is 1;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by formula (5-1) above.
  • R6 is a hydrogen atom.
  • R 2 is a linking group represented by the above formula (3-1) and s is 2;
  • R 5 is a linking group represented by the above formula (3-2) and t is 2;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 in formula (1) are terminal groups represented by the above formula (5-1).
  • R 2 and R 5 are linking groups represented by formula (3-1) above, and s is 2;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-2).
  • R 1 and R 6 in formula (1) are terminal groups represented by the above formula (5-1).
  • R 2 and R 5 are linking groups represented by formula (3-1) above, and s is 2;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-3).
  • R 1 and R 6 in formula (1) are terminal groups represented by the above formula (5-1).
  • R 2 and R 5 are linking groups represented by formula (3-1) above, and s is 2;
  • R 4a and R 4b are connecting groups represented by the above formula (3-1), and s is 1;
  • R 3a and R 3c are PFPE chains represented by the above formula (4-2).
  • R 3b is a PFPE chain represented by the above formula (4-1).
  • R 1 and R 6 in formula (1) are terminal groups represented by formula (5-1) above.
  • R 2 and R 5 are linking groups represented by formula (3-1) above, and s is 2;
  • R 4a and R 4b are connecting groups represented by the above formula (3-3), and u is 2;
  • R 3a , R 3b and R 3c are PFPE chains represented by the above formula (4-1).
  • the three Rf 2 in formula (S) are all represented by formula (4-2); j in formula (4-2) indicates an average degree of polymerization and represents 1 to 15; j in Rf 2 may be partially or entirely the same, or may be different; (The three Rf 3 in formula (T) are all represented by formula (4-3); k in formula (4-3) indicates an average degree of polymerization and represents 1 to 10; Some or all of k in Rf3 may be the same, or may be different.)
  • Two Rf 2 in formula (U) are both represented by formula (4-2); j in formula (4-2) indicates an average degree of polymerization and represents 1 to 15; j in Rf 2 may be the same or different; Rf 1 in formula (U) is represented by formula (4-1); h and i represent an average degree of polymerization, h represents 1 to 20, i represents 0 to 20, and h and i may be the same or different.
  • Rf 1 in formula (V) are represented by formula (4-1); h and i in formula (4-1) indicate the average degree of polymerization, h is 1 to 20 and i represents 0 to 20, h and i may be the same or different; h and i in three Rf 1 may be partially or entirely the same may be different.
  • the fluorine-containing ether compound of the present embodiment preferably has a number average molecular weight (Mn) within the range of 400 to 10,000, particularly preferably within the range of 500 to 5,000.
  • the number average molecular weight may be 800-8000, 1000-6000, 2000-4000, or the like.
  • the lubricating layer comprising the lubricant containing the fluorine-containing ether compound of the present embodiment has excellent heat resistance. More preferably, the fluorine-containing ether compound has a number average molecular weight of 500 or more.
  • the fluorine-containing ether compound when the number average molecular weight is 10,000 or less, the fluorine-containing ether compound has an appropriate viscosity, and a thin lubricating layer can be easily formed by applying a lubricant containing this.
  • the number-average molecular weight of the fluorine-containing ether compound is more preferably 5000 or less because the viscosity becomes easy to handle when applied to lubricants.
  • the number average molecular weight (Mn) of the fluorine-containing ether compound is a value measured by 1 H-NMR and 19 F-NMR using AVANCEIII400 manufactured by Bruker Biospin. Specifically, the number of repeating units of the PFPE chain is calculated from the integrated value measured by 19 F-NMR to determine the number average molecular weight.
  • NMR nuclear magnetic resonance
  • a sample is diluted with a hexafluorobenzene/d-acetone (4/1 v/v) solvent and measured.
  • the 19 F-NMR chemical shift standard is ⁇ 164.7 ppm for the hexafluorobenzene peak
  • the 1 H-NMR chemical shift standard is the acetone peak for 2.2 ppm.
  • the fluorine-containing ether compound of the present embodiment preferably has a molecular weight dispersity (weight average molecular weight (Mw)/number average molecular weight (Mn) ratio) of 1.3 or less by molecular weight fractionation by an appropriate method.
  • the method for molecular weight fractionation is not particularly limited, but for example, molecular weight fractionation by silica gel column chromatography, gel permeation chromatography (GPC), molecular weight fractionation by supercritical extraction, etc. can be used.
  • the method for producing the fluorine-containing ether compound of the present embodiment is not particularly limited, and it can be produced using a conventionally known production method.
  • the fluorine-containing ether compound of the present embodiment can be produced, for example, using the production method shown below.
  • THP in the following formulas (7-2), (7-3) and (7-10) represents a tetrahydropyranyl group.
  • R represents a structure corresponding to the terminal group represented by R 1 or R 6 in formula (1).
  • the epoxy compound can be obtained by using the reaction represented by the following formula (9).
  • the reaction represented by the following formula (9). can be manufactured. That is, an alcohol having a structure (R in formula (9)) corresponding to the terminal group represented by R 1 or R 6 in formula (1) is subjected to an addition reaction with allyl glycidyl ether to obtain the formula (9).
  • a compound having R and a hydroxyl group in is synthesized. After that, the double bond of the compound having R and a hydroxyl group in formula (9) can be produced using a method of oxidizing it with m-chloroperbenzoic acid (mCPBA).
  • mCPBA m-chloroperbenzoic acid
  • the compound having R and a hydroxyl group in formula (9) Before oxidizing the double bond of the compound having R and a hydroxyl group in formula (9) by the action of m-chloroperbenzoic acid (mCPBA), the compound having R and a hydroxyl group in formula (9) may be protected with a suitable protecting group.
  • mCPBA m-chloroperbenzoic acid
  • R represents a structure corresponding to the terminal group represented by R 1 or R 6 in formula (1).
  • the epoxy compound can be obtained by using the reaction represented by the following formula (10).
  • the reaction represented by the following formula (10) can be manufactured. That is, an alcohol having a structure (R in formula (10)) corresponding to the terminal group represented by R 1 or R 6 in formula (1) and R 2 or R 5 such as 4-bromo-1-butene is reacted with a halogen compound having an alkenyl group corresponding to to synthesize a compound having R and an alkenyl group in formula (10). After that, the double bond of the compound having R and an alkenyl group in formula (10) can be produced using a method of oxidizing with m-chloroperbenzoic acid (mCPBA).
  • mCPBA m-chloroperbenzoic acid
  • R represents a structure corresponding to the terminal group represented by R 1 or R 6 in formula (1).
  • mCPBA m-chloroperbenzoic acid
  • the hydroxyl group of the hydroxymethyl group arranged at one end of the intermediate compound 1 is reacted with the epoxy groups arranged at both ends of the intermediate compound 2 (third reaction).
  • the two PFPE chains represented by R 3a and R 3c in formula (1) are the same
  • the two linking groups represented by R 4a and R 4b are the same
  • R 1 -R Compounds can be prepared in which 2- and R 6 -R 5 - are the same.
  • the second reaction is performed after the first reaction, but the first reaction may be performed after the second reaction.
  • an intermediate compound 1a having a group corresponding to R 1 -R 2 - at one end of the perfluoropolyether chain corresponding to R 3a is synthesized. Further, in the first reaction, intermediate compound 1b is synthesized which has a group corresponding to R 6 -R 5 - at one end of the perfluoropolyether chain corresponding to R 3c . Then, the intermediate compound 2 is produced by performing the second reaction in the same manner as in the first production method.
  • the intermediate compound 1a and the intermediate compound 1b are sequentially reacted with the epoxy group arranged at each end of the intermediate compound 2.
  • the two linking groups represented by R 4a and R 4b in formula (1) are the same and represented by R 1 and R 6 , R 2 and R 5 , R 3a and R 3c
  • Compounds can be prepared in which any one or more of the PFPE chains are different.
  • the intermediate compound 1 is produced by performing the first reaction in the same manner as in the first production method.
  • a fluorine-based compound is prepared in which hydroxymethyl groups (--CH 2 OH) are arranged at both ends of the perfluoropolyether chain corresponding to R 3b in formula (1).
  • the hydroxyl group of the hydroxymethyl group arranged at one end of the fluorine-based compound is reacted with a halogen compound having an epoxy group corresponding to R4a .
  • the hydroxyl group of the hydroxymethyl group located at the other end of the fluorine-based compound is reacted with a halogen compound having an epoxy group corresponding to R4b .
  • the hydroxyl group of the hydroxymethyl group arranged at one end of the intermediate compound 1 is reacted with the epoxy groups arranged at both ends of the intermediate compound 2a.
  • the two PFPE chains represented by R 3a and R 3c in formula (1) are the same, the two linking groups represented by R 4a and R 4b are different, and R 1 -R 2 - and R 6 -R 5 - are the same.
  • any one or more of the PFPE chains represented by R 1 and R 6 , R 2 and R 5 , and R 3a and R 3c , wherein the two linking groups represented by R 4a and R 4b in formula (1) are different; can be produced by the following production methods.
  • an intermediate compound 1a having a group corresponding to R 1 -R 2 - at one end of the perfluoropolyether chain corresponding to R 3a is synthesized. do. Further, in the first reaction, intermediate compound 1b is synthesized which has a group corresponding to R 6 -R 5 - at one end of the perfluoropolyether chain corresponding to R 3c .
  • the second reaction is carried out to produce intermediate compound 2a.
  • the intermediate compound 1a is reacted with the epoxy group corresponding to the linking group represented by R4a of the intermediate compound 2a.
  • the intermediate compound 1b is reacted with the epoxy group corresponding to the linking group represented by R4b of the intermediate compound 2a.
  • the intermediate compound 1b is reacted with the epoxy group corresponding to the linking group represented by R4b of the intermediate compound 2a.
  • the intermediate compound 1a is reacted with the epoxy group corresponding to the linking group represented by R4a of the intermediate compound 2a.
  • the two linking groups represented by R 4a and R 4b in formula (1) are different, and the PFPE chains represented by R 1 and R 6 , R 2 and R 5 , R 3a and R 3c can produce compounds in which any one or more of
  • the fluorine-containing ether compound of the present embodiment is a compound represented by formula (1). Therefore, the lubricating layer formed on the protective layer using the lubricant containing the fluorine-containing ether compound of the present embodiment has a high effect of suppressing corrosion of the magnetic recording medium even when the thickness is small, and the magnetic head floats. Good stability is obtained.
  • the lubricant for magnetic recording media of this embodiment contains the fluorine-containing ether compound represented by the above formula (1).
  • the lubricant of the present embodiment requires a known material used as a lubricant material, as long as it does not impair the properties due to the inclusion of the fluorine-containing ether compound represented by the above formula (1). It can be used by mixing according to.
  • the known material used by mixing with the lubricant of the present embodiment preferably has a number average molecular weight of 1,000 to 10,000.
  • the fluorine-containing ether compound represented by the above formula (1) in the lubricant of the present embodiment is preferably 50% by mass or more, more preferably 70% by mass or more. Since the lubricant of the present embodiment contains the fluorine-containing ether compound represented by the above formula (1), even if the lubricant is thin, it has a high effect of suppressing corrosion of the magnetic recording medium, and the flying stability of the magnetic head is improved. A good lubricating layer can be formed.
  • the magnetic recording medium of this embodiment has at least a magnetic layer, a protective layer, and a lubricating layer sequentially provided on a substrate.
  • one or more underlayers can be provided between the substrate and the magnetic layer, if necessary.
  • At least one of an adhesion layer and a soft magnetic layer can be provided between the underlayer and the substrate.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the magnetic recording medium of the present invention.
  • the magnetic recording medium 10 of the present embodiment includes an adhesive layer 12, a soft magnetic layer 13, a first underlayer 14, a second underlayer 15, a magnetic layer 16, a protective layer 17, and an adhesive layer 12 on a substrate 11.
  • a lubricating layer 18 is sequentially provided.
  • a non-magnetic substrate or the like can be used in which a film made of NiP or a NiP alloy is formed on a substrate made of a metal such as Al or an Al alloy or an alloy material.
  • a non-magnetic substrate made of non-metallic materials such as glass, ceramics, silicon, silicon carbide, carbon, and resin may be used.
  • a non-magnetic substrate having a film formed thereon may be used.
  • the adhesion layer 12 prevents the progress of corrosion of the substrate 11 that occurs when the substrate 11 and the soft magnetic layer 13 provided on the adhesion layer 12 are arranged in contact with each other.
  • the material of the adhesion layer 12 can be appropriately selected from, for example, Cr, Cr alloy, Ti, Ti alloy, CrTi, NiAl, AlRu alloy, and the like.
  • the adhesion layer 12 can be formed by, for example, a sputtering method.
  • the soft magnetic layer 13 preferably has a structure in which a first soft magnetic film, an intermediate layer made of a Ru film, and a second soft magnetic film are laminated in this order. That is, the soft magnetic layer 13 has a structure in which the soft magnetic films above and below the intermediate layer are antiferro-coupling (AFC) coupled by sandwiching an intermediate layer made of Ru film between two layers of soft magnetic films. It is preferable to have
  • Materials for the first soft magnetic film and the second soft magnetic film include CoZrTa alloy and CoFe alloy. Any one of Zr, Ta, and Nb is preferably added to the CoFe alloy used for the first soft magnetic film and the second soft magnetic film. This promotes amorphization of the first soft magnetic film and the second soft magnetic film. As a result, it is possible to improve the orientation of the first underlayer (seed layer) and reduce the flying height of the magnetic head.
  • the soft magnetic layer 13 can be formed by sputtering, for example.
  • the first underlayer 14 is a layer that controls the orientation and crystal size of the second underlayer 15 and the magnetic layer 16 provided thereon.
  • Examples of the first underlayer 14 include a Cr layer, a Ta layer, a Ru layer, a CrMo alloy layer, a CoW alloy layer, a CrW alloy layer, a CrV alloy layer, and a CrTi alloy layer.
  • the first underlayer 14 can be formed by, for example, a sputtering method.
  • the second underlayer 15 is a layer for controlling the orientation of the magnetic layer 16 to be good.
  • the second underlayer 15 is preferably a layer made of Ru or a Ru alloy.
  • the second underlayer 15 may be a single layer, or may be composed of a plurality of layers. When the second underlayer 15 is composed of multiple layers, all layers may be composed of the same material, or at least one layer may be composed of different materials.
  • the second underlayer 15 can be formed by, for example, a sputtering method.
  • the magnetic layer 16 is composed of a magnetic film having an axis of easy magnetization oriented perpendicularly or horizontally with respect to the substrate surface.
  • the magnetic layer 16 is a layer containing Co and Pt.
  • the magnetic layer 16 may be a layer containing oxides, Cr, B, Cu, Ta, Zr, etc. to improve SNR characteristics. Examples of oxides contained in the magnetic layer 16 include SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3 and TiO 2 .
  • the magnetic layer 16 may be composed of one layer, or may be composed of a plurality of magnetic layers made of materials with different compositions.
  • the first magnetic layer contains Co, Cr, and Pt, and is oxidized. It is preferably a granular structure made of a material containing matter.
  • the oxide contained in the first magnetic layer it is preferable to use, for example, oxides of Cr, Si, Ta, Al, Ti, Mg, Co, and the like. Among these, TiO 2 , Cr 2 O 3 , SiO 2 and the like can be particularly preferably used.
  • the first magnetic layer is preferably made of a composite oxide to which two or more kinds of oxides are added.
  • Cr 2 O 3 —SiO 2 , Cr 2 O 3 —TiO 2 , SiO 2 —TiO 2 and the like can be particularly preferably used.
  • the first magnetic layer contains Co, Cr, Pt, oxides, and at least one element selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re. can contain.
  • the same material as the first magnetic layer can be used for the second magnetic layer.
  • the second magnetic layer preferably has a granular structure.
  • the third magnetic layer preferably has a non-granular structure made of a material containing Co, Cr, Pt and no oxide.
  • the third magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn. be able to.
  • the magnetic layer 16 When the magnetic layer 16 is composed of a plurality of magnetic layers, it is preferable to provide a non-magnetic layer between adjacent magnetic layers. When the magnetic layer 16 is composed of three layers, the first magnetic layer, the second magnetic layer, and the third magnetic layer, the magnetic layer between the first magnetic layer and the second magnetic layer and between the second magnetic layer and the third magnetic layer It is preferable to provide a non-magnetic layer between them.
  • Nonmagnetic layers provided between adjacent magnetic layers of the magnetic layer 16 are, for example, Ru, Ru alloy, CoCr alloy, CoCrX1 alloy (X1 is Pt, Ta, Zr, Re, Ru, Cu, Nb, Ni, Mn, represents one or more elements selected from Ge, Si, O, N, W, Mo, Ti, V, and B.), etc. can be preferably used.
  • Non-magnetic layers provided between adjacent magnetic layers of the magnetic layer 16 preferably use an alloy material containing oxides, metal nitrides, or metal carbides.
  • SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2 and the like can be used as oxides.
  • AlN, Si 3 N 4 , TaN, CrN, etc. can be used as metal nitrides, for example.
  • TaC, BC, SiC, etc. can be used as the metal carbide.
  • the non-magnetic layer can be formed, for example, by sputtering.
  • the magnetic layer 16 is preferably a magnetic layer for perpendicular magnetic recording in which the axis of easy magnetization is oriented perpendicular to the substrate surface.
  • the magnetic layer 16 may be a magnetic layer for longitudinal magnetic recording.
  • the magnetic layer 16 may be formed by any conventionally known method such as a vapor deposition method, an ion beam sputtering method, a magnetron sputtering method, or the like.
  • the magnetic layer 16 is usually formed by a sputtering method.
  • the protective layer 17 protects the magnetic layer 16 .
  • the protective layer 17 may be composed of one layer, or may be composed of multiple layers.
  • a carbon-based protective layer can be preferably used, and an amorphous carbon protective layer is particularly preferred. If the protective layer 17 is a carbon-based protective layer, interaction with the polar groups (especially hydroxyl groups) contained in the fluorine-containing ether compound in the lubricating layer 18 is further enhanced, which is preferable.
  • the adhesion between the carbon-based protective layer and the lubricating layer 18 can be adjusted by using hydrogenated carbon and/or nitrogenated carbon as the carbon-based protective layer and adjusting the hydrogen content and/or nitrogen content in the carbon-based protective layer.
  • the hydrogen content in the carbon-based protective layer is preferably 3 atomic % to 20 atomic % as measured by hydrogen forward scattering spectroscopy (HFS).
  • the nitrogen content in the carbon-based protective layer is preferably 4 atomic % to 15 atomic % when measured by X-ray photoelectron spectroscopy (XPS).
  • the hydrogen and/or nitrogen contained in the carbon-based protective layer need not be contained uniformly throughout the carbon-based protective layer.
  • the carbon-based protective layer is preferably a composition gradient layer in which, for example, the protective layer 17 on the lubricating layer 18 side contains nitrogen and the protective layer 17 on the magnetic layer 16 side contains hydrogen. In this case, the adhesion between the magnetic layer 16 and lubricating layer 18 and the carbon-based protective layer is further improved.
  • the film thickness of the protective layer 17 is preferably 1 nm to 7 nm. When the film thickness of the protective layer 17 is 1 nm or more, the performance as the protective layer 17 is sufficiently obtained. It is preferable from the viewpoint of thinning the protective layer 17 that the film thickness of the protective layer 17 is 7 nm or less.
  • a sputtering method using a target material containing carbon a sputtering method using a target material containing carbon, a CVD (chemical vapor deposition) method using a hydrocarbon raw material such as ethylene or toluene, an IBD (ion beam deposition) method, or the like can be used.
  • a carbon-based protective layer as the protective layer 17 it can be formed by, for example, a DC magnetron sputtering method.
  • a carbon-based protective layer as the protective layer 17 it is preferable to form an amorphous carbon protective layer by a plasma CVD method.
  • the amorphous carbon protective layer formed by the plasma CVD method has a uniform surface and a small roughness.
  • Lubricating layer 18 prevents contamination of magnetic recording medium 10 .
  • the lubricating layer 18 reduces the frictional force of the magnetic head of the magnetic recording/reproducing device that slides on the magnetic recording medium 10 , thereby improving the durability of the magnetic recording medium 10 .
  • the lubricating layer 18 is formed on and in contact with the protective layer 17 as shown in FIG.
  • the lubricating layer 18 is formed by coating the protective layer 17 with the magnetic recording medium lubricant of the embodiment described above. Therefore, the lubricating layer 18 contains the fluorine-containing ether compound described above.
  • the lubricating layer 18 is particularly bonded to the protective layer 17 with high bonding strength when the protective layer 17 arranged under the lubricating layer 18 is a carbon-based protective layer. As a result, even if the thickness of the lubricating layer 18 is small, it becomes easy to obtain the magnetic recording medium 10 in which the surface of the protective layer 17 is coated with a high coverage rate, and contamination of the surface of the magnetic recording medium 10 can be effectively prevented. .
  • the average film thickness of the lubricating layer 18 is preferably 0.5 nm (5 ⁇ ) to 2.0 nm (20 ⁇ ), more preferably 0.5 nm (5 ⁇ ) to 1.2 nm (12 ⁇ ).
  • the average thickness of the lubricating layer 18 is 0.5 nm or more, the lubricating layer 18 is formed with a uniform thickness without being island-like or network-like. Therefore, the surface of the protective layer 17 can be covered with the lubricating layer 18 at a high coverage rate. Further, by setting the average thickness of the lubricating layer 18 to 2.0 nm or less, the lubricating layer 18 can be made sufficiently thin, and the flying height of the magnetic head can be made sufficiently small.
  • Method for Forming a Lubricating Layer As a method for forming the lubricating layer 18, for example, a magnetic recording medium in the middle of production in which each layer up to the protective layer 17 is formed on the substrate 11 is prepared, a lubricating layer forming solution is applied onto the protective layer 17, A method of drying can be mentioned.
  • the lubricating layer-forming solution is obtained by dispersing and dissolving the magnetic recording medium lubricant of the above-described embodiment in a solvent, if necessary, and adjusting the viscosity and concentration suitable for the coating method.
  • the solvent used for the lubricating layer forming solution include fluorine-based solvents such as Vertrel (registered trademark) XF (trade name, manufactured by DuPont-Mitsui Fluorochemicals).
  • the method of applying the lubricating layer-forming solution is not particularly limited, and examples thereof include a spin coating method, a spray method, a paper coating method, a dipping method, and the like.
  • the dipping method for example, the following method can be used. First, the substrate 11 on which the layers up to the protective layer 17 are formed is immersed in a lubricating layer forming solution placed in an immersion tank of a dip coater. Next, the substrate 11 is pulled up from the immersion bath at a predetermined speed. As a result, the lubricating layer forming solution is applied to the surface of the protective layer 17 of the substrate 11 .
  • the lubricating layer forming solution can be uniformly applied to the surface of the protective layer 17 , and the lubricating layer 18 can be formed on the protective layer 17 with a uniform film thickness.
  • the heat treatment temperature is preferably 100°C to 180°C, more preferably 100°C to 160°C.
  • the heat treatment time can be appropriately adjusted according to the heat treatment temperature, and is preferably 10 to 120 minutes.
  • the lubricating layer 18 may be irradiated with ultraviolet rays (UV) before or after the heat treatment.
  • UV ultraviolet rays
  • the magnetic recording medium 10 of the present embodiment has at least a magnetic layer 16, a protective layer 17, and a lubricating layer 18 successively provided on a substrate 11.
  • FIG. In the magnetic recording medium 10 of this embodiment, a lubricating layer 18 containing the fluorine-containing ether compound is formed on and in contact with the protective layer 17 . Even if the lubricating layer 18 is thin, the flying stability of the magnetic head is good, and the effect of suppressing corrosion of the magnetic recording medium is high. Therefore, the magnetic recording medium 10 of this embodiment is excellent in reliability and durability.
  • the magnetic recording medium 10 of the present embodiment can reduce the flying height of the magnetic head (for example, 10 nm or less), and can stably be used for a long period of time even under harsh environments accompanying the diversification of applications. Operate. Therefore, the magnetic recording medium 10 of the present embodiment is particularly suitable as a magnetic disk mounted in a LUL (Load Unload) type magnetic disk device.
  • LUL Land Unload
  • Example 1 A compound represented by the above formula (A) was obtained by the method shown below. (first reaction) HOCH 2 CF 2 (OCF 2 CF 2 ) h (OCF 2 ) i OCF 2 CH 2 OH (in the formula, h indicating the average degree of polymerization is 4.5, and the average degree of polymerization is is 4.5.)
  • the compound represented by formula (7-1) was synthesized by reacting 2-cyanoethanol and epibromohydrin.
  • the reaction product obtained after the reaction was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate. The organic layer was washed with water and dried over anhydrous sodium sulfate. After filtering off the drying agent, the filtrate was concentrated and the residue was purified by silica gel column chromatography to obtain 8.98 g of a compound represented by the following formula (11) as an intermediate.
  • reaction solution obtained after the reaction was returned to room temperature, 5 g of a 10% hydrogen chloride/methanol solution (hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 4 hours. After that, the reaction solution was transferred little by little to a separatory funnel containing 100 mL of brine, and extracted twice with 200 mL of ethyl acetate. The organic layer was washed with 100 mL of brine, 100 mL of saturated aqueous sodium bicarbonate, and 100 mL of brine in that order, and dehydrated with anhydrous sodium sulfate.
  • a 10% hydrogen chloride/methanol solution hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 2 A compound represented by the above formula (B) was obtained by the method shown below. Instead of the compound represented by the formula (7-1) in Example 1, the same operation as in Example 1 was performed except that the compound represented by the formula (7-2) was used to obtain compound (B).
  • Rf 1 in formula (B) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1s , h representing the average degree of polymerization is 4.5, and the average degree of polymerization represents 4.5.) was obtained 8.42 g.
  • the compound represented by formula (7-2) was synthesized using the method shown below. First, a compound having a cyano group and a hydroxyl group was synthesized by subjecting 2-cyanoethanol and allyl glycidyl ether to an addition reaction. Then, the secondary hydroxyl group of the synthesized compound having a cyano group and a hydroxyl group is protected using dihydropyran, and the double bond is oxidized using m-chloroperbenzoic acid to obtain the compound of formula (7-2). An epoxy compound having a cyano group represented by was obtained.
  • Example 3 A compound represented by the above formula (C) was obtained by the method shown below. Instead of the compound represented by the formula (7-1) in Example 1, the same operation as in Example 1 was performed except that the compound represented by the formula (7-3) was used to obtain compound (C).
  • Rf 1 in formula (C) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1s , h representing the average degree of polymerization is 4.5, and the average degree of polymerization represents 4.5.) was obtained 8.21 g.
  • the compound represented by formula (7-3) was synthesized by protecting the secondary hydroxyl group of glycerin diglycidyl ether with dihydropyran and then performing a monoaddition reaction of 2-cyanoethanol.
  • Example 4 A compound represented by the above formula (D) was obtained by the method shown below. In the same manner as in Example 1 except that the compound represented by formula (7-4) was used instead of the compound represented by formula (7-1) in Example 1, compound (D) was obtained.
  • Rf 1 in formula (D) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1s , h representing the average degree of polymerization is 4.5, and the average degree of polymerization represents 4.5.) was obtained 8.15 g.
  • the compound represented by formula (7-4) was synthesized by reacting 3-cyanopropanol with epibromohydrin.
  • Example 5 A compound represented by the above formula (E) was obtained by the method shown below. Instead of the compound represented by the formula (7-1) in Example 1, the same operation as in Example 1 was performed except that the compound represented by the formula (7-5) was used to obtain compound (E).
  • Rf 1 in formula (E) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1s , h representing the average degree of polymerization is 4.5, and the average degree of polymerization represents 4.5.) was obtained 8.08 g.
  • the compound represented by formula (7-5) was synthesized by reacting 3-hydroxybutyronitrile with epibromohydrin.
  • Example 6 A compound represented by the above formula (F) was obtained by the method shown below. Instead of the compound represented by the formula (7-1) in Example 1, the same operation as in Example 1 was performed except that the compound represented by the formula (7-6) was used to obtain compound (F).
  • Rf 1 in formula (F) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1s , h representing the average degree of polymerization is 4.5, and the average degree of polymerization represents 4.5.) was obtained 8.31 g.
  • the compound represented by formula (7-6) was synthesized by reacting 3-hydroxyglutaronitrile with epibromohydrin.
  • Example 7 A compound represented by the above formula (G) was obtained by the method shown below. In the same manner as in Example 1 except that the compound represented by formula (7-7) was used instead of the compound represented by formula (7-1) in Example 1, compound (G) was obtained.
  • Rf 1 in formula (G) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1s , h representing the average degree of polymerization is 4.5, and the average degree of polymerization represents 4.5.) was obtained 7.42 g.
  • the compound represented by formula (7-7) was synthesized by oxidizing the double bond of allyl cyanoacetate using m-chloroperbenzoic acid.
  • Example 8 A compound represented by the above formula (H) was obtained by the method shown below. Instead of the compound represented by formula (7-1) in Example 1, the same operation as in Example 1 was performed except that the compound represented by formula (7-8) was used to obtain compound (H).
  • Rf 1 in the formula (H) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1 , h representing the average degree of polymerization is 4.5, and the average degree of polymerization represents 4.5.) was obtained 8.36 g.
  • the compound represented by formula (7-8) is obtained by reacting 2-cyanoethanol and 4-bromo-1-butene, and then oxidizing the double bond of the resulting compound using m-chloroperbenzoic acid. It was synthesized by
  • Example 9 The compound represented by the above formula (I) was obtained by the method shown below. In the same manner as in Example 1 except that the compound represented by formula (7-9) was used instead of the compound represented by formula (7-1) in Example 1, compound (I) was obtained.
  • Rf 1 in formula (I) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1s , h representing the average degree of polymerization is 4.5, and the average degree of polymerization represents 4.5.) was obtained 8.51 g.
  • the compound represented by formula (7-9) was synthesized by reacting 2-cyanophenol with epibromohydrin.
  • Example 10 A compound represented by the above formula (J) was obtained by the method shown below. Instead of the compound represented by the formula (7-1) in Example 1, the same operation as in Example 1 was performed except that the compound represented by the formula (7-10) was used to obtain compound (J).
  • Rf 1 in formula (J) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1s , h representing the average degree of polymerization is 4.5, and the average degree of polymerization represents 4.5.) was obtained 8.82 g.
  • the compound represented by formula (7-10) was synthesized using the method shown below. First, a compound having a cyano group and a hydroxyl group was synthesized by subjecting 4-cyanophenol and allyl glycidyl ether to an addition reaction. Then, the secondary hydroxyl group of the synthesized compound having a cyano group and a hydroxyl group is protected using dihydropyran, and the double bond is oxidized using m-chloroperbenzoic acid to obtain the compound of formula (7-10). An epoxy compound having a cyano group represented by was obtained.
  • Example 11 A compound represented by the above formula (K) was obtained by the method shown below. First, by performing the first reaction and the second reaction in the same manner as in Example 1, the compound represented by the formula (11) and the compound represented by the formula (12) are obtained as the first intermediate compound 1a. rice field. Next, the same operation as in the first reaction of Example 1 was performed except that the compound represented by formula (7-2) was used instead of the compound represented by formula (7-1), A compound represented by the following formula (13) was obtained as the second intermediate compound 1b.
  • Rf 1 in formula ( 13 ) is a PFPE chain represented by the above formula (4-1); i represents 4.5; THP represents a tetrahydropyranyl group.
  • reaction solution obtained after the reaction was returned to room temperature, 5 g of a 10% hydrogen chloride/methanol solution (hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 4 hours. After that, the reaction solution was transferred little by little to a separatory funnel containing 100 mL of brine, and extracted twice with 200 mL of ethyl acetate. The organic layer was washed with 100 mL of brine, 100 mL of saturated aqueous sodium bicarbonate, and 100 mL of brine in that order, and dehydrated with anhydrous sodium sulfate.
  • a 10% hydrogen chloride/methanol solution hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 12 A compound represented by the above formula (L) was obtained by the method shown below. In Example 11, instead of the compound represented by formula (7-2), the compound represented by formula (7-3) was used to obtain the second intermediate compound 1b. A similar operation is performed, and compound (L) (Rf 1 in formula (L) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1 , h represents 4.5, and i representing the average degree of polymerization represents 4.5.) was obtained in an amount of 4.05 g.
  • Example 13 A compound represented by the above formula (M) was obtained by the method shown below. Example 12 except that in Example 12, instead of the compound represented by formula (7-1), the compound represented by formula (7-2) was used to obtain the first intermediate compound 1a. A similar operation is performed to obtain compound (M) (Rf 1 in formula (M) is a PFPE chain represented by formula (4-1) above; among three Rf 1 , h represents 4.5, and i representing the average degree of polymerization represents 4.5.) was obtained in an amount of 3.93 g.
  • Example 14 A compound represented by the above formula (N) was obtained by the method shown below. In Example 11, instead of the compound represented by formula (7-1), the compound represented by formula (7-9) was used to obtain the first intermediate compound 1a. A similar operation is performed to obtain compound (N) (Rf 1 in formula (N) is a PFPE chain represented by formula (4-1) above; among three Rf 1 , h represents 4.5, and i representing the average degree of polymerization represents 4.5.) was obtained in an amount of 4.42 g.
  • Example 15 A compound represented by the above formula (O) was obtained by the method shown below. The same as in Example 11 except that in Example 11, instead of the compound represented by formula (7-1), a compound represented by the following formula (15) was used to obtain the first intermediate compound 1a. operation, the compound (O) (Rf 1 in formula (O) is a PFPE chain represented by the above formula ( 4-1 ); 4.5, i representing the average degree of polymerization represents 4.5) was obtained 4.28g.
  • THP represents a tetrahydropyranyl group.
  • the compound represented by formula (15) was synthesized by protecting the hydroxyl group of ethylene glycol monoallyl ether using dihydropyran and oxidizing the resulting compound.
  • Example 16 A compound represented by the above formula (P) was obtained by the method shown below. The same as in Example 11 except that in Example 11, instead of the compound represented by formula (7-1), a compound represented by the following formula (16) was used to obtain the first intermediate compound 1a. operation, compound (P) (Rf 1 in formula (P) is a PFPE chain represented by the above formula ( 4-1 ); 4.5, i representing the average degree of polymerization represents 4.5) was obtained 4.58g.
  • the compound represented by formula (16) was synthesized by reacting allyl alcohol with epibromohydrin.
  • Example 17 A compound represented by the above formula (Q) was obtained by the method shown below. Same as Example 11 except that in Example 11, instead of the compound represented by formula (7-1), a compound represented by the following formula (17) was used to obtain the first intermediate compound 1a. operation, compound (Q) (Rf 1 in formula (Q) is a PFPE chain represented by the above formula ( 4-1 ); 4.5, i representing the average degree of polymerization represents 4.5.) was obtained 4.71 g.
  • the compound represented by formula (17) was synthesized by reacting 4-methoxyphenol with epibromohydrin.
  • Me in the above formula represents a methyl group.
  • Example 18 A compound represented by the above formula (R) was obtained by the method shown below. The same as in Example 11 except that in Example 11, instead of the compound represented by formula (7-1), a compound represented by the following formula (18) was used to obtain the first intermediate compound 1a. Then, the compound (R) (Rf 1 in formula (R) is a PFPE chain represented by the above formula (4-1). Among the three Rf 1s , h indicating the average degree of polymerization is 4.5, i representing the average degree of polymerization represents 4.5) was obtained 4.28g.
  • THP represents a tetrahydropyranyl group.
  • the compound represented by formula (18) was synthesized by protecting the hydroxyl group of homoallyl alcohol with dihydropyran and oxidizing the resulting compound.
  • Example 19 A compound represented by the above formula (S) was obtained by the method shown below. HOCH 2 CF 2 CF 2 ( OCF _ _ _ _ 2 CF 2 ) j OCF 2 CF 2 CH 2 OH (in the formula, j indicating the average degree of polymerization is 4.5) (number average molecular weight: 1000, molecular weight distribution: 1.1). and the compound (S ) (Rf 2 in formula (S) is a PFPE chain represented by formula (4-2) above. Among the three Rf 2 s, j representing the average degree of polymerization represents 4.5.) 7.96 g was obtained.
  • Example 20 A compound represented by the above formula (T) was obtained by the method shown below. HOCH2CF2CF2CF2 in place of the compound represented by HOCH2CF2 ( OCF2CF2 ) h ( OCF2 ) iOCF2CH2OH in the first and second reactions of Example 1 (OCF 2 CF 2 CF 2 CF 2 ) k OCF 2 CF 2 CF 2 CH 2 OH (in the formula, k indicating the average degree of polymerization is 3.0.) Compound represented by (number average molecular weight 1000, molecular weight The same procedure as in Example 1 except that distribution 1.1) was used and the compound represented by formula (7-2) was used instead of the compound represented by formula (7-1). and the compound (T) (Rf 3 in the formula (T) is a PFPE chain represented by the above formula (4-3). Among the three Rf 3 , k indicating the average degree of polymerization is 3. 0.) was obtained.
  • Example 21 A compound represented by the above formula (U) was obtained by the method shown below. Instead of the compound represented by HOCH2CF2 ( OCF2CF2 ) h ( OCF2 ) iOCF2CH2OH in the first reaction of Example 1 , HOCH2CF2CF2 ( OCF2CF2CF 2 ) Using a compound (number average molecular weight: 1000, molecular weight distribution: 1.1) represented by j OCF 2 CF 2 CH 2 OH (j indicating the average degree of polymerization in the formula is 4.5), the second HOCH2CF2 ( OCF2CF2 ) hOCF2CH2OH ( formula _ _ _ _ _ _ _ _ _ _ _ _ h h indicating the average degree of polymerization in is 7.0.) Using the compound represented by (number average molecular weight 1000, molecular weight distribution 1.1), the compound represented by formula (7-1) in the same manner as in Example 1, except that the compound represented
  • Example 22 A compound represented by the above formula (V) was obtained by the method shown below. First, HOCH 2 CF 2 (OCF 2 CF 2 ) h (OCF 2 ) i OCF 2 CH 2 OH (h indicating the average degree of polymerization in the formula is 4.5, i indicating the average degree of polymerization is 4.5 ) (number average molecular weight: 1000, molecular weight distribution: 1.1) and 4-bromo-1-butene, the double bond of the resulting compound is m-chloropermeated. Oxidation with benzoic acid gave the intermediate compound of formula (19).
  • Example 1 instead of the intermediate compound represented by formula (12), the compound represented by formula (19) was used, and instead of the compound represented by formula (7-1) Then, the same operation as in Example 1 was performed except that the compound represented by formula (7-2) was used, and compound (V) (Rf 1 in formula (V) is the above formula (4-1 ) In the three Rf 1 , h representing the average degree of polymerization represents 4.5, i representing the average degree of polymerization represents 4.5.) was obtained 8.23 g .
  • R 1 , R 2 , R 3a , R 3b , R 3c , and R 4a when the compounds (A) to (V) of Examples 1 to 22 thus obtained are applied to formula (1), respectively.
  • R 4b , R 5 and R 6 are shown in Table 1.
  • lubricating layer forming solutions were prepared by the method shown below. Using the lubricating layer forming solution thus obtained, lubricating layers of magnetic recording media were formed by the method described below, and magnetic recording media of Examples 1 to 22 and Comparative Examples 1 to 7 were obtained.
  • Magnetic recording medium A magnetic recording medium was prepared by sequentially forming an adhesion layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer on a substrate having a diameter of 65 mm.
  • the protective layer was made of carbon.
  • the lubricating layer-forming solutions of Examples 1 to 22 and Comparative Examples 1 to 7 were applied by dipping onto the protective layer of the magnetic recording medium on which each layer up to the protective layer was formed. The dipping method was performed under conditions of an immersion speed of 10 mm/sec, an immersion time of 30 sec, and a lifting speed of 1.2 mm/sec.
  • the magnetic recording medium coated with the lubricating layer forming solution is placed in a constant temperature bath, and heat treatment is performed at 120° C. for 10 minutes to remove the solvent in the lubricating layer forming solution and improve the adhesion between the protective layer and the lubricating layer.
  • a lubricating layer was formed on the protective layer by heating for 1 minute to obtain a magnetic recording medium.
  • glide test In the glide test, the surface of the magnetic recording medium is inspected for protrusions. That is, when a magnetic head is used to perform recording and reproduction on a magnetic recording medium, if there is a protrusion on the surface of the magnetic recording medium with a height equal to or greater than the flying height (the distance between the magnetic recording medium and the magnetic head), the magnetic head may collide with the protrusions to damage the magnetic head or cause defects in the magnetic recording medium. In the glide test, fifty magnetic recording media are inspected for the presence or absence of projections having a height higher than the floating amount on the surface.
  • the distance between the magnetic head for inspection and the magnetic recording medium is set to 0.25 microinches, and the magnetic head for inspection is moved above the magnetic recording medium.
  • the magnetic recording medium was judged to be defective, and other cases were judged to be acceptable. Then, out of the 50 magnetic recording media, the number of magnetic recording media determined to be acceptable was used for evaluation.
  • Creedence measurement When performing the above glide test, the noise temporarily increased, and even though it was the same place on the magnetic recording medium, among multiple measurements, a signal caused by collision with a protrusion on the surface was detected. may or may not be detected. Such a phenomenon is called credence. Creedence is not detected as a protrusion in the glide test and is not used to judge whether the glide test is pass or fail. However, a temporary increase in noise in the glide test generally indicates an uneven lubricant layer or the presence of relatively soft foreign matter.
  • Evaluation criteria A: The number of sheets that passed the glide test was 45 or more and the creedence average value was less than 0.5
  • B The number of sheets that passed the glide test was 45 or more and the creedence average value was 0.5 or more and less than 1.0
  • C The number of sheets that passed the glide test was 45 or more and the creedence average value Value 1.0 or more and less than 5.0
  • D The number of sheets that passed the glide test was less than 45 or the average creedence value was 5.0 or more
  • Evaluation criteria A: Less than 100 B: 100 or more and less than 200 C: 200 or more and less than 300 D: 300 or more and less than 1000 E: 1000 or more
  • the magnetic recording media of Examples 1 to 22 were evaluated A to C in all evaluation items. From this, even if the lubricating layer of the magnetic recording media of Examples 1 to 22 has a thin thickness of 9.5 ⁇ or less, the floating stability of the magnetic head is good, and the corrosion of the magnetic recording medium is suppressed. It was confirmed that the effect of
  • the lubricating layers of the magnetic recording media of Examples 2, 3, 13, 19 to 21 using the compounds (B), (C), (M), (S) to (U) was evaluated as A in floating stability, which was good.
  • the total number of hydroxyl groups in the compounds is 7 or more, and the adsorptive power of the molecules as a whole is high, resulting in good adhesion and excellent floating stability. it is conceivable that.
  • Compounds (B), (S) to (U) have a total of 6 hydroxyl groups in the compound, and thus have good adhesion to the protective layer.
  • R 3a and R 3c are the same
  • R 4a and R 4b are the same
  • R 1 -R 2 - and R 6 -R 5 - are the same. Since it has a symmetrical structure with respect to the center, it easily spreads evenly on the protective layer.
  • R 4a and R 4b are linking groups represented by formula (3-1), s is 1, and the cyano groups in R 1 and R 6 are bonded to linear alkyl groups. Therefore, the adsorption power to the protective layer is high. From the above, it is considered that in Examples 2 and 19 to 21, better floating stability was obtained.
  • Examples 1, 4 to 9 Comparing Examples 1, 4 to 9 using Compounds (A), (D) to (I), in which the total number of hydroxyl groups is four, shows that Examples 1, 4, 6 to 8 exhibit good floating stability. is obtained.
  • Compounds (A), (D), (F) to (H) used in these Examples have a structure in which R 1 and R 6 are bonded to a linear alkyl group with a cyano group ( 5-1), (5-2), structure (5-7) having two cyano groups, and structure (5-8) having a polar site carbonyl group in addition to the cyano group. Either.
  • These compounds are compounds (E) and (I) in which R 1 and R 6 are structures (5-6) and (5-9) in which a cyano group is bonded to a relatively bulky hydrocarbon group.
  • the cyano group is likely to be close to the protective layer, and it is presumed that the cyano group has a high ability to interact with the active sites on the protective layer. From the above, it is considered that excellent floating stability was obtained by using compounds (A), (D), (F) to (H).
  • R 1 and/or R 6 in compounds (D) to (F), (I), (J), and (N) is a terminal group (5-2 ), (5-6), (5-7), (5-9), (5-10).
  • compound (H) has structure (3-2) in which R 2 and R 5 are increased by one methylene group in the skeleton of glycerin
  • compound (V) has R 4a and R 4b , has a structure (3-3) in which the methylene group in the skeleton of glycerin is increased by one.
  • the terminal group having a cyano group is only R1
  • R6 is a group having a double bond.
  • the lubricating layer containing compounds (D) to (F), (H) to (J), (N), (P), (Q), and (V) has good hydrophobicity. , effectively inhibits the intrusion of water, which causes corrosion of the magnetic recording medium. Therefore, in Examples 4 to 6, 8 to 10, 14 , 16, 17, and 22 using these compounds, compounds (C), (L), It is presumed that, compared with Examples 3, 12, and 13 using (M), hydrophilicity was low and good corrosion resistance was obtained.
  • Comparative Examples 3 and 4 a compound having a glycerin structure in the center of the chain structure and having a perfluoropolyether chain and an organic group having a cyano group and a hydroxyl group bonded in this order on both sides thereof ( Z) and (AA) are used.
  • the floating stability evaluation was D
  • the corrosion resistance evaluation was D in Comparative Example 3 and C in Comparative Example 4.
  • Comparative Examples 3 and 4 since compound (Z) or compound (AA) having two perfluoropolyether chains bonded via a linking group having a polar group is used, the lubricant is protected. It is presumed that the adhesion between the lubricating layer and the protective layer was insufficient, resulting in poor floating stability and corrosion resistance.
  • Comparative Examples 5 and 6 a compound having a skeleton composed of three perfluoropolyether chains linked via a glycerin structure, and end groups having one or two hydroxyl groups at both ends thereof were bonded.
  • (AB) and (AC) are used.
  • the magnetic recording medium of Comparative Example 5 was evaluated as D for flying stability and D for corrosion resistance.
  • the magnetic recording medium of Comparative Example 6 was evaluated as E for flying stability and D for corrosion resistance.
  • Comparative Example 7 a compound having a skeleton composed of three perfluoropolyether chains linked via a linking group having two hydroxyl groups, and end groups having two hydroxyl groups at both ends thereof were bonded.
  • (AD) is used.
  • the magnetic recording medium of Comparative Example 7 was rated C for flying stability and D for corrosion resistance.
  • Compounds (AB) to (AD) used in Comparative Examples 5 to 7 have only hydroxyl groups as polar groups at both ends of the molecule. Therefore, compared with the magnetic recording media of Examples 1 to 22 containing compounds (A) to (V) in which R 1 -R 2 - and/or R 6 -R 5 - have a hydroxyl group and a cyano group, In the magnetic recording media of Comparative Examples 5 to 7, the polar groups in the lubricant tend to interact with each other and aggregate easily. As a result, it is presumed that the lubricating layer containing the compounds (AB) to (AD) tended to form protrusions formed by agglomeration of molecules, resulting in insufficient flying stability.
  • the multiple polar groups contained in the compounds (AB) to (AD) inhibit mutual interaction with the protective layer. Therefore, it is presumed that many polar groups not adsorbed to the protective layer are present in the lubricating layer of the magnetic recording media of Comparative Examples 5-7.
  • the compounds (AB) to (AD) do not contain a cyano group, the positively charged sites on the protective layer are less likely to be covered with the lubricating layer and are likely to be exposed on the surface of the magnetic recording medium. Positively charged sites on the protective layer exposed on the surface of the magnetic recording medium tend to take up water.
  • a lubricating layer that has a good floating stability of the magnetic head and is highly effective in suppressing corrosion of the magnetic recording medium can be formed even if the thickness is thin. can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

下記式で表される含フッ素エーテル化合物。R-R-CH-R3a-CH-R4a-CH-R3b-CH-R4b-CH-R3c -CH-R-R(R3a、R3b、R3cはパーフルオロポリエーテル鎖;R、R4a、R4b、Rは水酸基、アミノ基、カルボキシ基、およびスルホ基からなる群より選択される少なくとも1種を有する2価の連結基;RはRと結合する側の末端が酸素原子;RはRと結合する側の末端が酸素原子;RおよびRは炭素原子数1~50の有機基または水素原子であり、少なくとも一方は炭素原子数1~8の有機基の有する炭素原子にシアノ基が結合した基。)

Description

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
 本発明は、含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体に関する。
 本願は、2021年12月15日に、日本に出願された特願2021-203034号に基づき優先権を主張し、その内容をここに援用する。
 磁気記録再生装置における記録密度を高くするために、高記録密度に適した磁気記録媒体の開発が進められている。
 従来、磁気記録媒体として、基板上に記録層を形成し、記録層上にカーボンなどからなる保護層を形成したものがある。保護層は、記録層に記録された情報を保護するとともに、磁気ヘッドの摺動性を高める。しかし、記録層上に保護層を設けただけでは、磁気記録媒体の耐久性は十分に得られない。このため、一般に、保護層の表面に潤滑剤を塗布して潤滑層を形成している。
 磁気記録媒体の潤滑層を形成する際に用いられる潤滑剤としては、例えば、-CF-を含む繰り返し構造を有するフッ素系のポリマーの末端に、水酸基、アミノ基などの極性基を有する化合物を含有するものが提案されている。
 例えば、特許文献1、特許文献2、および特許文献3には、3つのパーフルオロポリエーテル鎖が、極性基を1つ以上有する連結基を介して結合した骨格を有し、その両側に、メチレン基(-CH-)を介して極性基を有する末端基がそれぞれ結合されている含フッ素エーテル化合物が開示されている。
 また、特許文献4および特許文献5には、パーフルオロポリエーテル鎖の両末端に、極性基を有する2価の連結基が結合され、その少なくとも一方に、シアノ基を有する有機基である末端基が結合している含フッ素エーテル化合物が開示されている。
 さらに、特許文献6には、水酸基を有する脂肪族炭化水素鎖の両側に、パーフルオロポリエーテル鎖、メチレン基(-CH-)、極性基を有する2価の連結基がこの順に結合され、その少なくとも一方に、シアノ基を有する有機基である末端基が結合している含フッ素エーテル化合物が開示されている。
国際公開第2018/116742号 国際公開第2017/145995号 米国特許出願公開第2016/0260452号明細書 国際公開第2019/039200号 国際公開第2019/054148号 国際公開第2021/131961号
 磁気記録再生装置においては、より一層、磁気ヘッドの浮上量を小さくすることが要求されている。このため、磁気記録媒体における潤滑層の厚みを、より薄くすることが求められている。
 しかしながら、一般的に潤滑層の厚みを薄くすると、磁気記録媒体の耐腐食性が低下する傾向がある。また、厚みの薄い潤滑層を形成すると、磁気ヘッドの浮上安定性を低下させる原因となる突起などが形成されやすくなる。これらのことから、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、しかも磁気ヘッドの浮上安定性が良好となる潤滑層が要求されている。
 本発明は、上記事情を鑑みてなされたものであり、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性が良好な潤滑層を形成できる、磁気記録媒体用潤滑剤の材料として使用可能な含フッ素エーテル化合物を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含み、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性が良好な潤滑層を形成できる磁気記録媒体用潤滑剤を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含む潤滑層を有し、磁気ヘッドの浮上安定性が良好で、優れた耐腐食性を有する磁気記録媒体を提供することを目的とする。
 本発明は、以下の態様を含む。
 本発明の第一の態様は、以下の含フッ素エーテル化合物を提供する。
[1] 下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
-R-CH-R3a-CH-R4a-CH-R3b-CH-R4b-CH-R3c -CH-R-R  (1)
(式(1)中、R3a、R3b、およびR3cは、パーフルオロポリエーテル鎖である;R3a、R3b、およびR3cは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;R、R4a、R4b、およびRは、水酸基、アミノ基、カルボキシ基、およびスルホ基からなる群より選択される少なくとも1種の極性基を有する2価の連結基である;R、R4a、R4b、およびRは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;Rは、Rと結合する側の末端が酸素原子である;Rは、Rと結合する側の末端が酸素原子である;RおよびRは、RまたはRの末端の酸素原子に結合された末端基であり、同じであっても異なっていても良い;RおよびRは、炭素原子数1~50の有機基または水素原子であり、少なくとも一方は、炭素原子数1~8の有機基の有する炭素原子に、シアノ基が結合した基である。)
 本発明の第一の態様の前記含フッ素エーテル化合物は、以下の[2]~[12]に記載される特徴を有することが好ましい。以下の[2]~[12]に記載される特徴は、2つ以上を任意に組み合わせることも好ましい。
[2] 前記式(1)において、RおよびRのうち少なくとも一方が、フェニル基または炭素原子数1~6のアルキル基を構成する炭素原子に、シアノ基が結合した基である、[1]に記載の含フッ素エーテル化合物。
[3] 前記式(1)において、R、R4a、R4b、およびRが、それぞれ水酸基を1つ以上有する、[1]または[2]に記載の含フッ素エーテル化合物。
[4] 前記式(1)において、Rの有する水酸基と、Rの有する水酸基との合計数が2~6である、[3]に記載の含フッ素エーテル化合物。
[5] 前記式(1)において、RおよびRの両方が、フェニル基または炭素原子数1~6のアルキル基を構成する炭素原子に、シアノ基が結合した基である、[1]~[4]のいずれかに記載の含フッ素エーテル化合物。
[6] 前記式(1)において、R、R4a、R4b、およびRはそれぞれ独立に、下記式(2)で表される連結基である、[1]~[5]のいずれかに記載の含フッ素エーテル化合物。
Figure JPOXMLDOC01-appb-C000004

(式(2)中、pは1~3の整数を表す;p個のqはそれぞれ独立して1~4の整数を表し、p個のrはそれぞれ独立して1~4の整数を表す;式(2)中の最も左側の酸素原子は、式(1)においてR3bとは反対側に配置される;式(2)中の最も右側の酸素原子は、式(1)においてR3b側に配置される。)
[7] 前記式(1)において、RおよびRはそれぞれ独立に、下記式(3-1)または(3-2)で表される連結基である、[1]~[6]のいずれかに記載の含フッ素エーテル化合物。
Figure JPOXMLDOC01-appb-C000005


(式(3-1)中、sは1~3の整数を表す;式(3-1)中、最も左側の酸素原子は、RまたはRに結合され、最も右側の酸素原子は、R3aまたはR3cに隣接するCHに結合される。)
(式(3-2)中、tは2~4の整数を表す;式(3-2)中、左側の酸素原子は、RまたはRに結合され、右側の酸素原子は、R3aまたはR3cに隣接するCHに結合される。)
[8] 前記式(1)において、R4aおよびR4bはそれぞれ独立に、下記式(3-1)または(3-3)で表される連結基である、[1]~[7]のいずれかに記載の含フッ素エーテル化合物。
Figure JPOXMLDOC01-appb-C000006


(式(3-1)中、sは1~3の整数を表す;式(3-1)中、最も左側の酸素原子は、R3aまたはR3cに隣接するCHに結合され、最も右側の酸素原子は、R3bに隣接するCHに結合される。)
(式(3-3)中、uは2~4の整数を表す;式(3-3)中、左側の酸素原子は、R3aまたはR3cに隣接するCHに結合され、右側の酸素原子は、R3bに隣接するCHに結合される。)
[9] 前記式(1)において、R3aとR3cとが同じであり、R4aとR4bとが同じであり、R-R-とR-R-とが同じである、[1]~[8]のいずれかに記載の含フッ素エーテル化合物。
[10] 前記式(1)において、R3a、R3b、およびR3cはそれぞれ独立に、下記式(4)で表されるパーフルオロポリエーテル鎖である、[1]~[9]のいずれかに記載の含フッ素エーテル化合物。
 -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (4)(式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(4)における繰り返し単位の配列順序には、特に制限はない。)
[11] 前記式(1)において、R3a、R3b、およびR3cはそれぞれ独立に、下記式(4-1)~(4-4)で表されるパーフルオロポリエーテル鎖から選ばれるいずれか1種である、[1]~[10]のいずれかに記載の含フッ素エーテル化合物。
 -CF-(OCFCF-(OCF-OCF-  (4-1)
(式(4-1)中、hおよびiは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
 -CFCF-(OCFCFCF-OCFCF-  (4-2)
(式(4-2)中、jは平均重合度を示し、1~15を表す。)
 -CFCFCF-(OCFCFCFCF-OCFCFCF-  (4-3)
(式(4-3)中、kは平均重合度を示し、1~10を表す。)
 -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-  (4-4)
(式(4-4)中、w8、w9は平均重合度を示し、それぞれ独立に1~20を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
[12] 数平均分子量が400~10000の範囲内である、[1]~[11]のいずれかに記載の含フッ素エーテル化合物。
 本発明の第二の態様は、以下の磁気記録媒体用潤滑剤を提供する。
[13] [1]~[12]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
 本発明の第三の態様は、以下の磁気記録媒体を提供する。
[14] 基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
 前記潤滑層が、[1]~[12]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
[15] 前記潤滑層の平均膜厚が、0.5nm~2.0nmである、[14]に記載の磁気記録媒体。
 本発明の含フッ素エーテル化合物は、上記式(1)で表される化合物である。このため、本発明の含フッ素エーテル化合物は、磁気記録媒体用潤滑剤の材料として好ましく使用できる。
 本発明の磁気記録媒体用潤滑剤は、本発明の含フッ素エーテル化合物を含むため、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性が良好な潤滑層を形成できる。
 本発明の磁気記録媒体は、本発明の含フッ素エーテル化合物を含み、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性が良好な潤滑層を有する。このため、本発明の磁気記録媒体は、磁気ヘッドの浮上安定性が良好であり、優れた信頼性および耐久性を有する。また、本発明の磁気記録媒体は、磁気ヘッドの浮上安定性が良好で、腐食を抑制する効果の高い潤滑層を有するため、保護層および/または潤滑層の厚みを薄くできる。
本発明の磁気記録媒体の一実施形態を示した概略断面図である。
 本発明者らは、上記課題を解決するために、以下に示すように、鋭意研究を重ねた。
 従来、保護層の表面に塗布される磁気記録媒体用潤滑剤(以下、「潤滑剤」と略記する場合がある。)の材料として、鎖状構造の末端に水酸基などの極性基を有する含フッ素エーテル化合物が用いられている。含フッ素エーテル化合物中の極性基は、保護層上の活性点と結合して、潤滑層の保護層に対する密着性を向上させる。このことから、潤滑剤の材料として、鎖状構造の末端だけでなく、鎖状構造中にも極性基を有する含フッ素エーテル化合物が好ましく用いられている。
 しかしながら、従来の潤滑剤を用いて保護層上に厚みの薄い潤滑層を形成した場合、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性が良好な潤滑層を実現することは困難であった。このため、従来の潤滑剤を用いて潤滑層を形成する場合には、磁気記録媒体の腐食抑制効果が高く、磁気ヘッドの浮上安定性が良好な潤滑層を形成するために、潤滑層の膜厚を厚くしなければならなかった。
 従来の潤滑剤を用いて形成した厚みの薄い潤滑層において、磁気記録媒体の腐食抑制効果および磁気ヘッドの浮上安定性が不十分となる主な原因は、潤滑層に含まれる潤滑剤の状態が嵩高いため、保護層に対する潤滑層の被覆状態が不均一となるためであると推定される。
 そこで、本発明者らは、厚みが薄くても保護層に対する被覆状態が均一な潤滑層を形成できる潤滑剤を実現すべく、潤滑剤に含まれる含フッ素エーテル化合物中の極性基と、保護層上の活性点との結合に着目し、鋭意検討を重ねた。
 その結果、鎖状構造の中央にパーフルオロポリエーテル鎖を配置し、その両端に、極性基を有する2価の連結基と、パーフルオロポリエーテル鎖と、極性基を有する2価の連結基とが、この順にそれぞれメチレン基(-CH-)を介して結合され、両末端に炭素原子数1~50の有機基または水素原子である末端基が結合され、少なくとも一方の末端基が、炭素原子数1~8の有機基の有する炭素原子に、シアノ基が結合した基である含フッ素エーテル化合物とすればよいことを見出した。
 このような含フッ素エーテル化合物では、以下の<1>~<3>に示すように、2価の連結基の有する極性基と保護層との相互作用が阻害されにくく、2価の連結基の有する極性基がそれぞれ独立して保護層との良好な相互作用を示す。しかも、上記の含フッ素エーテル化合物では、以下の<4>に示すように、少なくとも一方の末端基に含まれるシアノ基、および2価の連結基の有する極性基が、それぞれ独立して保護層上に多数存在する官能基(活性点)と結合できる。したがって、上記の含フッ素エーテル化合物を含む潤滑層は、保護層上に多数存在する官能基(活性点)と結合しない極性基が生じにくく、保護層に対する密着性に優れる。このことから、上記含フッ素エーテル化合物を含む潤滑剤は、厚みが薄くても、保護層に対する被覆状態が均一な潤滑層を形成でき、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性が良好な潤滑層が得られるものと推定される。
<1>上記の含フッ素エーテル化合物では、少なくとも一方の末端基にシアノ基(-CN)が含まれている。末端基に含まれているシアノ基を構成する炭素原子と、シアノ基を構成する炭素原子に隣接する炭素原子との結合は、自由回転が難しい。このことから、少なくとも一方の末端基に含まれるシアノ基と、シアノ基を含む末端基に隣接する、含フッ素エーテル化合物中の2価の連結基の有する極性基とは、相互作用が困難である。よって、含フッ素エーテル化合物中の少なくとも一方の末端基に含まれるシアノ基、およびシアノ基を含む末端基に隣接する2価の連結基の有する極性基は、互いに保護層との相互作用を阻害する能力が極めて小さい。
<2>上記の含フッ素エーテル化合物において、2つの末端基とパーフルオロポリエーテル鎖との間にそれぞれ配置された極性基を有する2価の連結基は、パーフルオロポリエーテル鎖を挟んで隣接する極性基を有する2価の連結基との距離が適正である。したがって、2つの末端基とパーフルオロポリエーテル鎖との間にそれぞれ配置された2価の連結基の有する極性基は、パーフルオロポリエーテル鎖を挟んで隣接する2価の連結基の有する極性基との相互作用が困難である。よって、2つの末端基とパーフルオロポリエーテル鎖との間にそれぞれ配置された2価の連結基の有する極性基は、パーフルオロポリエーテル鎖を挟んで隣接する2価の連結基の有する極性基によって、保護層との相互作用を阻害されにくい。
<3>上記の含フッ素エーテル化合物では、鎖状構造の中央に配置されたパーフルオロポリエーテル鎖と、末端基側に配置された2つのパーフルオロポリエーテル鎖との間に、それぞれ極性基を有する2価の連結基が配置されている。これらの2つの2価の連結基間の距離は、鎖状構造の中央に配置されたパーフルオロポリエーテル鎖によって適正とされている。また、これらの2つの2価の連結基とそれぞれ、末端基側に配置されたパーフルオロポリエーテル鎖を挟んで隣接する極性基を有する2価の連結基との距離は、末端基側に配置された2つのパーフルオロポリエーテル鎖によって適正とされている。したがって、鎖状構造の中央に配置されたパーフルオロポリエーテル鎖に隣接する2つの2価の連結基がそれぞれ有する極性基は、保護層との相互作用が阻害されにくい。
 上記<1>~<3>に示したように、上記の含フッ素エーテル化合物中の2価の連結基の有する極性基は、いずれも保護層上の活性点との結合を、少なくとも一方の末端基に含まれるシアノ基または他の2価の連結基の有する極性基によって阻害されにくく、それぞれ独立して保護層との良好な相互作用を示す。
<4>保護層上に多数存在する官能基(活性点)には、正に帯電した部位と負に帯電した部位とが存在する。一般に、上記の含フッ素エーテル化合物において、極性基として用いられる水酸基(-OH)、アミノ基(-NH)、カルボキシ基(-COOH)、スルホ基(-SOH)等は、水素原子が水素結合を介して、保護層上の負に帯電した部位と相互作用をすることにより吸着能を示す。一方、上記の含フッ素エーテル化合物の少なくとも一方の末端基に含まれるシアノ基は、窒素原子が負に帯電している。したがって、上記の含フッ素エーテル化合物中のシアノ基は、保護層上の正に帯電した部位と相互作用をすることにより吸着能を示す。よって、上記の含フッ素エーテル化合物に含まれる極性基とシアノ基とは、それぞれ保護層上の別の部位に吸着する。ゆえに、上記の含フッ素エーテル化合物の少なくとも一方の末端基に含まれるシアノ基、および2価の連結基の有する極性基は、保護層上の官能基(活性点)とそれぞれ独立に結合できる。
 これらのことから、上記の含フッ素エーテル化合物では、少なくとも一方の末端基に含まれるシアノ基、および2価の連結基の有する極性基が、互いに保護層上の活性点との結合を阻害することなく、それぞれ保護層上の活性点との結合に関与しやすいものとされている。しかも、上記の含フッ素エーテル化合物では、少なくとも一方の末端基に含まれるシアノ基、および2価の連結基の有する極性基が、それぞれ独立に保護層上の正に帯電した部位または負に帯電した部位(活性点)と結合する。したがって、上記の含フッ素エーテル化合物を含む潤滑剤では、保護層上の活性点と結合しない極性基が生じにくく、保護層上の活性点との結合に関与しない極性基の数が抑制される。その結果、上記の含フッ素エーテル化合物を含む潤滑剤は、嵩高いものとなりにくく、保護層に対する密着性に優れ、厚みが薄くても、保護層に対する被覆状態が均一な潤滑層を形成できるものと推定される。
 また、上記の含フッ素エーテル化合物では、極性基を有する2価の連結基同士の距離が適正であるため、含フッ素エーテル化合物に含まれる極性基同士が凝集しにくい。さらに、上記の含フッ素エーテル化合物に含まれる3つのパーフルオロポリエーテル鎖は、両端部がそれぞれ、2価の連結基の有する極性基によって保護層に密着される。このため、保護層上に塗布された含フッ素エーテル化合物は、保護層上に濡れ広がりやすく、潤滑層中で嵩高い状態になりにくい。したがって、上記の含フッ素エーテル化合物を含む潤滑剤は、保護層との密着性が良好で、厚みが薄くても、保護層に対する被覆状態の均一な潤滑層を形成できる。
 上記の含フッ素エーテル化合物を含む潤滑剤では、上述した含フッ素エーテル化合物の分子構造に基づいて得られる相乗効果によって、厚みが薄くても、保護層に対する被覆状態の均一な潤滑層を形成でき、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性が良好な潤滑層が得られるものと推定される。
 さらに、本発明者らは、上記の含フッ素エーテル化合物を含む潤滑剤を用いて保護層上に9.0Å~9.5Åの厚みの薄い潤滑層を形成し、磁気記録媒体の腐食抑制効果が高く、磁気ヘッドの浮上安定性が良好であることを確認し、本発明を想到した。
 以下、本発明の含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体の好ましい例について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、本発明の趣旨を逸脱しない範囲で、数、量、位置、比率、材料、構成等について、付加、省略、置換、変更が可能である。
[含フッ素エーテル化合物]
 本実施形態の含フッ素エーテル化合物は、下記式(1)で表される。
-R-CH-R3a-CH-R4a-CH-R3b-CH-R4b-CH-R3c -CH-R-R  (1)
(式(1)中、R3a、R3b、およびR3cは、パーフルオロポリエーテル鎖である;R3a、R3b、およびR3cは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;R、R4a、R4b、およびRは、水酸基、アミノ基、カルボキシ基、およびスルホ基からなる群より選択される少なくとも1種の極性基を有する2価の連結基である;R、R4a、R4b、およびRは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;Rは、Rと結合する側の末端が酸素原子である;Rは、Rと結合する側の末端が酸素原子である;RおよびRは、RまたはRの末端の酸素原子に結合された末端基であり、同じであっても異なっていても良い;RおよびRは、炭素原子数1~50の有機基または水素原子であり、少なくとも一方は、炭素原子数1~8の有機基の有する炭素原子に、シアノ基が結合した基である。)
 本実施形態の含フッ素エーテル化合物は、式(1)で示されるように、鎖状構造の中央にR3bで示されるパーフルオロポリエーテル鎖(以下、「PFPE鎖」という場合がある。)が配置されている。R3bで示されるPFPE鎖の両端には、R4a、R4bで示される極性基を有する2価の連結基と、R3a、R3cで示されるPFPE鎖と、R、Rで示される極性基を有する2価の連結基とが、この順にそれぞれメチレン基(-CH-)を介して結合されている。式(1)で示される含フッ素エーテル化合物では、両末端に炭素原子数1~50の有機基または水素原子であるR、Rで示される末端基が結合されている。R、Rで示される末端基のうち、少なくとも一方の末端基は、炭素原子数1~8の有機基の有する炭素原子に、シアノ基が結合した基(以下、「シアノ基を有する末端基」という場合がある。)である。
(R3a、R3b、およびR3cで示されるPFPE鎖)
 式(1)で表される含フッ素エーテル化合物において、R3a、R3b、およびR3cは、パーフルオロポリエーテル鎖である。R3a、R3b、およびR3cで示されるPFPE鎖は、本実施形態の含フッ素エーテル化合物を含む潤滑剤を保護層上に塗布して潤滑層を形成した場合に、保護層の表面を被覆するとともに、潤滑層に潤滑性を付与して磁気ヘッドと保護層との摩擦力を低減させる。R3a、R3b、およびR3cで示されるPFPE鎖は、含フッ素エーテル化合物を含む潤滑剤に求められる性能等に応じて適宜選択される。
 R3a、R3b、およびR3cは、一部または全部が同じであっても良いし、それぞれ異なっていても良い。R3a、R3b、およびR3cのうち、R3aとR3cが同じであることが好ましく、R3a、R3b、およびR3cが全て同じであることがより好ましい。これは、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層となるためである。
 本明細書において、「PFPE鎖が同じ」であるとは、PFPE鎖の繰り返し単位の構造が同じであって、平均重合度が異なる場合も含む。
 式(1)で表される含フッ素エーテル化合物は、R4a、R4bで示される極性基を有する2価の連結基およびメチレン基(-CH-)を介して結合された3つのPFPE鎖(R3a、R3b、およびR3c)を有する。したがって、例えば、極性基を有する2価の連結基およびメチレン基(-CH-)を介して結合されたPFPE鎖の数が2つ以下である含フッ素エーテル化合物と比較して、PFPE鎖を保護層に密着させる極性基を有する2価の連結基の数が多い。このため、式(1)で表される含フッ素エーテル化合物は、PFPE鎖の数が2つ以下である場合と比較して、保護層との密着性が良好な潤滑層を形成できる。
 R3a、R3b、およびR3cで示されるPFPE鎖としては、パーフルオロアルキレンオキシドの重合体または共重合体からなるものなどが挙げられる。パーフルオロアルキレンオキシドとしては、例えば、パーフルオロメチレンオキシド、パーフルオロエチレンオキシド、パーフルオロ-n-プロピレンオキシド、パーフルオロブチレンオキシドなどが挙げられる。
 式(1)におけるR3a、R3b、およびR3cは、それぞれ独立に、パーフルオロアルキレンオキシドの重合体または共重合体に由来する下記式(4)で表されるPFPE鎖であることが好ましい。
 -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (4)(式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(4)における繰り返し単位の配列順序には、特に制限はない。)
 式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表し、0~15であることが好ましく、0~10であることがより好ましい。式(4)中のw2、w3、w4、w5の全てが同時に0になることはない。
 式(4)中、w1、w6はCFの数を示す平均値であり、それぞれ独立に1~3を表す。w1、w6は、式(4)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
 式(4)における(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)は、繰り返し単位である。式(4)における繰り返し単位の配列順序には、特に制限はない。また、式(4)における繰り返し単位の種類の数にも、特に制限はない。
 R3a、R3b、およびR3cで示されるPFPE鎖は、それぞれ独立に、下記式(4-1)~(4-4)で表されるPFPE鎖から選ばれるいずれか1種であることがより好ましい。
 R3a、R3b、およびR3cが、それぞれ独立に式(4-1)~(4-4)で表されるPFPE鎖から選ばれるいずれか1種であると、良好な潤滑性を有する潤滑層が得られる含フッ素エーテル化合物となる。また、R3a、R3b、およびR3cが、それぞれ独立に式(4-1)~(4-4)で表されるPFPE鎖から選ばれるいずれか1種である場合、PFPE鎖中の炭素原子数に対する酸素原子数(エーテル結合(-O-)数)の割合が適正である。このため、適度な硬さを有する含フッ素エーテル化合物となる。よって、保護層上に塗布された含フッ素エーテル化合物が、保護層上で凝集しにくく、より一層厚みの薄い潤滑層を十分な被覆率で形成できる。また、含フッ素エーテル化合物が適度な柔軟性を有することにより、磁気ヘッドの浮上安定性がより良好な潤滑層を形成できる。
 -CF-(OCFCF-(OCF-OCF-  (4-1)
(式(4-1)中、hおよびiは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
 -CFCF-(OCFCFCF-OCFCF-  (4-2)
(式(4-2)中、jは平均重合度を示し、1~15を表す。)
 -CFCFCF-(OCFCFCFCF-OCFCFCF-  (4-3)
(式(4-3)中、kは平均重合度を示し、1~10を表す。)
 -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-  (4-4)
(式(4-4)中、w8、w9は平均重合度を示し、それぞれ独立に1~20を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
 式(4-1)において、繰り返し単位である(OCFCF)と(OCF)との配列順序に、特に制限はない。式(4-1)において、(OCFCF)の数hと(OCF)の数iは同じであってもよいし、異なっていてもよい。式(4-1)で表されるPFPE鎖は、(OCFCF)の重合体であってもよい(言い換えると、式(4-1)中のiが0である。)。また、式(4-1)で表されるPFPE鎖は、(OCFCF)と(OCF)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれであってもよい。
 式(4-1)~(4-3)においては、平均重合度を示すhが1~20、iが0~20、jが1~15、kが1~10であるので、良好な潤滑性を有する潤滑層が得られる含フッ素エーテル化合物となる。また、式(4-1)~(4-3)においては、平均重合度を示すh、iが20以下、jが15以下、kが10以下であるので、含フッ素エーテル化合物の粘度が高くなりすぎず、これを含む潤滑剤が塗布しやすいものとなり、好ましい。平均重合度を示すh、i、j、kは、保護層上に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすい含フッ素エーテル化合物となるため、1~10であることが好ましく、1.5~8であることがより好ましく、2~7であることがさらに好ましい。
 式(4-4)において、繰り返し単位である(CFCFCFO)と(CFCFO)との配列順序には、特に制限はない。式(4-4)において、平均重合度を示す(CFCFCFO)の数w8と(CFCFO)の数w9は同じであってもよいし、異なっていてもよい。式(4-4)は、モノマー単位(CFCFCFO)と(CFCFO)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれを含むものであってもよい。
 式(4-4)において、平均重合度を示すw8およびw9は、それぞれ独立に1~20を表し、1~15であることが好ましく、さらに1~10であることが好ましい。
 式(4-4)中、w7およびw10は、CFの数を示す平均値であり、それぞれ独立に1~2を表す。w7およびw10は、式(4-4)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
(R4a、R4bで示される2価の連結基)
 式(1)で表される含フッ素エーテル化合物において、R4a、R4bは、水酸基、アミノ基、カルボキシ基、およびスルホ基からなる群より選択される少なくとも1種の極性基(以下、単に「極性基」という場合がある。)を有する2価の連結基である。R4aはR3aで表されるPFPE鎖とR3bで表されるPFPE鎖との間に配置されている。R4bはR3bで表されるPFPE鎖とR3cで表されるPFPE鎖との間に配置されている。このことにより、R4a、R4bは、含フッ素エーテル化合物を保護層に密着させる。その結果、本実施形態の含フッ素エーテル化合物を含む潤滑剤は、厚みの薄い潤滑層を十分な被覆率で形成できる。
 式(1)中、R4a、R4bは、同じであっても良いし、異なっていても良い。R4aとR4bとが同じであると、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層を形成できる。また、R4aとR4bとが同じであると、含フッ素エーテル化合物を容易に効率よく製造できる。
 本明細書において、「R4aとR4bとが同じである」とは、式(1)で表される含フッ素エーテル化合物の中央に配置されたR3bに対して、R4aに含まれる原子とR4bに含まれる原子とが対称配置されていることを意味する。
 R4a、R4bで示される2価の連結基は、その両端部に酸素原子が配置されていることが好ましい。R4a、R4bで示される2価の連結基の両端部に配置された酸素原子は、R4aおよびR4bの両側に配置されるメチレン基(-CH-)と、エーテル結合(-O-)を形成する。これらのエーテル結合は、式(1)で表される含フッ素エーテル化合物に適度な柔軟性を付与し、R4a、R4bで示される2価の連結基の有する極性基と保護層との親和性を増大させる。
 R4a、R4bで示される2価の連結基はそれぞれ、炭素原子数3~6のアルキレン基の有する炭素原子に、1つ以上の極性基が結合し、両端部に酸素原子が結合している基であることが好ましい。炭素原子数3~6のアルキレン基は、炭素原子数3~4のアルキレン基であることが好ましい。炭素原子数3~6のアルキレン基は、直鎖状の構造を有することが好ましい。R4a、R4bは、特に、直鎖状の炭素原子数3~6のアルキレン基の中心近傍に配置されている炭素原子に極性基が結合し、両端部に酸素原子が結合している基であることが好ましい。これは、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層となるためである。
 R4a、R4bの有する極性基は、水酸基(-OH)、アミノ基(-NH)、カルボキシ基(-COOH)、スルホ基(-SOH)からなる群より選択される少なくとも1種である。これらの中でも特に、極性基が水酸基であることが好ましい。すなわち、R4a、R4bは、それぞれ水酸基を1つ以上有することが好ましい。水酸基は、保護層、とりわけ炭素系の材料で形成された保護層との相互作用が大きい。このため、R4a、R4bが、それぞれ水酸基を1つ以上有する含フッ素エーテル化合物である場合、これを含む潤滑層は、より一層保護層との密着性が高いものとなる。本実施形態では、R4a、R4bの有する極性基が、全て水酸基であることがより好ましい。
 R4a、R4bはそれぞれ独立に、下記式(2)で表される連結基であることが好ましい。
Figure JPOXMLDOC01-appb-C000007

(式(2)中、pは1~3の整数を表す;p個のqはそれぞれ独立して1~4の整数を表し、p個のrはそれぞれ独立して1~4の整数を表す;式(2)中の最も左側の酸素原子は、式(1)においてR3bとは反対側に配置される;式(2)中の最も右側の酸素原子は、式(1)においてR3b側に配置される。)
 式(2)中、pは1~3の整数を表し、1または2であることが好ましく、1であることがより好ましい。式(2)中のpが2または3である場合、複数の繰り返し単位(-(CH-CH(OH)-(CH-O-)中のqとrの組み合わせは、それぞれ同じであってもよいし、異なっていてもよい。
 式(2)中、p個のqはそれぞれ独立して1~4の整数を表し、1または2であることが好ましく、1であることがより好ましい。式(2)中の最も左側の酸素原子は、式(1)においてR3bとは反対側に配置される。すなわち、式(2)中の最も左側の酸素原子は、R3bを中心としてR4aまたはR4bの分子末端側(RまたはR側)に位置する。
 式(2)中、p個のrはそれぞれ独立して1~4の整数を表し、1または2であることが好ましく、1であることがより好ましい。式(2)中の最も右側の酸素原子は、式(1)においてR3b側に配置される。すなわち、式(2)中の最も右側の酸素原子は、R3bを中心としてR4aまたはR4bの分子中央側(R3b側)に位置する。
 式(2)で表される連結基は、繰り返し単位(-(CH-CH(OH)-(CH-O-)中のqとrのうち、少なくとも一方が1であることが好ましい。
 具体的には、R4aおよびR4bはそれぞれ独立に、下記式(3-1)または(3-3)で表される連結基であることが好ましい。式(3-1)中、最も左側の酸素原子は、R3aまたはR3cに隣接するCHに結合され、最も右側の酸素原子は、R3bに隣接するCHに結合される。また、式(3-3)中、左側の酸素原子は、R3aまたはR3cに隣接するCHに結合され、右側の酸素原子は、R3bに隣接するCHに結合される。
 R4aおよびR4bが、式(3-1)または(3-3)で表される連結基であると、式(1)で表される含フッ素エーテル化合物の合成が容易であり、好ましい。
Figure JPOXMLDOC01-appb-C000008

(式(3-1)中、sは1~3の整数を表す;式(3-1)中、最も左側の酸素原子は、R3aまたはR3cに隣接するCHに結合され、最も右側の酸素原子は、R3bに隣接するCHに結合される。)
(式(3-3)中、uは2~4の整数を表す;式(3-3)中、左側の酸素原子は、R3aまたはR3cに隣接するCHに結合され、右側の酸素原子は、R3bに隣接するCHに結合する。)
 式(3-1)中、sは1~3の整数を表し、1または2であることが好ましく、1であることがより好ましい。R4aおよびR4bが式(3-1)であってsが1であると、式(1)で表される含フッ素エーテル化合物の合成がより容易であり、好ましい。さらに、R4aおよびR4bが式(3-1)で表される連結基でありsが1であると、柔軟性に優れたグリセリン構造を有するものとなるため、保護層に対する吸着力が高く、磁気ヘッドの浮上安定性がより良好な潤滑層を形成できる含フッ素エーテル化合物となる。
 式(3-3)で示される連結基は、グリセリンの骨格(-OCHCH(OH)CHO-)に1~3つのメチレン基を増加させた構造を有する。このため、R4aおよびR4bが式(3-3)である含フッ素エーテル化合物を含む潤滑層は、式(3-3)中のuが1である場合と比較して疎水性の良好なものとなる。その結果、磁気記録媒体の腐食の原因となる水が侵入することを効果的に阻害でき、磁気記録媒体の腐食抑制効果が高い潤滑層となる。
 式(3-3)中、uは2~4の整数を表し、2~3の整数であることが好ましく、2であることがより好ましい。これは、式(1)で表される含フッ素エーテル化合物が柔軟性に優れた構造となるため、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層となるためである。
(RおよびRで示される極性基を有する2価の連結基)
 式(1)で表される含フッ素エーテル化合物において、RおよびRは、水酸基、アミノ基、カルボキシ基、およびスルホ基からなる群より選択される少なくとも1種の極性基を有する2価の連結基である。Rは、Rと結合する側の末端が酸素原子であり、Rが有機基である場合に、エーテル結合によりRと結合する。Rは、Rと結合する側の末端が酸素原子であり、Rが有機基である場合に、エーテル結合によりRと結合する。Rが水素原子である場合、Rの末端の酸素原子とRは水酸基を形成し、Rが水素原子である場合、Rの末端の酸素原子とRは水酸基を形成する。
 式(1)で表される含フッ素エーテル化合物におけるR、R4a、R4b、およびRは、一部または全部が同じであっても良いし、それぞれ異なっていても良い。したがって、RおよびRは、同じであってもよいし異なっていても良い。RとRが同じであると、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層を形成できる。
 本明細書において、「RとRが同じである」とは、式(1)で表される含フッ素エーテル化合物の中央に配置された骨格(-R3a-CH-R4a-CH-R3b-CH-R4b-CH-R3c-)に対して、Rに含まれる原子とRに含まれる原子とが、対称配置されていることを意味する。
 式(1)で表される含フッ素エーテル化合物では、RおよびRがそれぞれ1つ以上の極性基を有するため、これを含む潤滑剤を用いて保護層上に潤滑層を形成した場合に、潤滑層と保護層との間に好適な相互作用が発生する。RおよびRは、含フッ素エーテル化合物を含む潤滑剤に求められる性能などに応じて適宜選択できる。
 RおよびRの有する極性基は、水酸基(-OH)、アミノ基(-NH)、カルボキシ基(-COOH)、スルホ基(-SOH)からなる群より選択される少なくとも1種である。これらの中でも特に、極性基が水酸基であることが好ましい。すなわち、RおよびRは、それぞれ水酸基を1つ以上有することが好ましい。水酸基は、保護層、とりわけ炭素系の材料で形成された保護層との相互作用が大きい。このため、RおよびRが、それぞれ水酸基を1つ以上有していると、含フッ素エーテル化合物を含む潤滑層が、より一層保護層との密着性が高いものとなる。本実施形態では、RおよびRの有する極性基が、全て水酸基であることがより好ましい。
 Rおよび/またはRの有する極性基が水酸基を含む場合、式(1)におけるRに含まれる水酸基とRに含まれる水酸基との合計数は、2~6であることが好ましく、2~5であることがより好ましく、2~4であることが最も好ましい。上記の水酸基の合計数が2以上であると、Rおよび/またはRの有する水酸基と保護層との相互作用が、より効果的に得られる。その結果、保護層との密着性が高い潤滑層を形成できる含フッ素エーテル化合物となる。また、上記の水酸基の合計数が6以下であると、潤滑層と保護層上の活性点との結合に関与していない極性基が少なくなる。このため、潤滑層と保護層上の活性点との結合に関与していない極性基が凝集し、突起となって磁気ヘッドと衝突することを防止できる。よって、浮上安定性のより優れた潤滑層を形成できるものとなる。また、上記の水酸基の合計数が4以下であると、含フッ素エーテル化合物を含む潤滑層の疎水性が十分に高いものとなる。このため、磁気記録媒体の腐食の原因となる水を潤滑層に誘引することを防止できる。よって、磁気記録媒体の汚染および腐食を、より効果的に抑制できる潤滑層を形成できるものとなる。
 Rで示される2価の連結基は、Rに結合する側の末端に酸素原子を有し、もう一方の末端(Rに隣接するCHに結合する端部)にも、酸素原子が配置されていることが好ましい。また、Rで示される2価の連結基は、Rに結合する側の末端に酸素原子を有し、もう一方の末端(Rに隣接するCHに結合する端部)にも、酸素原子が配置されていることが好ましい。RおよびRで示される2価の連結基の両端部に配置された酸素原子は、RおよびRが炭素原子数1~50の有機基である場合、RおよびRの両側に結合される原子とエーテル結合(-O-)を形成する。これらのエーテル結合は、式(1)で表される含フッ素エーテル化合物に適度な柔軟性を付与し、RおよびRで示される2価の連結基の有する極性基と保護層との親和性を増大させる。
 RおよびRで示される2価の連結基はそれぞれ、炭素原子数3~8のアルキレン基の有する炭素原子に、1つ以上の極性基が結合し、両端部に酸素原子が結合している基であることが好ましい。炭素原子数3~8のアルキレン基は、炭素原子数3~5のアルキレン基であることが好ましい。炭素原子数3~8のアルキレン基は、直鎖状の構造を有することが好ましい。これは、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層を形成できるためである。
 RおよびRは、R4aおよびR4bと同様に、それぞれ独立に、下記式(2)で表される連結基であることが好ましい。
Figure JPOXMLDOC01-appb-C000009

(式(2)中、pは1~3の整数を表す;p個のqはそれぞれ独立して1~4の整数を表し、p個のrはそれぞれ独立して1~4の整数を表す;式(2)中の最も左側の酸素原子は、式(1)においてR3bとは反対側に配置される;式(2)中の最も右側の酸素原子は、式(1)においてR3b側に配置される。)
 RおよびRが式(2)で表される連結基である場合も、R4aおよびR4bと同様に、式(2)中、pは1~3の整数を表し、1または2であることが好ましく、1であることがより好ましい。式(2)中のpが2または3である場合、複数の繰り返し単位(-(CH-CH(OH)-(CH-O-)中のqとrの組み合わせは、それぞれ同じであってもよいし、異なっていてもよい。
 式(2)中、p個のqはそれぞれ独立して1~4の整数を表し、1または2であることが好ましく、1であることがより好ましい。式(2)中の最も左側の酸素原子は、式(1)においてR3bとは反対側に配置される。すなわち、RおよびRが式(2)で表される連結基である場合、式(2)中の最も左側の酸素原子は、R3bを中心としてRまたはRの分子末端側(RまたはR側)に位置する。
 式(2)中、p個のrはそれぞれ独立して1~4の整数を表し、1または2であることが好ましく、1であることがより好ましい。式(2)中の最も右側の酸素原子は、式(1)においてR3b側に配置される。すなわち、RおよびRが式(2)で表される連結基である場合、式(2)中の最も右側の酸素原子は、R3bを中心としてRまたはRの分子中央側(R3b側)に位置する。
 式(2)で表される連結基は、繰り返し単位(-(CH-CH(OH)-(CH-O-)中のqとrのうち、少なくとも一方が1であることが好ましい。
 具体的には、RおよびRはそれぞれ独立に、下記式(3-1)または(3-2)で表される連結基であることが好ましい。式(3-1)中、最も左側の酸素原子は、RまたはRに結合され、最も右側の酸素原子は、R3aまたはR3cに隣接するCHに結合される。また、式(3-2)中、左側の酸素原子は、RまたはRに結合され、右側の酸素原子は、R3aまたはR3cに隣接するCHに結合される。
Figure JPOXMLDOC01-appb-C000010


(式(3-1)中、sは1~3の整数を表す;式(3-1)中、最も左側の酸素原子は、RまたはRに結合され、最も右側の酸素原子は、R3aまたはR3cに隣接するCHに結合される。)
(式(3-2)中、tは2~4の整数を表す;式(3-2)中、左側の酸素原子は、RまたはRに結合され、右側の酸素原子は、R3aまたはR3cに隣接するCHに結合される。)
 RおよびRが、式(3-1)または(3-2)で表される連結基であると、式(1)で表される含フッ素エーテル化合物の合成が容易であり、好ましい。また、RおよびRが、式(3-1)または(3-2)で表される連結基であると、RおよびRが有機基である場合、RとR、およびRとRが、エーテル結合している。さらに、Rと、Rに隣接するCHとの間、およびRと、Rに隣接するCHとの間にエーテル結合が配置されたものとなる。その結果、適度な柔軟性を有する含フッ素エーテル化合物となり、耐腐食性および浮上安定性のより良好な潤滑層を形成できるものとなる。
 式(3-1)および(3-2)で表される連結基は、いずれも極性基の中でも特に保護層との相互作用が大きい水酸基を有する。また、式(3-1)および(3-2)で表される連結基では、水酸基の結合している炭素原子の両側にメチレン基(-CH-)が配置されている。このため、RおよびRが式(3-1)または(3-2)で表される連結基である場合、以下に示す理由により、保護層との密着性がより一層高い潤滑層を形成できる含フッ素エーテル化合物となる。
 すなわち、式(3-1)および(3-2)で表される連結基において、水酸基の結合している炭素原子と、RまたはRとの間には、メチレン基と、RまたはRの末端の酸素原子(-O-)とが少なくとも配置される。このため、式(3-1)および(3-2)で表される連結基に含まれる水酸基と、Rおよび/またはRの有するシアノ基との距離が適正となる。また、RおよびRが有機基である場合、RとR、およびRとRを結合するエーテル結合によって、末端基の自由回転がわずかに抑制される。このため、Rおよび/またはRの有するシアノ基と、式(3-1)および(3-2)で表される連結基の有する水酸基は、互いに相互作用しにくい。したがって、式(3-1)および(3-2)で表される連結基の有する水酸基と、Rおよび/またはRで示される末端基とが、それぞれ独立して保護層との良好な相互作用を示し、それぞれ独立して保護層上に多数存在する官能基(活性点)と結合されやすい。
 また、保護層上に多数存在する官能基(活性点)には、正に帯電した部位と負に帯電した部位が存在する。式(3-1)および(3-2)で表される連結基の有する水酸基は、水素原子が水素結合を介して保護層上の負に帯電した部位と相互作用をすることにより吸着能を示す。一方、Rおよび/またはRの有するシアノ基は、窒素原子が負に帯電しているため、保護層上の正に帯電した部位と相互作用をすることにより吸着能を示す。したがって、Rおよび/またはRの有するシアノ基と、式(3-1)および(3-2)で表される連結基の有する水酸基とは、互いに保護層上の別の部位に吸着する。ゆえに、RおよびRが式(3-1)または(3-2)で表される連結基である場合、Rおよび/またはRの有するシアノ基と、RおよびRで示される2価の連結基の有する極性基とは、保護層上の官能基(活性点)と、それぞれ独立に相互作用できる。
 また、RおよびRが式(3-1)で表される連結基であると、式(1)で表される含フッ素エーテル化合物の合成がより容易であり、好ましい。
 式(3-1)で表される連結基において、sは1~3の整数である。式(3-1)で示される連結基におけるsが1以上であるので、RおよびRが式(3-1)で示される連結基である場合、極性基として特に保護層との相互作用が大きい水酸基を1以上含むものとなる。その結果、より一層保護層との密着性の良好な潤滑層が得られる含フッ素エーテル化合物となる。また、式(3-1)で示される連結基は、式(3-1)におけるsが3以下であるので、式(3-1)で示される連結基中の水酸基が多いことによって、含フッ素エーテル化合物の極性が高くなりすぎて、これを含む潤滑層を備える磁気記録媒体の腐食を発生させることを防止できる。
 また、式(3-1)で表される連結基では、式(3-1)中のsが2または3である場合、式(3-1)で表される連結基に含まれる水酸基同士の距離が適正となる。その結果、Rおよび/またはRに含まれる水酸基の数が複数であっても、Rおよび/またはRに含まれる水酸基が、それぞれ保護層上の活性点との結合に関与しやすいものとなる。
 式(3-1)で表される連結基において、sは1または2であることが好ましい。式(3-1)で表される連結基において、sが1である場合、合成がより容易な含フッ素エーテル化合物となるため、より好ましい。
 式(3-2)で示される連結基は、グリセリンの骨格(-OCHCH(OH)CHO-)に1~3つのメチレン基を増加させた構造を有する。このため、RおよびRが式(3-2)である含フッ素エーテル化合物を含む潤滑層は、式(3-2)中のtが1である場合と比較して疎水性の良好なものとなる。その結果、磁気記録媒体の腐食の原因となる水が侵入することを効果的に阻害でき、磁気記録媒体の腐食抑制効果が高い潤滑層となる。
 式(3-2)で表される連結基において、tは2~4の整数であり、2~3の整数であることが好ましく、2であることがより好ましい。式(3-2)中のtが2~4であるので、式(3-2)に含まれるメチレン基によって含フッ素エーテル化合物の疎水性が向上し、より一層、高い腐食抑制効果が得られるものとなる。
 RおよびRで示される末端基のうち一方(例えば、R)のみが、シアノ基を有する末端基であって、シアノ基を有する末端基でない他方の末端基(例えば、R)が水素原子である場合、他方の末端基と結合する2価の連結基(例えば、R)は、式(3-2)で表される連結基であることが好ましい。この場合、他方の末端基(=水素原子)は、式(3-2)中の左側の酸素原子と結合して水酸基を形成する。2価の連結基(例えば、R)が式(3-2)で表される連結基であると、他方の末端基(例えば、R)である水素原子と式(3-2)中の左側の酸素原子とが結合してなる水酸基は、式(3-2)で表される連結基に含まれる水酸基との距離が適正となる。その結果、他方の末端基である水素原子とRまたはRとが結合してなる水酸基、およびRまたはRに含まれる水酸基が、それぞれ保護層上の活性点との結合に関与しやすいものとなる。
 式(1)で表される含フッ素エーテル化合物において、RおよびRが式(3-1)または(3-2)で表される連結基である場合、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層を形成できるため、RとRとが同じであることがより好ましい。
(RおよびRで示される末端基)
 式(1)で表される含フッ素エーテル化合物において、RおよびRは、RまたはRの末端の酸素原子に結合された末端基である。RおよびRで示される末端基は、それぞれ独立して、炭素原子数1~50の有機基または水素原子である。RおよびRのうち、少なくとも一方は、炭素原子数1~8の有機基の有する炭素原子に、シアノ基が結合した基(シアノ基を有する末端基)である。RおよびRは、同じであっても異なっていても良い。
 式(1)で表される含フッ素エーテル化合物において、シアノ基を有する末端基に含まれるシアノ基は、保護層と適度な相互作用を示す。このため、シアノ基を有する末端基は、保護層との密着性を向上させて、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性が良好な潤滑層を形成する機能を有する。
 式(1)で表される含フッ素エーテル化合物において、シアノ基を有する末端基の種類は、含フッ素エーテル化合物を含む潤滑剤に求められる性能等に応じて適宜選択できる。
 シアノ基を有する末端基の有するシアノ基の数は、特に限定されるものではなく、1つであってもよいし、2つ以上であってもよい。シアノ基を有する末端基の有するシアノ基の数が2つ以上であると、保護層との密着性がより良好な潤滑層を形成できる含フッ素エーテル化合物となるため、好ましい。また、シアノ基を有する末端基の有するシアノ基の数が1つであると、製造が比較的容易な含フッ素エーテル化合物となるため、好ましい。
 シアノ基を有する末端基は、炭素原子数1~8の有機基の有する炭素原子に、シアノ基が結合した基である。式(1)で表される含フッ素エーテル化合物においては、上記有機基の炭素原子数が1~8であるので、シアノ基を有する末端基が立体障害となりにくく、シアノ基と保護層との親和性が良好な含フッ素エーテル化合物となる。
 シアノ基を有する末端基における有機基としては、フェニル基または、直鎖状または分岐鎖状の構造を有する炭素原子数1~8のアルキル基などが挙げられ、フェニル基または、直鎖状または分岐鎖状の構造を有する炭素原子数1~6のアルキル基であることが好ましい。シアノ基を有する末端基における有機基が、フェニル基または、直鎖状または分岐鎖状の構造を有する炭素原子数1~6のアルキル基であると、Rおよび/またはRの有するシアノ基と、隣接する連結基(RまたはR)の有する極性基との相互作用がより効果的に抑えられ、シアノ基と保護層との親和性が大きい含フッ素エーテル化合物となる。
 シアノ基を有する末端基における有機基は、炭素原子数3以上の炭化水素基であることが好ましい。この場合、前記有機基が、炭素原子数2以下の炭化水素基である場合と比較して、疎水性の良好な含フッ素エーテル化合物となる。その結果、磁気記録媒体の腐食の原因となる水が侵入することを効果的に阻害でき、磁気記録媒体の腐食抑制効果がより高い潤滑層を形成できる。
 シアノ基を有する末端基における有機基は、直鎖状のアルキル基であることが好ましい。この場合、例えば、シアノ基を有する末端基における有機基が、フェニル基または分岐鎖状のアルキル基である場合と比較して、含フッ素エーテル化合物を含む潤滑層中で、Rおよび/またはRの有するシアノ基が保護層に近接しやすく、シアノ基が保護層上の活性点と相互作用しやすいものとなる。その結果、保護層に対する吸着力が高く、磁気ヘッドの浮上安定性がより良好な潤滑層を形成できる含フッ素エーテル化合物となる。
 また、シアノ基を有する末端基における有機基が、分岐鎖状のアルキル基である場合、複数のシアノ基を有していることが好ましい。この場合、シアノ基を有する末端基における有機基が、直鎖状のアルキル基である場合と比較して嵩高いものであっても、末端基の有するシアノ基の数が多いため、保護層上の活性点とシアノ基とが相互作用しやすいものとなる。
 また、シアノ基を有する末端基における有機基は、シアノ基の他にカルボニル基などの極性部位を有していてもよい。この場合、シアノ基を有する末端基における有機基が、直鎖状のアルキル基である場合と比較して嵩高いものであっても、末端基の有する極性部位と保護層との相互作用によって末端基が保護層に近接しやすくなり、末端基の有するシアノ基が保護層上の活性点と相互作用しやすいものとなる。その結果、保護層に対する吸着力が高く、磁気ヘッドの浮上安定性がより良好な潤滑層を形成できる含フッ素エーテル化合物となる。
 シアノ基を有する末端基としては、例えば、下記式(5-1)~(5-11)で示されるいずれかの有機基が挙げられる。式(5-1)~(5-11)中の点線は、式(1)中のRまたはRに結合される結合手である。
 本実施形態の含フッ素エーテル化合物におけるシアノ基を有する末端基は、式(5-1)~(5-11)で示される有機基に限定されない。
Figure JPOXMLDOC01-appb-C000011
 シアノ基を有する末端基としては、式(5-1)~(5-11)で示される末端基の中でも、式(5-1)、(5-2)、(5-6)~(5-11)で示される末端基であることが好ましく、式(5-1)、(5-2)、(5-9)~(5-11)で示される末端基であることがより好ましい。製造が比較的容易な含フッ素エーテル化合物となるためである。
 式(5-1)~(5-4)で示される末端基は、直鎖状脂肪族ニトリルを有しており、例えば、式(5-5)~(5-11)で示される末端基と比較して流動性が高い。このため、含フッ素エーテル化合物を含む潤滑層の一部が摩耗によって変形し、潤滑層中の含フッ素エーテル化合物が別の箇所に移動して突起を形成しても、再び元の位置に戻る修復力が高い。また、直鎖状脂肪族ニトリルは、流動性が高いため、保護層上の活性点と相互作用をする能力が高く、保護層に対する吸着力が高い。これらのことから、式(5-1)~(5-4)で示される末端基を有する含フッ素エーテル化合物は、より優れた磁気ヘッドの浮上安定性が得られる潤滑層を形成できる。
 また、式(5-9)~(5-11)で示される末端基は、比較的剛直な芳香族ニトリルを有するため、分子の運動がある程度制限される。このため、式(5-9)~(5-11)で示される末端基を有する含フッ素エーテル化合物は、例えば、式(5-1)~(5-8)で示される末端基を有する含フッ素エーテル化合物と比較して、Rおよび/またはRの有するシアノ基と、隣接する連結基(RまたはR)の有する極性基が、互いの保護層との相互作用を阻害する能力が小さい。
 また、式(5-9)~(5-11)で示される末端基の有する芳香族ニトリルは、末端基における有機基としてフェニル基を有している。このため、含フッ素エーテル化合物を含む潤滑層の疎水性が良好となり、磁気記録媒体の腐食の原因となる水が侵入することを効果的に阻害できる。
 これらのことから、式(5-9)~(5-11)で示される末端基を有する含フッ素エーテル化合物は、磁気記録媒体の腐食抑制効果がより一層高い潤滑層を形成できる。
 式(1)で表される含フッ素エーテル化合物において、RおよびRで示される末端基の両方が、シアノ基を有する末端基である場合、RとRとは、同じであってもよいし、異なっていても良い。RとRが同じであると、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層を形成できる。
 本明細書において、「RとRが同じである」とは、式(1)で表される含フッ素エーテル化合物の中央に配置された骨格(-R3a-CH-R4a-CH-R3b-CH-R4b-CH-R3c-)に対して、メチレン基とRを介して結合されたRに含まれる原子と、メチレン基とRを介して結合されたRに含まれる原子とが、対称配置されていることを意味する。
 式(1)で表される含フッ素エーテル化合物において、RおよびRで示される末端基のうち一方(例えば、R)のみが、シアノ基を有する末端基である場合、シアノ基を有する末端基でない他方の末端基(例えば、R)は、炭素原子数1~50の有機基または水素原子であれば、如何なる基であってもよく、特に限定されない。
 RおよびRで示される末端基のうち一方(例えば、R)が水素原子である場合、末端基である水素原子(例えば、R)は、極性基を有する2価の連結基(例えば、R)の有する末端の酸素原子と結合して水酸基を形成する。この水酸基は、含フッ素エーテル化合物を含む潤滑層と保護層との密着性をより一層向上させる。
 シアノ基を有さない他方の末端基は、二重結合または三重結合を少なくとも一つ有する有機基であることが好ましく、例えば、芳香族環を含む基、不飽和複素環を含む基、アルケニル基を含む基、アルキニル基を含む基などが挙げられる。他方の末端基が、二重結合または三重結合を少なくとも一つ有する有機基である場合、含フッ素エーテル化合物を含む潤滑層は、疎水性の良好なものとなる。その結果、磁気記録媒体の腐食の原因となる水が侵入することを効果的に阻害でき、磁気記録媒体の腐食抑制効果が高い潤滑層となる。
 上記他方の末端基が、二重結合または三重結合を少なくとも一つ有する有機基である場合、具体的には、フェニル基、メトキシフェニル基、フッ化フェニル基、ナフチル基、フェネチル基、メトキシフェネチル基、フッ化フェネチル基、ベンジル基、メトキシベンジル基、ナフチルメチル基、メトキシナフチル基、ピロリル基、ピラゾリル基、メチルピラゾリルメチル基、イミダゾリル基、フリル基、フルフリル基、オキサゾリル基、イソオキサゾリル基、チエニル基、チエニルエチル基、チアゾリル基、メチルチアゾリルエチル基、イソチアゾリル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、インドリニル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾピラゾリル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、キノリル基、イソキノリル基、キナゾリニル基、キノキサリニル基、フタラジニル基、シンノリニル基、ビニル基、アリル基、ブテニル基、1-プロピニル基、プロパルギル基(2-プロピニル基)、ブチニル基、メチルブチニル基、ペンチニル基、メチルペンチニル基、ヘキシニル基などが挙げられる。
 上記他方の末端基は、置換基を有しても良いアルキル基であってもよい。前記アルキル基は、炭素原子数1~8であることが好ましく、炭素原子数1~6であることがより好ましく、炭素原子数1~4であることがさらに好ましい。前記置換基としては、アルコキシ基、水酸基、メルカプト基、カルボキシ基、カルボニル基、アミノ基、フルオロ基などが挙げられる。
 上記他方の末端基が、置換基を有しても良いアルキル基である場合、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、オクタフルオロペンチル基、トリデカフルオロオクチル基、ヒドロキシメチル基(-CHOH)、ヒドロキシエチル基(-CHCHOH)、ヒドロキシプロピル基(-CHCHCHOH)、ヒドロキシブチル基(-CHCHCHCHOH)などが挙げられる。
 上記他方の末端基は、上記の中でも、水素原子、フェニル基、メトキシフェニル基、ナフチル基、フェネチル基、メトキシフェネチル基、フッ化フェネチル基、チエニルエチル基、アリル基、ブテニル基、プロパルギル基、ヒドロキシエチル基のいずれかであることが好ましく、水素原子、フェニル基、メトキシフェニル基、ナフチル基、チエニルエチル基、アリル基、ブテニル基、ヒドロキシエチル基のいずれかであることがより好ましく、メトキシフェニル基またはアリル基であることが特に好ましい。この場合、より優れた耐腐食性を有する潤滑層を形成できる含フッ素エーテル化合物となる。
 式(1)で表される含フッ素エーテル化合物において、1分子中に含まれる水酸基の数は、保護層との密着性を高め、より優れた磁気ヘッドの浮上安定性が得られる潤滑層を形成できるため、4以上であることが好ましく、5以上であることがより好ましく、6以上であることがさらに好ましい。式(1)で表される含フッ素エーテル化合物において、1分子中に含まれる水酸基の数は、極性が高すぎることにより、腐食の原因となる水を保護層表面に誘起することを防止するため、8以下であることが好ましく、7以下であることがより好ましく、6以下であることが最も好ましい。
 式(1)で表される含フッ素エーテル化合物においては、式(1)におけるR3aとR3cとが同じであり、R4aとR4bが同じであり、R-R-とR-R-とが同じであることが好ましい。これは、容易に効率よく製造できる含フッ素エーテル化合物となるためである。しかも、この場合、分子中央に配置されたR3bを中心とした対称構造を有する含フッ素エーテル化合物となるため、保護層上で均一に濡れ広がりやすいものとなる。さらに、式(1)におけるR3a、R3b、およびR3cで示される3つのPFPE鎖が全て同じであることが好ましい。これにより、合成した含フッ素エーテル化合物の同定が容易となり、より一層容易に効率よく製造できる含フッ素エーテル化合物となる。特に、R4aおよびR4bが式(3-1)であってsが1で表される連結基である含フッ素エーテル化合物である場合、より容易に効率よく製造でき、より好ましい。
 式(1)で表される含フッ素エーテル化合物は、具体的には、下記式(A)~(V)で表されるいずれかの化合物であることが好ましい。
 式(1)で表される化合物が下記式(A)~(V)で表されるいずれかの化合物である場合、原料が入手しやすく、しかも、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性がより良好な潤滑層を形成できる。
 下記式(A)~(V)で表される化合物において、PFPE鎖を表すRf、Rf、Rfは、それぞれ下記の構造である。すなわち、下記式(A)~(R)、(U)、(V)で表される化合物において、Rfは、式(4-1)で表されるPFPE鎖である。下記式(S)、(U)で表される化合物において、Rfは、式(4-2)で表されるPFPE鎖である。下記式(T)で表される化合物において、Rfは、式(4-3)で表されるPFPE鎖である。なお、式(A)~(V)中のPFPE鎖を表すRfにおけるhおよびi、Rfにおけるj、Rfにおけるkは、平均重合度を示す値であるため、必ずしも整数になるとは限らない。hは1~20であり、例えば、1~10や2~5などであってもよい。iは0~20であり、例えば、1~10や2~5などであってもよい。jは1~15であり、例えば、2~10や3~5などであってもよい。kは1~10であり、例えば、1~8や1~5などであってもよい。
Figure JPOXMLDOC01-appb-C000012
 下記式(A)~(V)で表される化合物は、いずれもRおよびRが上記式(3-1)または(3-2)で表される連結基である。
 下記式(A)~(V)で表される化合物は、いずれもR4aおよびR4bが上記式(3-1)または(3-3)で表される連結基である。
 下記式(A)~(J)、(S)~(V)で表される化合物は、いずれもR3aとR3cとが同じであり、R4aとR4bが同じであり、R-R-とR-R-とが同じである。
 下記式(A)で表される化合物は、式(1)におけるRおよびRが上記式(5-1)で表される末端基である。R、R4a、R4b、およびRが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(B)で表される化合物は、式(1)におけるRおよびRが上記式(5-1)で表される末端基である。RおよびRが上記式(3-1)で表される連結基でありsが2である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(C)で表される化合物は、式(1)におけるRおよびRが上記式(5-1)で表される末端基である。RおよびRが上記式(3-1)で表される連結基でありsが3である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(D)で表される化合物は、式(1)におけるRおよびRが上記式(5-2)で表される末端基である。下記式(E)で表される化合物は、RおよびRが上記式(5-6)で表される末端基である。下記式(F)で表される化合物は、RおよびRが上記式(5-7)で表される末端基である。下記式(G)で表される化合物は、式(1)におけるRおよびRが上記式(5-8)で表される末端基である。下記式(D)~(G)で表される化合物は、いずれも式(1)におけるR、R4a、R4b、およびRが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(H)で表される化合物は、式(1)におけるRおよびRが上記式(5-1)で表される末端基である。RおよびRが上記式(3-2)で表される連結基でありtが2である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(I)で表される化合物は、式(1)におけるRおよびRが上記式(5-9)で表される末端基である。R、R4a、R4b、およびRが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(J)で表される化合物は、式(1)におけるRおよびRが上記式(5-10)で表される末端基である。RおよびRが上記式(3-1)で表される連結基でありsが2である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(K)~(M)で表される化合物は、いずれも式(1)におけるRおよびRが上記式(5-1)で表される末端基であり、RおよびRが上記式(3-1)で表される連結基である。下記式(K)で表される化合物は、Rにおけるsが1であり、Rにおけるsが2である。下記式(L)で表される化合物は、Rにおけるsが1であり、Rにおけるsが3である。下記式(M)で表される化合物は、Rにおけるsが2であり、Rにおけるsが3である。下記式(K)~(M)で表される化合物は、いずれもR4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(N)で表される化合物は、式(1)におけるRが上記式(5-1)で表される末端基である。Rが上記式(5-9)で表される末端基である。Rが上記式(3-1)で表される連結基でありsが2である。Rが上記式(3-1)で表される連結基でありsが1である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(O)で表される化合物は、式(1)におけるRが上記式(5-1)で表される末端基である。Rが2-ヒドロキシエチル基である。Rが上記式(3-1)で表される連結基でありsが2である。Rが上記式(3-1)で表される連結基でありsが1である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(P)で表される化合物は、式(1)におけるRが上記式(5-1)で表される末端基である。Rがアリル基である。Rが上記式(3-1)で表される連結基でありsが2である。Rが上記式(3-1)で表される連結基でsが1である。R4aとR4bが上記式(3-1)で表される連結基でsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(Q)で表される化合物は、式(1)におけるRが上記式(5-1)で表される末端基である。Rがp-メトキシフェニル基である。Rが上記式(3-1)で表される連結基でありsが2である。Rが上記式(3-1)で表される連結基でありsが1である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(R)で表される化合物は、式(1)におけるRが上記式(5-1)で表される末端基である。Rが水素原子である。Rが上記式(3-1)で表される連結基でありsが2である。Rが上記式(3-2)で表される連結基でありtが2である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
 下記式(S)で表される化合物は、式(1)におけるRおよびRが上記式(5-1)で表される末端基である。RおよびRが上記式(3-1)で表される連結基でありsが2である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-2)で表されるPFPE鎖である。
 下記式(T)で表される化合物は、式(1)におけるRおよびRが上記式(5-1)で表される末端基である。RおよびRが上記式(3-1)で表される連結基でありsが2である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3a、R3b、およびR3cが上記式(4-3)で表されるPFPE鎖である。
 下記式(U)で表される化合物は、式(1)におけるRおよびRが上記式(5-1)で表される末端基である。RおよびRが上記式(3-1)で表される連結基でありsが2である。R4aとR4bが上記式(3-1)で表される連結基でありsが1である。R3aおよびR3cが上記式(4-2)で表されるPFPE鎖である。R3bが上記式(4-1)で表されるPFPE鎖である。
 下記式(V)で表される化合物は、式(1)におけるRおよびRが上記式(5-1)で表される末端基である。RおよびRが上記式(3-1)で表される連結基でありsが2である。R4aとR4bが上記式(3-3)で表される連結基でありuが2である。R3a、R3b、およびR3cが上記式(4-1)で表されるPFPE鎖である。
Figure JPOXMLDOC01-appb-C000013

(式(A)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(B)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(C)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000014

(式(D)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(E)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(F)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000015

(式(G)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(H)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(I)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000016

(式(J)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(K)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(L)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000017

(式(M)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(N)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(O)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000018

(式(P)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(Q)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい;Meはメチル基を表す。)
(式(R)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000019

(式(S)中における3つのRfは、いずれも式(4-2)で表される;式(4-2)中のjは平均重合度を示し、1~15を表す;3つのRf中のjは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい;
(式(T)中における3つのRfは、いずれも式(4-3)で表される;式(4-3)中のkは平均重合度を示し、1~10を表す;3つのRf中のkは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
(式(U)中における2つのRfは、いずれも式(4-2)で表される;式(4-2)中のjは平均重合度を示し、1~15を表す;2つのRf中のjは、同じであってもよいし、それぞれ異なっていてもよい;式(U)中のRfは、式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000020





(式(V)中における3つのRfは、いずれも式(4-1)で表される;式(4-1)中のh、iは平均重合度を示し、hは1~20を表し、iは0~20を表し、hとiとは同じであってもよいし、異なっていてもよい;3つのRf中におけるhおよびiは、一部または全部が同じであってもよいし、それぞれ異なっていてもよい。)
 本実施形態の含フッ素エーテル化合物は、数平均分子量(Mn)が400~10000の範囲内であることが好ましく、500~5000の範囲内であることが特に好ましい。前記数平均分子量は、800~8000や、1000~6000や、2000~4000などであってもよい。数平均分子量が400以上であると、本実施形態の含フッ素エーテル化合物を含む潤滑剤からなる潤滑層が優れた耐熱性を有するものとなる。含フッ素エーテル化合物の数平均分子量は、500以上であることがより好ましい。また、数平均分子量が10000以下であると、含フッ素エーテル化合物の粘度が適正なものとなり、これを含む潤滑剤を塗布することによって、容易に膜厚の薄い潤滑層を形成できる。含フッ素エーテル化合物の数平均分子量は、潤滑剤に適用した場合に扱いやすい粘度となるため、5000以下であることがより好ましい。
 含フッ素エーテル化合物の数平均分子量(Mn)は、ブルカー・バイオスピン社製AVANCEIII400によるH-NMRおよび19F-NMRによって測定された値である。具体的には、19F-NMRによって測定された積分値よりPFPE鎖の繰り返し単位数を算出し、数平均分子量を求める。NMR(核磁気共鳴)の測定においては、試料をヘキサフルオロベンゼン/d-アセトン(4/1v/v)溶媒へ希釈して測定する。19F-NMRケミカルシフトの基準は、ヘキサフルオロベンゼンのピークを-164.7ppmとし、H-NMRケミカルシフトの基準は、アセトンのピークを2.2ppmとする。
 本実施形態の含フッ素エーテル化合物は、適当な方法で分子量分画することにより、分子量分散度(重量平均分子量(Mw)/数平均分子量(Mn)比)を1.3以下とすることが好ましい。
 本実施形態において、分子量分画する方法としては、特に制限されないが、例えば、シリカゲルカラムクロマトグラフィー法、ゲルパーミエーションクロマトグラフィー(GPC)法などによる分子量分画、超臨界抽出法による分子量分画等を用いることができる。
「製造方法」
 本実施形態の含フッ素エーテル化合物の製造方法は、特に限定されるものではなく、従来公知の製造方法を用いて製造できる。本実施形態の含フッ素エーテル化合物は、例えば、以下に示す製造方法を用いて製造できる。
(第1製造方法)
 式(1)におけるR3aおよびR3cで示される2つのPFPE鎖が同じで、R4aおよびR4bで示される2つの連結基が同じであり、R-R-とR-R-とが同じである化合物を製造する場合、以下に示す製造方法を用いることができる。
 まず、式(1)におけるR3a(=R3c)に対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。次いで、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)におけるR-R-となる基(=R-R-となる基)を有するエポキシ化合物とを反応させる(第一反応)。このことにより、R3a(=R3c)に対応するパーフルオロポリエーテル鎖の一方の末端に、R-R-に対応する基(=R-R-に対応する基)を有する中間体化合物1が得られる。
 式(1)におけるR-R-となる基(=R-R-となる基)を有するエポキシ化合物としては、例えば、下記式(7-1)~(7-10)で表される化合物などを用いることができる。下記式(7-2)、(7-3)、(7-10)中のTHPは、テトラヒドロピラニル基を表す。
 上記フッ素系化合物と上記エポキシ化合物とを反応させて、上記中間体化合物1を合成する場合、下記式(7-2)、(7-3)、(7-10)で表される化合物のように、上記エポキシ化合物の有する水酸基を適切な保護基を用いて保護してから、上記フッ素系化合物と反応させても良い。
Figure JPOXMLDOC01-appb-C000021
 式(1)におけるR-R-となる基(=R-R-となる基)を有するエポキシ化合物は、例えば、R(=R)が上記式(3-1)で表される連結基でありsが1である場合、下記式(8)に示す反応を用いて製造できる。
 すなわち、式(1)におけるRまたはRで表される末端基に対応する構造(式(8)中におけるR)を有するアルコールと、エピブロモヒドリンなど、RまたはRに対応するエポキシ基を有するハロゲン化合物とを反応させる方法を用いて製造できる。
Figure JPOXMLDOC01-appb-C000022

(式(8)中、Rは式(1)におけるRまたはRで表される末端基に対応する構造を示す。)
 また、上記エポキシ化合物は、例えば、R(=R)が上記式(3-1)で表される連結基でありsが2である場合、下記式(9)に示す反応を用いて製造できる。
 すなわち、式(1)におけるRまたはRで表される末端基に対応する構造(式(9)中におけるR)を有するアルコールと、アリルグリシジルエーテルとを付加反応させて、式(9)中におけるRと水酸基とを有する化合物を合成する。その後、式(9)中におけるRと水酸基とを有する化合物の二重結合を、m-クロロ過安息香酸(mCPBA)を作用させて酸化する方法を用いて製造できる。式(9)中におけるRと水酸基とを有する化合物の二重結合を、m-クロロ過安息香酸(mCPBA)を作用させて酸化させる前に、式(9)中におけるRと水酸基とを有する化合物の有する水酸基を、適切な保護基を用いて保護してもよい。
Figure JPOXMLDOC01-appb-C000023

(式(9)中、Rは式(1)におけるRまたはRで表される末端基に対応する構造を示す。)
 また、上記エポキシ化合物は、例えば、R(=R)が上記式(3-2)で表される連結基でありtが2である場合、下記式(10)に示す反応を用いて製造できる。
 すなわち、式(1)におけるRまたはRで表される末端基に対応する構造(式(10)中におけるR)を有するアルコールと、4-ブロモ-1-ブテンなど、RまたはRに対応するアルケニル基を有するハロゲン化合物とを反応させて、式(10)中におけるRとアルケニル基とを有する化合物を合成する。その後、式(10)中におけるRとアルケニル基とを有する化合物の二重結合を、m-クロロ過安息香酸(mCPBA)を作用させて酸化させる方法を用いて製造できる。
Figure JPOXMLDOC01-appb-C000024

(式(10)中、Rは式(1)におけるRまたはRで表される末端基に対応する構造を示す。)
 次いで、式(1)におけるR3bに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。次いで、前記フッ素系化合物の両末端に配置されたヒドロキシメチル基の水酸基と、R4a(=R4b)に対応するエポキシ基を有するハロゲン化合物とを反応させる(第二反応)。このことにより、式(1)における分子中央のR3bに対応するパーフルオロポリエーテル鎖の両末端に、R4a(=R4b)に対応するエポキシ基を有する中間体化合物2が得られる。
 上記中間体化合物2は、式(1)におけるR3bに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物の水酸基と、R4a(=R4b)に対応するアルケニル基を有するハロゲン化合物またはエポキシ化合物とを反応させた後、m-クロロ過安息香酸(mCPBA)を作用させて酸化させる方法を用いても製造できる。
 その後、前記中間体化合物1の一方の末端に配置されたヒドロキシメチル基の水酸基と、前記中間体化合物2の両末端に配置されたエポキシ基とを反応させる(第三反応)。
 以上の工程を行うことにより、式(1)におけるR3aおよびR3cで示される2つのPFPE鎖が同じで、R4aおよびR4bで示される2つの連結基が同じであり、R-R-とR-R-とが同じである化合物を製造できる。
 本実施形態では、第一反応の後に第二反応を行ったが、第二反応の後に第一反応を行っても良い。
(第2製造方法)
 式(1)におけるR4aおよびR4bで示される2つの連結基が同じであり、RとR、RとR、R3aとR3cで示されるPFPE鎖のうち、いずれか1つ以上が異なる化合物を製造する場合、以下に示す製造方法を用いることができる。
 まず、第一反応において、R3aに対応するパーフルオロポリエーテル鎖の一方の末端にR-R-に対応する基を有する中間体化合物1aを合成する。さらに、第一反応において、R3cに対応するパーフルオロポリエーテル鎖の一方の末端にR-R-に対応する基を有する中間体化合物1bを合成する。
 次いで、第1製造方法と同様にして第二反応を行い、中間体化合物2を製造する。
 そして、第三反応において、中間体化合物2の各末端に配置されたエポキシ基に対して、中間体化合物1aと中間体化合物1bとを順次反応させる。
 以上の工程を行うことにより、式(1)におけるR4aおよびR4bで示される2つの連結基が同じであり、RとR、RとR、R3aとR3cで示されるPFPE鎖のうち、いずれか1つ以上が異なる化合物を製造できる。
(第3製造方法)
 式(1)におけるR3aとR3cで示される2つのPFPE鎖が同じで、R4aとR4bで示される2つの連結基が異なり、R-R-とR-R-とが同じである化合物を製造する場合、以下に示す製造方法を用いることができる。
 まず、第1製造方法と同様にして第一反応を行い、中間体化合物1を製造する。
 次いで、第二反応において、式(1)におけるR3bに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。次に、前記フッ素系化合物の一方の端部に配置されたヒドロキシメチル基の水酸基と、R4aに対応するエポキシ基を有するハロゲン化合物とを反応させる。続いて、前記フッ素系化合物のもう一方の端部に配置されたヒドロキシメチル基の水酸基と、R4bに対応するエポキシ基を有するハロゲン化合物とを反応させる。このことにより、式(1)におけるR3bに対応するパーフルオロポリエーテル鎖の一方の端部に、R4aで示される連結基に対応するエポキシ基が結合し、もう一方の端部にR4bで示される連結基に対応するエポキシ基が結合した中間体化合物2aが得られる。
 そして、第三反応において、前記中間体化合物1の一方の末端に配置されたヒドロキシメチル基の水酸基と、前記中間体化合物2aの両末端に配置されたエポキシ基とを反応させる。
 以上の工程を行うことにより、式(1)におけるR3aとR3cで示される2つのPFPE鎖が同じで、R4aとR4bで示される2つの連結基が異なり、R-R-とR-R-とが同じである化合物を製造できる。
(第4製造方法)
 式(1)におけるR4aとR4bで示される2つの連結基が異なり、RとR、RとR、R3aとR3cで示されるPFPE鎖のうち、いずれか1つ以上が異なる化合物を製造する場合、以下に示す製造方法を用いることができる。
 まず、第2製造方法と同様にして、第一反応において、R3aに対応するパーフルオロポリエーテル鎖の一方の末端に、R-R-に対応する基を有する中間体化合物1aを合成する。さらに、第一反応において、R3cに対応するパーフルオロポリエーテル鎖の一方の末端に、R-R-に対応する基を有する中間体化合物1bを合成する。
 次いで、第3製造方法と同様にして、第二反応を行い、中間体化合物2aを製造する。
 そして、第三反応において、中間体化合物2aのR4aで示される連結基に対応するエポキシ基に対して、中間体化合物1aを反応させる。その後、中間体化合物2aのR4bで示される連結基に対応するエポキシ基に対して、中間体化合物1bを反応させる。または、中間体化合物2aのR4bで示される連結基に対応するエポキシ基に対して、中間体化合物1bを反応させる。その後、中間体化合物2aのR4aで示される連結基に対応するエポキシ基に対して、中間体化合物1aを反応させる。
 以上の工程を行うことにより、式(1)におけるR4aとR4bで示される2つの連結基が異なり、RとR、RとR、R3aとR3cで示されるPFPE鎖のうち、いずれか1つ以上が異なる化合物を製造できる。
 本実施形態の含フッ素エーテル化合物は、式(1)で表される化合物である。このため、本実施形態の含フッ素エーテル化合物を含む潤滑剤を用いて保護層上に形成した潤滑層は、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性が良好なものとなる。
[磁気記録媒体用潤滑剤]
 本実施形態の磁気記録媒体用潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含む。
 本実施形態の潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含むことによる特性を損なわない範囲内であれば、潤滑剤の材料として使用されている公知の材料を、必要に応じて混合して用いることができる。
 公知の材料の具体例としては、例えば、FOMBLIN(登録商標) ZDIAC、FOMBLIN ZDEAL、FOMBLIN AM-2001(以上、Solvay Solexis社製)、Moresco A20H(Moresco社製)等が挙げられる。本実施形態の潤滑剤と混合して用いる公知の材料は、数平均分子量が1000~10000であることが好ましい。
 本実施形態の潤滑剤が、上記式(1)で表される含フッ素エーテル化合物の他の材料を含む場合、本実施形態の潤滑剤中の上記式(1)で表される含フッ素エーテル化合物の含有量が50質量%以上であることが好ましく、70質量%以上であることがより好ましい。本実施形態の潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含むため、厚みが薄くても、磁気記録媒体の腐食を抑制する効果が高く、磁気ヘッドの浮上安定性が良好な潤滑層を形成できる。
[磁気記録媒体]
 本実施形態の磁気記録媒体は、基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられたものである。
 本実施形態の磁気記録媒体では、基板と磁性層との間に、必要に応じて1層または2層以上の下地層を設けることができる。また、下地層と基板との間に、付着層および軟磁性層の少なくとも一方を設けることもできる。
 図1は、本発明の磁気記録媒体の一実施形態を示す概略断面図である。
 本実施形態の磁気記録媒体10は、基板11上に、付着層12と、軟磁性層13と、第1下地層14と、第2下地層15と、磁性層16と、保護層17と、潤滑層18とが順次設けられた構造をなしている。
「基板」
 基板11としては、例えば、AlもしくはAl合金などの金属または合金材料からなる基体上に、NiPまたはNiP合金からなる膜が形成された非磁性基板等を用いることができる。
 また、基板11としては、ガラス、セラミックス、シリコン、シリコンカーバイド、カーボン、樹脂などの非金属材料からなる非磁性基板を用いてもよいし、これらの非金属材料からなる基体上にNiPまたはNiP合金の膜を形成した非磁性基板を用いてもよい。
「付着層」
 付着層12は、基板11と、付着層12上に設けられる軟磁性層13とを接して配置した場合に生じる、基板11の腐食の進行を防止する。
 付着層12の材料は、例えば、Cr、Cr合金、Ti、Ti合金、CrTi、NiAl、AlRu合金等から適宜選択できる。付着層12は、例えば、スパッタリング法により形成できる。
「軟磁性層」
 軟磁性層13は、第1軟磁性膜と、Ru膜からなる中間層と、第2軟磁性膜とが順に積層された構造を有していることが好ましい。すなわち、軟磁性層13は、2層の軟磁性膜の間にRu膜からなる中間層を挟み込むことによって、中間層の上下の軟磁性膜がアンチ・フェロ・カップリング(AFC)結合した構造を有していることが好ましい。
 第1軟磁性膜および第2軟磁性膜の材料としては、CoZrTa合金、CoFe合金などが挙げられる。
 第1軟磁性膜および第2軟磁性膜に使用されるCoFe合金には、Zr、Ta、Nbの何れかを添加することが好ましい。これにより、第1軟磁性膜および第2軟磁性膜の非晶質化が促進される。その結果、第1下地層(シード層)の配向性を向上させることが可能になるとともに、磁気ヘッドの浮上量を低減することが可能となる。
 軟磁性層13は、例えば、スパッタリング法により形成できる。
「第1下地層」
 第1下地層14は、その上に設けられる第2下地層15および磁性層16の配向および結晶サイズを制御する層である。
 第1下地層14としては、例えば、Cr層、Ta層、Ru層、あるいはCrMo合金層、CoW合金層、CrW合金層、CrV合金層、CrTi合金層などからなるものが挙げられる。
 第1下地層14は、例えば、スパッタリング法により形成できる。
「第2下地層」
 第2下地層15は、磁性層16の配向が良好になるように制御する層である。第2下地層15は、RuまたはRu合金からなる層であることが好ましい。
 第2下地層15は、1層からなる層であってもよいし、複数層から構成されていてもよい。第2下地層15が複数層からなる場合、全ての層が同じ材料から構成されていてもよいし、少なくとも一層が異なる材料から構成されていてもよい。
 第2下地層15は、例えば、スパッタリング法により形成できる。
「磁性層」
 磁性層16は、磁化容易軸が基板面に対して垂直または水平方向を向いた磁性膜からなる。磁性層16は、CoとPtとを含む層である。磁性層16は、SNR特性を改善するために、酸化物、Cr、B、Cu、Ta、Zr等を含む層であってもよい。
 磁性層16に含有される酸化物としては、SiO、SiO、Cr、CoO、Ta、TiO等が挙げられる。
 磁性層16は、1層から構成されていてもよいし、組成の異なる材料からなる複数の磁性層から構成されていてもよい。
 例えば、磁性層16が、下から順に積層された第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層は、Co、Cr、Ptを含み、さらに酸化物を含んだ材料からなるグラニュラー構造であることが好ましい。第1磁性層に含有される酸化物としては、例えば、Cr、Si、Ta、Al、Ti、Mg、Co等の酸化物を用いることが好ましい。その中でも、特に、TiO、Cr、SiO等を好適に用いることができる。また、第1磁性層は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも、特に、Cr-SiO、Cr-TiO、SiO-TiO等を好適に用いることができる。
 第1磁性層は、Co、Cr、Pt、酸化物の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。
 第2磁性層には、第1磁性層と同様の材料を用いることができる。第2磁性層は、グラニュラー構造であることが好ましい。
 第3磁性層は、Co、Cr、Ptを含み、酸化物を含まない材料からなる非グラニュラー構造であることが好ましい。第3磁性層は、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を含むことができる。
 磁性層16が複数の磁性層で形成されている場合、隣接する磁性層の間には、非磁性層を設けることが好ましい。磁性層16が、第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層と第2磁性層との間と、第2磁性層と第3磁性層との間に、非磁性層を設けることが好ましい。
 磁性層16の隣接する磁性層間に設けられる非磁性層は、例えば、Ru、Ru合金、CoCr合金、CoCrX1合金(X1は、Pt、Ta、Zr、Re、Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Bの中から選ばれる1種または2種以上の元素を表す。)等を好適に用いることができる。
 磁性層16の隣接する磁性層間に設けられる非磁性層には、酸化物、金属窒化物、または金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiO等を用いることができる。金属窒化物として、例えば、AlN、Si、TaN、CrN等を用いることができる。金属炭化物として、例えば、TaC、BC、SiC等を用いることができる。
 非磁性層は、例えば、スパッタリング法により形成できる。
 磁性層16は、より高い記録密度を実現するために、磁化容易軸が基板面に対して垂直方向を向いた垂直磁気記録の磁性層であることが好ましい。磁性層16は、面内磁気記録の磁性層であってもよい。
 磁性層16は、蒸着法、イオンビームスパッタ法、マグネトロンスパッタ法等、従来公知のいかなる方法によって形成してもよい。磁性層16は、通常、スパッタリング法により形成される。
「保護層」
 保護層17は、磁性層16を保護する。保護層17は、1層から構成されていてもよいし、複数層から構成されていてもよい。保護層17としては、炭素系保護層を好ましく用いることができ、特にアモルファス炭素保護層が好ましい。保護層17が炭素系保護層であると、潤滑層18中の含フッ素エーテル化合物に含まれる極性基(特に水酸基)との相互作用が一層高まるため、好ましい。
 炭素系保護層と潤滑層18との付着力は、炭素系保護層を水素化炭素および/または窒素化炭素とし、炭素系保護層中の水素含有量および/または窒素含有量を調節することにより制御可能である。炭素系保護層中の水素含有量は、水素前方散乱法(HFS)で測定したときに3原子%~20原子%であることが好ましい。また、炭素系保護層中の窒素含有量は、X線光電子分光分析法(XPS)で測定したときに、4原子%~15原子%であることが好ましい。
 炭素系保護層に含まれる水素および/または窒素は、炭素系保護層全体に均一に含有される必要はない。炭素系保護層は、例えば、保護層17の潤滑層18側に窒素を含有させ、保護層17の磁性層16側に水素を含有させた組成傾斜層とすることが好適である。この場合、磁性層16および潤滑層18と、炭素系保護層との付着力が、より一層向上する。
 保護層17の膜厚は、1nm~7nmであることが好ましい。保護層17の膜厚が1nm以上であると、保護層17としての性能が充分に得られる。保護層17の膜厚が7nm以下であると、保護層17の薄膜化の観点から好ましい。
 保護層17の成膜方法としては、炭素を含むターゲット材を用いるスパッタ法、エチレンやトルエン等の炭化水素原料を用いるCVD(化学蒸着法)法、IBD(イオンビーム蒸着)法等を用いることができる。
 保護層17として炭素系保護層を形成する場合、例えば、DCマグネトロンスパッタリング法により成膜できる。特に、保護層17として炭素系保護層を形成する場合、プラズマCVD法により、アモルファス炭素保護層を成膜することが好ましい。プラズマCVD法により成膜したアモルファス炭素保護層は、表面が均一で、粗さが小さいものとなる。
「潤滑層」
 潤滑層18は、磁気記録媒体10の汚染を防止する。また、潤滑層18は、磁気記録媒体10上を摺動する磁気記録再生装置の磁気ヘッドの摩擦力を低減させて、磁気記録媒体10の耐久性を向上させる。
 潤滑層18は、図1に示すように、保護層17上に接して形成されている。潤滑層18は、保護層17上に上述した実施形態の磁気記録媒体用潤滑剤を塗布することにより形成されたものである。したがって、潤滑層18は、上述の含フッ素エーテル化合物を含む。
 潤滑層18は、潤滑層18の下に配置されている保護層17が、炭素系保護層である場合、特に、保護層17と高い結合力で結合される。その結果、潤滑層18の厚みが薄くても、高い被覆率で保護層17の表面が被覆された磁気記録媒体10が得られやすくなり、磁気記録媒体10の表面の汚染を効果的に防止できる。
 潤滑層18の平均膜厚は、0.5nm(5Å)~2.0nm(20Å)であることが好ましく、0.5nm(5Å)~1.2nm(12Å)であることがより好ましい。潤滑層18の平均膜厚が0.5nm以上であると、潤滑層18がアイランド状または網目状とならずに均一の膜厚で形成される。そのため、潤滑層18によって、保護層17の表面を高い被覆率で被覆できる。また、潤滑層18の平均膜厚を2.0nm以下にすることで、潤滑層18を充分に薄膜化でき、磁気ヘッドの浮上量を充分に小さくできる。
「潤滑層の形成方法」
 潤滑層18を形成する方法としては、例えば、基板11上に保護層17までの各層が形成された製造途中の磁気記録媒体を用意し、保護層17上に潤滑層形成用溶液を塗布し、乾燥させる方法が挙げられる。
 潤滑層形成用溶液は、上述の実施形態の磁気記録媒体用潤滑剤を必要に応じて、溶媒に分散溶解させ、塗布方法に適した粘度および濃度とすることにより得られる。
 潤滑層形成用溶液に用いられる溶媒としては、例えば、バートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)等のフッ素系溶媒等が挙げられる。
 潤滑層形成用溶液の塗布方法は、特に限定されないが、例えば、スピンコート法、スプレイ法、ペーパーコート法、ディップ法等が挙げられる。
 ディップ法を用いる場合、例えば、以下に示す方法を用いることができる。まず、ディップコート装置の浸漬槽に入れられた潤滑層形成用溶液中に、保護層17までの各層が形成された基板11を浸漬する。次いで、浸漬槽から基板11を所定の速度で引き上げる。このことにより、潤滑層形成用溶液を基板11の保護層17上の表面に塗布する。
 ディップ法を用いることで、潤滑層形成用溶液を保護層17の表面に均一に塗布することができ、保護層17上に均一な膜厚で潤滑層18を形成できる。
 本実施形態においては、潤滑層18を形成した基板11に熱処理を施すことが好ましい。熱処理を施すことにより、潤滑層18と保護層17との密着性が向上し、潤滑層18と保護層17との付着力が向上する。
 熱処理温度は100℃~180℃とすることが好ましく、100℃~160℃とすることがより好ましい。熱処理温度が100℃以上であると、潤滑層18と保護層17との密着性を向上させる効果が充分に得られる。また、熱処理温度を180℃以下にすることで、熱処理による潤滑層18の熱分解を防止できる。熱処理時間は、熱処理温度に応じて適宜調整でき、10分~120分とすることが好ましい。
 本実施形態においては、潤滑層18の保護層17に対する付着力をより一層向上させるために、熱処理前もしくは熱処理後の潤滑層18に、紫外線(UV)を照射する処理を行ってもよい。
 本実施形態の磁気記録媒体10は、基板11上に、少なくとも磁性層16と、保護層17と、潤滑層18とが順次設けられたものである。本実施形態の磁気記録媒体10では、保護層17上に接して上述の含フッ素エーテル化合物を含む潤滑層18が形成されている。この潤滑層18は、膜厚が薄くても、磁気ヘッドの浮上安定性が良好であり、磁気記録媒体の腐食を抑制する効果が高い。よって、本実施形態の磁気記録媒体10は、信頼性、耐久性に優れる。また、本実施形態の磁気記録媒体10は、磁気ヘッド浮上量を低く(例えば、10nm以下)することができ、用途の多様化に伴う厳しい環境下であっても、長期に亘って安定して動作する。したがって、本実施形態の磁気記録媒体10は、特にLUL(Load Unload)方式の磁気ディスク装置に搭載される磁気ディスクとして好適である。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例のみに限定されない。
[実施例1]
 以下に示す方法により、上記式(A)で表される化合物を得た。
(第一反応)
 窒素ガス雰囲気下で100mLナスフラスコにHOCHCF(OCFCF(OCFOCFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)20gと、上記式(7-1)で表される化合物2.55gと、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌し、混合物とした。この混合物にカリウムtert-ブトキシド0.90g加え、70℃で16時間撹拌して反応させた。
 式(7-1)で表される化合物は、2-シアノエタノールとエピブロモヒドリンとを反応させることにより合成した。
 反応後に得られた反応生成物を25℃に冷却し、水100mLを入れた分液漏斗に移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体として下記式(11)で示される化合物8.98gを得た。
Figure JPOXMLDOC01-appb-C000025

(式(11)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
(第二反応)
 次に、HOCHCF(OCFCF(OCFOCFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)と、エピブロモヒドリンとを反応させて、中間体として式(12)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000026

(式(12)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
(第三反応)
 続いて、窒素ガス雰囲気下で100mLナスフラスコに、上記で得られた中間体である式(11)で示される化合物8.98gと、式(12)で表される化合物4.55gと、t-ブタノール10mLとを仕込み、室温で均一になるまで撹拌し、混合物とした。この混合物にカリウムtert-ブトキシドを0.95g加え、70℃で23時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、10%塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)5gを加え、室温で4時間撹拌した。その後、反応液を食塩水100mLが入った分液漏斗に少しずつ移し、酢酸エチル200mLで2回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、化合物(A)(式(A)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を8.15g得た。
 得られた化合物(A)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(4H)、3.65~3.85(28H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例2]
 以下に示す方法により、上記式(B)で表される化合物を得た。
 実施例1の式(7-1)で表される化合物の代わりに、式(7-2)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(B)(式(B)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を8.42g得た。
 式(7-2)で表される化合物は、以下に示す方法を用いて合成した。まず、2-シアノエタノールとアリルグリシジルエーテルとを付加反応させることにより、シアノ基と水酸基とを有する化合物を合成した。そして、合成したシアノ基と水酸基とを有する化合物の2級水酸基を、ジヒドロピランを用いて保護し、二重結合をm-クロロ過安息香酸を用いて酸化することにより、式(7-2)で表されるシアノ基を有するエポキシ化合物を得た。
 得られた化合物(B)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(4H)、3.65~3.85(40H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例3]
 以下に示す方法により、上記式(C)で表される化合物を得た。
 実施例1の式(7-1)で表される化合物の代わりに、式(7-3)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(C)(式(C)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を8.21g得た。
 式(7-3)で示される化合物は、グリセリンジグリシジルエーテルの2級水酸基を、ジヒドロピランを用いて保護した後、2-シアノエタノールのモノ付加反応を行うことにより合成した。
 得られた化合物(C)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(4H)、3.65~3.85(52H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例4]
 以下に示す方法により、上記式(D)で表される化合物を得た。
 実施例1の式(7-1)で表される化合物の代わりに、式(7-4)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(D)(式(D)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を8.15g得た。
 式(7-4)で示される化合物は、3-シアノプロパノールとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(D)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.15~1.25(4H)、2.00~2.10(4H)、3.65~3.85(28H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例5]
 以下に示す方法により、上記式(E)で表される化合物を得た。
 実施例1の式(7-1)で表される化合物の代わりに、式(7-5)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(E)(式(E)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を8.08g得た。
 式(7-5)で示される化合物は、3-ヒドロキシブチロニトリルとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(E)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.10(6H)、2.00~2.10(4H)、3.65~3.85(26H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例6]
 以下に示す方法により、上記式(F)で表される化合物を得た。
 実施例1の式(7-1)で表される化合物の代わりに、式(7-6)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(F)(式(F)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を8.31g得た。
 式(7-6)で示される化合物は、3-ヒドロキシグルタロニトリルとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(F)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(8H)、3.65~3.85(26H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例7]
 以下に示す方法により、上記式(G)で表される化合物を得た。
 実施例1の式(7-1)で表される化合物の代わりに、式(7-7)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(G)(式(G)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を7.42g得た。
 式(7-7)で示される化合物は、アリルシアノアセテートの二重結合をm-クロロ過安息香酸を用いて酸化することにより合成した。
 得られた化合物(G)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.30(4H)、3.65~3.85(26H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例8]
 以下に示す方法により、上記式(H)で表される化合物を得た。
 実施例1の式(7-1)で表される化合物の代わりに、式(7-8)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(H)(式(H)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を8.36g得た。
 式(7-8)で示される化合物は、2-シアノエタノールと4-ブロモ-1-ブテンとを反応させた後、得られた化合物の二重結合をm-クロロ過安息香酸を用いて酸化することにより合成した。
 得られた化合物(H)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.15~1.25(4H)、2.00~2.10(4H)、3.65~3.85(28H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例9]
 以下に示す方法により、上記式(I)で表される化合物を得た。
 実施例1の式(7-1)で表される化合物の代わりに、式(7-9)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(I)(式(I)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を8.51g得た。
 式(7-9)で示される化合物は、2-シアノフェノールとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(I)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65~3.85(24H)、3.85~4.10(12H)、7.20~8.20(8H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例10]
 以下に示す方法により、上記式(J)で表される化合物を得た。
 実施例1の式(7-1)で表される化合物の代わりに、式(7-10)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(J)(式(J)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を8.82g得た。
 式(7-10)で示される化合物は、以下に示す方法を用いて合成した。まず、4-シアノフェノールとアリルグリシジルエーテルとを付加反応させることにより、シアノ基と水酸基とを有する化合物を合成した。そして、合成したシアノ基と水酸基とを有する化合物の2級水酸基を、ジヒドロピランを用いて保護し、二重結合をm-クロロ過安息香酸を用いて酸化することにより、式(7-10)で表されるシアノ基を有するエポキシ化合物を得た。
 得られた化合物(J)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65~3.85(36H)、3.85~4.10(12H)、7.20~8.20(8H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例11]
 以下に示す方法により、上記式(K)で表される化合物を得た。
 まず、実施例1と同様にして第一反応および第二反応を行うことにより、第1中間体化合物1aとして式(11)で表される化合物、および式(12)で表される化合物を得た。
 次に、式(7-1)で表される化合物の代わりに、式(7-2)で表される化合物を用いたこと以外は、実施例1の第一反応と同様な操作を行い、第2中間体化合物1bとして下記式(13)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000027

(式(13)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す;THPはテトラヒドロピラニル基を表す。)
 次に、窒素ガス雰囲気下で100mLナスフラスコに、第1中間体化合物1aである式(11)で表される化合物4.49gと、上記式(12)で表される化合物4.55gと、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌し、混合物とした。この混合物にカリウムtert-ブトキシド0.47g加え、70℃で23時間撹拌して反応させた。
 反応後に得られた反応生成物を25℃に冷却し、水100mLを入れた分液漏斗に移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、下記式(14)で示される化合物3.81gを得た。
Figure JPOXMLDOC01-appb-C000028

(式(14)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
 続いて、窒素ガス雰囲気下で100mLナスフラスコに、上記で得られた式(14)で示される化合物3.81gと、第2中間体化合物1bである式(13)で表される化合物2.02gと、t-ブタノール10mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にカリウムtert-ブトキシドを0.45g加え、70℃で23時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、10%塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)5gを加え、室温で4時間撹拌した。その後、反応液を食塩水100mLが入った分液漏斗に少しずつ移し、酢酸エチル200mLで2回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、化合物(K)(式(K)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.10g得た。
 得られた化合物(K)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(4H)、3.65~3.85(34H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例12]
 以下に示す方法により、上記式(L)で表される化合物を得た。
 実施例11において、式(7-2)で表される化合物の代わりに、式(7-3)で表される化合物を用いて第2中間体化合物1bを得たこと以外は実施例11と同様な操作を行い、化合物(L)(式(L)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.05g得た。
 得られた化合物(L)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(4H)、3.65~3.85(40H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例13]
 以下に示す方法により、上記式(M)で表される化合物を得た。
 実施例12において、式(7-1)で表される化合物の代わりに、式(7-2)で表される化合物を用いて第1中間体化合物1aを得たこと以外は実施例12と同様な操作を行い、化合物(M)(式(M)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.93g得た。
 得られた化合物(M)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(4H)、3.65~3.85(46H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例14]
 以下に示す方法により、上記式(N)で表される化合物を得た。
 実施例11において、式(7-1)で表される化合物の代わりに、式(7-9)で表される化合物を用いて第1中間体化合物1aを得たこと以外は実施例11と同様な操作を行い、化合物(N)(式(N)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.42g得た。
 得られた化合物(N)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(2H)、3.65~3.85(32H)、3.85~4.10(12H)、7.20~8.20(4H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例15]
 以下に示す方法により、上記式(O)で表される化合物を得た。
 実施例11において、式(7-1)で表される化合物の代わりに、下記式(15)で表される化合物を用いて第1中間体化合物1aを得たこと以外は実施例11と同様な操作を行い、化合物(O)(式(O)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.28g得た。
Figure JPOXMLDOC01-appb-C000029

(式(15)中、THPはテトラヒドロピラニル基を表す。)
 式(15)で表される化合物は、エチレングリコールモノアリルエーテルの水酸基を、ジヒドロピランを用いて保護し、得られた化合物を酸化することにより合成した。
 得られた化合物(O)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(2H)、3.65~3.85(37H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例16]
 以下に示す方法により、上記式(P)で表される化合物を得た。
 実施例11において、式(7-1)で表される化合物の代わりに、下記式(16)で表される化合物を用いて第1中間体化合物1aを得たこと以外は実施例11と同様な操作を行い、化合物(P)(式(P)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.58g得た。
Figure JPOXMLDOC01-appb-C000030
 式(16)で表される化合物は、アリルアルコールとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(P)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(2H)、3.65~3.85(34H)、3.85~4.10(12H)、5.40~6.10(3H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例17]
 以下に示す方法により、上記式(Q)で表される化合物を得た。
 実施例11において、式(7-1)で表される化合物の代わりに、下記式(17)で表される化合物を用いて第1中間体化合物1aを得たこと以外は実施例11と同様な操作を行い、化合物(Q)(式(Q)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.71g得た。
Figure JPOXMLDOC01-appb-C000031
 式(17)で表される化合物は、4-メトキシフェノールとエピブロモヒドリンとを反応させることにより合成した。なお上記式中のMeはメチル基を表す。
 得られた化合物(Q)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(2H)、3.65~3.85(35H)、3.85~4.10(12H)、6.70~7.40(5H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例18]
 以下に示す方法により、上記式(R)で表される化合物を得た。
 実施例11において、式(7-1)で表される化合物の代わりに、下記式(18)で表される化合物を用いて第1中間体化合物1aを得たこと以外は実施例11と同様な操作を行い、化合物(R)(式(R)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.28g得た。
Figure JPOXMLDOC01-appb-C000032

(式(18)中、THPはテトラヒドロピラニル基を表す。)
 式(18)で表される化合物は、ホモアリルアルコールの水酸基を、ジヒドロピランを用いて保護し、得られた化合物を酸化することにより合成した。
 得られた化合物(R)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.20~1.80(2H)、2.00~2.10(2H)、3.65~3.85(33H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例19]
 以下に示す方法により、上記式(S)で表される化合物を得た。
 実施例1の第一反応および第二反応におけるHOCHCF(OCFCF(OCFOCFCHOHで表される化合物の代わりに、HOCHCFCF(OCFCFCFOCFCFCHOH(式中の平均重合度を示すjは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたことと、式(7-1)で表される化合物の代わりに、式(7-2)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(S)(式(S)中のRfは、上記式(4-2)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すjは4.5を表す。)を7.96g得た。
 得られた化合物(S)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(4H)、3.65~3.85(40H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(54F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(27F)
[実施例20]
 以下に示す方法により、上記式(T)で表される化合物を得た。
 実施例1の第一反応および第二反応におけるHOCHCF(OCFCF(OCFOCFCHOHで表される化合物の代わりに、HOCHCFCFCF(OCFCFCFCFOCFCFCFCHOH(式中の平均重合度を示すkは3.0である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたことと、式(7-1)で表される化合物の代わりに、式(7-2)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(T)(式(T)中のRfは、上記式(4-3)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すkは3.0を表す。)を7.85g得た。
 得られた化合物(T)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(4H)、3.65~3.85(40H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(48F)、-122.5(12F)、-126.0(36F)、-129.0~-128.0(12F)
[実施例21]
 以下に示す方法により、上記式(U)で表される化合物を得た。
 実施例1の第一反応におけるHOCHCF(OCFCF(OCFOCFCHOHで表される化合物の代わりに、HOCHCFCF(OCFCFCFOCFCFCHOH(式中の平均重合度を示すjは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用い、第二反応におけるHOCHCF(OCFCF(OCFOCFCHOHで表される化合物の代わりに、HOCHCF(OCFCFOCFCHOH(式中の平均重合度を示すhは7.0である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたことと、式(7-1)で表される化合物の代わりに、式(7-2)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(U)(式(U)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rf中において、平均重合度を示すhは7.0を表し、平均重合度を示すiは0を表す。Rfは、上記式(4-2)で表されるPFPE鎖である。2つのRf中において、平均重合度を示すjは4.5を表す。)を7.46g得た。
 得られた化合物(U)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00~2.10(4H)、3.65~3.85(40H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-80.5(4F)、-91.0~-88.5(28F)-84.0~-83.0(36F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(18F)
[実施例22]
 以下に示す方法により、上記式(V)で表される化合物を得た。
 まず、HOCHCF(OCFCF(OCFOCFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)と、4-ブロモ-1-ブテンとを反応させた後、得られた化合物の二重結合をm-クロロ過安息香酸を用いて酸化することにより、中間体である式(19)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000033

(式(19)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
 実施例1において、中間体である式(12)で表される化合物の代わりに、式(19)で表される化合物を用いたことと、式(7-1)で表される化合物の代わりに、式(7-2)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(V)(式(V)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を8.23g得た。
 得られた化合物(V)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.20~1.80(4H)、2.00~2.10(4H)、3.65~3.85(40H)、3.85~4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
 このようにして得られた実施例1~22の化合物(A)~(V)を、それぞれ式(1)に当てはめたときのR、R、R3a、R3b、R3c、R4a、R4b、R、Rの構造を表1に示す。
Figure JPOXMLDOC01-appb-T000034

[比較例1]
 下記式(X)で表される化合物を、特許文献5に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000035


(式(X)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
[比較例2]
 下記式(Y)で表される化合物を、特許文献4に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000036


(式(Y)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
[比較例3]
 下記式(Z)で表される化合物を、特許文献6に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000037


(式(Z)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
[比較例4]
 下記式(AA)で表される化合物を、特許文献6に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000038


(式(AA)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRf中において、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
[比較例5]
 下記式(AB)で表される化合物を、特許文献1に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000039


(式(AB)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRfのうち中央のRf中における平均重合度を示すhは2.0を表し、平均重合度を示すiは0を表す;3つのRfのうち両端の2つのRf中における平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
[比較例6]
 下記式(AC)で表される化合物を、特許文献2に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000040


(式(AC)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRfのうち中央のRf中における平均重合度を示すhは2.0を表し、平均重合度を示すiは0を表す;3つのRfのうち両端の2つのRf中における平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
[比較例7]
 下記式(AD)で表される化合物を、特許文献3に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000041


(式(AD)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRf中において、平均重合度を示すhは7.0を表し、平均重合度を示すiは0を表す。)
 このようにして得られた実施例1~22および比較例1~7の化合物の数平均分子量(Mn)を、上記の方法により測定した。その結果を表2または表3に示す。
 次に、以下に示す方法により、実施例1~22および比較例1~7で得られた化合物を用いて潤滑層形成用溶液を調製した。そして、得られた潤滑層形成用溶液を用いて、以下に示す方法により、磁気記録媒体の潤滑層を形成し、実施例1~22および比較例1~7の磁気記録媒体を得た。
「潤滑層形成用溶液」
 実施例1~22および比較例1~7で得られた化合物を、それぞれフッ素系溶媒であるバートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)に溶解し、保護層上に塗布した時の膜厚が9.0Å~9.5ÅになるようにバートレルXFで希釈し、潤滑層形成用溶液とした。
「磁気記録媒体」
 直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けた磁気記録媒体を用意した。保護層は、炭素からなるものとした。
 保護層までの各層の形成された磁気記録媒体の保護層上に、実施例1~22および比較例1~7の潤滑層形成用溶液を、ディップ法により塗布した。なお、ディップ法は、浸漬速度10mm/sec、浸漬時間30sec、引き上げ速度1.2mm/secの条件で行った。
 その後、潤滑層形成用溶液を塗布した磁気記録媒体を恒温槽に入れ、潤滑層形成用溶液中の溶媒を除去して保護層と潤滑層との密着性を向上させる熱処理を、120℃で10分間行うことにより保護層上に潤滑層を形成し、磁気記録媒体を得た。
(膜厚測定)
 このようにして得られた実施例1~22および比較例1~7の磁気記録媒体の有する潤滑層の膜厚を、FT-IR(商品名:Nicolet iS50、Thermo Fisher Scientific社製)を用いて測定した。その結果を表2または表3に示す。
 次に、実施例1~22および比較例1~7の磁気記録媒体に対して、以下に示す浮上安定性試験、耐腐食性試験を行った。
(浮上安定性試験)
 下記のグライド試験およびクリーデンス測定を行い、以下の評価基準に基づいて浮上安定性を評価した。その結果を表2または表3に示す。
「グライド試験」
 グライド試験では、磁気記録媒体の表面に突起物が無いかどうかを検査する。すなわち、磁気ヘッドを用いて磁気記録媒体に対して記録再生を行う際に、磁気記録媒体の表面に浮上量(磁気記録媒体と磁気ヘッドの間隔)以上の高さの突起があると、磁気ヘッドが突起に衝突して磁気ヘッドが損傷したり、磁気記録媒体に欠陥が発生したりする原因となる。グライド試験では、磁気記録媒体50枚について、表面の浮上量以上の高さの突起の有無を検査する。
 具体的には、検査用磁気ヘッドと磁気記録媒体との間の間隔を0.25マイクロインチに設定し、磁気記録媒体上で検査用磁気ヘッドを移動させ、検査用磁気ヘッドから、磁気記録媒体の表面の突起物との衝突に起因するシグナルが出力された場合、その磁気記録媒体を不良品と判断し、それ以外は合格と判定した。そして、50枚の磁気記録媒体のうち、合格と判定された磁気記録媒体の枚数を用いて評価した。
「クリーデンス測定」
 上記のグライド試験を実施した際に、一時的にノイズが増大し、磁気記録媒体上の同じ場所であるのに、複数回の測定のうち、表面の突起物との衝突に起因するシグナルが検出されたり、検出されなかったりすることがある。このような現象をクリーデンスと呼ぶ。クリーデンスは、グライド試験において、突起物として検出せず、グライド試験の合否の判断には用いない。しかしながら、グライド試験において一時的にノイズが増大することは、一般に、潤滑剤層の不均一性あるいは比較的柔らかい異物の存在を示す。このため、磁気記録媒体についてグライド試験を行って、検出されたクリーデンスの回数の合計を、グライド試験を行った磁気記録媒体の枚数(50枚)で除することにより、グリーデンス平均値を算出し、潤滑剤層の平滑性および清浄度を表す指標として用いた。
「評価基準」
A:グライド試験合格枚数45枚以上かつクリーデンス平均値0.5未満
B:グライド試験合格枚数45枚以上かつクリーデンス平均値0.5以上1.0未満
C:グライド試験合格枚数45枚以上かつクリーデンス平均値1.0以上5.0未満
D:グライド試験合格枚数45枚未満またはクリーデンス平均値5.0以上
E:グライド試験合格枚数45枚未満かつクリーデンス平均値5.0以上
(耐腐食性試験)
 磁気記録媒体を温度85℃、相対湿度90%の条件下に48時間曝露した。その後、磁気記録媒体上の表面に生じた直径5ミクロン以上のコロージョンスポットの数を、光学表面分析装置(ケーエルエー・テンコール株式会社製Candela7140)を用いて数え、以下の評価基準に基づいて評価した。その結果を表2または表3に示す。
「評価基準」
A:100箇所未満
B:100箇所以上、200箇所未満
C:200箇所以上、300箇所未満
D:300箇所以上、1000箇所未満
E:1000箇所以上
Figure JPOXMLDOC01-appb-T000042

Figure JPOXMLDOC01-appb-T000043
 表2に示すように、実施例1~22の磁気記録媒体は、すべての評価項目において評価がA~Cであった。このことから、実施例1~22の磁気記録媒体の潤滑層は、厚みが9.5Å以下の薄いものであっても、磁気ヘッドの浮上安定性が良好であり、磁気記録媒体の腐食を抑制する効果も高いことが確認できた。
 特に、表2に示すように、化合物(B)、(C)、(M)、(S)~(U)を用いた実施例2、3、13、19~21の磁気記録媒体の潤滑層は、浮上安定性の評価がAであり、良好であった。
 化合物(C)、(M)においては、化合物中の水酸基の合計が7以上であり、分子全体としての吸着力が高いため、密着性が良好となり、より優れた浮上安定性が得られたものと考えられる。
 化合物(B)、(S)~(U)は、化合物中の水酸基の合計が6であるため、保護層に対する密着性が良好である。また、R3aとR3cとが同じであり、R4aとR4bが同じであり、R-R-とR-R-とが同じであることにより、分子中央のR3bを中心とした対称構造を有しているため、保護層上で均一に濡れ広がりやすい。さらに、R4a、R4bが式(3-1)で表される連結基でありsが1であるし、RおよびR中のシアノ基が直鎖状のアルキル基に結合しているため、保護層に対する吸着力が高い。以上のことから、実施例2、19~21では、より良好な浮上安定性が得られたものと考えられる。
 水酸基の合計数が4つである化合物(A)、(D)~(I)を用いた実施例1、4~9を比較すると、実施例1、4、6~8において良好な浮上安定性が得られている。これらの実施例に用いられている化合物(A)、(D)、(F)~(H)は、RおよびRが、シアノ基が直鎖状のアルキル基に結合している構造(5-1)、(5-2)、シアノ基を2つ有している構造(5-7)、シアノ基の他に極性部位であるカルボニル基を有している構造(5-8)のいずれかである。これらの化合物は、RおよびRが、比較的かさ高い炭化水素基にシアノ基が結合している構造(5-6)、(5-9)である化合物(E)、(I)と比較して、シアノ基が保護層に近接しやすく、シアノ基が保護層上の活性点と相互作用をする能力が高いものと推定される。以上のことから、化合物(A)、(D)、(F)~(H)を用いることにより、優れた浮上安定性が得られたものと考えられる。
 また、表2に示すように、化合物(D)~(F)、(H)~(J)、(N)、(P)、(Q)、(V)を用いた実施例4~6、8~10、14、16、17、22の磁気記録媒体の潤滑層は、耐腐食性の評価がAであり、良好であった。
 化合物(D)~(F)、(I)、(J)、(N)におけるRおよび/またはRは、炭素数3以上の炭化水素基にシアノ基が結合した末端基(5-2)、(5-6)、(5-7)、(5-9)、(5-10)である。また、化合物(H)は、RおよびRが、グリセリンの骨格中のメチレン基を1つ増加させた構造(3-2)を有し、化合物(V)は、R4aおよびR4bが、グリセリンの骨格中のメチレン基を1つ増加させた構造(3-3)を有する。また、化合物(P)、(Q)は、シアノ基を有する末端基がRのみであって、Rが二重結合を有する基である。これらのことから、化合物(D)~(F)、(H)~(J)、(N)、(P)、(Q)、(V)を含む潤滑層は、疎水性の良好なものとなり、磁気記録媒体の腐食の原因となる水の侵入を効果的に阻害する。それゆえ、これらの化合物を用いた実施例4~6、8~10、14、16、17、22では、Rおよび/またはRが水酸基を3つ有する化合物(C)、(L)、(M)を用いた実施例3、12、13と比較して、親水性が低く、良好な耐腐食性が得られたものと推定される。
 また、表3に示すように、分子の中央にパーフルオロポリエーテル鎖を有し、その片側もしくは両側にシアノ基および水酸基を有する有機基が結合した化合物(X)、(Y)を用いた比較例1、2では、浮上安定性の評価はいずれもDであり、耐腐食性の評価はいずれもEとなった。
 比較例1、2では、分子中央部分に1つのみパーフルオロポリエーテル鎖が配置されており、極性基を有する連結基を介して結合されたパーフルオロポリエーテル鎖が存在しない化合物(X)、(Y)を用いている。このため、潤滑層と保護層との密着性が不十分であり、潤滑剤が凝集して突起が形成されやすく、潤滑層中に水が侵入しやすい。これらのことから、比較例1、2の磁気記録媒体は、浮上安定性および耐腐食性が劣る結果になったものと推定される。
 また、比較例3、4では、鎖状構造の中央にグリセリン構造を有し、その両側にそれぞれ、パーフルオロポリエーテル鎖と、シアノ基および水酸基を有する有機基とがこの順に結合された化合物(Z)、(AA)を用いている。比較例3、4の磁気記録媒体では、浮上安定性の評価がいずれもDであり、耐腐食性の評価は比較例3がDであり、比較例4がCであった。比較例3、4では、極性基を有する連結基を介して結合されたパーフルオロポリエーテル鎖の数が2つである化合物(Z)または化合物(AA)を用いているため、潤滑剤が保護層と十分に相互作用できず、潤滑層と保護層との密着性が不十分となり、浮上安定性および耐腐食性が劣る結果になったものと推定される。
 また、比較例5、6では、グリセリン構造を介して連結された3つのパーフルオロポリエーテル鎖からなる骨格を有し、その両端にそれぞれ1つまたは2つの水酸基を有する末端基が結合された化合物(AB)、(AC)を用いている。比較例5の磁気記録媒体は、浮上安定性の評価がDであり、耐腐食性の評価がDであった。また、比較例6の磁気記録媒体は、浮上安定性の評価がEであり、耐腐食性の評価がDであった。
 また、比較例7では、水酸基を2つ有する連結基を介して連結された3つのパーフルオロポリエーテル鎖からなる骨格を有し、その両端にそれぞれ2つの水酸基を有する末端基が結合された化合物(AD)を用いている。比較例7の磁気記録媒体は、浮上安定性の評価がCであり、耐腐食性の評価がDであった。
 比較例5~7において使用した化合物(AB)~(AD)は、分子の両末端の極性基が水酸基のみである。このため、R-R-および/またはR-R-が水酸基とシアノ基とを有する化合物(A)~(V)を含む実施例1~22の磁気記録媒体と比較して、比較例5~7の磁気記録媒体では、潤滑剤中の極性基同士が相互作用しやすく、凝集しやすい。その結果、化合物(AB)~(AD)を含む潤滑層には、分子が凝集してなる突起が形成されやすく、浮上安定性が不十分になったものと推定される。
 また、化合物(AB)~(AD)中に含まれる複数の極性基は、互いに保護層との相互作用を抑制する。このため、比較例5~7の磁気記録媒体の潤滑層中には、保護層に吸着していない極性基が多く存在しているものと推定される。また、化合物(AB)~(AD)は、シアノ基を含まないため、保護層上の正に帯電した部位が潤滑層に被覆されにくく、磁気記録媒体の表面に露出されやすい。磁気記録媒体の表面に露出された保護層上の正に帯電した部位は、水を取り込みやすい。これらのことから、比較例5~7の磁気記録媒体の潤滑層では、保護層と吸着していない極性基、および保護層上に露出した正に帯電した部位が、水を取り込みやすく、耐腐食性が劣る結果になったものと推定される。
 本発明の含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を用いることにより、厚みが薄くても、磁気ヘッドの浮上安定性が良好で、磁気記録媒体の腐食を抑制する効果の高い潤滑層を形成できる。
 10・・・磁気記録媒体、11・・・基板、12・・・付着層、13・・・軟磁性層、14・・・第1下地層、15・・・第2下地層、16・・・磁性層、17・・・保護層、18・・・潤滑層。

Claims (15)

  1.  下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
    -R-CH-R3a-CH-R4a-CH-R3b-CH-R4b-CH-R3c -CH-R-R  (1)
    (式(1)中、R3a、R3b、およびR3cは、パーフルオロポリエーテル鎖である;R3a、R3b、およびR3cは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;R、R4a、R4b、およびRは、水酸基、アミノ基、カルボキシ基、およびスルホ基からなる群より選択される少なくとも1種の極性基を有する2価の連結基である;R、R4a、R4b、およびRは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;Rは、Rと結合する側の末端が酸素原子である;Rは、Rと結合する側の末端が酸素原子である;RおよびRは、RまたはRの末端の酸素原子に結合された末端基であり、同じであっても異なっていても良い;RおよびRは、炭素原子数1~50の有機基または水素原子であり、少なくとも一方は、炭素原子数1~8の有機基の有する炭素原子に、シアノ基が結合した基である。)
  2.  前記式(1)において、RおよびRのうち少なくとも一方が、フェニル基または炭素原子数1~6のアルキル基を構成する炭素原子に、シアノ基が結合した基である、請求項1に記載の含フッ素エーテル化合物。
  3.  前記式(1)において、R、R4a、R4b、およびRが、それぞれ水酸基を1つ以上有する、請求項1または請求項2に記載の含フッ素エーテル化合物。
  4.  前記式(1)において、Rの有する水酸基と、Rの有する水酸基との合計数が2~6である、請求項3に記載の含フッ素エーテル化合物。
  5.  前記式(1)において、RおよびRの両方が、フェニル基または炭素原子数1~6のアルキル基を構成する炭素原子に、シアノ基が結合した基である、請求項1または請求項2に記載の含フッ素エーテル化合物。
  6.  前記式(1)において、R、R4a、R4b、およびRはそれぞれ独立に、下記式(2)で表される連結基である、請求項1または請求項2に記載の含フッ素エーテル化合物。
    Figure JPOXMLDOC01-appb-C000001

    (式(2)中、pは1~3の整数を表す;p個のqはそれぞれ独立して1~4の整数を表し、p個のrはそれぞれ独立して1~4の整数を表す;式(2)中の最も左側の酸素原子は、式(1)においてR3bとは反対側に配置される;式(2)中の最も右側の酸素原子は、式(1)においてR3b側に配置される。)
  7.  前記式(1)において、RおよびRはそれぞれ独立に、下記式(3-1)または(3-2)で表される連結基である、請求項1または請求項2に記載の含フッ素エーテル化合物。
    Figure JPOXMLDOC01-appb-C000002


    (式(3-1)中、sは1~3の整数を表す;式(3-1)中、最も左側の酸素原子は、RまたはRに結合され、最も右側の酸素原子は、R3aまたはR3cに隣接するCHに結合される。)
    (式(3-2)中、tは2~4の整数を表す;式(3-2)中、左側の酸素原子は、RまたはRに結合され、右側の酸素原子は、R3aまたはR3cに隣接するCHに結合される。)
  8.  前記式(1)において、R4aおよびR4bはそれぞれ独立に、下記式(3-1)または(3-3)で表される連結基である、請求項1または請求項2に記載の含フッ素エーテル化合物。
    Figure JPOXMLDOC01-appb-C000003


    (式(3-1)中、sは1~3の整数を表す;式(3-1)中、最も左側の酸素原子は、R3aまたはR3cに隣接するCHに結合され、最も右側の酸素原子は、R3bに隣接するCHに結合される。)
    (式(3-3)中、uは2~4の整数を表す;式(3-3)中、左側の酸素原子は、R3aまたはR3cに隣接するCHに結合され、右側の酸素原子は、R3bに隣接するCHに結合される。)
  9.  前記式(1)において、R3aとR3cとが同じであり、R4aとR4bとが同じであり、R-R-とR-R-とが同じである、請求項1または請求項2に記載の含フッ素エーテル化合物。
  10.  前記式(1)において、R3a、R3b、およびR3cはそれぞれ独立に、下記式(4)で表されるパーフルオロポリエーテル鎖である、請求項1または請求項2に記載の含フッ素エーテル化合物。
     -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (4)(式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(4)における繰り返し単位の配列順序には、特に制限はない。)
  11.  前記式(1)において、R3a、R3b、およびR3cはそれぞれ独立に、下記式(4-1)~(4-4)で表されるパーフルオロポリエーテル鎖から選ばれるいずれか1種である、請求項1または請求項2に記載の含フッ素エーテル化合物。
     -CF-(OCFCF-(OCF-OCF-  (4-1)
    (式(4-1)中、hおよびiは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
     -CFCF-(OCFCFCF-OCFCF-  (4-2)
    (式(4-2)中、jは平均重合度を示し、1~15を表す。)
     -CFCFCF-(OCFCFCFCF-OCFCFCF-  (4-3)
    (式(4-3)中、kは平均重合度を示し、1~10を表す。)
     -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-  (4-4)
    (式(4-4)中、w8、w9は平均重合度を示し、それぞれ独立に1~20を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
  12.  数平均分子量が400~10000の範囲内である、請求項1または請求項2に記載の含フッ素エーテル化合物。
  13.  請求項1または請求項2に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
  14.  基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
     前記潤滑層が、請求項1または請求項2に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
  15.  前記潤滑層の平均膜厚が、0.5nm~2.0nmである、請求項14に記載の磁気記録媒体。
PCT/JP2022/045229 2021-12-15 2022-12-08 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 WO2023112813A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023567736A JPWO2023112813A1 (ja) 2021-12-15 2022-12-08
CN202280082541.6A CN118382611A (zh) 2021-12-15 2022-12-08 含氟醚化合物、磁记录介质用润滑剂及磁记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021203034 2021-12-15
JP2021-203034 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023112813A1 true WO2023112813A1 (ja) 2023-06-22

Family

ID=86774659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045229 WO2023112813A1 (ja) 2021-12-15 2022-12-08 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Country Status (3)

Country Link
JP (1) JPWO2023112813A1 (ja)
CN (1) CN118382611A (ja)
WO (1) WO2023112813A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282707A (ja) * 2009-06-08 2010-12-16 Showa Denko HD Singapore Pte Ltd 磁気記録媒体及び磁気記録媒体の製造方法、並びに磁気記録再生装置
JP2018076404A (ja) * 2016-11-07 2018-05-17 昭和電工株式会社 有機フッ素化合物および潤滑剤
WO2018116742A1 (ja) * 2016-12-20 2018-06-28 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019039200A1 (ja) * 2017-08-21 2019-02-28 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131961A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282707A (ja) * 2009-06-08 2010-12-16 Showa Denko HD Singapore Pte Ltd 磁気記録媒体及び磁気記録媒体の製造方法、並びに磁気記録再生装置
JP2018076404A (ja) * 2016-11-07 2018-05-17 昭和電工株式会社 有機フッ素化合物および潤滑剤
WO2018116742A1 (ja) * 2016-12-20 2018-06-28 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019039200A1 (ja) * 2017-08-21 2019-02-28 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131961A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Also Published As

Publication number Publication date
CN118382611A (zh) 2024-07-23
JPWO2023112813A1 (ja) 2023-06-22

Similar Documents

Publication Publication Date Title
JP7213813B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7149947B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7138644B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7138646B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP6968833B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7435589B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019087548A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
US12057151B2 (en) Fluorine-containing ether compound, lubricant for magnetic recording medium, and magnetic recording medium
WO2021132252A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224095A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224093A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023112813A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022215726A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022039079A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023033055A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7338631B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024048569A1 (ja) 含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024071399A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024071392A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024177047A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023276954A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022163708A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024024781A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023085271A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023033044A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907340

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567736

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE