WO2024048569A1 - 含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体 - Google Patents

含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体 Download PDF

Info

Publication number
WO2024048569A1
WO2024048569A1 PCT/JP2023/031187 JP2023031187W WO2024048569A1 WO 2024048569 A1 WO2024048569 A1 WO 2024048569A1 JP 2023031187 W JP2023031187 W JP 2023031187W WO 2024048569 A1 WO2024048569 A1 WO 2024048569A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound
fluorine
represented
Prior art date
Application number
PCT/JP2023/031187
Other languages
English (en)
French (fr)
Inventor
優 丹治
剛 加藤
大輔 柳生
直也 福本
綾乃 浅野
夏実 吉村
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024048569A1 publication Critical patent/WO2024048569A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/02Preparation of ethers from oxiranes
    • C07C41/03Preparation of ethers from oxiranes by reaction of oxirane rings with hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/50Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
    • C10M105/54Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen containing carbon, hydrogen, halogen and oxygen

Definitions

  • the present invention relates to a fluorine-containing ether compound, a method for producing the same, a lubricant for magnetic recording media, and a magnetic recording medium.
  • some magnetic recording media have a recording layer formed on a substrate and a protective layer made of carbon or the like formed on the recording layer.
  • the protective layer protects the information recorded on the recording layer and improves the sliding properties of the magnetic head.
  • simply providing a protective layer on the recording layer does not provide sufficient durability of the magnetic recording medium. For this reason, a lubricant is generally applied to the surface of the protective layer to form a lubricant layer.
  • a lubricant used when forming a lubricant layer of a magnetic recording medium for example, a compound having a polar group such as a hydroxyl group or an amino group at the end of a fluorine-based polymer having a repeating structure containing -CF 2 - is used. It has been proposed that it contains
  • Patent Document 1 describes a skeleton in which two perfluoropolyether chains are bonded to both ends of a glycerin structure (-OCH 2 CH (OH) CH 2 O-) via methylene groups (-CH 2 -).
  • a fluorine-containing ether compound having a terminal group having a polar group bonded to both ends thereof via a methylene group is disclosed.
  • Patent Document 2 and Patent Document 3 disclose that three perfluoropolyether chains have a skeleton bonded via a linking group having one polar group, and methylene groups (-CH 2 -) are attached on both sides of the skeleton.
  • a fluorine-containing ether compound in which terminal groups each having a polar group are bonded to each other via a fluorine-containing ether compound.
  • Patent Document 4 discloses that three perfluoropolyether chains have a skeleton bonded via a linking group having one or more polar groups, and on both sides of the skeleton are bonded via methylene groups (-CH 2 -). , discloses a fluorine-containing ether compound in which terminal groups each having a polar group are bonded.
  • Patent Document 5 discloses a fluoropolymer in which a plurality of perfluoropolyether chains are connected by an aliphatic hydrocarbon chain having a polar group. Further, in Patent Document 6, a plurality of perfluoropolyether groups are connected via a linking group consisting of a hydrocarbon group having at least one hydroxyl group, and terminal groups having at least one hydroxyl group are arranged at both ends. fluoropolyether compounds are disclosed.
  • the present invention has been made in view of the above circumstances, and provides a material for a lubricant for magnetic recording media that has good flying stability for a magnetic head, can form a lubricant layer that is highly effective in inhibiting corrosion of magnetic recording media, and provides a material for a lubricant for magnetic recording media.
  • An object of the present invention is to provide a fluorine-containing ether compound that can be suitably used as a fluorine-containing ether compound and a method for producing the same.
  • Another object of the present invention is to provide a lubricant for magnetic recording media, which contains the fluorine-containing ether compound of the present invention and can form a lubricant layer that has good flying stability for a magnetic head and is highly effective in inhibiting corrosion of magnetic recording media. With the goal.
  • Another object of the present invention is to provide a magnetic recording medium that has a lubricating layer containing the fluorine-containing ether compound of the present invention, has good flying stability of a magnetic head, and has excellent
  • a first aspect of the present invention provides the following fluorine-containing ether compound.
  • a fluorine-containing ether compound represented by the following formula (1).
  • R 2a , R 2b , R 2c and R 2d are perfluoropolyether chains;
  • R 2a , R 2b , R 2c and R 2d are partially or completely the same and
  • R 3a , R 3b and R 3c are divalent linking groups having one or more polar groups;
  • R 3a , R 3b and R 3c are partially or completely may be the same or different; at least one of R 3a , R 3b and R 3c is represented by formula (3);
  • R 1 and R 4 have a polar group of 1 A terminal group having 1 to 50 carbon atoms, which may be the same or different
  • the fluorine-containing ether compound of the first aspect of the present invention preferably has the characteristics described in [2] to [12] below. It is also preferable to arbitrarily combine two or more of the features described in [2] to [12] below. [2]
  • R 3a , R 3b and R 3c in the formula (1) is a divalent linking group that is not the formula (3), and is a divalent linking group that is not the formula (3).
  • the divalent linking group that is not the formula (3) is each independently a linking group represented by any of the following formulas (3-1) to (3-4), as described in [6] fluorine-containing ether compound.
  • R 2a and R 2d are the same, R 2b and R 2c are the same, and the atoms contained in R 3a and the atoms contained in R 3c are different from each other in R 3b .
  • R 2a , R 2b , R 2c , and R 2d in the formula (1) are all the same, R 3a , R 3b , and R 3c are all represented by formula (3), and R 1 and R 4 is the same as the fluorine-containing ether compound according to [5].
  • R 2a , R 2b , R 2c , and R 2d in the formula (1) are each independently a perfluoropolyether chain represented by the following formula (4), [1] to [9] ]
  • w2, w3, w4, and w5 indicate the average degree of polymerization, and each independently represents 0 to 20; however, all of w2, w3, w4, and w5 are They never become 0 at the same time; w1 and w6 are average values representing the number of CF 2 and each independently represents 1 to 3; (CF 2 O), (CF There is no particular restriction on the arrangement order of (CF 2 CF 2 O), (CF 2 CF 2 CF 2 O), and (CF 2 CF 2 CF 2 CF 2 O).)
  • R 2a , R 2b , R 2c , and R 2d in the formula (1) each independently represent a perfluoropolyether chain represented by the following formulas (4-1) to (4-4).
  • a second aspect of the present invention provides the following lubricant for magnetic recording media.
  • a third aspect of the present invention provides the following magnetic recording medium.
  • a magnetic recording medium in which at least a magnetic layer, a protective layer, and a lubricant layer are sequentially provided on a substrate A magnetic recording medium characterized in that the lubricating layer contains the fluorine-containing ether compound according to any one of [1] to [12].
  • the magnetic recording medium according to the third aspect of the present invention preferably has the characteristics described in [15] below.
  • the magnetic recording medium according to [14], wherein the lubricating layer has an average thickness of 0.5 nm to 2.0 nm.
  • a fourth aspect of the present invention provides the following method for producing a fluorine-containing ether compound.
  • the linked structure manufacturing step includes intermediate compound 2a having a group corresponding to -R 3a -CH 2 -R 2b -CH 2 - in the formula (1) and -CH 2 -R 2c in the formula (1).
  • a method for producing a fluorine-containing ether compound comprising an R 2c side reaction step of reacting the R 2c side end of the compound having a group corresponding to R 3b with the intermediate compound 2b.
  • the method for producing a fluorine-containing ether compound according to the fourth aspect of the present invention preferably has the characteristics described in [17] below.
  • a method for producing a fluorine-containing ether compound in which R 1 and R 4 are arranged symmetrically, and R 1 and R 4 are the same In the end manufacturing step, simultaneously manufacturing the intermediate compound 1a and the intermediate compound 1b, In the connecting end manufacturing step, the intermediate compound 2a and the intermediate compound 2b are simultaneously manufactured, and the R 2b side reaction step and the R 2c side reaction step are performed simultaneously, The method for producing a fluorine-containing ether compound according to [16], wherein in the compound structure production step, the R 1 side reaction step and the R 4 side reaction step are performed simultaneously.
  • the fluorine-containing ether compound of the present invention is a compound represented by the above formula (1), and is suitable as a material for a lubricant for magnetic recording media. According to the method for producing a fluorine-containing ether compound of the present invention, a compound represented by the above formula (1) can be produced.
  • the magnetic recording medium lubricant of the present invention contains the fluorine-containing ether compound of the present invention. Therefore, the lubricant for magnetic recording media of the present invention can be uniformly applied in a thin thickness, and has a thinner thickness, good flying stability of the magnetic head, and a lubricant layer that is highly effective in suppressing corrosion of magnetic recording media. can be formed.
  • the magnetic recording medium of the present invention has a lubricating layer containing the fluorine-containing ether compound of the present invention. Even if the lubricating layer of the magnetic recording medium of the present invention is thin, good flying stability of the magnetic head can be obtained and corrosion of the magnetic recording medium can be effectively suppressed. Therefore, in the magnetic recording medium of the present invention, the thickness of the lubricating layer can be reduced to reduce the flying height of the magnetic head. Furthermore, the magnetic recording medium of the present invention has good flying stability of the magnetic head and has a lubricating layer that is highly effective in suppressing corrosion of the magnetic recording medium, so it is excellent in reliability and durability.
  • 1 is a flowchart for explaining an example of the method for producing a fluorine-containing ether compound of the present invention.
  • 1 is a schematic cross-sectional view showing an embodiment of a magnetic recording medium of the present invention.
  • a fluorine-containing material having a polar group such as a hydroxyl group at the end of a chain structure has been used as a material for a magnetic recording medium lubricant (hereinafter sometimes abbreviated as "lubricant") applied to the surface of a protective layer.
  • lubricant a magnetic recording medium lubricant
  • Ether compounds are preferably used.
  • the polar groups in the fluorine-containing ether compound combine with active sites on the protective layer to improve the adhesion of the lubricating layer to the protective layer. For this reason, fluorine-containing ether compounds having polar groups not only at the ends of the chain structure but also at the center of the chain structure are particularly preferably used as lubricant materials.
  • the present inventors focused on the bond between the polar group contained in the fluorine-containing ether compound and the active site on the protective layer.
  • polar groups that are not involved in bonding with the active sites on the protective layer are less likely to form, and it has good adhesion to the protective layer, and even if the thickness is reduced, the coating state on the protective layer is uniform, and the magnetic head.
  • Such a fluorine-containing ether compound is unlikely to produce polar groups that do not bond with the functional groups (active sites) present in large numbers on the protective layer, and has good adhesion to the protective layer, for the reasons described below. From this, it is presumed that the above-mentioned fluorine-containing ether compound can form a lubricating layer having a uniform coating state even if the thickness is reduced.
  • perfluoropolyether chains are arranged between the three divalent linking groups and between the divalent linking group and the two terminal groups in the fluorine-containing ether compound. has been done. Therefore, the distance between the polar groups of adjacent divalent linking groups and the distance between the polar group of the terminal group and the polar group of the divalent linking group adjacent to the terminal group are appropriate. Furthermore, at least one of the three divalent linking groups is a glycerin structure (-OCH 2 CH(OH)CH 2 O-) with excellent flexibility.
  • the oxygen atoms placed at both ends of the glycerin structure form an ether bond (-O-) with the methylene groups (-CH 2 -) placed on both sides.
  • These two ether bonds impart appropriate flexibility to the fluorine-containing ether compound and increase the affinity between one hydroxyl group of the glycerin structure and the protective layer.
  • the distance between the polar groups of the two terminal groups and the three divalent linking groups is appropriate, the distance between the polar groups of the two terminal groups and the three divalent linking groups is appropriate.
  • the polar groups possessed by the protective layer are less likely to aggregate, and polar groups that do not bond to the active sites on the protective layer are less likely to occur.
  • both ends of each of the four perfluoropolyether chains are closely attached to the protective layer by the terminal group and/or the polar group of the divalent linking group.
  • one hydroxyl group (-OH) of the glycerin structure (-OCH 2 CH (OH) CH 2 O-) contained in at least one of the above fluorine-containing ether compounds causes the fluorine-containing ether compound and the protective layer to adhere to each other. let For these reasons, the state of the fluorine-containing ether compound coated on the protective layer is unlikely to become bulky, and the fluorine-containing ether compound easily wets and spreads on the protective layer. As a result, it is presumed that the above-mentioned fluorine-containing ether compound can form a lubricating layer having a uniform coating state even if the thickness is reduced.
  • the present inventors have found that even if the thickness is small, the flying stability of the magnetic head is good, and the lubricant has a high corrosion inhibiting effect on the magnetic recording medium. It was confirmed that a layer could be formed, and the present invention was conceived.
  • the fluorine-containing ether compound of this embodiment is represented by the following formula (1).
  • R 2a , R 2b , R 2c and R 2d are perfluoropolyether chains;
  • R 2a , R 2b , R 2c and R 2d are partially or completely the same and
  • R 3a , R 3b and R 3c are divalent linking groups having one or more polar groups;
  • R 3a , R 3b and R 3c are partially or completely may be the same or different; at least one of R 3a , R 3b and R 3c is represented by formula (3);
  • R 1 and R 4 have a polar group of 1 A terminal group having 1 to 50 carbon atom
  • the fluorine-containing ether compound of the present embodiment has a polarity represented by R 3a , R 3b and R 3c (hereinafter, these may be collectively referred to as “R 3 ”) as shown in formula (1). It has three divalent linking groups having one or more groups, and is represented by R 2a , R 2b , R 2c and R 2d (hereinafter, these may be collectively referred to as “R 2 "). It has four fluoropolyether chains (hereinafter sometimes referred to as "PFPE chains").
  • PFPE chains fluoropolyether chains
  • the fluorine-containing ether compound of this embodiment has a divalent linking group R 3b having one or more polar groups as the center, PFPE chains (R 2b , R 2c ) on both sides, and divalent linking groups (R 3a , It has a structure in which R 3c ) and PFPE chains (R 2a , R 2d ) are arranged in this order, and terminal groups (R 1 or R 4 ) are arranged on both sides of the skeleton. Therefore, the fluorine-containing ether compound of the present embodiment has good adhesion to the protective layer, easily spreads uniformly on the protective layer, and has a uniform film thickness even when the thickness is reduced. It is easy to obtain layers.
  • a skeleton in which PFPE chains and divalent linking groups having one or more polar groups are arranged alternately and the skeleton is composed of five or more PFPE chains and four or more divalent linking groups.
  • the entire molecule becomes large and its mobility decreases, making it difficult to wet and spread on the protective layer. Therefore, a compound having a skeleton consisting of five or more PFPE chains and four or more divalent linking groups also tends to have an uneven coating state on the protective layer with the fluorine-containing ether compound.
  • each of the three R3 's is a divalent linking group having one or more polar groups. At least one of the three R3 's is represented by formula (3).
  • the linking group represented by formula (3) may be referred to as a "glycerin structure”.
  • R 3 is located between each of the four R 2 PFPE chains. As a result, R3 brings the fluorine-containing ether compound and the protective layer into close contact, forming a thin lubricating layer with sufficient coverage.
  • three R 3 's may be partially or entirely the same, or may be different. At least one of the three R3s is formula (3), preferably two of the three R3s are formula (3), and more preferably all three R3s are formula (3). preferable.
  • the adhesion between the fluorine-containing ether compound and the protective layer becomes even better.
  • R 3a and R 3c are formula (3). This is because the coating state of the fluorine-containing ether compound on the protective layer becomes even more uniform.
  • R 3 R 3a , R 3b and R 3c
  • the coating state of the fluorine-containing ether compound on the protective layer becomes even more uniform, improving the flying stability of the magnetic head and magnetic recording. It is possible to form a lubricating layer that is more effective in suppressing corrosion of the medium.
  • the divalent linking group represented by R 3 is preferably a group in which oxygen atoms are placed at both ends.
  • the oxygen atoms placed at both ends of the linking group form an ether bond (-O-) with the methylene groups (-CH 2 -) placed on both sides of R 3 .
  • These two ether bonds impart appropriate flexibility to the fluorine-containing ether compound represented by formula (1), and improve the affinity between the polar group of the divalent linking group represented by R 3 and the protective layer. increase
  • the divalent linking group represented by R 3 has a polar group bonded to one or more carbon atoms of an alkylene group having 3 to 9 carbon atoms, which may contain an oxygen atom between carbon atoms, A group having oxygen atoms at both ends is preferable.
  • the alkylene group having 3 to 9 carbon atoms is preferably an alkylene group having 3 to 6 carbon atoms, more preferably an alkylene group having 3 to 4 carbon atoms.
  • the alkylene group having 3 to 9 carbon atoms preferably has a linear structure.
  • R 3 preferably has a polar group bonded to a carbon atom not adjacent to an oxygen atom of a linear alkylene group having 3 to 9 carbon atoms. This is because the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, resulting in a lubricating layer with better adhesion.
  • each of the three R3s contains a hydroxyl group as a polar group.
  • the hydroxyl group has a strong interaction with a protective layer, especially a protective layer formed of a carbon-based material.
  • the lubricating layer containing the fluorine-containing ether compound has even higher adhesion to the protective layer.
  • the fluorine-containing ether compound since it is preferable that all the polar groups of the three R 3 (R 3a , R 3b and R 3c ) be hydroxyl groups. preferable.
  • the number of polar groups each of the three R 3 has is preferably 1 to 3, more preferably 1 or 2.
  • some or all of the polar groups may be the same or different.
  • each of the divalent linking groups that are not of formula (3) is independently Preferably, it is a divalent linking group having 4 to 9 carbon atoms and having 1 to 3 hydroxyl groups.
  • a divalent linking group other than formula (3) is 2 consisting of a combination of an oxygen atom (-O-), a methylene group (-CH 2 -), and a methylene group to which a hydroxyl group is bonded (-CH(OH)-). More preferably, it is a valent linking group.
  • the divalent linking groups other than the formula (3) are each independently one of the following formulas (3-1) to (3-4).
  • formulas (3-1) to (3-4) the leftmost oxygen atom is bonded to the methylene group on the R 1 side in formula (1), and the rightmost oxygen atom is bonded to the methylene group on the R 1 side in formula (1). Bonds to the methylene group on the R 4 side.
  • d in formula (3-1) is 2 or 3, preferably 2.
  • d in formula (3-1) is 2, the hydrophilicity of the divalent linking group represented by R 3 does not become too high, and water, which causes corrosion, is prevented from being attracted to the lubricating layer. This results in a lubricating layer with better corrosion resistance.
  • e is an integer of 2 to 4, preferably 2 or 3, and more preferably 2. This is because the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, resulting in a lubricating layer with better adhesion.
  • f is an integer of 2 to 4, preferably 2 or 3, and more preferably 2.
  • g is an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 0. This is because the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, resulting in a lubricating layer with better adhesion.
  • the linking groups represented by formulas (3-2) and (3-3) have a structure in which 1 to 3 methylene groups are extended from formula (3) (glycerin structure). Therefore, in a lubricating layer containing a fluorine-containing ether compound in which at least one of the three R 3 is of the formula (3-2) or (3-3), all three R 3 are of the formula (3) (glycerin structure ) has better hydrophobicity. As a result, the lubricating layer can effectively inhibit the intrusion of water, which causes corrosion of the magnetic recording medium, and is highly effective in suppressing corrosion of the magnetic recording medium.
  • R 3a and R 3c are arranged symmetrically with respect to R 3b .
  • a compound in which R 3a and R 3c are represented by formula (3); a compound in which R 3a and R 3c are represented by formula (3-1), and the value of d in formula (3-1) is the same.
  • One of R 3a and R 3c is represented by formula (3-2), the other is represented by formula (3-3), and e in formula (3-2) and f in formula (3-3)
  • R 3a and R 3c are represented by the formula (3-4) and the values of g in the formula (3-4) are the same.
  • R 3a and R 3c are represented by formula (3-2), the other is represented by formula (3-3), and e in formula (3-2) and f in formula (3-3) are When the values are the same, it is preferable that R 3a is represented by formula (3-3) and R 3c is represented by formula (3-2).
  • R 2 is a perfluoropolyether chain.
  • R 2a , R 2b , R 2c and R 2d perfluoropolyether chain.
  • R 2 cover the surface of the protective layer and provide lubrication to the lubricant layer. This reduces the frictional force between the magnetic head and the protective layer.
  • the PFPE chain represented by R 2 is appropriately selected depending on the performance required of a lubricant containing a fluorine-containing ether compound.
  • the fluorine-containing ether compound represented by formula (1) contains four PFPE chains: R 2a , R 2b , R 2c , and R 2d . Since the fluorine-containing ether compound represented by formula (1) contains four PFPE chains, for example, it can connect two or three PFPE chains via a skeleton having only one PFPE chain or a linking group having a polar group. Compared to a fluorine-containing ether compound having a skeleton in which the terminal groups (R 1 , R 4 in formula (1)) and the linking groups (R 3a , R 3b in formula (1)) contained in the skeleton are bonded, and R 3c ) are unlikely to aggregate with each other. For this reason, the fluorine-containing ether compound represented by formula (1) has insufficient adhesion with the protective layer due to the aggregation of the polar groups in the molecule, resulting in a decrease in floating stability and corrosion resistance. becomes suppressed.
  • Part or all of the four R 2 may be the same, or may be different. It is preferable that R 2a and R 2d are the same, and R 2b and R 2c are the same among the four R 2 , and it is more preferable that all four R 2 are the same. This is because the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, resulting in a lubricating layer with better adhesion.
  • Two or more of the four R 2 's being the same means that two or more of the four R 2 's have the same repeating unit structure of the PFPE chain.
  • the same R 2 also includes those having the same repeating unit structure but different average degrees of polymerization.
  • Examples of the PFPE chain represented by R 2 include those made of a perfluoroalkylene oxide polymer or copolymer.
  • Examples of the perfluoroalkylene oxide include perfluoromethylene oxide, perfluoroethylene oxide, perfluoro-n-propylene oxide, perfluoroisopropylene oxide, and perfluorobutylene oxide.
  • R 2 in formula (1) are each independently a PFPE chain represented by the following formula (4) derived from a polymer or copolymer of perfluoroalkylene oxide, for example.
  • w2, w3, w4, and w5 indicate the average degree of polymerization, and each independently represents 0 to 20; however, all of w2, w3, w4, and w5 are They never become 0 at the same time; w1 and w6 are average values representing the number of CF 2 and each independently represents 1 to 3; (CF 2 O), (CF There are no particular restrictions on the arrangement order of 2 CF 2 O), (CF 2 CF 2 CF 2
  • w2, w3, w4, and w5 represent average degrees of polymerization, and each independently represents 0 to 20, preferably 0 to 15, and more preferably 0 to 10.
  • w1 and w6 are average values indicating the number of CF 2 and each independently represents 1 to 3.
  • w1 and w6 are determined depending on the structure of repeating units arranged at the ends of the chain structure in the PFPE chain represented by formula (4).
  • (CF 2 O), (CF 2 CF 2 O), (CF 2 CF 2 CF 2 O), and (CF 2 CF 2 CF 2 O) in formula (4) are repeating units. There is no particular restriction on the arrangement order of the repeating units in formula (4). Furthermore, there is no particular restriction on the number of types of repeating units in formula (4).
  • the PFPE chains represented by R 2 are each independently preferably any one selected from PFPE chains represented by the following formulas (4-1) to (4-4).
  • the number of oxygen atoms relative to the number of carbon atoms in the PFPE chain ether The ratio of bonds (-O-) is appropriate. Therefore, the fluorine-containing ether compound has appropriate hardness.
  • the fluorine-containing ether compound applied on the protective layer is unlikely to aggregate on the protective layer, and a thