WO2023033044A1 - 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 - Google Patents

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 Download PDF

Info

Publication number
WO2023033044A1
WO2023033044A1 PCT/JP2022/032769 JP2022032769W WO2023033044A1 WO 2023033044 A1 WO2023033044 A1 WO 2023033044A1 JP 2022032769 W JP2022032769 W JP 2022032769W WO 2023033044 A1 WO2023033044 A1 WO 2023033044A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
represented
compound
fluorine
layer
Prior art date
Application number
PCT/JP2022/032769
Other languages
English (en)
French (fr)
Inventor
大輔 柳生
剛 加藤
優 丹治
綾乃 浅野
直也 福本
宏平 落合
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to CN202280057143.9A priority Critical patent/CN117836268A/zh
Priority to JP2023545639A priority patent/JPWO2023033044A1/ja
Publication of WO2023033044A1 publication Critical patent/WO2023033044A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/24Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • C07C233/25Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/67Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/68Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/69Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/16Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/46Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/58Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/60Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring with carbon atoms of carboxamide groups and singly-bound oxygen atoms, bound in ortho-position to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/66Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems and singly-bound oxygen atoms, bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/192Radicals derived from carboxylic acids from aromatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/38Lubricating compositions characterised by the base-material being a macromolecular compound containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt

Definitions

  • the present invention relates to a fluorine-containing ether compound, a lubricant for magnetic recording media, and a magnetic recording medium.
  • magnetic recording media which are one type of recording media, are expected to serve as a receiver for increasing data because they can store a large amount of data at low cost.
  • Some magnetic recording media have a magnetic layer (magnetic recording layer) formed on a substrate and a protective layer such as carbon formed on the magnetic layer.
  • the protective layer protects information recorded on the magnetic layer and enhances the slidability of the magnetic head.
  • sufficient durability of the magnetic recording medium cannot be obtained only by providing the protective layer on the magnetic layer. For this reason, a lubricant is generally applied to the surface of the protective layer to form a lubricating layer.
  • the lubricating layer placed on the outermost surface of the magnetic recording medium has chemical resistance (prevents contamination such as siloxane), wear resistance, corrosion resistance, flying stability of the magnetic head, heat resistance and decomposition resistance, film Various properties such as long-term thickness stability are required.
  • Lubricants for magnetic recording media include perfluoropolyether (hereinafter sometimes abbreviated as "PFPE") chains containing fluorine-containing Ether compounds have been proposed (see Patent Documents 1 to 5, for example).
  • Patent Documents 1 and 2 disclose fluorine-containing ether compounds capable of forming a lubricating layer that provides excellent chemical resistance and wear resistance even when the thickness is small.
  • Patent Document 1 discloses a fluorine-containing ether compound in which an aryl group and a hydroxyl group are arranged at one end of a PFPE chain and two or three hydroxyl groups are arranged at the other end.
  • Patent Document 2 discloses a fluorine-containing ether compound in which a chain organic group having an amide bond is arranged at one or both ends of a PFPE chain.
  • Patent Document 3 discloses a lubricant that contains a fluoropolyether compound and has a reduced film thickness per molecule while maintaining excellent decomposition resistance.
  • Patent Document 3 discloses a fluoropolyether compound in which a phenyl group substituted with an alkoxy group, an amino group, or an amido group is arranged at one end of a PFPE chain, and a specific terminal group containing a hydroxyl group is arranged at the other end. disclosed.
  • Patent Document 4 discloses a magnetic disk provided with a lubricating layer and having excellent LUL (Load Unload) durability and alumina resistance (inhibition of decomposition of lubricant by alumina).
  • a compound contained in a lubricating layer has a PFPE main chain, has an aromatic group and a hydroxyl group at the ends of the molecule, and the aromatic group and the hydroxyl group are respectively bonded to different carbon atoms.
  • Compounds are disclosed.
  • Patent Document 5 discloses a highly heat-resistant lubricant that contains a fluoropolyether compound, does not undergo thermal decomposition even under high heat, and does not transfer (pick up) to the magnetic head.
  • Patent Document 5 discloses a fluoropolyether compound in which a specific linking group containing one hydroxyl group and a phenyl group substituted with an alkoxy group, an amino group, or an amide group are arranged at both ends of a PFPE chain. It is
  • spin-off occurs and the thickness of the lubricating layer tends to decrease.
  • Spin-off is a phenomenon in which the lubricant scatters or evaporates due to centrifugal force and/or heat generation accompanying rotation of the magnetic recording medium. If the thickness of the lubricating layer is reduced by spin-off, the properties required of the lubricating layer, such as resistance to chemicals, wear resistance, corrosion resistance, and flying stability of the magnetic head, cannot be maintained.
  • the lubricating layer In order to improve the flying stability of the magnetic head, in addition to suppressing the occurrence of pick-up and spin-off, the lubricating layer should have good adhesion to the protective layer and should be placed on the outermost surface of the magnetic recording medium. It is important that the smoothness of the lubricating layer is good.
  • the present invention has been made in view of the above circumstances, and is suitable as a material for lubricants for magnetic recording media because it is possible to form a lubricating layer that is less prone to pick-up and spin-off, has good adhesion to the protective layer and has good smoothness.
  • An object of the present invention is to provide a fluorine-containing ether compound that can be used for The present invention also provides a lubricant for magnetic recording media, which contains the fluorine-containing ether compound of the present invention, is resistant to pick-up and spin-off, and is capable of forming a lubricating layer with good adhesion and smoothness to a protective layer. With the goal.
  • Another object of the present invention is to provide a magnetic recording medium having a lubricating layer containing the fluorine-containing ether compound of the present invention and having excellent flying stability of a magnetic head.
  • the present inventors have made intensive studies to solve the above problems. As a result, at one or both ends of the perfluoropolyether chain, there is a terminal group containing a group in which the carbonyl carbon atom or nitrogen atom of the amide bond and the aromatic hydrocarbon are directly bonded, and the specific having 3 or more hydroxyl groups It was found that the fluorine-containing ether compound of the above should be used. Further, it was confirmed that by using a lubricant for a magnetic recording medium containing such a fluorine-containing ether compound, it is possible to form a lubricating layer that is resistant to pick-up and spin-off and has good adhesion and smoothness to the protective layer.
  • the present invention was conceived. The present invention includes the following aspects.
  • a first aspect of the present invention provides the following fluorine-containing ether compound.
  • R 1 is an organic group having 7 to 18 carbon atoms including a group in which a carbonyl carbon atom or nitrogen atom of an amide bond and an aromatic hydrocarbon are directly bonded
  • R 2 is a perfluoropolyether is a chain
  • R 3 is represented by the following formula (2); in formula (2), a represents an integer of 2 to 6, b represents 0 or 1;
  • X 1 represents a hydrogen atom, or an amide
  • [A] is the following formula (3-1) represented;
  • c in formula (3-1) is an integer of 0 to 3; in formula (1), [B] is represented by
  • the fluorine-containing ether compound of the first aspect of the present invention preferably has the characteristics described in [2] to [8] below. It is also preferable to arbitrarily combine two or more of the features described in [2] to [8] below. [2]
  • the fluorine-containing ether compound according to [1], wherein R 1 in the formula (1) is any one of the structures represented by the following formulas (5-1) to (5-5).
  • X 2 is one or more groups represented by formulas (6-1) or (6-2).
  • Y 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; L represents an integer of 1 to 6; Z is a hydrogen atom, a carbon number Any one or two or more selected from an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a group represented by formula (6-1) or (6-2).
  • Y 1 and Y 2 are each independently a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, or a cyclic structure in which Y 1 and Y 2 are bonded to each other; The total number of carbon atoms contained in (6-1) is 1 to 8.
  • Y 3 is an alkyl group having 1 to 7 carbon atoms
  • Y 4 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; may be a structure; the total number of carbon atoms contained in formula (6-2) is 2 to 8.
  • a second aspect of the present invention provides the following lubricant for magnetic recording media.
  • a lubricant for magnetic recording media comprising the fluorine-containing ether compound according to any one of [1] to [8].
  • a third aspect of the present invention provides the following magnetic recording medium.
  • a magnetic recording medium comprising a substrate and at least a magnetic layer, a protective layer, and a lubricating layer provided in this order, wherein the lubricating layer is the magnetic recording medium according to any one of [1] to [8].
  • a magnetic recording medium comprising a fluorine ether compound.
  • the magnetic recording medium of the third aspect of the present invention preferably has the features described in [11] below.
  • the magnetic recording medium according to [10] wherein the lubricant layer has an average thickness of 0.5 nm to 2.0 nm.
  • the fluorine-containing ether compound of the present invention is a compound represented by the above formula (1) and is suitable as a material for lubricants for magnetic recording media.
  • the lubricant for magnetic recording media of the present invention contains the fluorine-containing ether compound of the present invention. Therefore, pick-up and spin-off are less likely to occur, and a lubricating layer having good adhesion and smoothness to the protective layer can be formed.
  • the magnetic recording medium of the present invention is resistant to pick-up and spin-off, and has a lubricating layer with good adhesion to the protective layer and good smoothness, so that the flying stability of the magnetic head is excellent. Therefore, the magnetic recording medium of the present invention can reduce the magnetic spacing and increase the rotational speed, thereby contributing to the improvement of the recording density.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the magnetic recording medium of the present invention
  • the present inventors focused on the relationship between the molecular structure of the fluorine-containing ether compound contained in the lubricating layer and the protective layer, and conducted extensive research as described below.
  • a fluorine-containing ether compound having a hydroxyl group in the molecule has been used as a lubricant in order to obtain a lubricating layer with good adhesion to the protective layer.
  • a lubricating layer formed using a conventional lubricant may not have sufficient adhesion to a protective layer.
  • the lubricating layer becomes bulky, making it difficult to obtain a lubricating layer with a uniform thickness and good smoothness.
  • the fluorine-containing ether compounds contained in the lubricating layer agglomerate locally or part of the molecules of the fluorine-containing ether compound rise from the surface of the protective layer, forming irregularities on the surface of the lubricating layer. is presumed to be
  • local aggregation of fluorine-containing ether compounds and lifting of molecules of the fluorine-containing ether compound from the surface of the protective layer cause pick-up and spin-off.
  • the lubricating layer containing the fluorine-containing ether compound having a vicinal diol structure tends to have insufficient adhesion to the protective layer, and pick-up and spin-off tend to occur.
  • the hydroxyl groups contained in the fluorine-containing ether compound the hydroxyl groups that are raised from the surface of the protective layer tend to attract contamination of the lubricating layer.
  • a lubricating layer containing a fluorine-containing ether compound having a vicinal diol structure is not preferable from the viewpoint of the flying stability of the magnetic head and resistance to chemical substances.
  • the present inventors have made repeated studies on the molecular structure of the fluorine-containing ether compound used as the material of the lubricating layer in order to improve the adhesion of the lubricating layer to the protective layer.
  • a specific linking group having a secondary hydroxyl group is arranged via a methylene group (—CH 2 —), and at least one end of the PFPE chain has an amide bond carbonyl carbon atom or nitrogen atom and an aromatic
  • a fluorine-containing ether compound in which an organic group containing a group directly bonded to a hydrocarbon is arranged may be used, and arrived at the present invention.
  • R 1 is an organic group having 7 to 18 carbon atoms including a group in which a carbonyl carbon atom or nitrogen atom of an amide bond and an aromatic hydrocarbon are directly bonded
  • R 2 is a perfluoropolyether is a chain
  • R 3 is represented by the following formula (2); in formula (2), a represents an integer of 2 to 6, b represents 0 or 1;
  • X 1 represents a hydrogen atom, or an amide
  • [A] is the following formula (3-1) represented; c in formula (3-1) is an integer of 0
  • [D] is represented by the following formula (4-2); h is an integer of 2 to 5; provided that the sum of f in formula (4-1) and g in formula (4-2) is 1 to 3; D] may be interchanged; when [C] is directly bonded to R 3 , R 3 is not a hydrogen atom; the number of hydroxyl groups in formula (1) is 3 or more, and R 1 and R The number of hydroxyl groups in 3 is 0 or 1, respectively.)
  • R2 is a perfluoropolyether (PFPE) chain.
  • PFPE perfluoropolyether
  • the PFPE chain coats the surface of the protective layer and imparts lubricity to the lubricating layer so that the lubricating layer can be used as a magnetic head. Reduces the frictional force with the protective layer.
  • the PFPE chain represented by R2 is not particularly limited, and can be appropriately selected according to the performance required for the lubricant.
  • PFPE chains represented by R 2 include, for example, perfluoromethylene oxide polymer, perfluoroethylene oxide polymer, perfluoro-n-propylene oxide polymer, perfluoroisopropylene oxide polymer, perfluoro-n-butylene oxide Examples include polymers and copolymers thereof.
  • R 2 in formula (1) preferably has a structure represented by the following formula (8-1) derived from, for example, a perfluoroalkylene oxide polymer or copolymer. -(CF 2 ) w1 -O-(CF 2 O) w2 -(CF 2 CF 2 O) w3 -(CF 2 CF 2 CF 2 O) w4 -(CF 2 CF 2 CF 2 O) w5 -( CF 2 ) w6 ⁇ (8-1) (In formula (8-1), w2, w3, w4, and w5 represent an average degree of polymerization, each independently representing 0 to 30; however, w2, w3, w4, and w5 cannot all be 0 at the same time. no; w1 and w6 are average values representing the number of CF 2 , each independently representing 1 to 3; the arrangement order of the repeating units in formula (8-1) is not particularly limited.)
  • w2, w3, w4, and w5 each represent an average degree of polymerization, each independently representing 0 to 30, preferably 0 to 20, more preferably 0 to 15.
  • w2, w3, w4, and w5 may each independently be 1-28, 2-25, 3-17, 5-10, or the like.
  • w1 and w6 are average values indicating the number of CF 2 and each independently represents 1 to 3.
  • w1 and w6 are determined according to the structure of the repeating unit arranged at the ends of the chain structure in the PFPE chain represented by formula (8-1).
  • (CF 2 O), (CF 2 CF 2 O), (CF 2 CF 2 CF 2 O), and (CF 2 CF 2 CF 2 O) in formula (8-1) are repeating units. There are no particular restrictions on the arrangement order of the repeating units in formula (8-1). Also, the number of types of repeating units in formula (8-1) is not particularly limited.
  • R 2 in formula (1) is preferably any one of the following formulas (8-2) to (8-5).
  • u and v represent an average degree of polymerization, each representing 0 to 30; provided that u or v is 0.1 or more.
  • w8 and w9 represent an average degree of polymerization, each independently representing 0.1 to 30;
  • w7 and w10 are average values representing the number of CF 2 , each independently 1 represents ⁇ 2.
  • -CF 2 CF 2 O-(CF 2 CF 2 CF 2 O) x -CF 2 CF 2 - (8-4) In the formula (8-4),
  • the PFPE chain represented by formula (8-2) may be a polymer of (CF 2 CF 2 O) or a polymer of (CF 2 O).
  • the PFPE chain represented by formula (8-2) is either a random copolymer, a block copolymer, or an alternating copolymer consisting of (CF 2 CF 2 O) and (CF 2 O). may contain.
  • u which indicates the average degree of polymerization
  • v representing the average degree of polymerization is 0 to 30, preferably 0 to 20, more preferably 0 to 15.
  • v may be 1 to 10, 2 to 5, or the like.
  • u when v is 0, u is preferably 1-20.
  • the number w8 of (CF 2 CF 2 CF 2 O) and the number w9 of (CF 2 CF 2 O) indicating the average degree of polymerization may be the same or different.
  • the PFPE chain represented by the formula (8-3) is a random copolymer, a block copolymer, or an alternating copolymer consisting of (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O). or may be included.
  • w8 and w9 indicating the average degree of polymerization are each independently 0.1 to 30, preferably 0.1 to 20, more preferably 1 to 15.
  • w8 and w9 which indicate the average degree of polymerization, are within the above ranges, the fluorine-containing ether compound easily spreads on the protective layer and easily provides a lubricating layer having a uniform film thickness, which is preferable.
  • w7 and w10 in formula (8-3) are average values indicating the number of CF 2 , and each independently represents 1 to 2.
  • w7 and w10 are determined according to the structure of the repeating unit arranged at the ends of the chain structure in the PFPE chain represented by formula (8-3).
  • x representing the average degree of polymerization represents 0.1-30.
  • x is 0.1 to 30, the number average molecular weight of the fluorine-containing ether compound of the present embodiment tends to fall within the preferred range.
  • x is preferably 1-20, more preferably 2-15.
  • y which indicates the average degree of polymerization, represents 0.1-30.
  • y is 0.1 to 30, the number average molecular weight of the fluorine-containing ether compound of the present embodiment tends to fall within the preferred range.
  • y is preferably 1-20, more preferably 2-15.
  • R 2 in formula (1) When R 2 in formula (1) is one of formulas (8-2) to (8-5), the fluorine-containing ether compound provides a lubricating layer having good lubricity. Further, when R 2 in formula (1) is any one of formulas (8-2) to (8-5), the number of oxygen atoms (the number of ether bonds (-O-) relative to the number of carbon atoms in the PFPE chain ) and the arrangement of oxygen atoms in the PFPE chain are appropriate. Therefore, it becomes a fluorine-containing ether compound having moderate hardness. Therefore, the fluorine-containing ether compound applied on the protective layer is less likely to aggregate on the protective layer, and a thinner lubricating layer can be formed with sufficient coverage.
  • R 2 in formula (1) is any one of formulas (8-2) to (8-5), synthesis of the fluorine-containing ether compound is facilitated, which is preferable.
  • R 2 is formula (8-2) or formula (8-4), raw materials are readily available, which is more preferred.
  • linking group represented by -[B]-[A]- is a divalent linking group.
  • [A] and [B] may be interchanged.
  • [A] is represented by the above formula (3-1)
  • [B] is represented by the above formula (3-2).
  • c in formula (3-1) and d in formula (3-2) are integers of 0-3.
  • the linking group represented by -[B]-[A]- is, from the viewpoint of raw material availability and ease of synthesis, c in formula (3-1) is 1 and d in formula (3-2) is 0, or the combination wherein c is 0 and d is 1 is preferred.
  • the linking group represented by -[B]-[A]- is a combination in which the above c is 2 and the above d is 0, or the above c is 1, from the viewpoint of adhesion to the protective layer.
  • a combination in which the above d is 1 is preferred.
  • e in formula (3-2) is an integer of 2-5. Since e is 2 or more, when the bonding order of [A] and [B] is -[A]-[B]- from the R 1 side, the hydroxyl groups contained in [B] and between [B] Intramolecular hydrogen bonding between the hydroxyl group contained and the hydroxyl group contained in [A] adjacent to [B] can be reduced. Since e is 5 or less, it is possible to suppress an increase in the surface free energy of the entire molecule due to a decrease in the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
  • a fluorine-containing ether compound having a large surface free energy of the entire molecule tends to attract contamination of a lubricating layer containing the fluorine-containing ether compound. Therefore, from the viewpoint of chemical substance resistance of the lubricating layer, the fluorine-containing ether compound preferably has a low surface free energy of the entire molecule.
  • d is an integer from 1 to 3
  • e is preferably an integer from 2 to 4, most preferably 2.
  • the sum of c in formula (3-1) and d in formula (3-2) is 1-3. Since the sum of c and d is 1 or more, a lubricating layer with excellent adhesion to the protective layer is formed due to the adsorptive power of the hydroxyl group of the linking group represented by -[B]-[A]- to the protective layer. can. Since the sum of c and d is 3 or less, a sufficient proportion of fluorine atoms in the fluorine-containing ether compound molecule can be ensured.
  • the sum of c and d is preferably 1 or 2, and is appropriately determined according to the number of hydroxyl groups contained in -[C]-[D] -R3 .
  • terminal group represented by R 1 (terminal group represented by R 1 )
  • the number of hydroxyl groups contained in the terminal group represented by R1 is 0 or 1.
  • R 1 is an organic group having 7 to 18 carbon atoms including a group in which a carbonyl carbon atom or nitrogen atom of an amide bond and an aromatic hydrocarbon are directly bonded. In R 1 , either the carbonyl carbon atom or the nitrogen atom that constitutes the amide bond may be directly bonded to the aromatic hydrocarbon group.
  • R 1 in formula (1) has a rigid structure in which free rotation of the bond is suppressed by forming the same plane between the amide bond and the aromatic hydrocarbon group. Therefore, it is presumed that R1 in formula (1) is likely to be adsorbed to the protective layer. Therefore, in the lubricating layer containing the fluorine-containing ether compound of the present embodiment, part of the fluorine-containing ether compound molecules is less likely to rise from the surface of the protective layer, resulting in good adhesion to the protective layer.
  • a methylene group (- CH 2 —) has an organic group interposed between the carbonyl carbon atom or nitrogen atom of the amide bond and the aromatic hydrocarbon group, the lubricating layer containing the fluorine-containing ether compound is less likely to be adsorbed to the protective layer. . It is presumed that this is because the terminal group is bent at the bonding site composed of the methylene group, and the amide bond and the aromatic hydrocarbon group are not on the same plane. Also, when a chain organic group having an amide bond is used as a terminal group in place of R 1 in formula (1), the lubricating layer containing the fluorine-containing ether compound is less likely to be adsorbed to the protective layer. It is presumed that this is because the chain organic group of the terminal group has a high degree of freedom in bonding, and thus a planar structure such as R 1 in formula (1) cannot be formed.
  • the number of amide bonds contained in R 1 in formula (1) is not particularly limited, and may be one or two or more.
  • the number of amide bonds contained in R 1 is preferably one from the viewpoint of ease of synthesis of the fluorine-containing ether compound.
  • the number of amide bonds contained in R 1 is preferably two.
  • the aromatic hydrocarbon group contained in R 1 in formula (1) is preferably a benzene ring or a naphthalene ring, more preferably a benzene ring, from the viewpoint of the solubility of the fluorine-containing ether compound in a solvent. More preferred.
  • the aromatic hydrocarbon group is a benzene ring or a naphthalene ring, it has better solubility in a solvent than a fluorine-containing ether compound having a polycyclic aromatic hydrocarbon group in which three or more rings are condensed. Therefore, it becomes easy to apply a lubricant containing this.
  • the total number of carbon atoms contained in R 1 in formula (1) is 7 to 18, and the ratio of fluorine atoms in the fluorine-containing ether compound molecule can be suppressed from decreasing, so it is preferably 7 to 15. , 7-13.
  • R 1 may have any structure represented by the following formulas (5-1) to (5-5) from the viewpoint of the adhesion of the fluorine-containing ether compound to the protective layer. From the viewpoint of the solubility of the fluorine-containing ether compound in a solvent, any one of the structures represented by formulas (5-1), (5-4) and (5-5) is more preferred.
  • the structure represented by formula (5-1) is particularly preferred because the amide bond and the aromatic hydrocarbon group tend to form the same plane.
  • X 2 is one or more groups represented by formulas (6-1) or (6-2).
  • Y 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; L represents an integer of 1 to 6; Z is a hydrogen atom, a carbon number Any one or two or more selected from an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a group represented by formula (6-1) or (6-2).
  • Y 1 and Y 2 are each independently a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, or a cyclic structure in which Y 1 and Y 2 are bonded to each other; The total number of carbon atoms contained in (6-1) is 1 to 8.
  • Y 3 is an alkyl group having 1 to 7 carbon atoms
  • Y 4 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; may be a structure; the total number of carbon atoms contained in formula (6-2) is 2 to 8.
  • the position of the substituent bonded to the benzene ring is not particularly limited.
  • the positional relationship may be ortho, meta, or para.
  • the positional relationship may be ortho, meta, or para.
  • the positions of the substituents bonded to the naphthalene ring are not particularly limited, and all combinations can be selected.
  • Y 1 and Y 2 are each independently a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, or a cyclic structure in which Y 1 and Y 2 are bonded together.
  • the alkyl group having 1 to 7 carbon atoms may be linear or branched.
  • examples of alkyl groups having 1 to 7 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group and n-pentyl. groups and their structural isomers, n-hexyl groups and their structural isomers, and n-heptyl groups and their structural isomers.
  • Y 1 and/or Y 2 are preferably any one selected from a hydrogen atom, a methyl group, an ethyl group, and an n-propyl group from the viewpoint of steric hindrance when adsorbed on the protective layer, and Y 1 and Y More preferably, at least one of 2 is a hydrogen atom, and most preferably both Y 1 and Y 2 are hydrogen atoms.
  • the —NH— group contained in R 1 is adsorbed to the protective layer, thereby forming a lubricating layer having even better adhesion to the protective layer. become a compound.
  • both Y 1 and Y 2 are hydrogen atoms
  • the steric hindrance due to Y 1 and Y 2 when adsorbed on the protective layer is the smallest, and the —NH 2 group contained in R 1 is attached to the protective layer. Adsorb.
  • the fluorine-containing ether compound can form a lubricating layer having even better adhesion to the protective layer.
  • the total number of carbon atoms contained in formula (6-1) is 1 to 8, preferably 1 to 5, more preferably 1 to 3, from the viewpoint of steric hindrance during adsorption to the protective layer. more preferred.
  • Y 3 is an alkyl group having 1 to 7 carbon atoms.
  • the alkyl group having 1 to 7 carbon atoms may be linear or branched.
  • Y 3 is preferably any one selected from a methyl group, an ethyl group, an n-propyl group and an isopropyl group, more preferably a methyl group, from the viewpoint of steric hindrance when adsorbed on the protective layer.
  • Y 4 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • Y 4 is preferably any one selected from a hydrogen atom, a methyl group, and an ethyl group, more preferably a hydrogen atom or a methyl group, from the viewpoint of steric hindrance when adsorbed on the protective layer. is most preferred.
  • Y 4 is a hydrogen atom, the —NH— group contained in R 1 is adsorbed on the protective layer, resulting in a fluorine-containing ether compound capable of forming a lubricating layer with even better adhesion to the protective layer.
  • Y 3 and Y 4 in formula (6-2) may be cyclic structures bonded to each other.
  • the cyclic structure in which Y 3 and Y 4 are bonded to each other is preferably a five- or six-membered ring.
  • the total number of carbon atoms contained in formula (6-2) is 2 to 8, preferably 2 to 5, more preferably 2 to 3, from the viewpoint of steric hindrance during adsorption to the protective layer. more preferred.
  • Y 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group having 1 to 6 carbon atoms may be linear or branched.
  • Y 5 is preferably any one selected from a hydrogen atom, a methyl group, and an ethyl group, more preferably a hydrogen atom or a methyl group, from the viewpoint of steric hindrance when adsorbed on the protective layer, and a hydrogen atom is most preferred.
  • Y 5 is a hydrogen atom
  • the —NH— group contained in R 1 is adsorbed on the protective layer, resulting in a fluorine-containing ether compound capable of forming a lubricating layer with even better adhesion to the protective layer.
  • L represents an integer of 1-6.
  • L is an integer of 6 or less, the proportion of fluorine atoms in the fluorine-containing ether compound molecule is reduced, and it is possible to suppress an increase in the surface free energy of the entire molecule. More preferably, L is an integer of 3 or less because it can effectively suppress an increase in the surface free energy of the entire molecule.
  • L is preferably an integer of 2 or more. L is most preferably 2 or 3, since it is possible to suppress an increase in the surface free energy of the entire molecule and the fluorine-containing ether compound has good stability.
  • Z is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, formula (6-1) or (6-2) Any one or two or more selected from the groups represented by and preferably any one selected from the above.
  • the alkyl group having 1 to 6 carbon atoms and the alkoxy group having 1 to 6 carbon atoms may be linear or branched.
  • Z is preferably any one selected from a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, and an alkoxy group having 1 to 3 carbon atoms, and any one selected from a hydrogen atom, a methyl group, and a methoxy group. more preferably one.
  • Z is any one selected from a hydrogen atom, a methyl group, and a methoxy group, the proportion of fluorine atoms in the fluorine-containing ether compound molecule decreases, suppressing an increase in the surface free energy of the entire molecule. can.
  • the total number of carbon atoms contained in the formula (5-4) or (5-5) is 8 to 18, and the decrease in the proportion of fluorine atoms in the fluorine-containing ether compound molecule can be suppressed. is preferred, and 8 to 13 is more preferred.
  • the terminal group represented by R 1 is preferably any one of the following formulas (10-1) to (10-34), and the —NH— group or —NH 2 group contained in R 1 is By being adsorbed to the protective layer, it becomes a fluorine-containing ether compound capable of forming a lubricating layer with better adhesion to the protective layer, so the following formulas (10-1) to (10-4) and (10-10) ⁇ (10-14), (10-16) ⁇ (10-19), (10-21), (10-22), (10-25) ⁇ (10-27), (10-29), ( 10-31) to (10-34), more preferably any one of formula (10-1) or formula (10-1) or formula (10-12) is preferred.
  • the linking group represented by -[C]-[D]- is, from the viewpoint of raw material availability and ease of synthesis, f in formula (4-1) is 1 and g in formula (4-2) is 0, or the combination wherein f is 0 and g is 1 is preferred.
  • the linking group represented by -[C]-[D]- is a combination in which the above f is 2 and the above g is 0, or a combination in which the above f is 1, from the viewpoint of adhesion to the protective layer.
  • a combination in which the above g is 1 is preferred.
  • h in formula (4-2) is an integer of 2-5. Since h is 2 or more, when the bonding order of [C] and [D] is -[D]-[C]- from the R 2 side, the hydroxyl groups contained in [D] and between [D] Intramolecular hydrogen bonding between the hydroxyl group contained and the hydroxyl group contained in [C] adjacent to [D] can be reduced. Since h is 5 or less, it is possible to suppress an increase in the surface free energy of the entire molecule due to a decrease in the proportion of fluorine atoms in the fluorine-containing ether compound molecule. When g is an integer from 1 to 3, h is preferably an integer from 2 to 4, most preferably 2.
  • the sum of f in formula (4-1) and g in formula (4-2) is 1-3. Since the sum of f and g is 1 or more, a lubricating layer with excellent adhesion to the protective layer is formed by the adsorption power of the hydroxyl group of the linking group represented by -[C]-[D]- to the protective layer. can. Since the sum of f and g is 3 or less, a sufficient proportion of fluorine atoms in the fluorine-containing ether compound molecule can be ensured.
  • the sum of f and g is preferably 1 or 2, and is appropriately determined according to the number of hydroxyl groups contained in R 1 -[B]-[A]-.
  • R 3 (Terminal group represented by R3 )
  • the number of hydroxyl groups contained in the terminal group represented by R3 is 0 or 1.
  • R 3 is represented by the above formula (2).
  • a in formula (2) represents an integer of 2 to 6, and b represents 0 or 1;
  • b in the formula (2) is 0, it is possible to effectively suppress an increase in the surface free energy of the entire molecule due to a decrease in the proportion of fluorine atoms in the fluorine-containing ether compound molecule.
  • X 1 is an organic group having 7 to 18 carbon atoms including a group in which a carbonyl carbon atom or nitrogen atom of an amide bond and an aromatic hydrocarbon are directly bonded
  • the ether bond contained in formula (2) imparts flexibility to the fluorine-containing ether compound represented by formula (1), it becomes more easily adsorbable to the protective layer.
  • X 1 is a hydrogen atom
  • a primary hydroxyl group is arranged at the terminal end (-CH 2 OH) of the terminal group represented by R 3 .
  • a primary hydroxyl group has a stronger adsorptive power to a protective layer than a secondary hydroxyl group.
  • the lubricating layer containing a fluorine-containing ether compound having a primary hydroxyl group at the most terminal (--CH 2 OH) of the terminal group represented by R 3 is such that a part of the fluorine-containing ether compound molecule is separated from the surface of the protective layer.
  • the adhesion to the protective layer is further improved without floating.
  • a is an integer of 2 to 6, so the terminal group represented by R 3 is chemically stable and difficult to decompose.
  • a is an integer of 2-4, more preferably 2 or 3.
  • X 1 in formula (2) is a hydrogen atom or an organic group having 7 to 18 carbon atoms including a group in which a carbonyl carbon atom or nitrogen atom of an amide bond is directly bonded to an aromatic hydrocarbon.
  • X 1 is an organic group having 7 to 18 carbon atoms including a group in which an amide bond carbonyl carbon atom or nitrogen atom and an aromatic hydrocarbon are directly bonded
  • X 1 is the terminal represented by R 1 above Those exemplified as the group can be used.
  • X 1 may be the same as or different from R 1 .
  • X 1 in formula (2) is an organic group having 7 to 18 carbon atoms including a group in which a carbonyl carbon atom or a nitrogen atom of an amide bond and an aromatic hydrocarbon are directly bonded, represented by formula (1)
  • the fluorine-containing ether compound obtained has organic groups at both ends of the molecule, including groups in which a carbonyl carbon atom or a nitrogen atom of an amide bond and an aromatic hydrocarbon are directly bonded. Accordingly, the fluorine-containing ether compound represented by formula (1) can form a lubricating layer having even better adhesion to the protective layer.
  • X 1 in formula (2) is an organic group having 7 to 18 carbon atoms including a group in which an amide bond carbonyl carbon atom or nitrogen atom and an aromatic hydrocarbon are directly bonded
  • formula (1) It is preferable that R 1 -[B]-[A]- and -[C]-[D]-R 3 in have the same structure.
  • both sides of the PFPE chain represented by R 2 preferably have a symmetrical structure. This is because such a fluorine-containing ether compound can be easily produced at a low production cost.
  • b in formula (2) is 0 and X 1 is the same as R 1 .
  • X 1 in formula (2) is preferably a hydrogen atom.
  • a fluorine-containing ether compound in which X1 is a hydrogen atom has good solubility in a solvent. Therefore, a lubricant containing this is easy to apply to a magnetic recording medium, and is therefore preferable.
  • X 1 is a hydrogen atom
  • a primary hydroxyl group is arranged at the most terminal (-CH 2 OH) of the terminal group represented by R 3 regardless of whether b is 0 or 1. Therefore, some molecules of the fluorine-containing ether compound do not rise from the surface of the protective layer, and the adhesion of the lubricating layer to the protective layer is further improved.
  • -[C]-[D]-R 3 in formula (1) is preferably any one of the following formulas (7-1) to (7-3), and adhesion to the protective layer is even better.
  • Formula (7-1) is more preferable because it becomes a fluorine-containing ether compound capable of forming a lubricating layer.
  • i in formula (7-1) is 1 or 2
  • t in formula (7-2) is 0 or 1
  • formula (7 Since q in -3) is 0 or 1
  • the total number of hydroxyl groups possessed by -[C]-[D]- is 1 or 2
  • -[C]-[D]-R 3 possesses The number of hydroxyl groups is 2 or 3. Therefore, the fluorine-containing ether compound in which —[C]-[D]-R 3 is any one of formulas (7-1) to (7-3) does not allow the hydroxyl group of the fluorine-containing ether compound to affect the protective layer.
  • a lubricating layer having good adhesion to the protective layer can be formed by the adsorptive power.
  • j in the formula (7-1) is an integer of 1 to 5, and is preferably an integer of 1 to 3, such as 1 or 2, because it facilitates securing the proportion of fluorine atoms in the fluorine-containing ether compound molecule. is more preferable.
  • k in formula (7-2) is an integer of 2 to 5, and is preferably 2 or 3, more preferably 2, because it facilitates securing the proportion of fluorine atoms in the fluorine-containing ether compound molecule. more preferred.
  • p in the formula (7-2) is an integer of 1 to 5, and is preferably an integer of 1 to 3 because it facilitates securing the proportion of fluorine atoms in the fluorine-containing ether compound molecule. or 2 is more preferred.
  • r in the formula (7-3) is an integer of 1 to 5, and is preferably an integer of 1 to 3, because it facilitates securing the proportion of fluorine atoms in the fluorine-containing ether compound molecule, 1 or 2 is more preferable.
  • s in formula (7-3) is an integer of 1 to 4, and is preferably an integer of 1 to 3, since it facilitates securing the proportion of fluorine atoms in the fluorine-containing ether compound molecule, and 1 or 2 is more preferable.
  • the number of hydroxyl groups contained in the molecule is 3 or more. Therefore, the lubricating layer containing the fluorine-containing ether compound can sufficiently adhere to the protective layer due to the adsorptive power of the hydroxyl groups in the fluorine-containing ether compound to the protective layer. In addition, since the lubricating layer has good adhesion to the protective layer, the surface roughness is small, and pick-up and spin-off are less likely to occur.
  • the number of hydroxyl groups contained in the molecule of the fluorine-containing ether compound is preferably 3-5, more preferably 3-4, from the viewpoint of suppressing the surface free energy of the entire molecule.
  • the fluorine-containing ether compound represented by formula (1) is preferably a compound represented by the following formulas (AA) to (BB). Note that the number of repetitions shown in the formulas (AA) to (BB) is a value indicating the average degree of polymerization, so it is not necessarily an integer.
  • the compound represented by the formula (1) is any one of the compounds represented by the following formulas (AA) to (BB), the raw material is easily available, pick-up and spin-off are less likely to occur, and the protective layer It becomes a fluorine-containing ether compound capable of forming a lubricating layer with good adhesion and smoothness.
  • the compounds represented by the following formulas (AA) to (AD) are all represented by the above formula (10-1) in which R 1 has a structure represented by the formula (5-1), and are bonded to a benzene ring. The positional relationship of the substituents in the group is ortho position.
  • -[B]-[A]- is represented by the formula (3-1)
  • c is 1
  • -[C]-[ D]- is represented by formula (4-1) and f is 1.
  • R 3 is represented by the above formula (2), a is 2, b is 1, and X 1 is a hydrogen atom.
  • the compound represented by formula (AA) below is a PFPE chain in which R 2 is represented by formula (8-2) above and u and v are each 1 to 30.
  • the compound represented by the following formula (AB) is a PFPE chain in which R 2 is represented by the above formula (8-2), u is 1 to 30, and v is 0.
  • the compound represented by formula (AC) below is a PFPE chain in which R 2 is represented by formula (8-4) above.
  • a compound represented by the following formula (AD) is a PFPE chain in which R 2 is represented by the above formula (8-5).
  • the compounds represented by the following formulas (AE) and (AF) are represented by the above formula (10-1) in which R 1 has a structure represented by the formula (5-1).
  • formula (AE) the positional relationship of the substituents bonded to the benzene ring of R1 is meta, and in formula (AF), the positional relationship of the substituents bonded to the benzene ring of R1 is para. rank.
  • a compound represented by the following formula (AG) is represented by the above formula (10-11) in which R 1 has a structure represented by the formula (5-3).
  • R 3 is represented by the above formula (2), a is 2, b is 1, and X 1 is a hydrogen atom.
  • R 2 is a PFPE chain represented by the above formula (8-2) and u and v are each 1-30.
  • R 1 has a structure represented by formula (5-1), and the position of the substituent bonded to the benzene ring of R 1 The relationship is para.
  • the compound represented by the following formula (AH) has R 1 represented by the above formula (10-27), and the compound represented by the following formula (AI) has R 1 represented by the above formula (10-28).
  • R 1 is represented by the above formula (10-8), and in the compound represented by the following formula (AK), R 1 is represented by the above formula (10-12)
  • R 1 is represented by the above formula (10-29), and in the compound represented by the following formula (AM), R 1 is represented by the above formula (10- 30).
  • R 1 is represented by formula (5-4).
  • the compound represented by the following formula (AN) has R 1 represented by the above formula (10-18), and the compound represented by the following formula (AO) has R 1 represented by the above formula (10-31).
  • the compound represented by the following formula (AP) has R 1 represented by the above formula (10-32), and the compound represented by the following formula (AQ) has R 1 represented by the above formula (10-33)
  • R 1 is represented by the above formula (10-34).
  • the compounds represented by formulas (AS) and (AT) below have a structure in which R 1 is represented by formula (5-5).
  • the compound represented by the following formula (AS) has R 1 represented by the above formula (10-21), and the compound represented by the following formula (AT) has R 1 represented by the above formula (10-23). be done.
  • R 3 is represented by the above formula (2), a is 2, b is 1, and X 1 is a hydrogen atom.
  • R 2 is a PFPE chain represented by the above formula (8-2) and u and v are each 1-30.
  • the compounds represented by the following formulas (AU) to (AZ) are all represented by the above formula (10-1) in which R 1 has a structure represented by the formula (5-1), and are bonded to a benzene ring.
  • a PFPE chain in which the positional relationship of the substituents is ortho position, R 2 is represented by the above formula (8-2), and u and v are each 1 to 30.
  • -[B]-[A]- is represented by the formula (3-1) and c is 1.
  • -[C]-[D]- is represented by formulas (4-1) and (4-2), where f is 1, g is 1, and h is 5.
  • the bonding order of [C] and [D] is -[C]-[D]- from the R2 side.
  • R 3 is represented by the above formula (2), b is 0 and X 1 is a hydrogen atom.
  • -[B]-[A]- is represented by the formula (3-1) and c is 1.
  • -[C]-[D]- is represented by formulas (4-1) and (4-2), where f is 1, g is 1, and h is 2.
  • the bonding order of [C] and [D] is -[D]-[C]- from the R2 side.
  • R 3 is represented by the above formula (2), a is 2, b is 1, and X 1 is a hydrogen atom.
  • the compounds represented by the following formulas (BA) and (BB) are both represented by the above formula (10-12) having a structure in which R 1 is represented by the formula (5-1), and are bonded to the benzene ring The positional relationship of the substituents that are in the para position.
  • R 2 is a PFPE chain represented by formula (8-4) above.
  • -[C]-[D]- is represented by formula (4-1), and f is 2.
  • R 3 is represented by the above formula (2), b is 0 and X 1 is the same as R 1 .
  • -[B]-[A]- is represented by the formula (3-1) and c is 1.
  • -[B]-[A]- is represented by the formula (3-1) and c is 2.
  • am and nam in the formula (AM) indicate an average degree of polymerization, each representing 1 to 30.
  • man and nan in the formula (AN) indicate an average degree of polymerization, each representing 1 to 30.
  • Mo® and na® in the formula (AO) indicate an average degree of polymerization, each representing 1 to 30.
  • map and nap in the formula (AP) indicate an average degree of polymerization, each representing 1 to 30.
  • the fluorine-containing ether compound of the present embodiment preferably has a number average molecular weight (Mn) in the range of 500 to 10000, more preferably in the range of 700 to 7000, and in the range of 800 to 4000. is particularly preferred.
  • Mn number average molecular weight
  • the lubricant containing the fluorine-containing ether compound of the present embodiment is difficult to evaporate. Therefore, when the number average molecular weight is 500 or more, it becomes a fluorine-containing ether compound capable of forming a lubricating layer in which pick-up and spin-off are less likely to occur.
  • the viscosity of the fluorine-containing ether compound does not become too high, and the viscosity is suitable as a lubricant.
  • the number-average molecular weight of the fluorine-containing ether compound is more preferably 4000 or less because the viscosity becomes easy to handle when applied to lubricants.
  • the fluorine-containing ether compound of the present embodiment more preferably has a number average molecular weight within the range of 1,000 to 3,000, considering the availability of raw materials for PFPE chains.
  • the lubricating layer containing a fluorine-containing ether compound having a number average molecular weight within the range of 1000 to 3000 does not deteriorate the coverage even if the film thickness is thin, and has good chemical substance resistance and wear resistance.
  • a fluorine-containing ether compound having a number average molecular weight within the range of 1000 to 3000 has the best performance balance from the viewpoint of suppressing pick-up and spin-off in the lubricating layer containing it and thinning the lubricating layer.
  • the ratio of the number average molecular weight of the PFPE chain represented by R2 to the number average molecular weight of the entire molecule (PFPE chain/entire molecule) is 0.45 to 0.90. It is preferably between 0.55 and 0.85.
  • the ratio of the number average molecular weights is 0.45 or more, the ratio of fluorine atoms in the fluorine-containing ether compound molecule is decreased, and the increase in the surface free energy of the entire molecule can be suppressed.
  • the fluorine-containing ether compound is capable of forming a lubricating layer having better adhesion to the protective layer.
  • the method for producing the fluorine-containing ether compound of the present embodiment is not particularly limited, and it can be produced using a conventionally known production method.
  • the fluorine-containing ether compound of the present embodiment can be produced, for example, using the production method shown below.
  • a fluorine-based compound having a PFPE chain corresponding to R 2 in formula (1) and having hydroxymethyl groups (--CH 2 OH) at both ends of the molecule is prepared.
  • the hydroxyl group of the hydroxymethyl group arranged at one end of the fluorine-based compound is substituted with a group consisting of R 1 -[B]-[A]- in formula (1) (first reaction).
  • the hydroxyl group of the hydroxymethyl group located at the other terminal is substituted with a group consisting of -[C]-[D]-R 3 in formula (1) (second reaction).
  • the first reaction and the second reaction can be performed using a conventionally known method, and can be appropriately determined according to the type of terminal group in formula (1). Either of the first reaction and the second reaction may be performed first. By the above method, the fluorine-containing ether compound represented by formula (1) is obtained.
  • the lubricant for magnetic recording media of this embodiment contains a fluorine-containing ether compound represented by formula (1).
  • the lubricant of the present embodiment may optionally contain a known material used as a lubricant material within a range that does not impair the characteristics due to the inclusion of the fluorine-containing ether compound represented by formula (1). They can be mixed and used according to need.
  • the known material used by mixing with the lubricant of the present embodiment preferably has a number average molecular weight of 1,000 to 10,000.
  • the content of the fluorine-containing ether compound represented by formula (1) in the lubricant is 50 It is preferably at least 70% by mass, more preferably at least 70% by mass.
  • the content of the fluorine-containing ether compound represented by formula (1) in the lubricant may be 80% by mass or more, or may be 90% by mass or more. Since the lubricant of the present embodiment contains the fluorine-containing ether compound represented by formula (1), it has good adhesion and smoothness to the protective layer, and can form a lubricating layer capable of suppressing pick-up and spin-off.
  • the magnetic recording medium of this embodiment has at least a magnetic layer, a protective layer, and a lubricating layer sequentially provided on a substrate.
  • one or more underlayers can be provided between the substrate and the magnetic layer, if necessary.
  • An adhesion layer and/or a soft magnetic layer can also be provided between the underlayer and the substrate.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the magnetic recording medium of the present invention.
  • the magnetic recording medium 10 of the present embodiment includes an adhesive layer 12, a soft magnetic layer 13, a first underlayer 14, a second underlayer 15, a magnetic layer 16, a protective layer 17, and an adhesive layer 12 on a substrate 11.
  • a lubricating layer 18 is sequentially provided.
  • a non-magnetic substrate or the like can be used in which a film made of NiP or a NiP alloy is formed on a substrate made of a metal such as Al or an Al alloy or an alloy material.
  • a non-magnetic substrate made of non-metallic materials such as glass, ceramics, silicon, silicon carbide, carbon, and resin may be used.
  • a non-magnetic substrate having a film formed thereon may be used.
  • a glass substrate is rigid and excellent in smoothness, and is suitable for increasing the recording density.
  • the glass substrate include an aluminosilicate glass substrate.
  • a chemically strengthened aluminosilicate glass substrate is particularly suitable.
  • the roughness of the main surface of the substrate 11 is preferably ultra-smooth with Rmax of 6 nm or less and Ra of 0.6 nm or less.
  • the surface roughnesses Rmax and Ra referred to here are based on the regulations of JIS B0601.
  • the adhesion layer 12 prevents the progress of corrosion of the substrate 11 that occurs when the substrate 11 and the soft magnetic layer 13 provided on the adhesion layer 12 are arranged in contact with each other.
  • the material of the adhesion layer 12 can be appropriately selected from, for example, Cr, Cr alloy, Ti, Ti alloy, CrTi, NiAl, AlRu alloy, and the like.
  • the adhesion layer 12 can be formed by, for example, a sputtering method.
  • the soft magnetic layer 13 preferably has a structure in which a first soft magnetic film, an intermediate layer made of a Ru film, and a second soft magnetic film are laminated in this order. That is, the soft magnetic layer 13 has a structure in which the soft magnetic films above and below the intermediate layer are antiferro-coupling (AFC) coupled by sandwiching an intermediate layer made of Ru film between two layers of soft magnetic films. It is preferable to have
  • Materials for the first soft magnetic film and the second soft magnetic film include CoZrTa alloy and CoFe alloy. Any one of Zr, Ta, and Nb is preferably added to the CoFe alloy used for the first soft magnetic film and the second soft magnetic film. This promotes amorphization of the first soft magnetic film and the second soft magnetic film. As a result, it is possible to improve the orientation of the first underlayer (seed layer) and reduce the flying height of the magnetic head.
  • the soft magnetic layer 13 can be formed by sputtering, for example.
  • the first underlayer 14 is a layer for controlling the orientation and crystal size of the second underlayer 15 and the magnetic layer 16 provided thereon.
  • Examples of the first underlayer 14 include a Cr layer, a Ta layer, a Ru layer, a CrMo alloy layer, a CoW alloy layer, a CrW alloy layer, a CrV alloy layer, and a CrTi alloy layer.
  • the first underlayer 14 can be formed by, for example, a sputtering method.
  • the second underlayer 15 is a layer for controlling the orientation of the magnetic layer 16 to be good.
  • the second underlayer 15 is preferably a layer made of Ru or a Ru alloy.
  • the second underlayer 15 may be a single layer, or may be composed of a plurality of layers. When the second underlayer 15 is composed of multiple layers, all layers may be composed of the same material, or at least one layer may be composed of different materials.
  • the second underlayer 15 can be formed by, for example, a sputtering method.
  • the magnetic layer 16 is composed of a magnetic film having an axis of easy magnetization oriented perpendicularly or horizontally with respect to the substrate surface.
  • the magnetic layer 16 is a layer containing Co and Pt.
  • the magnetic layer 16 may be a layer containing oxide, Cr, B, Cu, Ta, Zr, etc. in order to improve SNR (Signal to Noise Ratio) characteristics.
  • oxides contained in the magnetic layer 16 include SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3 and TiO 2 .
  • the magnetic layer 16 may be composed of one layer, or may be composed of a plurality of magnetic layers made of materials with different compositions.
  • the first magnetic layer contains Co, Cr, and Pt, and is oxidized. It is preferably a granular structure made of a material containing matter.
  • the oxide contained in the first magnetic layer it is preferable to use, for example, oxides of Cr, Si, Ta, Al, Ti, Mg, Co, and the like. Among these, TiO 2 , Cr 2 O 3 , SiO 2 and the like can be particularly preferably used.
  • the first magnetic layer is preferably made of a composite oxide to which two or more kinds of oxides are added.
  • Cr 2 O 3 —SiO 2 , Cr 2 O 3 —TiO 2 , SiO 2 —TiO 2 and the like can be particularly preferably used.
  • the first magnetic layer contains Co, Cr, Pt, oxides, and at least one element selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re. can contain.
  • the same material as the first magnetic layer can be used for the second magnetic layer.
  • the second magnetic layer preferably has a granular structure.
  • the third magnetic layer preferably has a non-granular structure made of a material containing Co, Cr, Pt and no oxide.
  • the third magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn. be able to.
  • the magnetic layer 16 When the magnetic layer 16 is composed of a plurality of magnetic layers, it is preferable to provide a non-magnetic layer between adjacent magnetic layers. When the magnetic layer 16 is composed of three layers, the first magnetic layer, the second magnetic layer, and the third magnetic layer, the magnetic layer between the first magnetic layer and the second magnetic layer and between the second magnetic layer and the third magnetic layer It is preferable to provide a non-magnetic layer between them.
  • Non-magnetic layers provided between adjacent magnetic layers of the magnetic layer 16 are, for example, Ru, Ru alloy, CoCr alloy, CoCrX1 alloy (X1 is Pt, Ta, Zr, Re, Ru, Cu, Nb, Ni, Mn, represents one or more elements selected from Ge, Si, O, N, W, Mo, Ti, V, and B.), etc. can be preferably used.
  • Non-magnetic layers provided between adjacent magnetic layers of the magnetic layer 16 preferably use an alloy material containing oxides, metal nitrides, or metal carbides.
  • SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2 and the like can be used as oxides.
  • AlN, Si3N4 , TaN, CrN, etc. can be used as metal nitrides, for example.
  • TaC, BC, SiC, etc. can be used as the metal carbide.
  • the non-magnetic layer can be formed, for example, by sputtering.
  • the magnetic layer 16 is preferably a magnetic layer for perpendicular magnetic recording in which the axis of easy magnetization is oriented perpendicular to the substrate surface.
  • the magnetic layer 16 may be a magnetic layer for longitudinal magnetic recording.
  • the magnetic layer 16 may be formed by any conventionally known method such as a vapor deposition method, an ion beam sputtering method, a magnetron sputtering method, or the like.
  • the magnetic layer 16 is usually formed by a sputtering method.
  • the protective layer 17 protects the magnetic layer 16 .
  • the protective layer 17 may be composed of a single layer, or may be composed of a plurality of layers. Examples of materials for the protective layer 17 include carbon, nitrogen-containing carbon, and silicon carbide.
  • a carbon-based protective layer can be preferably used, and an amorphous carbon protective layer is particularly preferred. If the protective layer 17 is a carbon-based protective layer, interaction with the polar groups (especially hydroxyl groups) contained in the fluorine-containing ether compound in the lubricating layer 18 is further enhanced, which is preferable.
  • the adhesion between the carbon-based protective layer and the lubricating layer 18 can be adjusted by using hydrogenated carbon and/or nitrogenated carbon as the carbon-based protective layer and adjusting the hydrogen content and/or nitrogen content in the carbon-based protective layer.
  • the hydrogen content in the carbon-based protective layer is preferably 3 atomic % to 20 atomic % as measured by hydrogen forward scattering spectroscopy (HFS).
  • the nitrogen content in the carbon-based protective layer is preferably 4 atomic % to 15 atomic % when measured by X-ray photoelectron spectroscopy (XPS).
  • the hydrogen and/or nitrogen contained in the carbon-based protective layer need not be contained uniformly throughout the carbon-based protective layer.
  • the carbon-based protective layer is preferably a composition gradient layer in which, for example, the protective layer 17 on the lubricating layer 18 side contains nitrogen and the protective layer 17 on the magnetic layer 16 side contains hydrogen. In this case, the adhesion between the magnetic layer 16 and lubricating layer 18 and the carbon-based protective layer is further improved. This is because nitrogen in the protective layer 17 acts as an active site and promotes bonding with the lubricating layer 18 . Hydrogen or nitrogen in the carbon-based protective layer acts as an active site.
  • the film thickness of the protective layer 17 is preferably 1 nm to 7 nm. When the film thickness of the protective layer 17 is 1 nm or more, the performance as the protective layer 17 is sufficiently obtained. It is preferable from the viewpoint of thinning the protective layer 17 that the film thickness of the protective layer 17 is 7 nm or less.
  • a sputtering method using a target material containing carbon a sputtering method using a target material containing carbon, a CVD (chemical vapor deposition) method using a hydrocarbon raw material such as ethylene or toluene, an IBD (ion beam deposition) method, or the like may be used.
  • a carbon-based protective layer as the protective layer 17 it can be formed by, for example, a DC magnetron sputtering method.
  • a carbon-based protective layer as the protective layer 17 it is preferable to form an amorphous carbon protective layer by a plasma CVD method.
  • the amorphous carbon protective layer formed by the plasma CVD method has a uniform surface and a small roughness.
  • Lubricating layer 18 prevents contamination of magnetic recording medium 10 .
  • the lubricating layer 18 reduces the frictional force of the magnetic head of the magnetic recording/reproducing device that slides on the magnetic recording medium 10 , thereby improving the durability of the magnetic recording medium 10 .
  • the lubricating layer 18 is formed on and in contact with the protective layer 17 as shown in FIG.
  • Lubricating layer 18 contains the fluorine-containing ether compound described above.
  • the lubricating layer 18 is particularly bonded to the protective layer 17 with high bonding strength when the protective layer 17 arranged under the lubricating layer 18 is a carbon-based protective layer. As a result, even if the thickness of the lubricating layer 18 is small, it becomes easy to obtain the magnetic recording medium 10 in which the surface of the protective layer 17 is coated with a high coverage rate, and contamination of the surface of the magnetic recording medium 10 can be effectively prevented. .
  • the average film thickness of the lubricating layer 18 is preferably 0.5 nm (5 ⁇ ) to 2.0 nm (20 ⁇ ), more preferably 0.5 nm (5 ⁇ ) to 1.0 nm (10 ⁇ ).
  • the average thickness of the lubricating layer 18 is 0.5 nm or more, the lubricating layer 18 is formed with a uniform thickness without being island-like or network-like. Therefore, the surface of the protective layer 17 can be covered with the lubricating layer 18 at a high coverage rate. Further, by setting the average thickness of the lubricating layer 18 to 2.0 nm or less, the lubricating layer 18 can be made sufficiently thin, and the flying height of the magnetic head can be made sufficiently small.
  • the environmental substances adsorbed to the surface of the magnetic recording medium 10 pass through the gaps in the lubricating layer 18 and reach under the lubricating layer 18. invade.
  • Environmental substances that have entered the lower layer of the lubricating layer 18 are adsorbed and combined with the protective layer 17 to generate contaminants. Then, during magnetic recording and reproduction, this contaminant (cohesive component) adheres (transfers) to the magnetic head as smear, damaging the magnetic head or degrading the magnetic recording and reproduction characteristics of the magnetic recording and reproducing apparatus. .
  • Examples of environmental substances that generate contaminants include siloxane compounds (cyclic siloxane, linear siloxane), ionic impurities, hydrocarbons with relatively high molecular weights such as octacosane, and plasticizers such as dioctyl phthalate.
  • Examples of metal ions contained in ionic impurities include sodium ions and potassium ions.
  • Examples of inorganic ions contained in ionic impurities include chloride ions, bromide ions, nitrate ions, sulfate ions, and ammonium ions.
  • Examples of organic ions contained in ionic impurities include oxalate ions and formate ions.
  • Method for Forming a Lubricating Layer As a method for forming the lubricating layer 18, for example, a magnetic recording medium in the middle of production in which each layer up to the protective layer 17 is formed on the substrate 11 is prepared, a lubricating layer forming solution is applied onto the protective layer 17, A drying method may be mentioned.
  • the lubricating layer forming solution can be obtained, for example, by dispersing and dissolving the magnetic recording medium lubricant of the above-described embodiment in a solvent, and adjusting the viscosity and concentration suitable for the coating method.
  • the solvent used for the lubricating layer forming solution include fluorine-based solvents such as Vertrel (registered trademark) XF (trade name, manufactured by DuPont-Mitsui Fluorochemicals).
  • the method of applying the lubricating layer-forming solution is not particularly limited, and examples thereof include a spin coating method, a spray method, a paper coating method, a dipping method, and the like.
  • the dipping method for example, the following method can be used. First, the substrate 11 on which the layers up to the protective layer 17 are formed is immersed in a lubricating layer forming solution placed in an immersion tank of a dip coater. Next, the substrate 11 is pulled up from the immersion bath at a predetermined speed. As a result, the lubricating layer forming solution is applied to the surface of the protective layer 17 of the substrate 11 .
  • the lubricating layer forming solution can be uniformly applied to the surface of the protective layer 17 , and the lubricating layer 18 can be formed on the protective layer 17 with a uniform film thickness.
  • the heat treatment temperature is preferably 100.degree. C. to 180.degree.
  • the heat treatment time is preferably 10 minutes to 120 minutes.
  • the lubricating layer 18 of the substrate 11 before or after the heat treatment may be irradiated with ultraviolet (UV) rays. good.
  • UV ultraviolet
  • the magnetic recording medium 10 of the present embodiment has at least a magnetic layer 16, a protective layer 17, and a lubricating layer 18 successively provided on a substrate 11.
  • FIG. In the magnetic recording medium 10 of this embodiment, a lubricating layer 18 containing the fluorine-containing ether compound is formed on and in contact with the protective layer 17 .
  • This lubricating layer 18 has good adhesion and smoothness to the protective layer 17, and can suppress pick-up and spin-off. Therefore, the magnetic recording medium 10 of this embodiment is excellent in flying stability of the magnetic head.
  • the magnetic recording medium 10 of the present embodiment since the magnetic recording medium 10 of the present embodiment has the lubricating layer 18 in which pick-up hardly occurs, the magnetic spacing can be further reduced. Furthermore, since the magnetic recording medium 10 of the present embodiment has the lubricating layer 18 in which spin-off is less likely to occur, the rotational speed of the magnetic recording medium can be increased. For these reasons, the magnetic recording medium 10 of the present embodiment can contribute to improving the recording density and increasing the capacity of the magnetic recording medium. Therefore, the magnetic recording medium 10 of this embodiment is particularly suitable as a magnetic disk mounted in a magnetic disk device of the LUL system (Load Unload system).
  • LUL system Load Unload system
  • reaction product was cooled to 25°C, water was added, and ethyl acetate was added as a solvent to extract the organic layer, which was washed with water.
  • Anhydrous sodium sulfate was added to the organic layer for dehydration, the desiccant was filtered off, and the filtrate was concentrated.
  • the residue was purified by silica gel column chromatography to obtain a compound (18.4 g) represented by the following formula (13-1).
  • a compound (AC) represented by the above formula (AC) (in formula (AC), nac, which indicates an average degree of polymerization, is 6.2) was obtained by the method described below.
  • HOCH 2 CF 2 O(CF 2 CF 2 O) u (CF 2 O) v CF 2 CH 2 OH (in the formula, u indicating the average degree of polymerization is 6.2, and the average degree of polymerization is HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) x
  • a fluoropolyether (number average molecular weight: 1300, molecular weight distribution: 1.1) (40.0 g) represented by CF 2 CF 2 CH 2 OH (in the formula, x indicating the average degree of polymerization is 6.2) was 13.6 g of compound (AC) was obtained by performing the same operation as in Example 1 except that the compound (AC) was used.
  • a compound (AD) represented by the above formula (AD) (in formula (AD), nad indicating the average degree of polymerization is 4.3) was obtained by the method shown below.
  • HOCH 2 CF 2 O(CF 2 CF 2 O) u (CF 2 O) v CF 2 CH 2 OH (in the formula, u indicating the average degree of polymerization is 6.2, and the average degree of polymerization is HOCH 2 CF 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 CF 2 O)
  • Fluoropolyether represented by y CF 2 CF 2 CF 2 CH 2 OH (in the formula, y indicating the average degree of polymerization is 4.3) (number average molecular weight: 1300, molecular weight distribution: 1.1) 14.2 g of compound (AD) was obtained by the same operation as in Example 1 except that (40.0 g) was used.
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-3) (3.57 g) represented by the formula (11-3) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.5 g of compound (AF).
  • Example 7 Compound (AG) represented by the above formula (AG) (in formula (AG), mag indicating the average degree of polymerization is 6.2, and nag indicating the average degree of polymerization is 6.2. There is.) First, 6-hydroxy-2-naphthalenecarboxamide and epibromohydrin were reacted to synthesize a compound represented by the following formula (11-4).
  • Example 8 Compound (AH) represented by the above formula (AH) (in formula (AH), mah indicating the average degree of polymerization is 6.2, nah indicating the average degree of polymerization is 6.2, and There is.) First, a compound obtained by reacting methyl 4-hydroxybenzoate and heptylamine was reacted with epibromohydrin to synthesize a compound represented by the following formula (11-5).
  • Example 9 Compound (AI) represented by the above formula (AI) (in formula (AI), mai indicating the average degree of polymerization is 6.2, and nai indicating the average degree of polymerization is 6.2). There is.) First, a compound obtained by reacting methyl 4-hydroxybenzoate and dipropylamine was reacted with epibromohydrin to synthesize a compound represented by the following formula (11-6).
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-6) (5.12 g) represented by the formula (11-6) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.6 g of compound (AI).
  • Example 11 By the method shown below, the compound (AK) represented by the above formula (AK) (in formula (AK), mak indicating the average degree of polymerization is 6.2, nak indicating the average degree of polymerization is 6.2 There is.) First, 4'-hydroxyacetanilide and epibromohydrin were reacted to synthesize a compound represented by the following formula (11-8).
  • Example 12 Compound (AL) represented by the above formula (AL) (in formula (AL), mal representing the average degree of polymerization is 6.2, and nal representing the average degree of polymerization is 6.2. There is.) First, a compound obtained by reacting 4-aminophenol and n-octanoic acid was reacted with epibromohydrin to synthesize a compound represented by the following formula (11-9).
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-9) (5.38 g) represented by the formula (11-9) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.7 g of compound (AL).
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-10) (5.38 g) represented by the formula (11-10) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.8 g of compound (AM).
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-11) (4.08 g) represented by the formula (11-11) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.1 g of compound (AN).
  • Example 15 Compound (AO) represented by the above formula (AO) (in formula (AO), mao indicating the average degree of polymerization is 6.2, and nao indicating the average degree of polymerization is 6.2. There is.) First, a compound obtained by reacting benzoic acid and 6-amino-1-hexanol was reacted with epibromohydrin to synthesize a compound represented by the following formula (11-12).
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-12) (5.12 g) represented by the formula (11-12) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.6 g of compound (AO).
  • Example 16 Compound (AP) represented by the above formula (AP) (in formula (AP), map indicating the average degree of polymerization is 6.2, and nap indicating the average degree of polymerization is 6.2) by the method shown below. There is.) First, a compound obtained by reacting 4-hexylbenzoic acid and 2-aminoethanol was reacted with epibromohydrin to synthesize a compound represented by the following formula (11-13).
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-13) (5.64 g) represented by the formula (11-13) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.9 g of compound (AP).
  • Example 17 Compound (AQ) represented by the above formula (AQ) (in formula (AQ), maq indicating the average degree of polymerization is 6.2, and naq indicating the average degree of polymerization is 6.2. There is.) First, a compound obtained by reacting 4-hexyloxybenzoic acid and 2-aminoethanol was reacted with epibromohydrin to synthesize a compound represented by the following formula (11-14).
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-14) (5.93 g) represented by the formula (11-14) was used. Except for this, the same operation as in Example 1 was performed to obtain 15.0 g of compound (AQ).
  • Example 18 Compound (AR) represented by the above formula (AR) (in formula (AR), mar indicating the average degree of polymerization is 6.2, and nar indicating the average degree of polymerization is 6.2. There is.) First, a compound obtained by reacting terephthalamic acid and 2-aminoethanol was reacted with epibromohydrin to synthesize a compound represented by the following formula (11-15).
  • Example 19 Compound (AS) represented by the above formula (AS) (in formula (AS), mas indicating the average degree of polymerization is 6.2, and nas indicating the average degree of polymerization is 6.2. There is.) First, a compound obtained by reacting 3-hydroxypropionic acid and aniline was reacted with epibromohydrin to synthesize a compound represented by the following formula (11-16).
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-16) (4.08 g) represented by the formula (11-16) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.1 g of compound (AS).
  • Example 20 Compound (AT) represented by the above formula (AT) (in formula (AT), mat indicating the average degree of polymerization is 6.2, and nat indicating the average degree of polymerization is 6.2) by the method shown below. There is.) First, 3-(benzyloxy)propanoic acid was reacted with aniline, and then reacted with methyl iodide in the presence of sodium hydride. The obtained compound was catalytically hydrogenated in the presence of palladium carbon and then reacted with epibromohydrin to synthesize a compound represented by the following formula (11-17).
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-17) (4.34 g) represented by the formula (11-17) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.2 g of compound (AT).
  • Example 21 Compound (AU) represented by the above formula (AU) (in formula (AU), mau indicating the average degree of polymerization is 6.2, nau indicating the average degree of polymerization is 6.2, and There is.) First, 1 equivalent of 3,4-dihydro-2H-pyran was reacted with 1,6-hexanediol. The obtained compound was reacted with epibromohydrin to synthesize a compound represented by the following formula (12-2).
  • Example 2 Instead of the compound (12-1) represented by the formula (12-1) used in Example 1, the compound (12-2) (3.50 g) represented by the formula (12-2) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.4 g of compound (AU).
  • Example 2 Instead of the compound (12-1) represented by the formula (12-1) used in Example 1, the compound (12-4) (4.34 g) represented by the formula (12-4) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.5 g of compound (AV).
  • Example 23 Compound (AW) represented by the above formula (AW) (in formula (AW), maw indicating the average degree of polymerization is 6.2, naw indicating the average degree of polymerization is 6.2, and There is.) First, 2-hydroxybenzamide and allyl glycidyl ether were reacted, and then the double bond was oxidized using meta-chloroperbenzoic acid to synthesize a compound represented by the following formula (11-18).
  • Example 2 Instead of the compound (11-1) represented by the formula (11-1) used in Example 1, the compound (11-18) (4.93 g) represented by the formula (11-18) was used. Except for this, the same operation as in Example 1 was performed to obtain 14.5 g of compound (AW).
  • Example 24 Compound (AX) represented by the above formula (AX) (in formula (AX), max indicating the average degree of polymerization is 6.2, and nax indicating the average degree of polymerization is 6.2. There is.) First, 3-buten-1-ol and 3,4-dihydro-2H-pyran are reacted to protect the hydroxyl group of 3-buten-1-ol with a tetrahydropyranyl group, and then meta-chloroperbenzoic acid is used. A compound represented by the following formula (12-5) was synthesized by oxidizing the double bond.
  • Example 23 Instead of the compound (12-1) represented by the formula (12-1) used in Example 23, the compound (12-5) (2.33 g) represented by the formula (12-5) was used. Except for this, the same operation as in Example 23 was performed to obtain 14.3 g of compound (AX).
  • a compound represented by the following formula (12-7) was synthesized by the method shown below. 6-hepten-1-ol and 3,4-dihydro-2H-pyran are reacted to protect the hydroxyl group of 6-hepten-1-ol with a tetrahydropyranyl group, and then meta-chloroperbenzoic acid is used to A compound represented by the following formula (12-6) was synthesized by oxidizing the double bond. After reacting the obtained compound (12-6) with allyl alcohol, it was reacted with 3,4-dihydro-2H-pyran to protect the secondary hydroxyl group with a tetrahydropyranyl group. Finally, the compound (12-7) represented by the following formula (12-7) was synthesized by oxidizing the double bond using meta-chloroperbenzoic acid.
  • Example 27 A compound (BA) represented by the above formula (BA) (nba, which indicates an average degree of polymerization in formula (BA), is 6.2) was obtained by the method described below. First, 4'-hydroxyacetanilide was reacted with allyl glycidyl ether, and then the double bond was oxidized using meta-chloroperbenzoic acid to synthesize a compound represented by the following formula (11-19).
  • reaction product was cooled to 25°C, water was added, and ethyl acetate was added as a solvent to extract the organic layer, which was washed with water.
  • Anhydrous sodium sulfate was added to the organic layer for dehydration, the desiccant was filtered off, and the filtrate was concentrated. The residue was purified by silica gel column chromatography to obtain 34.4 g of compound (BB).
  • lubricating layer forming solutions were prepared by the method shown below. Using the lubricating layer forming solution thus obtained, lubricating layers of magnetic recording media were formed by the method described below, and magnetic recording media of Examples 1 to 28 and Comparative Examples 1 to 8 were obtained.
  • Magnetic recording medium An adhesive layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer were sequentially formed on a substrate having a diameter of 65 mm.
  • the protective layer was made of carbon nitride.
  • the lubricating layer-forming solutions of Examples 1 to 28 and Comparative Examples 1 to 8 were applied by dipping onto the protective layer of the substrate on which each layer up to the protective layer was formed. After that, the magnetic recording medium coated with the lubricating layer forming solution was placed in a constant temperature bath at 120° C. and heat-treated for 10 minutes. As a result, a lubricating layer was formed on the protective layer, and magnetic recording media of Examples 1-28 and Comparative Examples 1-8 were obtained.
  • the film thickness of the lubricating layer was measured, the adhesion between the lubricating layer and the protective layer ( Bond rate) measurement, pick-up property test, spin-off property test, and smoothness (touchdown power) test were conducted and evaluated. Table 3 shows the results.
  • a disk was prepared in which an adhesion layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer were sequentially formed on a substrate having a diameter of 65 mm.
  • a lubricating layer was formed on the protective layer of the disc with a film thickness of 6 to 20 ⁇ (in increments of 2 ⁇ ). After that, for each disk with the lubricating layer formed thereon, an ellipsometer was used to measure the increase in film thickness from the surface of the disk without the lubricating layer, and this was taken as the film thickness of the lubricating layer.
  • the peak height in CF vibration expansion and contraction was measured using FT-IR for each disk on which a lubricating layer was formed. Then, a correlation equation between the peak height obtained by FT-IR and the film thickness of the lubricating layer obtained by using an ellipsometer was obtained.
  • the film thickness of the lubricating layer before washing is ⁇
  • the film thickness of the lubricating layer after washing is ⁇
  • the ratio of ⁇ and ⁇ (( ⁇ / ⁇ ) ⁇ 100 (%)) is the lubrication
  • the binding rate (bond rate) of the agent was calculated. Using the calculated bond rate, the adhesion between the lubricating layer and the protective layer was evaluated according to the criteria shown below.
  • the bond rate can be used as an index representing the bonding strength between the lubricating layer and the protective layer. If the adhesion between the lubricating layer and the protective layer is poor, part of the fluorine-containing ether compound contained in the lubricating layer dissolves into Bertrel XF and is washed away. As a result, the film thickness of the lubricating layer after cleaning is reduced, and the bond rate is lowered.
  • TDp Touchdown power
  • the magnetic recording medium to be evaluated was rotated at 5400 rpm, and the magnetic heads were placed facing each other at a position with a radius of 18 mm from the center.
  • the heater power of the write element (DFH element) of the magnetic head was gradually increased, and the heat generated by the heater caused the DFH element to thermally expand.
  • the heater power was measured as TDp (unit: mW) when the tip of the DFH element protruding due to thermal expansion of the DFH element came into contact with the lubricating layer of the magnetic recording medium.
  • TDp unit: mW
  • Contact between the tip of the DFH element and the lubricant layer of the magnetic recording medium was detected by an acoustic emission (AE) sensor.
  • AE acoustic emission
  • the thinner the lubricating layer the larger the TDp required for the DFH element to contact the surface of the lubricating layer.
  • the larger the surface unevenness of the lubricating layer the larger the maximum height of the lubricating layer, resulting in a smaller value of TDp. ing.
  • ⁇ (excellent) Evaluations of bond ratio, pick-up property, spin-off property, and smoothness are all ⁇ (excellent).
  • ⁇ (good) Evaluation of bond ratio, pickup characteristics, spin-off characteristics, and smoothness is ⁇ (excellent) or ⁇ (good), and one or more of them is ⁇ (good).
  • ⁇ (acceptable) At least one of bond ratio, pick-up property, spin-off property, and smoothness evaluation is ⁇ (acceptable), and there is no x (improper).
  • x (improper) one or more of the bond ratio, pick-up characteristics, spin-off characteristics, and smoothness evaluation is x (improper).
  • the magnetic recording media of Comparative Examples 1-8 were inferior to the magnetic recording media of Examples 1-28 in terms of bond rate, pickup characteristics, spin-off characteristics, and smoothness.
  • both Comparative Example 3 and Example 11 use a compound having a terminal group containing a group in which the carbonyl carbon atom or nitrogen atom of the amide bond and the aromatic hydrocarbon are directly bonded.
  • Table 3 between Comparative Example 3 and Example 11, there was a large difference in the evaluation results of bond rate, pick-up characteristics, spin-off characteristics, and smoothness. This is because the magnetic recording medium of Comparative Example 3 uses a compound having a vicinal diol structure, and therefore hydroxyl groups that are not involved in adsorption with the protective layer are present in the lubricating layer. It is speculated that
  • the magnetic recording media of Comparative Examples 4 and 6 to 8 do not use a compound having a terminal group containing a group in which a carbonyl carbon atom or a nitrogen atom of an amide bond and an aromatic hydrocarbon are directly bonded. Therefore, as shown in Table 3, it is presumed that the bond rate, pick-up characteristics, spin-off characteristics, and smoothness evaluations were inferior to those of the magnetic recording media of Examples 1-28.
  • the magnetic recording medium of Comparative Example 5 uses a compound having less than 3 hydroxyl groups in its molecule.
  • the hydroxyl groups in the fluorine-containing ether compound have insufficient adsorptive power to the protective layer, and the bond rate, pick-up characteristics, spin-off characteristics, and smoothness evaluations are inferior to those of the magnetic recording media of Examples 1 to 28. , is presumed to have resulted in inferior results.
  • the lubricant for a magnetic recording medium containing the fluorine-containing ether compound of the present invention it is possible to form a lubricating layer that is resistant to pick-up and spin-off and that has good adhesion and smoothness to the protective layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)

Abstract

下記式で表される含フッ素エーテル化合物。R1-[B]-[A]-O-CH2-R2-CH2-O-[C]-[D]-R3(R1はアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基;R2はパーフルオロポリエーテル鎖;R3は式(2);X1は、水素原子、またはアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基;[A]は式(3-1);[B]は式(3-2);[C]は式(4-1);[D]は式(4-2);式(1)中の水酸基の数は3以上。)

Description

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
 本発明は、含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体に関する。
 本願は、2021年9月2日に、日本に出願された特願2021-143420号に基づき優先権を主張し、その内容をここに援用する。
 近年、インターネットを介した情報処理量が、飛躍的に増大している。このことから、記録媒体の開発に注目が集まっている。とりわけ、記録媒体の一種である磁気記録媒体は、低コストで大容量のデータを保存できるため、増大するデータの受け皿として期待されている。
 磁気記録媒体として、基板上に磁性層(磁気記録層)を形成し、磁性層上にカーボン等の保護層を形成したものがある。保護層は、磁性層に記録された情報を保護するとともに、磁気ヘッドの摺動性を高める。しかし、磁性層上に保護層を設けただけでは、磁気記録媒体の耐久性は十分には得られない。このため、一般に、保護層の表面に潤滑剤を塗布して潤滑層を形成している。
 磁気記録媒体の最表面に配置される潤滑層には、化学物質耐性(シロキサンなどのコンタミネーションを防ぐ)、耐摩耗性、耐腐食性、磁気ヘッドの浮上安定性、耐熱・耐分解性、膜厚の長期安定性等の様々な特性が要求されている。
 潤滑層に用いられる磁気記録媒体用潤滑剤(以下「潤滑剤」と略記する場合がある。)としては、パーフルオロポリエーテル(以下「PFPE」と略記する場合がある。)鎖を有する含フッ素エーテル化合物が提案されている(例えば、特許文献1~5参照)。
 特許文献1および特許文献2には、厚みが薄くても優れた化学物質耐性および耐摩耗性が得られる潤滑層を形成できる含フッ素エーテル化合物が開示されている。特許文献1には、PFPE鎖の一端に、アリール基と水酸基とを配置し、他端に2つまたは3つの水酸基を配置した含フッ素エーテル化合物が開示されている。特許文献2には、PFPE鎖の片末端もしくは両末端に、アミド結合を有する鎖状有機基を配置した含フッ素エーテル化合物が開示されている。
 特許文献3には、フルオロポリエーテル化合物を含有し、優れた耐分解性を維持しつつ、一分子あたりの膜厚を低減した潤滑剤が開示されている。特許文献3には、PFPE鎖の一端に、アルコキシ基、アミノ基、又はアミド基で置換されたフェニル基が配置され、他端に水酸基を含む特定の末端基が配置されたフルオロポリエーテル化合物が開示されている。
 特許文献4には、潤滑層が設けられ、LUL(Load Unload)耐久性及びアルミナ耐性(アルミナによる潤滑剤の分解の抑制)に優れる磁気ディスクが開示されている。特許文献4には、潤滑層に含有される化合物として、PFPE主鎖を有し、分子の末端に芳香族基と水酸基を有し、芳香族基と水酸基はそれぞれ異なる炭素原子と結合している化合物が開示されている。
 特許文献5には、フルオロポリエーテル化合物を含有し、高熱下においても熱分解を起こさず、磁気ヘッドへ移着(ピックアップ)することのない、耐熱性の高い潤滑剤が開示されている。特許文献5には、PFPE鎖の両末端に、水酸基を一つ含む特定の連結基と、アルコキシ基、アミノ基、又はアミド基で置換されたフェニル基とが配置されたフルオロポリエーテル化合物が開示されている。
国際公開第2017/154403号 国際公開第2019/039265号 特許第5909837号公報 特許第5465454号公報 特許第6040455号公報
 磁気記録再生装置の大容量化に向けて、高記録密度に適した磁気記録媒体の開発が進められている。近年、磁気記録媒体の記録密度向上に向けて、磁気スペーシング(磁気ヘッドと磁気記録媒体の磁性層との距離(浮上高さ))の低減と、磁気記録媒体の回転速度の高速化が求められている。
 しかし、磁気ヘッドの浮上高さを低くすると、潤滑剤が異物(スメア)として磁気ヘッドに付着する現象であるピックアップが発生しやすくなる。ピックアップが発生すると、磁気ヘッドの浮上が不安定となって、磁気ヘッドが磁気記録媒体表面に接触する恐れがある。
 また、磁気記録媒体の回転速度を速くすると、スピンオフが発生して、潤滑層の膜厚が減少しやすくなる。スピンオフとは、磁気記録媒体の回転に伴う遠心力および/または発熱によって、潤滑剤が飛散したり蒸発したりする現象のことである。スピンオフによって潤滑層の膜厚が減少すると、潤滑層に求められる化学物質耐性、耐摩耗性、耐腐食性、磁気ヘッドの浮上安定性等の特性が維持できなくなる。
 また、磁気ヘッドの浮上安定性を向上するには、ピックアップおよびスピンオフの発生を抑制することに加えて、潤滑層の保護層に対する密着性が良好であるとともに、磁気記録媒体の最表面に配置される潤滑層の平滑性が良好であることが重要である。
 本発明は、上記事情を鑑みてなされたものであり、ピックアップおよびスピンオフが発生しにくく、保護層に対する密着性および平滑性の良好な潤滑層を形成でき、磁気記録媒体用潤滑剤の材料として好適に用いることが出来る含フッ素エーテル化合物を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含み、ピックアップおよびスピンオフが発生しにくく、保護層に対する密着性および平滑性の良好な潤滑層を形成できる磁気記録媒体用潤滑剤を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含む潤滑層を有し、磁気ヘッドの浮上安定性に優れた磁気記録媒体を提供することを目的とする。
 本発明者らは、上記課題を解決するために、鋭意研究を重ねた。
 その結果、パーフルオロポリエーテル鎖の一方または両方の末端に、アミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む末端基を有し、水酸基を3以上有する特定の含フッ素エーテル化合物を用いればよいことが分かった。そして、このような含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を用いることで、ピックアップおよびスピンオフが発生しにくく、保護層に対する密着性および平滑性の良好な潤滑層を形成できることを確認し、本発明を想到した。
 本発明は以下の態様を含む。
 本発明の第一の態様は、以下の含フッ素エーテル化合物を提供する。
[1] 下記式(1)で表されることを特徴とする、含フッ素エーテル化合物。
-[B]-[A]-O-CH-R-CH-O-[C]-[D]-R (1)
(式(1)中、Rはアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である;Rはパーフルオロポリエーテル鎖である;Rは下記式(2)で表される;式(2)中、aは2~6の整数を表し、bは0または1を表す;Xは、水素原子、またはアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である;式(1)中、[A]は下記式(3-1)で表される;式(3-1)中のcは0~3の整数である;式(1)中、[B]は下記式(3-2)で表される;式(3-2)中のdは0~3の整数であり、eは2~5の整数である;ただし、式(3-1)中のcと式(3-2)中のdの合計は1~3である;式(1)において[A]と[B]は入れ替えてもよい;式(1)中、[C]は下記式(4-1)で表される;式(4-1)中のfは0~3の整数である;式(1)中、[D]は下記式(4-2)で表される;式(4-2)中のgは0~3の整数であり、hは2~5の整数である;ただし、式(4-1)中のfと式(4-2)中のgの合計は1~3である;式(1)において[C]と[D]は入れ替えてもよい;[C]がRに直接結合する場合、Rが水素原子となることはない;式(1)中の水酸基の数は3以上であり、RおよびR中の水酸基の数は、それぞれ0または1である。)
Figure JPOXMLDOC01-appb-C000005
 本発明の第一の態様の前記含フッ素エーテル化合物は、以下の[2]~[8]に記載される特徴を有することが好ましい。以下の[2]~[8]に記載される特徴は、2つ以上を任意に組み合わせることも好ましい。
[2] 前記式(1)におけるRが、下記式(5-1)~(5-5)で表されるいずれかの構造である[1]に記載の含フッ素エーテル化合物。
Figure JPOXMLDOC01-appb-C000006

(式(5-1)~(5-3)中、Xは1つまたは2つ以上の式(6-1)または(6-2)で表される基である。)
(式(5-4)および(5-5)中、Yは水素原子または炭素数1~6のアルキル基である;Lは1~6の整数を表す;Zは、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、式(6-1)または(6-2)で表される基から選ばれるいずれか1つまたは2つ以上である。)
Figure JPOXMLDOC01-appb-C000007

(式(6-1)中、YおよびYは、それぞれ独立して水素原子、炭素数1~7のアルキル基、YとYが互いに結合した環状構造のいずれかである;式(6-1)中に含まれる炭素数の合計は1~8である。)
(式(6-2)中、Yは炭素数1~7のアルキル基であり、Yは水素原子または炭素数1~6のアルキル基である;YとYが互いに結合した環状構造であってもよい;式(6-2)中に含まれる炭素数の合計は2~8である。)
[3] 前記式(1)におけるR-[B]-[A]-と、-[C]-[D]-Rとが同じである[1]または[2]に記載の含フッ素エーテル化合物。
[4] 前記式(2)におけるXが、水素原子である[1]または[2]に記載の含フッ素エーテル化合物。
[5] 前記式(1)における-[C]-[D]-Rが下記式(7-1)~(7-3)のいずれかである[1]または[2]に記載の含フッ素エーテル化合物。
Figure JPOXMLDOC01-appb-C000008

(式(7-1)中、iは1または2を表し、jは1~5の整数を表す。)
(式(7-2)中、kは2~5の整数を表し、tは0または1を表し、pは1~5の整数を表す。)
(式(7-3)中、qは0または1を表し、rは1~5の整数を表し、sは1~4の整数を表す。)
[6] 前記式(1)におけるRが、下記式(8-1)で表される[1]~[5]のいずれかに記載の含フッ素エーテル化合物。
-(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (8-1)
(式(8-1)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~30を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(8-1)における繰り返し単位の配列順序には、特に制限はない。)
[7] 前記式(1)におけるRが、下記式(8-2)~(8-5)のいずれかである[1]~[6]のいずれかに記載の含フッ素エーテル化合物。
-CFO-(CFCFO)-(CFO)-CF-    (8-2)
(式(8-2)中、u、vは平均重合度を示し、それぞれ0~30を表す;ただし、uまたはvが0.1以上である。)
-(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-       (8-3)
(式(8-3)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~30を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
-CFCFO-(CFCFCFO)-CFCF-    (8-4)
(式(8-4)中、xは平均重合度を示し、0.1~30を表す。)
-CFCFCFO-(CFCFCFCFO)-CFCFCF- (8-5)
(式(8-5)中、yは平均重合度を示し、0.1~30を表す。)
[8] 数平均分子量が500~10000の範囲内である[1]~[7]のいずれかに記載の含フッ素エーテル化合物。
 本発明の第二の態様は、以下の磁気記録媒体用潤滑剤を提供する。
[9] [1]~[8]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
 本発明の第三の態様は、以下の磁気記録媒体を提供する。
[10] 基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、前記潤滑層が、[1]~[8]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
 本発明の第三の態様の磁気記録媒体は、以下の[11]に記載される特徴を有することが好ましい。
[11] 前記潤滑層の平均膜厚が0.5nm~2.0nmである[10]に記載の磁気記録媒体。
 本発明の含フッ素エーテル化合物は、上記式(1)で表される化合物であり、磁気記録媒体用潤滑剤の材料として好適である。
 本発明の磁気記録媒体用潤滑剤は、本発明の含フッ素エーテル化合物を含む。このため、ピックアップおよびスピンオフが発生しにくく、保護層に対する密着性および平滑性の良好な潤滑層を形成できる。
 本発明の磁気記録媒体は、ピックアップおよびスピンオフが発生しにくく、保護層に対する密着性および平滑性の良好な潤滑層を有しているため、磁気ヘッドの浮上安定性に優れる。したがって、本発明の磁気記録媒体は、磁気スペーシングの低減と、回転速度の高速化が可能であり、記録密度向上に寄与できる。
本発明の磁気記録媒体の好ましい一実施形態を示した概略断面図である。
 本発明者らは、上記課題を解決するために、潤滑層に含まれる含フッ素エーテル化合物の分子構造と、保護層との関係に着目し、以下に示すように、鋭意研究を重ねた。
 従来、保護層に対する密着性の良好な潤滑層を得るために、潤滑剤として、分子中に水酸基を有する含フッ素エーテル化合物が用いられている。しかしながら、分子中に複数の水酸基を有する含フッ素エーテル化合物であっても、従来の潤滑剤を用いて形成した潤滑層は、保護層に対する密着性が十分に得られない場合があった。
 潤滑層と保護層との密着性が不十分であると、潤滑層が嵩高いものとなり、膜厚が均一で平滑性の良好な潤滑層が得られにくくなる。それは、潤滑層に含まれる含フッ素エーテル化合物同士が局所的に凝集したり、含フッ素エーテル化合物の分子の一部が保護層表面から浮き上がったりして、潤滑層の表面に凹凸が形成されるためであると推測される。また、含フッ素エーテル化合物同士の局所的な凝集および含フッ素エーテル化合物の分子の保護層表面からの浮き上がりは、ピックアップおよびスピンオフの原因となる。
 また、本発明者らが、鋭意検討した結果、潤滑層に含まれる含フッ素エーテル化合物に、保護層との吸着に関与していない水酸基が存在すると、潤滑層と保護層との密着性が十分に得られず、潤滑層表面の凹凸が大きくなり、ピックアップおよびスピンオフが生じやすくなることが分かった。
 例えば、水酸基の結合している炭素原子同士が結合しているビシナルジオール構造(-CH(OH)-CH(OH)-)を有する含フッ素エーテル化合物では、ビシナルジオール構造の有する隣接した二つの水酸基は、立体的な要因から同時に保護層に吸着できない。このため、二つの水酸基のうち一方の水酸基が保護層に吸着すると、もう一方の水酸基は保護層との吸着に関与できず、保護層表面から浮き上がってしまう。その結果、ビシナルジオール構造を有する含フッ素エーテル化合物を含む潤滑層は、保護層との密着性が不十分になりやすく、ピックアップおよびスピンオフが生じやすくなる。しかも、含フッ素エーテル化合物に含まれる水酸基のうち、保護層表面から浮き上がった水酸基は、潤滑層のコンタミネーションを誘引しやすい。これらのことから、ビシナルジオール構造を有する含フッ素エーテル化合物を含む潤滑層は、磁気ヘッドの浮上安定性および化学物質耐性の観点から好ましくない。
 そこで、本発明者らは、潤滑層の保護層に対する密着性を高めるべく、潤滑層の材料として使用する含フッ素エーテル化合物の分子構造について検討を重ねた。その結果、PFPE鎖の両端に、メチレン基(-CH-)を介して2級水酸基を有する特定の連結基をそれぞれ配置し、少なくとも片末端にアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む有機基を配置した含フッ素エーテル化合物とすればよいことを見出し、本発明を想到した。
 以下、本発明の含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体の例について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、本発明の趣旨を逸脱しない範囲で、数、量、比率、材料、構成等について、付加、省略、置換、変更が可能である。
[含フッ素エーテル化合物]
 本実施形態の含フッ素エーテル化合物は、下記式(1)で表される。
-[B]-[A]-O-CH-R-CH-O-[C]-[D]-R (1)
(式(1)中、Rはアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である;Rはパーフルオロポリエーテル鎖である;Rは下記式(2)で表される;式(2)中、aは2~6の整数を表し、bは0または1を表す;Xは、水素原子、またはアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である;式(1)中、[A]は下記式(3-1)で表される;式(3-1)中のcは0~3の整数である;式(1)中、[B]は下記式(3-2)で表される;式(3-2)中のdは0~3の整数であり、eは2~5の整数である;ただし、式(3-1)中のcと式(3-2)中のdの合計は1~3である;式(1)において[A]と[B]は入れ替えてもよい;式(1)中、[C]は下記式(4-1)で表される;式(4-1)中のfは0~3の整数である。式(1)中、[D]は下記式(4-2)で表される;式(4-2)中のgは0~3の整数であり、hは2~5の整数である;ただし、式(4-1)中のfと式(4-2)中のgの合計は1~3である;式(1)において[C]と[D]は入れ替えてもよい;[C]がRに直接結合する場合、Rが水素原子となることはない;式(1)中の水酸基の数は3以上であり、RおよびR中の水酸基の数は、それぞれ0または1である。)
Figure JPOXMLDOC01-appb-C000009
(Rで示されるPFPE鎖)
 式(1)で表される本実施形態の含フッ素エーテル化合物において、Rはパーフルオロポリエーテル(PFPE)鎖である。PFPE鎖は、含フッ素エーテル化合物を含む潤滑剤を、保護層上に塗布して潤滑層を形成した場合に、保護層の表面を被覆するとともに、潤滑層に潤滑性を付与して磁気ヘッドと保護層との摩擦力を低減させる。Rで示されるPFPE鎖は、特に限定されるものではなく、潤滑剤に求められる性能などに応じて適宜選択できる。
 Rで示されるPFPE鎖としては、例えば、パーフルオロメチレンオキシド重合体、パーフルオロエチレンオキシド重合体、パーフルオロ-n-プロピレンオキシド重合体、パーフルオロイソプロピレンオキシド重合体、パーフルオロ-n-ブチレンオキシド重合体、これらの共重合体からなるものなどが挙げられる。
 式(1)におけるRは、例えば、パーフルオロアルキレンオキシドの重合体または共重合体に由来する下記式(8-1)で表される構造であることが好ましい。
-(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (8-1)
(式(8-1)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~30を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(8-1)における繰り返し単位の配列順序には、特に制限はない。)
 式(8-1)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~30を表し、0~20であることが好ましく、0~15であることがより好ましい。例えば、w2、w3、w4、w5は、それぞれ独立に1~28や、2~25や、3~17や、5~10などであってもよい。
 式(8-1)中、w1、w6はCFの数を示す平均値であり、それぞれ独立に1~3を表す。w1、w6は、式(8-1)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
 式(8-1)における(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)は、繰り返し単位である。式(8-1)における繰り返し単位の配列順序には、特に制限はない。また、式(8-1)における繰り返し単位の種類の数にも、特に制限はない。
 具体的には、式(1)におけるRは、下記式(8-2)~(8-5)のいずれかであることが好ましい。
 -CFO-(CFCFO)-(CFO)-CF-    (8-2)
(式(8-2)中、u、vは平均重合度を示し、それぞれ0~30を表す;ただし、uまたはvが0.1以上である。)
 -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-       (8-3)
(式(8-3)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~30を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
 -CFCFO-(CFCFCFO)-CFCF-    (8-4)
(式(8-4)中、xは平均重合度を示し、0.1~30を表す。)
 -CFCFCFO-(CFCFCFCFO)-CFCFCF-  (8-5)
(式(8-5)中、yは平均重合度を示し、0.1~30を表す。)
 式(8-2)において、繰り返し単位である(CFCFO)と(CFO)との配列順序には、特に制限はない。式(8-2)において、(CFCFO)の数uと(CFO)の数vは同じであってもよいし、異なっていてもよい。式(8-2)で表されるPFPE鎖は、(CFCFO)の重合体であってもよいし、(CFO)の重合体であってもよい。また、式(8-2)で表されるPFPE鎖は、(CFCFO)と(CFO)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれかを含むものであってもよい。
 式(8-2)において、平均重合度を示すuは0~30であり、1~20であることが好ましく、さらに2~15であることが好ましい。式(8-2)において、平均重合度を示すvは0~30であり、0~20であることが好ましく、さらに0~15であることが好ましい。vは、1~10や、2~5などであってもよい。式(8-2)において、vが0である場合、uは1~20であることが好ましい。平均重合度を示すu、vが上記範囲内であると、保護層上に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすい含フッ素エーテル化合物となるため、好ましい。
 式(8-3)において、繰り返し単位である(CFCFCFO)と(CFCFO)との配列順序には、特に制限はない。式(8-3)において、平均重合度を示す(CFCFCFO)の数w8と(CFCFO)の数w9は同じであってもよいし、異なっていてもよい。式(8-3)で表されるPFPE鎖は、(CFCFCFO)と(CFCFO)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれかを含むものであってもよい。
 式(8-3)において、平均重合度を示すw8およびw9は、それぞれ独立に0.1~30であり、0.1~20であることが好ましく、さらに1~15であることが好ましい。平均重合度を示すw8、w9が上記範囲内であると、保護層上に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすい含フッ素エーテル化合物となるため、好ましい。式(8-3)におけるw7およびw10は、CFの数を示す平均値であり、それぞれ独立に1~2を表す。w7およびw10は、式(8-3)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
 式(8-4)において、平均重合度を示すxは、0.1~30を表す。xが0.1~30である場合、本実施形態の含フッ素エーテル化合物の数平均分子量が好ましい範囲になりやすい。xは1~20であることが好ましく、2~15であることがより好ましい。
 式(8-5)において、平均重合度を示すyは、0.1~30を表す。yが0.1~30である場合、本実施形態の含フッ素エーテル化合物の数平均分子量が好ましい範囲になりやすい。yは1~20であることが好ましく、2~15であることがより好ましい。
 式(1)におけるRが式(8-2)~(8-5)のいずれかであると、良好な潤滑性を有する潤滑層が得られる含フッ素エーテル化合物となる。また、式(1)におけるRが、式(8-2)~(8-5)のいずれかである場合、PFPE鎖中の炭素原子数に対する酸素原子数(エーテル結合(-O-)数)の割合と、PFPE鎖中の酸素原子の配置とが適正となる。このため、適度な硬さを有する含フッ素エーテル化合物となる。よって、保護層上に塗布された含フッ素エーテル化合物が、保護層上で凝集しにくく、より一層厚みの薄い潤滑層を十分な被覆率で形成できる。また、式(1)におけるRが、式(8-2)~(8-5)のいずれかであると、含フッ素エーテル化合物の合成が容易であり好ましい。特に、Rが式(8-2)または式(8-4)である場合、原料入手が容易であるため、より好ましい。
(-[B]-[A]-で示される連結基)
 式(1)で表される本実施形態の含フッ素エーテル化合物において、-[B]-[A]-は、二価の連結基である。式(1)において[A]と[B]は入れ替えてもよい。[A]は前記式(3-1)で表され、[B]は前記式(3-2)で表される。式(3-1)中のcおよび式(3-2)中のdは0~3の整数である。
 -[B]-[A]-で示される連結基は、原料入手および合成の容易さの観点から、式(3-1)中のcが1であって式(3-2)中のdが0である組み合わせ、または上記cが0であって上記dが1である組み合わせが好ましい。
 また、-[B]-[A]-で示される連結基は、保護層との密着性の観点から、上記cが2であって上記dが0である組み合わせ、または上記cが1であって上記dが1である組み合わせが好ましい。上記cが2であって上記dが0である場合、含フッ素エーテル化合物において、式(3-1)の有する2つの水酸基の配置される方向が、PFPE鎖の延在方向に対して立体的に同じ方向となり、式(3-1)の有する2つの水酸基が保護層に吸着しやすいものとなる傾向がみられる。また、上記cおよび上記dが1であって[A]と[B]の結合順がR側から-[A]-[B]-である場合、-[A]-[B]-で示される連結基中に含まれる水酸基同士間の距離がより遠くなる。このため、式(1)で示される含フッ素エーテル化合物の分子内水素結合を小さくし、保護層との密着性を高くすることが出来る。
 式(3-2)中のeは2~5の整数である。eが2以上であるので、[A]と[B]の結合順がR側から-[A]-[B]-である場合、[B]に含まれる水酸基同士、および[B]に含まれる水酸基と[B]に隣接する[A]に含まれる水酸基との分子内水素結合を小さくできる。eが5以下であるので、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを抑制できる。一般的に、分子全体の表面自由エネルギーが大きい含フッ素エーテル化合物は、これを含む潤滑層のコンタミネーションを誘引しやすい。したがって、潤滑層の化学物質耐性の観点から、含フッ素エーテル化合物は、分子全体の表面自由エネルギーが小さいものであることが好ましい。dが1~3の整数である場合、eは2~4の整数であることが好ましく、2であることが最も好ましい。
 -[B]-[A]-で示される連結基において、式(3-1)中のcと式(3-2)中のdの合計は1~3である。cとdの合計が1以上であるので、-[B]-[A]-で示される連結基の有する水酸基による保護層への吸着力によって、保護層との密着性に優れる潤滑層を形成できる。cとdの合計が3以下であるので、含フッ素エーテル化合物分子中におけるフッ素原子の割合を十分に確保できる。cとdの合計は、1または2であることが好ましく、-[C]-[D]-Rに含まれる水酸基の数などに応じて適宜決定される。
(Rで示される末端基)
 式(1)中、Rで示される末端基に含まれる水酸基の数は、0または1である。Rは、アミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である。Rでは、アミド結合を構成するカルボニル炭素原子と窒素原子のどちらが、芳香族炭化水素基に直接結合していてもよい。
 一般的に、芳香族炭化水素基に直接結合したアミド結合は、芳香族炭化水素基と同一平面を形成して安定化することが知られている。したがって、式(1)中のRは、アミド結合と芳香族炭化水素基とが同一平面を形成することによって、結合の自由回転が抑制された剛直な構造を有している。このため、式(1)中のRは、保護層に吸着しやすいものと推測される。このことから、本実施形態の含フッ素エーテル化合物を含む潤滑層は、含フッ素エーテル化合物分子の一部が保護層表面から浮き上がりにくく、保護層との密着性が良好なものとなる。
 これに対し、式(1)中のRに代えて、末端基として、アミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素基が直接結合せずに、連結基としてのメチレン基(-CH-)がアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素基の間に介在している有機基を有する場合、含フッ素エーテル化合物を含む潤滑層は、保護層に吸着しにくくなる。これは、末端基が、メチレン基からなる結合部位で屈曲し、アミド結合と芳香族炭化水素基とが同一平面とならないためであると推測される。
 また、式(1)中のRに代えて、末端基として、アミド結合を有する鎖状有機基を有する場合も、含フッ素エーテル化合物を含む潤滑層が、保護層に吸着しにくくなる。これは、末端基の有する鎖状有機基の結合の自由度が高いため、式(1)中のRのような平面構造を形成できないためであると推測される。
 式(1)中のRに含まれるアミド結合の数は、特に限定されるものではなく、1つであってもよいし、2つ以上であってもよい。Rに含まれるアミド結合の数は、含フッ素エーテル化合物の合成の容易さの観点から、好ましくは1つである。Rの有する芳香族炭化水素基に複数のアミド結合のカルボニル炭素原子または窒素原子が直接結合している場合、Rに含まれる好ましいアミド結合の数は2つである。
 式(1)中のRに含まれる芳香族炭化水素基は、含フッ素エーテル化合物の溶媒への溶解性の観点から、ベンゼン環、またはナフタレン環であることが好ましく、ベンゼン環であることがより好ましい。芳香族炭化水素基がベンゼン環またはナフタレン環である場合、3つ以上の環が縮合した多環芳香族炭化水素基を有する含フッ素エーテル化合物と比較して、溶媒への溶解性が良好であるため、これを含む潤滑剤の塗布が容易なものとなる。
 式(1)中のRに含まれる炭素数の合計は7~18であり、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下することを抑制できるため、7~15であることが好ましく、7~13であることがより好ましい。
 式(1)中、Rは、含フッ素エーテル化合物の保護層への密着性の観点から、下記式(5-1)~(5-5)で表されるいずれかの構造であることが好ましく、含フッ素エーテル化合物の溶媒への溶解性の観点から、式(5-1)、式(5-4)および式(5-5)で表されるいずれかの構造であることがより好ましく、アミド結合と芳香族炭化水素基とが同一平面を形成しやすいことから、式(5-1)で表される構造であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000010

(式(5-1)~(5-3)中、Xは1つまたは2つ以上の式(6-1)または(6-2)で表される基である。)
(式(5-4)および(5-5)中、Yは水素原子または炭素数1~6のアルキル基である;Lは1~6の整数を表す;Zは、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、式(6-1)または(6-2)で表される基から選ばれるいずれか1つまたは2つ以上である。)
Figure JPOXMLDOC01-appb-C000011

(式(6-1)中、YおよびYは、それぞれ独立して水素原子、炭素数1~7のアルキル基、YとYが互いに結合した環状構造のいずれかである;式(6-1)中に含まれる炭素数の合計は1~8である。)
(式(6-2)中、Yは炭素数1~7のアルキル基であり、Yは水素原子または炭素数1~6のアルキル基である;YとYが互いに結合した環状構造であってもよい;式(6-2)中に含まれる炭素数の合計は2~8である。)
 式(5-1)、(5-4)および(5-5)中、ベンゼン環に結合している置換基の位置は、特に限定されることはない。例えば、式(5-1)中のXが1つである場合、その位置関係は、オルト、メタ、パラのいずれであっても良い。また、式(5-4)および(5-5)中のZが1つである場合、その位置関係は、オルト、メタ、パラのいずれであっても良い。
 式(5-2)および(5-3)中、ナフタレン環に結合している置換基の位置は、特に限定されることはなく、すべての組み合わせが選択できる。
 式(6-1)中、YおよびYは、それぞれ独立して水素原子、炭素数1~7のアルキル基、YとYが互いに結合した環状構造のいずれかである。
 炭素数1~7のアルキル基は、直鎖であってもよいし、分岐を有していてもよい。具体的には、炭素数1~7のアルキル基として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基とその構造異性体、n-ヘキシル基とその構造異性体、n-ヘプチル基とその構造異性体が挙げられる。
 Yおよび/またはYは、保護層に吸着する際の立体障害の観点から、水素原子、メチル基、エチル基、n-プロピル基から選ばれるいずれかであることが好ましく、YおよびYの少なくとも一方が水素原子であることがより好ましく、YおよびYの両方ともが水素原子であることが最も好ましい。YおよびYの一方が水素原子であると、Rに含まれる-NH-基が保護層に吸着することにより、保護層に対する密着性がより一層良好な潤滑層を形成できる含フッ素エーテル化合物となる。また、YおよびYが両方とも水素原子である場合、保護層に吸着する際のYおよびYによる立体障害が最も小さいものとなり、Rに含まれる-NH基が保護層に吸着する。このことにより、保護層に対する密着性がより一層良好な潤滑層を形成できる含フッ素エーテル化合物となる。
 式(6-1)中のYとYが互いに結合して環状構造を形成する場合、アミド結合を構成する窒素原子と、メチレン基(-CH-)のみ、あるいは、アミド結合を構成する窒素原子と、メチレン基(-CH-)とエーテル結合(-O-)との組み合わせから構成される環状構造であることが好ましい。式(6-1)に含まれるアミド結合(-C(=O)-N-)の化学的な安定性の観点から、YとYが互いに結合してなる環状構造は、五員環または六員環であることが好ましい。
 式(6-1)中に含まれる炭素数の合計は1~8であり、保護層に吸着する際の立体障害の観点から、1~5であることが好ましく、1~3であることがより好ましい。
 式(6-2)中、Yは炭素数1~7のアルキル基である。炭素数1~7のアルキル基は、直鎖であってもよいし、分岐を有していてもよい。Yは、保護層に吸着する際の立体障害の観点から、メチル基、エチル基、n-プロピル基、イソプロピル基から選ばれるいずれかであることが好ましく、メチル基であることがより好ましい。
 式(6-2)中、Yは水素原子または炭素数1~6のアルキル基である。炭素数1~6のアルキル基は、直鎖であってもよいし、分岐を有していてもよい。Yは、保護層に吸着する際の立体障害の観点から、水素原子、メチル基、エチル基から選ばれるいずれかであることが好ましく、水素原子またはメチル基であることがより好ましく、水素原子であることが最も好ましい。Yが水素原子であると、Rに含まれる-NH-基が保護層に吸着することにより、保護層に対する密着性がより一層良好な潤滑層を形成できる含フッ素エーテル化合物となる。
 式(6-2)中のYとYは、互いに結合した環状構造であってもよい。YとYが互いに結合してなる環状構造は、アミド結合(-C(=O)-N-)とメチレン基(-CH-)のみで構成される環状構造であることが好ましい。式(6-2)に含まれるアミド結合の化学的な安定性の観点から、YとYが互いに結合してなる環状構造は、五員環または六員環であることが好ましい。
 式(6-2)中に含まれる炭素数の合計は2~8であり、保護層に吸着する際の立体障害の観点から、2~5であることが好ましく、2~3であることがより好ましい。
 式(5-4)および(5-5)中、Yは水素原子または炭素数1~6のアルキル基である。炭素数1~6のアルキル基は、直鎖であってもよいし、分岐を有していてもよい。Yは、保護層に吸着する際の立体障害の観点から、水素原子、メチル基、エチル基から選ばれるいずれかであることが好ましく、水素原子またはメチル基であることがより好ましく、水素原子であることが最も好ましい。Yが水素原子であると、Rに含まれる-NH-基が保護層に吸着することにより、保護層に対する密着性がより一層良好な潤滑層を形成できる含フッ素エーテル化合物となる。
 式(5-4)および(5-5)中、Lは1~6の整数を表す。Lが6以下の整数であると、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを抑制できる。分子全体の表面自由エネルギーが大きくなることを効果的に抑制できることから、Lは3以下の整数であることがより好ましい。また、Lは、含フッ素エーテル化合物の安定性の観点から、2以上の整数であることが好ましい。Lは、分子全体の表面自由エネルギーが大きくなることを抑制でき、かつ安定性の良好な含フッ素エーテル化合物となるため、2または3であることが最も好ましい。
 式(5-4)および(5-5)中、Zは、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、式(6-1)または(6-2)で表される基から選ばれるいずれか1つまたは2つ以上であり、上記から選ばれるいずれか1つであることが好ましい。 炭素数1~6のアルキル基および炭素数1~6のアルコキシ基は、直鎖であってもよいし、分岐を有していてもよい。
 Zは、水素原子、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基から選ばれるいずれか1つであることが好ましく、水素原子、メチル基、メトキシ基から選ばれるいずれか1つであることがより好ましい。Zが、水素原子、メチル基、メトキシ基から選ばれるいずれか1つであると、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを抑制できる。
 式(5-4)または(5-5)中に含まれる炭素数の合計は8~18であり、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下することを抑制できるため、8~15であることが好ましく、8~13であることがより好ましい。
 Rで示される末端基は、具体的には下記式(10-1)~(10-34)のいずれかであることが好ましく、Rに含まれる-NH-基または-NH基が保護層に吸着することにより、保護層に対する密着性がより一層良好な潤滑層を形成できる含フッ素エーテル化合物となるため、下記式(10-1)~(10-4)、(10-10)~(10-14)、(10-16)~(10-19)、(10-21)、(10-22)、(10-25)~(10-27)、(10-29)、(10-31)~(10-34)のいずれかであることがより好ましく、特に、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下することを抑制できるため、式(10-1)または式(10-12)であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(-[C]-[D]-で示される連結基)
 式(1)で表される本実施形態の含フッ素エーテル化合物において、-[C]-[D]-は、二価の連結基である。式(1)において[C]と[D]は入れ替えてもよい。[C]は前記式(4-1)で表され、[D]は前記式(4-2)で表される。式(4-1)中のfおよび式(4-2)中のgは0~3の整数である。
 -[C]-[D]-で示される連結基は、原料入手および合成の容易さの観点から、式(4-1)中のfが1であって式(4-2)中のgが0である組み合わせ、または上記fが0であって上記gが1である組み合わせが好ましい。
 また、-[C]-[D]-で示される連結基は、保護層との密着性の観点から、上記fが2であって上記gが0である組み合わせ、または上記fが1であって上記gが1である組み合わせが好ましい。上記fが2であって上記gが0である場合、含フッ素エーテル化合物において、式(4-1)の有する2つの水酸基の配置される方向が、PFPE鎖の延在方向に対して立体的に同じ方向となり、式(4-1)の有する2つの水酸基が保護層に吸着しやすいものとなる傾向がみられる。また、上記fおよび上記gが1であって[C]と[D]の結合順がR側から-[D]-[C]-である場合、-[D]-[C]-で示される連結基中に含まれる水酸基同士間の距離がより遠くなる。このため、式(1)で示される含フッ素エーテル化合物の分子内水素結合を小さくし、保護層との密着性を高くすることが出来る。
 式(4-2)中のhは2~5の整数である。hが2以上であるので、[C]と[D]の結合順がR側から-[D]-[C]-である場合、[D]に含まれる水酸基同士、および[D]に含まれる水酸基と[D]に隣接する[C]に含まれる水酸基との分子内水素結合を小さくできる。hが5以下であるので、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを抑制できる。gが1~3の整数である場合、hは2~4の整数であることが好ましく、2であることが最も好ましい。
 -[C]-[D]-で示される連結基において、式(4-1)中のfと式(4-2)中のgの合計は1~3である。fとgの合計が1以上であるので、-[C]-[D]-で示される連結基の有する水酸基による保護層への吸着力によって、保護層との密着性に優れる潤滑層を形成できる。fとgの合計が3以下であるので、含フッ素エーテル化合物分子中におけるフッ素原子の割合を十分に確保できる。fとgの合計は、1または2であることが好ましく、R-[B]-[A]-に含まれる水酸基の数などに応じて適宜決定される。
(Rで示される末端基)
 式(1)中、Rで示される末端基に含まれる水酸基の数は、0または1である。Rは、前記式(2)で表される。式(2)中のaは2~6の整数を表し、bは0または1を表す。
 式(2)中のbが0である場合、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを、効果的に抑制できる。
 式(2)中のbが1であって、Xがアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である場合、式(2)に含まれるエーテル結合が、式(1)で示される含フッ素エーテル化合物に柔軟性を付与するため、より一層保護層に吸着しやすいものとなる。
 式(2)中のbが1であって、Xが水素原子である場合、Rで示される末端基の最末端(-CHOH)に1級水酸基が配置される。1級水酸基は、2級水酸基と比較して、保護層への吸着力が強い。このため、Rで示される末端基の最末端(-CHOH)に1級水酸基が配置された含フッ素エーテル化合物を含む潤滑層は、含フッ素エーテル化合物分子の一部が保護層表面から浮き上がることがなく、保護層に対する密着性がより一層良好となる。
 また、式(2)中のbが1である場合、aが2~6の整数であるため、Rで表される末端基が化学的に安定で分解しにくいものとなる。aは2~4の整数であることが好ましく、2または3であることがより好ましい。aが2または3であると、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを抑制できる。
 式(2)中のXは、水素原子、またはアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である。Xが、アミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である場合、Xとして、上記のRで示される末端基として例示したものを用いることができる。Xは、Rと同じであってもよいし、異なっていてもよい。
 式(2)中のXが、アミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である場合、式(1)で示される含フッ素エーテル化合物は、分子の両末端に、アミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む有機基を有するものとなる。このことから、式(1)で示される含フッ素エーテル化合物は、保護層に対する密着性がより一層良好な潤滑層を形成できるものとなる。
 また、式(2)中のXが、アミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である場合、式(1)におけるR-[B]-[A]-と、-[C]-[D]-Rとが同じ構造であることが好ましい。言い換えると、式(1)で示される含フッ素エーテル化合物において、Rで表されるPFPE鎖の両側が対称構造とされていることが好ましい。それは、このような含フッ素エーテル化合物は、容易に製造でき、製造コストが安価であるためである。この場合、式(2)中のbが0であり、XがRと同じである。
 式(2)中のXは、水素原子であることが好ましい。Xが水素原子である含フッ素エーテル化合物は、溶媒への溶解性が良好である。このため、これを含む潤滑剤は、磁気記録媒体への塗布が容易であり、好ましい。また、Xが水素原子である場合、bが0であっても1であっても、Rで示される末端基の最末端(-CHOH)に1級水酸基が配置される。このため、含フッ素エーテル化合物の分子の一部が保護層表面から浮き上がることがなく、潤滑層の保護層に対する密着性がより一層良好となる。
 ただし、式(1)で示される本実施形態の含フッ素エーテル化合物において、[C]がRに直接結合する場合、Rが水素原子(言い換えると、式(2)中のbが0であってXが水素原子)となることはない。[C]がRに直接結合する場合、式(2)中のbが0であって、Xがアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である、または、式(2)中のbが1である。これは、[C]がRに直接結合する場合にRが水素原子であると、ビシナルジオール構造(-CH(OH)-CH(OH)-)を有する含フッ素エーテル化合物となるためである。前述の通り、ビシナルジオール構造の有する隣接した二つの水酸基は、立体的な要因から同時に保護層に吸着できない。このため、ビシナルジオール構造を有する含フッ素エーテル化合物を含む潤滑層は、磁気ヘッドの浮上安定性および化学物質耐性の観点から好ましくない。
 式(1)における-[C]-[D]-Rは、下記式(7-1)~(7-3)のいずれかであることが好ましく、保護層に対する密着性がより一層良好な潤滑層を形成できる含フッ素エーテル化合物となるため、式(7-1)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000016


(式(7-1)中、iは1または2を表し、jは1~5の整数を表す。)
(式(7-2)中、kは2~5の整数を表し、tは0または1を表し、pは1~5の整数を表す。)
(式(7-3)中、qは0または1を表し、rは1~5の整数を表し、sは1~4の整数を表す。)
 式(7-1)~(7-3)においては、式(7-1)中のiが1または2であり、式(7-2)中のtが0または1であり、式(7-3)中のqが0または1であるので、-[C]-[D]-の有する水酸基の数が、合計で1または2となり、-[C]-[D]-Rの有する水酸基の数が2または3となる。このため、-[C]-[D]-Rが式(7-1)~(7-3)のいずれかである含フッ素エーテル化合物は、含フッ素エーテル化合物の有する水酸基による保護層への吸着力によって、保護層に対する密着性の良好な潤滑層を形成できる。
 式(7-1)中のjは1~5の整数であり、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、1~3の整数であることが好ましく、1または2であることがより好ましい。
 式(7-2)中のkは2~5の整数であり、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、2または3であることが好ましく、2であることがより好ましい。また、式(7-2)中のpは1~5の整数であり、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、1~3の整数であることが好ましく、1または2であることがより好ましい。
 式(7-3)中のrは1~5の整数であり、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、1~3の整数であることが好ましく、1または2であることがより好ましい。式(7-3)中のsは1~4の整数であり、含フッ素エーテル化合物分子中におけるフッ素原子の割合を確保しやすくなるため、1~3の整数であることが好ましく、1または2であることがより好ましい。
 式(1)で表される本実施形態の含フッ素エーテル化合物において、分子中に含まれる水酸基の数は3以上である。このため、含フッ素エーテル化合物を含む潤滑層は、含フッ素エーテル化合物中の水酸基による保護層への吸着力によって、保護層との密着性が十分に得られる。また、この潤滑層は、保護層との密着性が良好であるため、表面の凹凸が小さく、ピックアップおよびスピンオフが生じにくい。含フッ素エーテル化合物の分子中に含まれる水酸基の数は、分子全体の表面自由エネルギー抑制の観点から、3~5であることが好ましく、3~4であることがより好ましい。
 式(1)で表される含フッ素エーテル化合物は、具体的には、下記式(AA)~(BB)で表される化合物であることが好ましい。なお、式(AA)~(BB)中で示される繰り返し数は、平均重合度を示す値であるため、必ずしも整数とはならない。
 式(1)で表される化合物が下記式(AA)~(BB)で表されるいずれかの化合物である場合、原料が入手しやすく、しかも、ピックアップおよびスピンオフが発生しにくく、保護層に対する密着性および平滑性の良好な潤滑層を形成できる含フッ素エーテル化合物となる。
 下記式(AA)~(AD)で表される化合物は、いずれもRが式(5-1)で表される構造を有する上記式(10-1)で表され、ベンゼン環に結合している置換基の位置関係がオルト位である。下記式(AA)~(AD)で表される化合物は、いずれも-[B]-[A]-が式(3-1)で示され、cが1であり、-[C]-[D]-が式(4-1)で示され、fが1である。Rが上記式(2)で表され、aが2でありbが1でありXが水素原子である。
 下記式(AA)で表される化合物は、Rが上記式(8-2)で表され、uおよびvがそれぞれ1~30であるPFPE鎖である。下記式(AB)で表される化合物は、Rが上記式(8-2)で表され、uが1~30、vが0であるPFPE鎖である。下記式(AC)で表される化合物は、Rが上記式(8-4)で表されるPFPE鎖である。下記式(AD)で表される化合物は、Rが上記式(8-5)で表されるPFPE鎖である。
 下記式(AE)および式(AF)で表される化合物は、Rが式(5-1)で表される構造を有する上記式(10-1)で表される。式(AE)は、Rのベンゼン環に結合している置換基の位置関係がメタ位であり、式(AF)は、Rのベンゼン環に結合している置換基の位置関係がパラ位である。下記式(AG)で表される化合物は、Rが式(5-3)で表される構造を有する上記式(10-11)で表される。
 下記式(AE)~(AG)で表される化合物は、-[B]-[A]-が式(3-1)で示され、cが1であり、-[C]-[D]-が式(4-1)で示され、fが1である。Rが上記式(2)で表され、aが2でありbが1でありXが水素原子である。Rが上記式(8-2)で表され、uおよびvがそれぞれ1~30であるPFPE鎖である。
 下記式(AH)~(AM)で表される化合物は、いずれもRが式(5-1)で表される構造を有し、Rのベンゼン環に結合している置換基の位置関係がパラ位である。下記式(AH)で表される化合物は、Rが上記式(10-27)で表され、下記式(AI)で表される化合物は、Rが上記式(10-28)で表され、下記式(AJ)で表される化合物は、Rが上記式(10-8)で表され、下記式(AK)で表される化合物は、Rが上記式(10-12)で表され、下記式(AL)で表される化合物は、Rが上記式(10-29)で表され、下記式(AM)で表される化合物は、Rが上記式(10-30)で表される。
 下記式(AN)~(AR)で表される化合物は、いずれもRが式(5-4)で表される構造を有する。下記式(AN)で表される化合物は、Rが上記式(10-18)で表され、下記式(AO)で表される化合物は、Rが上記式(10-31)で表され、下記式(AP)で表される化合物は、Rが上記式(10-32)で表され、下記式(AQ)で表される化合物は、Rが上記式(10-33)で表され、下記式(AR)で表される化合物は、Rが上記式(10-34)で表される。
 下記式(AS)および式(AT)で表される化合物は、Rが式(5-5)で表される構造を有する。下記式(AS)で表される化合物は、Rが上記式(10-21)で表され、下記式(AT)で表される化合物は、Rが上記式(10-23)で表される。
 下記式(AH)~(AT)で表される化合物は、いずれも-[B]-[A]-が式(3-1)で示され、cが1であり、-[C]-[D]-が式(4-1)で示され、fが1である。Rが上記式(2)で表され、aが2でありbが1でありXが水素原子である。Rが上記式(8-2)で表され、uおよびvがそれぞれ1~30であるPFPE鎖である。
 下記式(AU)~(AZ)で表される化合物は、いずれもRが式(5-1)で表される構造を有する上記式(10-1)で表され、ベンゼン環に結合している置換基の位置関係がオルト位であり、Rが上記式(8-2)で表され、uおよびvがそれぞれ1~30であるPFPE鎖である。
 下記式(AU)で表される化合物は、-[B]-[A]-が式(3-1)で示され、cが1であり、-[C]-[D]-が式(4-1)で示され、fが1である。Rが上記式(2)で表され、aが6でありbが1でありXが水素原子である。
 下記式(AV)で表される化合物は、-[B]-[A]-が式(3-1)で示され、cが1であり、-[C]-[D]-が式(4-1)で示され、fが2である。Rが上記式(2)で表され、aが2でありbが1でありXが水素原子である。
 下記式(AW)で表される化合物は、-[B]-[A]-が式(3-1)で示され、cが2であり、-[C]-[D]-が式(4-1)で示され、fが1である。Rが上記式(2)で表され、aが2でありbが1でありXが水素原子である。
 下記式(AX)で表される化合物は、-[B]-[A]-が式(3-1)で示されcが2であり、-[C]-[D]-が式(4-2)で示され、gが1、hが2である。Rが上記式(2)で表され、bが0でありXが水素原子である。
 下記式(AY)で表される化合物は、-[B]-[A]-が式(3-1)で示され、cが1である。-[C]-[D]-が式(4-1)および式(4-2)で示され、fが1であり、gが1、hが5である。[C]と[D]の結合順はR側から-[C]-[D]-である。Rが上記式(2)で表され、bが0でありXが水素原子である。
 下記式(AZ)で表される化合物は、-[B]-[A]-が式(3-1)で示され、cが1である。-[C]-[D]-が式(4-1)および式(4-2)で示され、fが1であり、gが1、hが2である。[C]と[D]の結合順はR側から-[D]-[C]-である。Rが上記式(2)で表され、aが2でありbが1でありXが水素原子である。
 下記式(BA)および式(BB)で表される化合物は、いずれもRが式(5-1)で表される構造を有する上記式(10-12)で表され、ベンゼン環に結合している置換基の位置関係がパラ位である。Rが上記式(8-4)で表されるPFPE鎖である。-[C]-[D]-が式(4-1)で示され、fが2である。Rが上記式(2)で表され、bが0でありXがRと同じである。
 下記式(BA)で表される化合物は、-[B]-[A]-が式(3-1)で示され、cが1である。下記式(BB)で表される化合物は、-[B]-[A]-が式(3-1)で示され、cが2である。
Figure JPOXMLDOC01-appb-C000017

(式(AA)中のmaa、naaは平均重合度を示し、それぞれ1~30を表す。)
(式(AB)中のnabは平均重合度を示し、1~30を表す。)
(式(AC)中のnacは平均重合度を示し、1~30を表す。)
(式(AD)中のnadは平均重合度を示し、1~30を表す。)
Figure JPOXMLDOC01-appb-C000018

(式(AE)中のmae、naeは平均重合度を示し、それぞれ1~30を表す。)
(式(AF)中のmaf、nafは平均重合度を示し、それぞれ1~30を表す。)
(式(AG)中のmag、nagは平均重合度を示し、それぞれ1~30を表す。)
(式(AH)中のmah、nahは平均重合度を示し、それぞれ1~30を表す。)
Figure JPOXMLDOC01-appb-C000019

(式(AI)中のmai、naiは平均重合度を示し、それぞれ1~30を表す。)
(式(AJ)中のmaj、najは平均重合度を示し、それぞれ1~30を表す。)
(式(AK)中のmak、nakは平均重合度を示し、それぞれ1~30を表す。)
(式(AL)中のmal、nalは平均重合度を示し、それぞれ1~30を表す。)
Figure JPOXMLDOC01-appb-C000020

(式(AM)中のmam、namは平均重合度を示し、それぞれ1~30を表す。)
(式(AN)中のman、nanは平均重合度を示し、それぞれ1~30を表す。)
(式(AO)中のmaо、naоは平均重合度を示し、それぞれ1~30を表す。)
(式(AP)中のmap、napは平均重合度を示し、それぞれ1~30を表す。)
Figure JPOXMLDOC01-appb-C000021

(式(AQ)中のmaq、naqは平均重合度を示し、それぞれ1~30を表す。)
(式(AR)中のmar、narは平均重合度を示し、それぞれ1~30を表す。)
(式(AS)中のmas、nasは平均重合度を示し、それぞれ1~30を表す。)
(式(AT)中のmat、natは平均重合度を示し、それぞれ1~30を表す。)
Figure JPOXMLDOC01-appb-C000022

(式(AU)中のmau、nauは平均重合度を示し、それぞれ1~30を表す。)
(式(AV)中のmav、navは平均重合度を示し、それぞれ1~30を表す。)
(式(AW)中のmaw、nawは平均重合度を示し、それぞれ1~30を表す。)
(式(AX)中のmax、naxは平均重合度を示し、それぞれ1~30を表す。)
Figure JPOXMLDOC01-appb-C000023

(式(AY)中のmay、nayは平均重合度を示し、それぞれ1~30を表す。)
(式(AZ)中のmaz、nazは平均重合度を示し、それぞれ1~30を表す。)
(式(BA)中のnbaは平均重合度を示し、1~30を表す。)
(式(BB)中のnbbは平均重合度を示し、1~30を表す。)
 本実施形態の含フッ素エーテル化合物は、数平均分子量(Mn)が500~10000の範囲内であることが好ましく、700~7000の範囲内であることがより好ましく、800~4000の範囲内であることが特に好ましい。
 数平均分子量が500以上であると、本実施形態の含フッ素エーテル化合物を含む潤滑剤が蒸散しにくいものとなる。したがって、数平均分子量が500以上であると、ピックアップおよびスピンオフが発生しにくい潤滑層を形成できる含フッ素エーテル化合物となる。また、数平均分子量が10000以下であると、含フッ素エーテル化合物の粘度が高くなり過ぎず、潤滑剤として適した粘度となる。含フッ素エーテル化合物の数平均分子量は、潤滑剤に適用した場合に扱いやすい粘度となるため、4000以下であることがより好ましい。
 本実施形態の含フッ素エーテル化合物は、PFPE鎖となる原料の入手の容易さから、数平均分子量が1000~3000の範囲内であることがより好ましい。また、数平均分子量が1000~3000の範囲内である含フッ素エーテル化合物を含む潤滑層は、膜厚が薄くても被覆率が悪化せず、化学物質耐性および耐摩耗性の良好なものとなる。数平均分子量が1000~3000の範囲内である含フッ素エーテル化合物は、これを含む潤滑層におけるピックアップおよびスピンオフの抑制と、潤滑層の薄膜化の観点から、最も性能のバランスが良好である。
 本実施形態の含フッ素エーテル化合物は、分子全体の数平均分子量に対するRで示されるPFPE鎖の数平均分子量の比(PFPE鎖/分子全体)が、0.45~0.90であることが好ましく、0.55~0.85であることがより好ましい。上記の数平均分子量の比が、0.45以上であると、含フッ素エーテル化合物分子中におけるフッ素原子の割合が低下して、分子全体の表面自由エネルギーが大きくなることを抑制できる。また、上記の数平均分子量の比が、0.90以下であると、PFPE鎖の長さに対して、PFPE鎖の両末端にそれぞれ配置されたR-[B]-[A]-および-[C]-[D]-Rに含まれる水酸基の数が適正となる。このため、保護層との密着性がより良好な潤滑層を形成できる含フッ素エーテル化合物となる。
「製造方法」
 本実施形態の含フッ素エーテル化合物の製造方法は、特に限定されるものではなく、従来公知の製造方法を用いて製造できる。本実施形態の含フッ素エーテル化合物は、例えば、以下に示す製造方法を用いて製造できる。
 まず、式(1)におけるRに対応するPFPE鎖を有し、分子両末端にそれぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。
 次いで、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基を、式(1)におけるR-[B]-[A]-からなる基に置換する(第1反応)。その後、他方の末端に配置されたヒドロキシメチル基の水酸基を、式(1)における-[C]-[D]-Rからなる基に置換する(第2反応)。
 第1反応および第2反応は、従来公知の方法を用いて行うことができ、式(1)における末端基の種類などに応じて適宜決定できる。また、第1反応と第2反応のうち、どちらの反応を先に行ってもよい。
 以上の方法により、式(1)で表される含フッ素エーテル化合物が得られる。
[磁気記録媒体用潤滑剤]
 本実施形態の磁気記録媒体用潤滑剤は、式(1)で表される含フッ素エーテル化合物を含む。
 本実施形態の潤滑剤は、式(1)で表される含フッ素エーテル化合物を含むことによる特性を損なわない範囲内であれば、潤滑剤の材料として使用されている公知の材料を、必要に応じて混合して用いることができる。
 公知の材料の具体例としては、例えば、FOMBLIN(登録商標) ZDIAC、FOMBLIN ZDEAL、FOMBLIN AM-2001(以上、Solvay Solexis社製)、Moresco A20H(Moresco社製)などが挙げられる。本実施形態の潤滑剤に混合して用いる公知の材料は、数平均分子量が1000~10000のものであることが好ましい。
 本実施形態の潤滑剤が、式(1)で表される含フッ素エーテル化合物の他の材料を含む場合、潤滑剤中の式(1)で表される含フッ素エーテル化合物の含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。潤滑剤中の式(1)で表される含フッ素エーテル化合物の含有量は、80質量%以上であってもよいし、90質量%以上であってもよい。
 本実施形態の潤滑剤は、式(1)で表される含フッ素エーテル化合物を含むため、保護層との密着性および平滑性が良好であり、ピックアップおよびスピンオフを抑制できる潤滑層を形成できる。
[磁気記録媒体]
 本実施形態の磁気記録媒体は、基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられたものである。
 本実施形態の磁気記録媒体では、基板と磁性層との間に、必要に応じて1層または2層以上の下地層を設けることができる。また、下地層と基板との間に付着層および/または軟磁性層を設けることもできる。
 図1は、本発明の磁気記録媒体の一実施形態を示した概略断面図である。
 本実施形態の磁気記録媒体10は、基板11上に、付着層12と、軟磁性層13と、第1下地層14と、第2下地層15と、磁性層16と、保護層17と、潤滑層18とが順次設けられた構造をなしている。
「基板」
 基板11としては、例えば、AlもしくはAl合金などの金属または合金材料からなる基体上に、NiPまたはNiP合金からなる膜が形成された非磁性基板等を用いることができる。
 また、基板11としては、ガラス、セラミックス、シリコン、シリコンカーバイド、カーボン、樹脂などの非金属材料からなる非磁性基板を用いてもよいし、これらの非金属材料からなる基体上にNiPまたはNiP合金の膜を形成した非磁性基板を用いてもよい。
 ガラス基板は、剛性があり、平滑性に優れるので、高記録密度化に好適である。ガラス基板としては、例えば、アルミノシリケートガラス基板が挙げられる。ガラス基板としては、特に、化学強化されたアルミノシリケートガラス基板が好適である。
 基板11の主表面の粗さは、Rmaxが6nm以下、及びRaが0.6nm以下の超平滑であることが好ましい。ここでいう表面粗さRmax、Raは、JIS B0601の規定に基づくものである。
「付着層」
 付着層12は、基板11と、付着層12上に設けられる軟磁性層13とを接して配置した場合に生じる、基板11の腐食の進行を防止する。
 付着層12の材料は、例えば、Cr、Cr合金、Ti、Ti合金、CrTi、NiAl、AlRu合金等から適宜選択できる。付着層12は、例えば、スパッタリング法により形成できる。
「軟磁性層」
 軟磁性層13は、第1軟磁性膜と、Ru膜からなる中間層と、第2軟磁性膜とが順に積層された構造を有していることが好ましい。すなわち、軟磁性層13は、2層の軟磁性膜の間にRu膜からなる中間層を挟み込むことによって、中間層の上下の軟磁性膜がアンチ・フェロ・カップリング(AFC)結合した構造を有していることが好ましい。
 第1軟磁性膜および第2軟磁性膜の材料としては、CoZrTa合金、CoFe合金などが挙げられる。
 第1軟磁性膜および第2軟磁性膜に使用されるCoFe合金には、Zr、Ta、Nbの何れかを添加することが好ましい。これにより、第1軟磁性膜および第2軟磁性膜の非晶質化が促進される。その結果、第1下地層(シード層)の配向性を向上させることが可能になるとともに、磁気ヘッドの浮上量を低減することが可能となる。
 軟磁性層13は、例えば、スパッタリング法により形成できる。
「第1下地層」
 第1下地層14は、その上に設けられる第2下地層15および磁性層16の配向および結晶サイズを制御するための層である。
 第1下地層14としては、例えば、Cr層、Ta層、Ru層、あるいはCrMo合金層、CoW合金層、CrW合金層、CrV合金層、CrTi合金層などからなるものが挙げられる。
 第1下地層14は、例えば、スパッタリング法により形成できる。
「第2下地層」
 第2下地層15は、磁性層16の配向が良好になるように制御する層である。第2下地層15は、RuまたはRu合金からなる層であることが好ましい。
 第2下地層15は、1層からなる層であってもよいし、複数層から構成されていてもよい。第2下地層15が複数層からなる場合、全ての層が同じ材料から構成されていてもよいし、少なくとも一層が異なる材料から構成されていてもよい。
 第2下地層15は、例えば、スパッタリング法により形成できる。
「磁性層」
 磁性層16は、磁化容易軸が基板面に対して垂直または水平方向を向いた磁性膜からなる。磁性層16は、CoとPtを含む層である。磁性層16は、SNR(Signal to Noise Ratio)特性を改善するために、酸化物、Cr、B、Cu、Ta、Zr等を含む層であってもよい。
 磁性層16に含有される酸化物としては、SiO、SiO、Cr、CoO、Ta、TiO等が挙げられる。
 磁性層16は、1層から構成されていてもよいし、組成の異なる材料からなる複数の磁性層から構成されていてもよい。
 例えば、磁性層16が、下から順に積層された第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層は、Co、Cr、Ptを含み、さらに酸化物を含んだ材料からなるグラニュラー構造であることが好ましい。第1磁性層に含有される酸化物としては、例えば、Cr、Si、Ta、Al、Ti、Mg、Co等の酸化物を用いることが好ましい。その中でも、特に、TiO、Cr、SiO等を好適に用いることができる。また、第1磁性層は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも、特に、Cr-SiO、Cr-TiO、SiO-TiO等を好適に用いることができる。
 第1磁性層は、Co、Cr、Pt、酸化物の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。
 第2磁性層には、第1磁性層と同様の材料を用いることができる。第2磁性層は、グラニュラー構造であることが好ましい。
 第3磁性層は、Co、Cr、Ptを含み、酸化物を含まない材料からなる非グラニュラー構造であることが好ましい。第3磁性層は、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を含むことができる。
 磁性層16が複数の磁性層で形成されている場合、隣接する磁性層の間には、非磁性層を設けることが好ましい。磁性層16が、第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層と第2磁性層との間と、第2磁性層と第3磁性層との間に、非磁性層を設けることが好ましい。
 磁性層16の隣接する磁性層間に設けられる非磁性層は、例えば、Ru、Ru合金、CoCr合金、CoCrX1合金(X1は、Pt、Ta、Zr、Re、Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Bの中から選ばれる1種または2種以上の元素を表す。)等を好適に用いることができる。
 磁性層16の隣接する磁性層間に設けられる非磁性層には、酸化物、金属窒化物、または金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiO等を用いることができる。金属窒化物として、例えば、AlN、Si、TaN、CrN等を用いることができる。金属炭化物として、例えば、TaC、BC、SiC等を用いることができる。
 非磁性層は、例えば、スパッタリング法により形成できる。
 磁性層16は、より高い記録密度を実現するために、磁化容易軸が基板面に対して垂直方向を向いた垂直磁気記録の磁性層であることが好ましい。磁性層16は、面内磁気記録の磁性層であってもよい。
 磁性層16は、蒸着法、イオンビームスパッタ法、マグネトロンスパッタ法等、従来公知のいかなる方法によって形成してもよい。磁性層16は、通常、スパッタリング法により形成される。
「保護層」
 保護層17は、磁性層16を保護する。保護層17は、一層から構成されていてもよいし、複数層から構成されていてもよい。保護層17の材料としては、炭素、窒素を含む炭素、炭化ケイ素などが挙げられる。
 保護層17としては、炭素系保護層を好ましく用いることができ、特にアモルファス炭素保護層が好ましい。保護層17が炭素系保護層であると、潤滑層18中の含フッ素エーテル化合物に含まれる極性基(特に水酸基)との相互作用が一層高まるため、好ましい。
 炭素系保護層と潤滑層18との付着力は、炭素系保護層を水素化炭素および/または窒素化炭素とし、炭素系保護層中の水素含有量および/または窒素含有量を調節することにより制御可能である。炭素系保護層中の水素含有量は、水素前方散乱法(HFS)で測定したときに3原子%~20原子%であることが好ましい。また、炭素系保護層中の窒素含有量は、X線光電子分光分析法(XPS)で測定したときに、4原子%~15原子%であることが好ましい。
 炭素系保護層に含まれる水素および/または窒素は、炭素系保護層全体に均一に含有される必要はない。炭素系保護層は、例えば、保護層17の潤滑層18側に窒素を含有させ、保護層17の磁性層16側に水素を含有させた組成傾斜層とすることが好適である。この場合、磁性層16および潤滑層18と、炭素系保護層との付着力が、より一層向上する。これは、保護層17中の窒素が活性点として働き、潤滑層18との結合を促進するためである。炭素系保護層中の水素又は窒素が活性点としての作用を有する。
 保護層17の膜厚は、1nm~7nmであることが好ましい。保護層17の膜厚が1nm以上であると、保護層17としての性能が充分に得られる。保護層17の膜厚が7nm以下であると、保護層17の薄膜化の観点から好ましい。
 保護層17の成膜方法としては、炭素を含むターゲット材を用いるスパッタ法、エチレン又はトルエン等の炭化水素原料を用いるCVD(化学蒸着法)法、及びIBD(イオンビーム蒸着)法等を用いることができる。
 保護層17として炭素系保護層を形成する場合、例えば、DCマグネトロンスパッタリング法により成膜できる。特に、保護層17として炭素系保護層を形成する場合、プラズマCVD法により、アモルファス炭素保護層を成膜することが好ましい。プラズマCVD法により成膜したアモルファス炭素保護層は、表面が均一で、粗さが小さいものとなる。
「潤滑層」
 潤滑層18は、磁気記録媒体10の汚染を防止する。また、潤滑層18は、磁気記録媒体10上を摺動する磁気記録再生装置の磁気ヘッドの摩擦力を低減させて、磁気記録媒体10の耐久性を向上させる。
 潤滑層18は、図1に示すように、保護層17上に接して形成されている。潤滑層18は、上述の含フッ素エーテル化合物を含む。
 潤滑層18は、潤滑層18の下に配置されている保護層17が、炭素系保護層である場合、特に、保護層17と高い結合力で結合される。その結果、潤滑層18の厚みが薄くても、高い被覆率で保護層17の表面が被覆された磁気記録媒体10が得られやすくなり、磁気記録媒体10の表面の汚染を効果的に防止できる。
 潤滑層18の平均膜厚は、0.5nm(5Å)~2.0nm(20Å)であることが好ましく、0.5nm(5Å)~1.0nm(10Å)であることがより好ましい。潤滑層18の平均膜厚が0.5nm以上であると、潤滑層18がアイランド状または網目状とならずに均一の膜厚で形成される。このため、潤滑層18によって、保護層17の表面を高い被覆率で被覆できる。また、潤滑層18の平均膜厚を2.0nm以下にすることで、潤滑層18を充分に薄膜化でき、磁気ヘッドの浮上量を十分に小さくできる。
 保護層17の表面が潤滑層18によって十分に高い被覆率で被覆されていない場合、磁気記録媒体10の表面に吸着した環境物質が、潤滑層18の隙間を通り抜けて、潤滑層18の下に侵入する。潤滑層18の下層に侵入した環境物質は、保護層17と吸着、結合し汚染物質を生成する。そして、磁気記録再生の際に、この汚染物質(凝集成分)がスメアとして磁気ヘッドに付着(転写)して、磁気ヘッドを破損したり、磁気記録再生装置の磁気記録再生特性を低下させたりする。
 汚染物質を生成させる環境物質としては、例えば、シロキサン化合物(環状シロキサン、直鎖シロキサン)、イオン性不純物、オクタコサン等の比較的分子量の高い炭化水素、フタル酸ジオクチル等の可塑剤等が挙げられる。イオン性不純物に含まれる金属イオンとしては、例えば、ナトリウムイオン、カリウムイオン等を挙げることができる。イオン性不純物に含まれる無機イオンとしては、例えば、塩素イオン、臭素イオン、硝酸イオン、硫酸イオン、アンモニウムイオン等を挙げることができる。イオン性不純物に含まれる有機物イオンとしては、例えば、シュウ酸イオン、蟻酸イオン等を挙げることができる。
「潤滑層の形成方法」
 潤滑層18を形成する方法としては、例えば、基板11上に保護層17までの各層が形成された製造途中の磁気記録媒体を用意し、保護層17上に潤滑層形成用溶液を塗布し、乾燥させる方法が挙げられる。
 潤滑層形成用溶液は、例えば、上述の実施形態の磁気記録媒体用潤滑剤を必要に応じて、溶媒に分散溶解させ、塗布方法に適した粘度および濃度とすることにより得られる。
 潤滑層形成用溶液に用いられる溶媒としては、例えば、バートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)等のフッ素系溶媒等が挙げられる。
 潤滑層形成用溶液の塗布方法は、特に限定されないが、例えば、スピンコート法、スプレイ法、ペーパーコート法、ディップ法等が挙げられる。
 ディップ法を用いる場合、例えば、以下に示す方法を用いることができる。まず、ディップコート装置の浸漬槽に入れられた潤滑層形成用溶液中に、保護層17までの各層が形成された基板11を浸漬する。次いで、浸漬槽から基板11を所定の速度で引き上げる。このことにより、潤滑層形成用溶液を基板11の保護層17上の表面に塗布する。
 ディップ法を用いることで、潤滑層形成用溶液を保護層17の表面に均一に塗布することができ、保護層17上に均一な膜厚で潤滑層18を形成できる。
 本実施形態においては、潤滑層18を形成した基板11に熱処理を施すことが好ましい。熱処理を施すことにより、潤滑層18と保護層17との密着性が向上し、潤滑層18と保護層17との付着力が向上する。
 熱処理温度は100℃~180℃とすることが好ましい。熱処理温度が100℃以上であると、潤滑層18と保護層17との密着性を向上させる効果が十分に得られる。また、熱処理温度を180℃以下にすることで、熱処理による潤滑層18の熱分解を防止できる。熱処理時間は10分~120分とすることが好ましい。
 本実施形態においては、潤滑層18の保護層17に対する付着力をより一層向上させるために、熱処理前もしくは熱処理後の基板11の潤滑層18に、紫外線(UV)を照射する処理を行ってもよい。
 本実施形態の磁気記録媒体10は、基板11上に、少なくとも磁性層16と、保護層17と、潤滑層18とが順次設けられたものである。本実施形態の磁気記録媒体10では、保護層17上に接して、上述の含フッ素エーテル化合物を含む潤滑層18が形成されている。この潤滑層18は、保護層17との密着性および平滑性が良好であり、ピックアップおよびスピンオフを抑制できる。よって、本実施形態の磁気記録媒体10は、磁気ヘッドの浮上安定性に優れる。
 また、本実施形態の磁気記録媒体10は、ピックアップの生じにくい潤滑層18を有しているため、磁気スペーシングのより一層の低減を図ることができる。さらに、本実施形態の磁気記録媒体10は、スピンオフの生じにくい潤滑層18を有しているため、磁気記録媒体の回転速度の高速化を図ることができる。これらのことから、本実施形態の磁気記録媒体10は、磁気記録媒体の記録密度向上および大容量化に寄与できる。よって、本実施形態の磁気記録媒体10は、特にLUL方式(Load Unload方式)の磁気ディスク装置に搭載される磁気ディスクとして好適である。
 これに対し、従来の磁気記録媒体では、潤滑層の保護層に対する密着性が不十分であるため、磁気スペーシングを低減するとピックアップが発生しやすくなり、磁気記録媒体の回転速度を高速化するとスピンオフが発生しやすくなるという問題があった。このため、従来の磁気記録媒体では、信頼性および耐久性を維持しながら、磁気スペーシングを低減させたり、磁気記録媒体の回転速度を高速化させたりすることは困難であった。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例のみに限定されない。
[核磁気共鳴(NMR)測定方法]
 以下の実施例および比較例において製造した各化合物の構造は、ブルカー・バイオスピン社製のNMR装置(AVANCEIII-400)を用いて、H-NMR測定および19F-NMR測定を行った結果から同定した。
 NMR測定には、試料約10mgを秤量し、約0.5mLの重アセトン(基準物質としてヘキサフルオロベンゼン添加)に溶解させたものを使用した。H-NMRケミカルシフトの基準は、アセトンのピークを2.05ppmとした。19F-NMRケミカルシフトの基準は、ヘキサフルオロベンゼンのピークを-164.7ppmとした。
 各化合物の数平均分子量(Mn)は、19F-NMR測定の結果から算出した。具体的には、19F-NMRによって測定されたフッ素原子の積分強度より、PFPE鎖の繰り返し単位数を算出し、各化合物についてPFPE鎖の数平均分子量と分子全体の数平均分子量とを求めるとともに、その比(PFPE比=PFPE鎖Mn/分子全体Mn)を算出した。
[実施例1]
 以下に示す方法により、上記式(AA)で表される化合物(AA)(式(AA)中、平均重合度を示すmaaは6.2であり、平均重合度を示すnaaは6.2である。)を得た。
 まず、2-ヒドロキシベンズアミドとエピブロモヒドリンとを反応させて、下記式(11-1)で表される化合物を合成した。また、エチレングリコールモノアリルエーテルと3,4-ジヒドロ-2H-ピランとを反応させて、水酸基をテトラヒドロピラニル基で保護した後、メタクロロ過安息香酸を用いて二重結合を酸化することにより、下記式(12-1)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000024
 窒素ガス雰囲気下、200mLナスフラスコに、HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すuは6.2であり、平均重合度を示すvは6.2である。)で表されるフルオロポリエーテル(数平均分子量1300、分子量分布1.1)(40.0g)と、上記式(11-1)で表される化合物(3.57g)と、t-BuOH(ターシャリーブチルアルコール)(40.0mL)とを仕込み、室温で均一になるまで撹拌した。さらに、上記のナスフラスコに、t-BuOK(カリウムターシャリーブトキシド)(1.04g)を加え、70℃に加熱し、12時間撹拌して反応させた。
 その後、得られた反応生成物を25℃に冷却し、水を加え、さらに溶媒として酢酸エチルを加えて有機層を抽出し、水洗した。有機層に、無水硫酸ナトリウムを加えて脱水し、乾燥剤を濾別後、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィーによって精製し、下記式(13-1)で表される化合物(18.4g)を得た。
Figure JPOXMLDOC01-appb-C000025

(式(13-1)中、平均重合度を示すmaaは6.2であり、平均重合度を示すnaaは6.2である。)
 窒素ガス雰囲気下、200mLナスフラスコに、式(13-1)で示される化合物(18.4g)と、式(12-1)で示される化合物(2.74g)と、t-BuOH(ターシャリーブチルアルコール)(65.0mL)とを仕込み、室温で均一になるまで撹拌した。さらに、上記のナスフラスコに、t-BuOK(カリウムターシャリーブトキシド)(0.41g)を加え、70℃に加熱し、16時間撹拌して反応させた。
 その後、得られた反応生成物を25℃に冷却し、7%塩化水素/メタノール試薬(64.1g)を加えて、室温で3時間撹拌して脱保護反応を行った。
 得られた反応生成物を7%重曹水(250mL)に加えて中和した後、酢酸エチルを加えて有機層を抽出し、水洗した。有機層に、無水硫酸ナトリウムを加えて脱水し、乾燥剤を濾別後、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィーによって精製し、化合物(AA)を13.9g得た。
 得られた化合物(AA)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(11H)、4.10-4.80(10H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例2]
 以下に示す方法により、上記式(AB)で表される化合物(AB)(式(AB)中、平均重合度を示すnabは9.7である。)を得た。
 実施例1における、HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すuは6.2であり、平均重合度を示すvは6.2である。)で表されるフルオロポリエーテル(数平均分子量1300、分子量分布1.1)の代わりに、HOCHCFO(CFCFO)CFCHOH(式中、平均重合度を示すzは9.7である。)で表されるフルオロポリエーテル(数平均分子量1300、分子量分布1.1)(40.0g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AB)を14.2g得た。
 得られた化合物(AB)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(11H)、4.10-4.80(10H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-78.57(4F)、-88.92~-89.57(38.8F)
[実施例3]
 以下に示す方法により、上記式(AC)で表される化合物(AC)(式(AC)中、平均重合度を示すnacは6.2である。)を得た。
 実施例1における、HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すuは6.2であり、平均重合度を示すvは6.2である。)で表されるフルオロポリエーテル(数平均分子量1300、分子量分布1.1)の代わりに、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中、平均重合度を示すxは6.2である。)で表されるフルオロポリエーテル(数平均分子量1300、分子量分布1.1)(40.0g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AC)を13.6g得た。
 得られた化合物(AC)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(11H)、4.10-4.80(10H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-84.22(24.8F)、-86.40(4F)、-124.30(4F)、-130.08(12.4F)
[実施例4]
 以下に示す方法により、上記式(AD)で表される化合物(AD)(式(AD)中、平均重合度を示すnadは4.3である。)を得た。
 実施例1における、HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すuは6.2であり、平均重合度を示すvは6.2である。)で表されるフルオロポリエーテル(数平均分子量1300、分子量分布1.1)の代わりに、HOCHCFCFCFO(CFCFCFCFO)CFCFCFCHOH(式中、平均重合度を示すyは4.3である。)で表されるフルオロポリエーテル(数平均分子量1300、分子量分布1.1)(40.0g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AD)を14.2g得た。
 得られた化合物(AD)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(11H)、4.10-4.80(10H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-83.70(21.2F)、-123.32(4F)、-125.85(17.2F)、-127.63(4F)
[実施例5]
 以下に示す方法により、上記式(AE)で表される化合物(AE)(式(AE)中、平均重合度を示すmaeは6.2であり、平均重合度を示すnaeは6.2である。)を得た。
 まず、3-ヒドロキシベンズアミドとエピブロモヒドリンとを反応させて、下記式(11-2)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000026
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-2)で表される化合物(11-2)(3.57g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AE)を13.2g得た。
 得られた化合物(AE)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(11H)、4.10-4.80(10H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例6]
 以下に示す方法により、上記式(AF)で表される化合物(AF)(式(AF)中、平均重合度を示すmafは6.2であり、平均重合度を示すnafは6.2である。)を得た。
 まず、4-ヒドロキシベンズアミドとエピブロモヒドリンとを反応させて、下記式(11-3)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000027
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-3)で表される化合物(11-3)(3.57g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AF)を14.5g得た。
 得られた化合物(AF)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(11H)、4.10-4.80(10H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例7]
 以下に示す方法により、上記式(AG)で表される化合物(AG)(式(AG)中、平均重合度を示すmagは6.2であり、平均重合度を示すnagは6.2である。)を得た。
 まず、6-ヒドロキシ-2-ナフタレンカルボキサミドとエピブロモヒドリンとを反応させて、下記式(11-4)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000028
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-4)で表される化合物(11-4)(4.49g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AG)を14.3g得た。
 得られた化合物(AG)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(11H)、4.10-4.80(10H)、6.50-6.70(1H)、7.00-8.10(7H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例8]
 以下に示す方法により、上記式(AH)で表される化合物(AH)(式(AH)中、平均重合度を示すmahは6.2であり、平均重合度を示すnahは6.2である。)を得た。
 まず、4-ヒドロキシ安息香酸メチルとヘプチルアミンとを反応させて得た化合物に、エピブロモヒドリンを反応させて、下記式(11-5)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000029
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-5)で表される化合物(11-5)(5.38g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AH)を14.7g得た。
 得られた化合物(AH)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=0.95(3H)、1.20-1.60(10H)、3.40-4.00(13H)、4.10-4.80(10H)、6.50-6.70(1H)、7.00-8.10(4H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例9]
 以下に示す方法により、上記式(AI)で表される化合物(AI)(式(AI)中、平均重合度を示すmaiは6.2であり、平均重合度を示すnaiは6.2である。)を得た。
 まず、4-ヒドロキシ安息香酸メチルとジプロピルアミンとを反応させて得た化合物に、エピブロモヒドリンを反応させて、下記式(11-6)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000030
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-6)で表される化合物(11-6)(5.12g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AI)を14.6g得た。
 得られた化合物(AI)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=0.98(6H)、1.41(4H)、3.40-4.00(15H)、4.10-4.80(10H)、7.00-8.10(4H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例10]
 以下に示す方法により、上記式(AJ)で表される化合物(AJ)(式(AJ)中、平均重合度を示すmajは6.2であり、平均重合度を示すnajは6.2である。)を得た。
 まず、4-(1-ピペリジニルカルボニル)フェノールとエピブロモヒドリンとを反応させて、下記式(11-7)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000031
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-7)で表される化合物(11-7)(4.82g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AJ)を14.5g得た。
 得られた化合物(AJ)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=1.42(6H)、2.82-3.25(4H)、3.40-4.00(11H)、4.10-4.80(10H)、7.00-8.10(4H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例11]
 以下に示す方法により、上記式(AK)で表される化合物(AK)(式(AK)中、平均重合度を示すmakは6.2であり、平均重合度を示すnakは6.2である。)を得た。
 まず、4′-ヒドロキシアセトアニリドとエピブロモヒドリンとを反応させて、下記式(11-8)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000032
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-8)で表される化合物(11-8)(3.83g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AK)を14.0g得た。
 得られた化合物(AK)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=2.09(3H)、3.40-4.00(11H)、4.10-4.80(10H)、6.50-7.50(4H)、9.00(1H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例12]
 以下に示す方法により、上記式(AL)で表される化合物(AL)(式(AL)中、平均重合度を示すmalは6.2であり、平均重合度を示すnalは6.2である。)を得た。
 まず、4-アミノフェノールとn-オクタン酸とを反応させて得た化合物に、エピブロモヒドリンを反応させて、下記式(11-9)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000033
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-9)で表される化合物(11-9)(5.38g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AL)を14.7g得た。
 得られた化合物(AL)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=0.95(3H)、1.20-1.60(10H)、3.40-4.00(13H)、4.10-4.80(10H)、6.50-7.50(4H)、9.00(1H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例13]
 以下に示す方法により、上記式(AM)で表される化合物(AM)(式(AM)中、平均重合度を示すmamは6.2であり、平均重合度を示すnamは6.2である。)を得た。
 まず、4′-ヒドロキシアセトアニリドとベンジルブロミドとを反応させて、フェノール性水酸基をベンジル保護した後、水素化ナトリウム存在下で1-ブロモヘキサンと反応させた。得られた化合物のベンジル基を塩化水素/メタノール試薬で脱保護した後、エピブロモヒドリンと反応させて、下記式(11-10)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000034
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-10)で表される化合物(11-10)(5.38g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AM)を14.8g得た。
 得られた化合物(AM)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=0.95(3H)、1.20-1.60(8H)、2.09(3H)、3.40-4.00(13H)、4.10-4.80(10H)、6.50-7.50(4H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例14]
 以下に示す方法により、上記式(AN)で表される化合物(AN)(式(AN)中、平均重合度を示すmanは6.2であり、平均重合度を示すnanは6.2である。)を得た。
 まず、N-(2-ヒドロキシエチル)ベンズアミドとエピブロモヒドリンとを反応させて、下記式(11-11)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000035
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-11)で表される化合物(11-11)(4.08g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AN)を14.1g得た。
 得られた化合物(AN)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(15H)、4.10-4.80(10H)、7.20-8.00(5H)、8.50(1H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例15]
 以下に示す方法により、上記式(AO)で表される化合物(AO)(式(AO)中、平均重合度を示すmaoは6.2であり、平均重合度を示すnaoは6.2である。)を得た。
 まず、安息香酸と6-アミノ-1-ヘキサノールとを反応させて得た化合物に、エピブロモヒドリンを反応させて、下記式(11-12)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000036
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-12)で表される化合物(11-12)(5.12g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AO)を14.6g得た。
 得られた化合物(AO)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=1.20-1.40(8H)、3.40-4.00(15H)、4.10-4.80(10H)、7.20-8.00(5H)、8.50(1H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例16]
 以下に示す方法により、上記式(AP)で表される化合物(AP)(式(AP)中、平均重合度を示すmapは6.2であり、平均重合度を示すnapは6.2である。)を得た。
 まず、4-ヘキシル安息香酸と2-アミノエタノールとを反応させて得た化合物に、エピブロモヒドリンを反応させて、下記式(11-13)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000037
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-13)で表される化合物(11-13)(5.64g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AP)を14.9g得た。
 得られた化合物(AP)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=0.86(3H)、1.18-1.61(8H)、2.56(2H)3.40-4.00(15H)、4.10-4.80(10H)、7.20-8.00(5H)、8.50(1H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例17]
 以下に示す方法により、上記式(AQ)で表される化合物(AQ)(式(AQ)中、平均重合度を示すmaqは6.2であり、平均重合度を示すnaqは6.2である。)を得た。
 まず、4-ヘキシルオキシ安息香酸と2-アミノエタノールとを反応させて得た化合物に、エピブロモヒドリンを反応させて、下記式(11-14)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000038
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-14)で表される化合物(11-14)(5.93g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AQ)を15.0g得た。
 得られた化合物(AQ)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=0.94(3H)、1.32-1.61(8H)、3.40-4.00(17H)、4.10-4.80(10H)、7.20-8.00(5H)、8.50(1H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例18]
 以下に示す方法により、上記式(AR)で表される化合物(AR)(式(AR)中、平均重合度を示すmarは6.2であり、平均重合度を示すnarは6.2である。)を得た。
 まず、テレフタルアミド酸と2-アミノエタノールとを反応させて得た化合物に、エピブロモヒドリンを反応させて、下記式(11-15)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000039
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-15)で表される化合物(11-15)(4.88g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AR)を14.5g得た。
 得られた化合物(AR)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(15H)、4.10-4.80(10H)、6.50-6.70(1H)、7.60-8.70(5H)、8.50(1H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例19]
 以下に示す方法により、上記式(AS)で表される化合物(AS)(式(AS)中、平均重合度を示すmasは6.2であり、平均重合度を示すnasは6.2である。)を得た。
 まず、3-ヒドロキシプロピオン酸とアニリンとを反応させて得た化合物に、エピブロモヒドリンを反応させて、下記式(11-16)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000040
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-16)で表される化合物(11-16)(4.08g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AS)を14.1g得た。
 得られた化合物(AS)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=2.72(2H)、3.40-4.00(13H)、4.10-4.80(10H)、7.20-8.00(5H)、8.50(1H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例20]
 以下に示す方法により、上記式(AT)で表される化合物(AT)(式(AT)中、平均重合度を示すmatは6.2であり、平均重合度を示すnatは6.2である。)を得た。
 まず、3-(ベンジルオキシ)プロパン酸にアニリンを反応させた後、水素化ナトリウム存在下、ヨウ化メチルと反応させた。得られた化合物をパラジウム炭素の存在下で接触水素化した後、エピブロモヒドリンと反応させて、下記式(11-17)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000041
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-17)で表される化合物(11-17)(4.34g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AT)を14.2g得た。
 得られた化合物(AT)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=2.72(2H)、3.21(3H)、3.40-4.00(13H)、4.10-4.80(10H)、7.20-8.00(5H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例21]
 以下に示す方法により、上記式(AU)で表される化合物(AU)(式(AU)中、平均重合度を示すmauは6.2であり、平均重合度を示すnauは6.2である。)を得た。
 まず、1,6-ヘキサンジオールに対して、1当量の3,4-ジヒドロ-2H-ピランを反応させた。得られた化合物にエピブロモヒドリンを反応させて、下記式(12-2)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000042
 実施例1において用いた式(12-1)で表される化合物(12-1)の代わりに、式(12-2)で表される化合物(12-2)(3.50g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AU)を14.4g得た。
 得られた化合物(AU)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=1.20-1.80(8H)、3.40-4.00(11H)、4.10-4.80(10H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例22]
 以下に示す方法により、上記式(AV)で表される化合物(AV)(式(AV)中、平均重合度を示すmavは6.2であり、平均重合度を示すnavは6.2である。)を得た。
 まず、下記式(12-4)で表される化合物を、以下に示す方法により合成した。3-アリルオキシ-1,2-プロパンジオールの1級水酸基を、t-ブチルジメチルシリル基で保護した後、2級水酸基をメトキシメチル基で保護した。得られた化合物からt-ブチルジメチルシリル基を除去することで、下記式(12-3)で表される化合物(12-3)を合成した。得られた化合物(12-3)と2-(2-クロロエトキシ)テトラヒドロピランとを反応させた後、メタクロロ過安息香酸を用いて二重結合を酸化することにより、下記式(12-4)で表される化合物(12-4)を合成した。
Figure JPOXMLDOC01-appb-C000043
 実施例1において用いた式(12-1)で表される化合物(12-1)の代わりに、式(12-4)で表される化合物(12-4)(4.34g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AV)を14.5g得た。
 得られた化合物(AV)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(14H)、4.10-4.80(13H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例23]
 以下に示す方法により、上記式(AW)で表される化合物(AW)(式(AW)中、平均重合度を示すmawは6.2であり、平均重合度を示すnawは6.2である。)を得た。
 まず、2-ヒドロキシベンズアミドとアリルグリシジルエーテルとを反応させた後、メタクロロ過安息香酸を用いて二重結合を酸化することで、下記式(11-18)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000044
 実施例1において用いた式(11-1)で表される化合物(11-1)の代わりに、式(11-18)で表される化合物(11-18)(4.93g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AW)を14.5g得た。
 得られた化合物(AW)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.40-4.00(14H)、4.10-4.80(13H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例24]
 以下に示す方法により、上記式(AX)で表される化合物(AX)(式(AX)中、平均重合度を示すmaxは6.2であり、平均重合度を示すnaxは6.2である。)を得た。
 まず、3-ブテン-1-オールと3,4-ジヒドロ-2H-ピランとを反応させて、3-ブテン-1-オールの水酸基をテトラヒドロピラニル基で保護した後、メタクロロ過安息香酸を用いて二重結合を酸化することにより、下記式(12-5)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000045
 実施例23において用いた式(12-1)で表される化合物(12-1)の代わりに、式(12-5)で表される化合物(12-5)(2.33g)を用いたこと以外は、実施例23と同様の操作を行い、化合物(AX)を14.3g得た。
 得られた化合物(AX)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=1.40(2H)、3.40-4.00(12H)、4.10-4.80(11H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例25]
 以下に示す方法により、上記式(AY)で表される化合物(AY)(式(AY)中、平均重合度を示すmayは6.2であり、平均重合度を示すnayは6.2である。)を得た。
 まず、下記式(12-7)で表される化合物を、以下に示す方法により合成した。6-ヘプテン-1-オールと3,4-ジヒドロ-2H-ピランとを反応させて、6-ヘプテン-1-オールの水酸基をテトラヒドロピラニル基で保護した後、メタクロロ過安息香酸を用いて二重結合を酸化することにより、下記式(12-6)で表される化合物を合成した。得られた化合物(12-6)にアリルアルコールを反応させた後、3,4-ジヒドロ-2H-ピランと反応させて、二級水酸基をテトラヒドロピラニル基で保護した。最後に、メタクロロ過安息香酸を用いて二重結合を酸化することにより、下記式(12-7)で表される化合物(12-7)を合成した。
Figure JPOXMLDOC01-appb-C000046
 実施例1において用いた式(12-1)で表される化合物(12-1)の代わりに、式(12-7)で表される化合物(12-7)(5.04g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AY)を14.6g得た。
 得られた化合物(AY)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=1.20-1.80(8H)、3.40-4.00(12H)、4.10-4.80(11H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例26]
 以下に示す方法により、上記式(AZ)で表される化合物(AZ)(式(AZ)中、平均重合度を示すmazは6.2であり、平均重合度を示すnazは6.2である。)を得た。
 まず、下記式(12-8)で表される化合物を、以下に示す方法により合成した。上記式(12-1)で表される化合物(12-1)に3-ブテン-1-オールを反応させた後、3,4-ジヒドロ-2H-ピランと反応させて、二級水酸基をテトラヒドロピラニル基で保護した。最後に、メタクロロ過安息香酸を用いて二重結合を酸化することにより、下記式(12-8)で表される化合物(12-8)を合成した。
Figure JPOXMLDOC01-appb-C000047
 実施例1において用いた式(12-1)で表される化合物(12-1)の代わりに、式(12-8)で表される化合物(12-8)(5.07g)を用いたこと以外は、実施例1と同様の操作を行い、化合物(AZ)を14.6g得た。
 得られた化合物(AZ)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=1.40(2H)、3.40-4.00(14H)、4.10-4.80(13H)、6.50-6.70(1H)、7.00-8.10(5H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(12.4F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(24.8F)
[実施例27]
 以下に示す方法により、上記式(BA)で表される化合物(BA)(式(BA)中、平均重合度を示すnbaは6.2である。)を得た。
 まず、4′-ヒドロキシアセトアニリドとアリルグリシジルエーテルとを反応させた後、メタクロロ過安息香酸を用いて二重結合を酸化することで、下記式(11-19)で表される化合物を合成した。
Figure JPOXMLDOC01-appb-C000048
 実施例11における、HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すuは6.2であり、平均重合度を示すvは6.2である。)で表されるフルオロポリエーテル(数平均分子量1300、分子量分布1.1)の代わりに、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中、平均重合度を示すxは6.2である。)で表されるフルオロポリエーテル(数平均分子量1300、分子量分布1.1)(40.0g)を用いたことと、実施例11において用いた式(12-1)で表される化合物(12-1)の代わりに、式(11-19)で表される化合物(11-19)(3.81g)を用いたこと以外は、実施例11と同様の操作を行い、化合物(BA)を15.4g得た。
 得られた化合物(BA)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=2.09(6H)、3.40-4.00(12H)、4.10-4.80(11H)、6.50-7.50(8H)、9.00(2H)
19F-NMR(acetone-d):δ[ppm]=-84.22(24.8F)、-86.40(4F)、-124.30(4F)、-130.08(12.4F)
[実施例28]
 以下に示す方法により、上記式(BB)で表される化合物(BB)(式(BB)中、平均重合度を示すnbbは6.2である。)を得た。
 窒素ガス雰囲気下、200mLナスフラスコに、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中、平均重合度を示すxは6.2である。)で表されるフルオロポリエーテル(数平均分子量1300、分子量分布1.1)(40.0g)と、上記式(11-19)で表される化合物(17.3g)と、t-BuOH(ターシャリーブチルアルコール)(40.0mL)とを仕込み、室温で均一になるまで撹拌した。さらに、上記のナスフラスコに、t-BuOK(カリウムターシャリーブトキシド)(1.04g)を加え、70℃に加熱し、12時間撹拌して反応させた。
 その後、得られた反応生成物を25℃に冷却し、水を加え、さらに溶媒として酢酸エチルを加えて有機層を抽出し、水洗した。有機層に、無水硫酸ナトリウムを加えて脱水し、乾燥剤を濾別後、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィーによって精製し、化合物(BB)を34.4g得た。
 得られた化合物(BB)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=2.09(6H)、3.40-4.00(15H)、4.10-4.80(14H)、6.50-7.50(8H)、9.00(2H)
19F-NMR(acetone-d):δ[ppm]=-84.22(24.8F)、-86.40(4F)、-124.30(4F)、-130.08(12.4F)
 このようにして得られた実施例1~28の化合物(AA)~(BB)を、それぞれ式(1)に当てはめたときのR(Rで示される末端基、構造、芳香族炭化水素)、[B]-[A](式(3-1)中のc、式(3-2)中のd、e)、Rの構造、[C]-[D](式(4-1)中のf、式(4-2)中のg、h)、R(式(2)中のa、b、X)を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
[比較例1]
 下記式(ZA)で表される化合物(ZA)を特許文献1に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000051


(式(ZA)中、平均重合度を示すmzaは6.2であり、平均重合度を示すnzaは6.2である。)
[比較例2]
 下記式(ZB)で表される化合物(ZB)を特許文献2に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000052


(式(ZB)中、平均重合度を示すmzbは6.2であり、平均重合度を示すnzbは6.2である。)
[比較例3]
 下記式(ZC)で表される化合物(ZC)を特許文献3に記載の方法で合成した。すなわち、特許文献3の実施例1において、グリシジルフェニルエーテルの代わりに式(11-8)で表される化合物を用いて合成した。
Figure JPOXMLDOC01-appb-C000053


(式(ZC)中、平均重合度を示すmzcは6.2であり、平均重合度を示すnzcは6.2である。)
[比較例4]
 下記式(ZD)で表される化合物(ZD)を特許文献4に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000054

(式(ZD)中、平均重合度を示すmzdは6.2であり、平均重合度を示すnzdは6.2である。)
[比較例5]
 下記式(ZE)で表される化合物(ZE)を特許文献5に記載の方法で合成した。すなわち、特許文献5の実施例1において、4-メトキシグリシジルフェニルエーテルの代わりに式(11-8)で表される化合物を用いて合成した。
Figure JPOXMLDOC01-appb-C000055

(式(ZE)中、平均重合度を示すnzeは6.2である。)
[比較例6]
 下記式(ZF)で表される化合物(ZF)を特許文献2に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000056

(式(ZF)中、平均重合度を示すmzfは6.2であり、平均重合度を示すnzfは6.2である。)
[比較例7]
 下記式(ZG)で表される化合物(ZG)を特許文献2に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000057

(式(ZG)中、平均重合度を示すmzgは6.2であり、平均重合度を示すnzgは6.2である。)
[比較例8]
 下記式(ZH)で表される化合物(ZH)を特許文献2に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000058

(式(ZH)中、平均重合度を示すmzhは6.2であり、平均重合度を示すnzhは6.2である。)
 実施例1~28および比較例1~8で得られた各化合物(AA)~(BB)、(ZA)~(ZH)の数平均分子量(Mn)(PFPE鎖の数平均分子量、分子全体の数平均分子量)、PFPE比(PFPE鎖Mn/分子全体Mn)を表3に示す。
Figure JPOXMLDOC01-appb-T000059
 次に、以下に示す方法により、実施例1~28および比較例1~8で得られた化合物を用いて潤滑層形成用溶液を調製した。そして、得られた潤滑層形成用溶液を用いて、以下に示す方法により、磁気記録媒体の潤滑層を形成し、実施例1~28および比較例1~8の磁気記録媒体を得た。
[潤滑層形成用溶液]
 実施例1~28および比較例1~8で得られた化合物を、それぞれフッ素系溶媒であるバートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)に溶解し、保護層上に塗布した時の膜厚が8.5Å~10ÅになるようにバートレルXFで希釈し、化合物の濃度が0.001質量%~0.01質量%である潤滑層形成用溶液とした。
[磁気記録媒体]
 直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けた。保護層は、窒素化炭素からなるものとした。
 保護層までの各層が形成された基板の保護層上に、実施例1~28および比較例1~8の潤滑層形成用溶液を、ディップ法により塗布した。
 その後、潤滑層形成用溶液を塗布した磁気記録媒体を、120℃の恒温槽に入れ、10分間加熱する熱処理を行った。このことにより、保護層上に潤滑層を形成し、実施例1~28および比較例1~8の磁気記録媒体を得た。
 このようにして得られた実施例1~28および比較例1~8の磁気記録媒体に対して、それぞれ以下に示す方法により、潤滑層の膜厚測定、潤滑層と保護層との密着性(ボンド率)測定、ピックアップ特性試験、スピンオフ特性試験、平滑性(タッチダウンパワー)試験を行い、評価した。その結果を表3に示す。
[潤滑層の膜厚測定]
 フーリエ変換赤外分光光度計(FT-IR、商品名:Nicolet iS50、Thermo Fisher Scientific社製)を用いて、潤滑層のC-F振動伸縮におけるピーク高さを測定した。次いで、後述の方法により求めた相関式を用いて、潤滑層のC-F振動伸縮におけるピーク高さの測定値から、潤滑層の膜厚を算出した。
[相関式の算出方法]
 直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けたディスクを用意した。このディスクの保護層上に、6~20Å(2Å刻み)の膜厚でそれぞれ潤滑層を形成した。
 その後、潤滑層を形成した各ディスクについて、エリプソメータを用いて、潤滑層を形成していないディスク表面からの膜厚増加分を測定し、潤滑層の膜厚とした。また、潤滑層を形成した各ディスクについて、FT-IRを用いてC-F振動伸縮におけるピーク高さを測定した。
 そして、FT-IRにより得たピーク高さと、エリプソメータを用いて得た潤滑層の膜厚との相関式を求めた。
[潤滑層と保護層との密着性(ボンド率)測定]
 潤滑層の形成された磁気記録媒体について、上記の方法により潤滑層の膜厚を測定した後、溶媒であるバートレルXF中に10分間浸漬して、引き上げる方法により洗浄した。磁気記録媒体を溶媒中に浸漬する速度は10mm/secとし、引き上げる速度は1.2mm/secとした。その後、洗浄前に行った潤滑層の膜厚測定と同じ方法で、溶媒浸漬後(洗浄後)の潤滑層の膜厚を測定した。
 そして、洗浄前の潤滑層の膜厚をα、洗浄後(溶媒浸漬後)の潤滑層の膜厚をβとし、αとβとの比((β/α)×100(%))から潤滑剤の結合率(ボンド率)を算出した。算出したボンド率を用いて、以下に示す基準により、潤滑層と保護層との密着性を評価した。
 ボンド率は、潤滑層と保護層との結合力を表す指標として利用できる。潤滑層と保護層との密着性が悪いと、潤滑層に含まれる含フッ素エーテル化合物の一部がバートレルXFへ溶け出して、洗い流される。このため、洗浄後の潤滑層の膜厚が小さくなり、ボンド率が低下する。
「密着性(ボンド率)の評価基準」
◎(優):ボンド率65%以上
〇(良):ボンド率60%~64%
△(可):ボンド率40%~59%
×(不可):ボンド率39%以下
[ピックアップ特性試験]
 スピンスタンドに磁気記録媒体および磁気ヘッドを装着し、常温減圧下(約250torr)で回転を行い、10分間磁気ヘッドを定点浮上させた。その後、磁気ヘッドの磁気記録媒体と相対する面を、ESCA(Electron Spectroscopy for Chemical Analysis)分析装置を用いて分析した。ESCA分析装置を用いた分析により得られたフッ素由来ピークの強度(信号強度(a.u.))は、磁気ヘッドへの潤滑剤の付着量を示す。得られたフッ素由来ピークの信号強度を用いて、以下に示す評価基準により、ピックアップ特性を評価した。
「ピックアップ特性の評価基準」
◎(優):信号強度160以下(付着量が非常に少ない)
〇(良):信号強度161~300(付着量が少ない)
△(可):信号強度301~1000(付着量が多い)
×(不可):信号強度1001以上(付着量が非常に多い)
[スピンオフ特性試験]
 スピンスタンドに磁気記録媒体を装着し、80℃の環境下、回転速度10000rpmで72時間にわたり回転させた。この操作の前後において、磁気記録媒体の中心から半径20mmの位置における潤滑層の膜厚をFT-IRを用いて測定し、試験前後での潤滑層の膜厚減少率を算出した。算出した膜厚減少率を用いて、以下に示す評価基準により、スピンオフ特性を評価した。
「スピンオフ特性の評価基準」
◎(優):膜厚減少率2%以下
〇(良):膜厚減少率2%超、3%以下
△(可):膜厚減少率3%超、9%以下
×(不可):膜厚減少率9%超
[潤滑層の平滑性(タッチダウンパワー)試験]
 潤滑層表面の平滑性の評価指標として、タッチダウンパワー(TDp)を測定した。TDpの測定は、書込みテスター(DFHテスター)を用いて、以下の通り実施した。
 評価対象である磁気記録媒体を5400rpmで回転させ、中心から半径18mmの位置に磁気ヘッドを対向させて配置した。磁気ヘッドの書込み素子(DFH素子)のヒータ電力を徐々に上昇させ、ヒータの発熱によりDFH素子を熱膨張させた。そして、DFH素子の熱膨張により突出したDFH素子の先端が、磁気記録媒体の潤滑層と接触した時点でのヒータ電力をTDp(単位mW)として測定した。DFH素子の先端と、磁気記録媒体の潤滑層とが接触したことは、アコースティックエミッション(AE)センサにより検出した。
 一般的に、潤滑層の膜厚が薄くなると、DFH素子が潤滑層の表面に接触するのに必要なTDpは大きくなる。一方、同一の平均膜厚を有する磁気記録媒体同士で比較した場合には、潤滑層の表面凹凸が大きくなるほど、潤滑層の最大高さが大きくなるため、TDpの値は小さくなることが知られている。
「平滑性の評価基準」
◎(優):TDp値51.5mW以上(表面凹凸が非常に小さい)
〇(良):TDp値51.0~51.4mW(表面凹凸が小さい)
△(可):TDp値50.5~50.9mW(表面凹凸が大きい)
×(不可):TDp値50.4mW以下(表面凹凸が非常に大きい)
[総合評価]
 潤滑層と保護層との密着性(ボンド率)測定、ピックアップ特性試験、スピンオフ特性試験、平滑性(タッチダウンパワー)試験の結果から、以下に示す評価基準により、総合評価を行った。
「総合評価の評価基準」
◎(優):ボンド率、ピックアップ特性、スピンオフ特性、平滑性の評価がすべて◎(優)である。
〇(良):ボンド率、ピックアップ特性、スピンオフ特性、平滑性の評価が◎(優)または〇(良)であり、そのうちの1つ以上が〇(良)である。
△(可):ボンド率、ピックアップ特性、スピンオフ特性、平滑性の評価のうちの1つ以上が△(可)であり、×(不可)がない。
×(不可):ボンド率、ピックアップ特性、スピンオフ特性、平滑性の評価のうちの1つ以上が×(不可)である。
 表3に示すように、式(1)で表される含フッ素エーテル化合物を用いて潤滑層を形成した実施例1~28の磁気記録媒体は、ボンド率、ピックアップ特性、スピンオフ特性、平滑性の評価が全て◎(優)または○(良)であり、総合評価が◎(優)または○(良)であった。すなわち、実施例1~28の磁気記録媒体は、ピックアップおよびスピンオフが発生しにくく、保護層に対する密着性および平滑性の良好な潤滑層を有する。
 これに対し、比較例1~8の磁気記録媒体では、実施例1~28の磁気記録媒体と比較して、ボンド率、ピックアップ特性、スピンオフ特性、平滑性の評価がすべて劣る結果であった。
 より詳細には、アミド結合を持たない化合物を用いた比較例1の結果と、芳香族炭化水素を持たない化合物を用いた比較例2の結果と、式(1)におけるRがアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む化合物を用いた実施例1、5、6、8~14の結果とから、式(1)におけるRがアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含むことにより、ボンド率、ピックアップ特性、スピンオフ特性、平滑性の評価が良好となることが明らかになった。
 このことから、総合評価が◎(優)または○(良)である磁気記録媒体を得るには、潤滑層の材料として、Rの有するアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合して同一平面を形成する式(1)で表される含フッ素エーテル化合物を用いる必要があると推測される。
 また、比較例3と実施例11は両方とも、アミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む末端基を有する化合物を用いている。しかし、表3に示すように、比較例3と実施例11とでは、ボンド率、ピックアップ特性、スピンオフ特性、平滑性の評価結果に大きな差が見られた。これは、比較例3の磁気記録媒体では、ビシナルジオール構造を有する化合物を用いているため、潤滑層中に保護層との吸着に関与していない水酸基が存在していることによるものであると推測される。
 比較例4、比較例6~比較例8の磁気記録媒体は、アミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む末端基を有する化合物を用いていない。このため、表3に示すように、ボンド率、ピックアップ特性、スピンオフ特性、平滑性の評価が、実施例1~28の磁気記録媒体と比較して、劣る結果になったものと推定される。
 比較例5の磁気記録媒体は、分子中に含まれる水酸基の数が3未満である化合物を用いている。このため、含フッ素エーテル化合物中の水酸基による保護層への吸着力が不足して、ボンド率、ピックアップ特性、スピンオフ特性、平滑性の評価が、実施例1~28の磁気記録媒体と比較して、劣る結果になったものと推定される。
 本発明の含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を用いることにより、ピックアップおよびスピンオフが発生しにくく、保護層に対する密着性および平滑性の良好な潤滑層を形成できる。
 10・・・磁気記録媒体、11・・・基板、12・・・付着層、13・・・軟磁性層、14・・・第1下地層、15・・・第2下地層、16・・・磁性層、17・・・保護層、18・・・潤滑層。

Claims (11)

  1.  下記式(1)で表されることを特徴とする、含フッ素エーテル化合物。
    -[B]-[A]-O-CH-R-CH-O-[C]-[D]-R (1)
    (式(1)中、Rはアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である;Rはパーフルオロポリエーテル鎖である;Rは下記式(2)で表される;式(2)中、aは2~6の整数を表し、bは0または1を表す;Xは、水素原子、またはアミド結合のカルボニル炭素原子または窒素原子と芳香族炭化水素とが直接結合した基を含む炭素数7~18の有機基である;式(1)中、[A]は下記式(3-1)で表される;式(3-1)中のcは0~3の整数である;式(1)中、[B]は下記式(3-2)で表される;式(3-2)中のdは0~3の整数であり、eは2~5の整数である;ただし、式(3-1)中のcと式(3-2)中のdの合計は1~3である;式(1)において[A]と[B]は入れ替えてもよい;式(1)中、[C]は下記式(4-1)で表される;式(4-1)中のfは0~3の整数である;式(1)中、[D]は下記式(4-2)で表される;式(4-2)中のgは0~3の整数であり、hは2~5の整数である;ただし、式(4-1)中のfと式(4-2)中のgの合計は1~3である;式(1)において[C]と[D]は入れ替えてもよい;[C]がRに直接結合する場合、Rが水素原子となることはない;式(1)中の水酸基の数は3以上であり、RおよびR中の水酸基の数は、それぞれ0または1である。)
    Figure JPOXMLDOC01-appb-C000001
  2.  前記式(1)におけるRが、下記式(5-1)~(5-5)で表されるいずれかの構造である請求項1に記載の含フッ素エーテル化合物。
    Figure JPOXMLDOC01-appb-C000002


    (式(5-1)~(5-3)中、Xは1つまたは2つ以上の式(6-1)または(6-2)で表される基である。)
    (式(5-4)および(5-5)中、Yは水素原子または炭素数1~6のアルキル基である;Lは1~6の整数を表す;Zは、水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、式(6-1)または(6-2)で表される基から選ばれるいずれか1つまたは2つ以上である。)
    Figure JPOXMLDOC01-appb-C000003

    (式(6-1)中、YおよびYは、それぞれ独立して水素原子、炭素数1~7のアルキル基、YとYが互いに結合した環状構造のいずれかである;式(6-1)中に含まれる炭素数の合計は1~8である。)
    (式(6-2)中、Yは炭素数1~7のアルキル基であり、Yは水素原子または炭素数1~6のアルキル基である;YとYが互いに結合した環状構造であってもよい;式(6-2)中に含まれる炭素数の合計は2~8である。)
  3.  前記式(1)におけるR-[B]-[A]-と、-[C]-[D]-Rとが同じである請求項1または請求項2に記載の含フッ素エーテル化合物。
  4.  前記式(2)におけるXが、水素原子である請求項1または請求項2に記載の含フッ素エーテル化合物。
  5.  前記式(1)における-[C]-[D]-Rが下記式(7-1)~(7-3)のいずれかである請求項1または請求項2に記載の含フッ素エーテル化合物。
    Figure JPOXMLDOC01-appb-C000004

    (式(7-1)中、iは1または2を表し、jは1~5の整数を表す。)
    (式(7-2)中、kは2~5の整数を表し、tは0または1を表し、pは1~5の整数を表す。)
    (式(7-3)中、qは0または1を表し、rは1~5の整数を表し、sは1~4の整数を表す。)
  6.  前記式(1)におけるRが、下記式(8-1)で表される請求項1または請求項2に記載の含フッ素エーテル化合物。
    -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (8-1)
    (式(8-1)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~30を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(8-1)における繰り返し単位の配列順序には、特に制限はない。)
  7.  前記式(1)におけるRが、下記式(8-2)~(8-5)のいずれかである請求項1または請求項2に記載の含フッ素エーテル化合物。
    -CFO-(CFCFO)-(CFO)-CF-    (8-2)
    (式(8-2)中、u、vは平均重合度を示し、それぞれ0~30を表す;ただし、uまたはvが0.1以上である。)
    -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-       (8-3)
    (式(8-3)中、w8、w9は平均重合度を示し、それぞれ独立に0.1~30を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
    -CFCFO-(CFCFCFO)-CFCF-    (8-4)
    (式(8-4)中、xは平均重合度を示し、0.1~30を表す。)
    -CFCFCFO-(CFCFCFCFO)-CFCFCF- (8-5)
    (式(8-5)中、yは平均重合度を示し、0.1~30を表す。)
  8.  数平均分子量が500~10000の範囲内である請求項1または請求項2に記載の含フッ素エーテル化合物。
  9.  請求項1または請求項2に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
  10.  基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、前記潤滑層が、請求項1または請求項2に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
  11.  前記潤滑層の平均膜厚が0.5nm~2.0nmである請求項10に記載の磁気記録媒体。
PCT/JP2022/032769 2021-09-02 2022-08-31 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 WO2023033044A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280057143.9A CN117836268A (zh) 2021-09-02 2022-08-31 含氟醚化合物、磁记录介质用润滑剂及磁记录介质
JP2023545639A JPWO2023033044A1 (ja) 2021-09-02 2022-08-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021143420 2021-09-02
JP2021-143420 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023033044A1 true WO2023033044A1 (ja) 2023-03-09

Family

ID=85411329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032769 WO2023033044A1 (ja) 2021-09-02 2022-08-31 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Country Status (3)

Country Link
JP (1) JPWO2023033044A1 (ja)
CN (1) CN117836268A (ja)
WO (1) WO2023033044A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154403A1 (ja) * 2016-03-10 2017-09-14 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2018159250A1 (ja) * 2017-03-02 2018-09-07 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019039200A1 (ja) * 2017-08-21 2019-02-28 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019039265A1 (ja) * 2017-08-21 2019-02-28 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019049585A1 (ja) * 2017-09-07 2019-03-14 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019054148A1 (ja) * 2017-09-13 2019-03-21 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154403A1 (ja) * 2016-03-10 2017-09-14 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2018159250A1 (ja) * 2017-03-02 2018-09-07 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019039200A1 (ja) * 2017-08-21 2019-02-28 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019039265A1 (ja) * 2017-08-21 2019-02-28 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019049585A1 (ja) * 2017-09-07 2019-03-14 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019054148A1 (ja) * 2017-09-13 2019-03-21 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Also Published As

Publication number Publication date
JPWO2023033044A1 (ja) 2023-03-09
CN117836268A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
JP7213813B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7149947B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7138646B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7177782B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021020066A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
US11820953B2 (en) Fluorine-containing ether compound, lubricant for magnetic recording medium and magnetic recording medium
JP7138644B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
US20230120626A1 (en) Fluorine-containing ether compound, lubricant for magnetic recording medium, and magnetic recording medium
JPWO2018139058A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021020076A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2018159378A1 (ja) 磁気記録媒体用潤滑剤および磁気記録媒体の製造方法
WO2023033044A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022039079A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7338631B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022131202A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021157563A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7342875B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022215726A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023085256A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022215703A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023112813A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022163708A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024071392A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023033055A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023276954A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545639

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280057143.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE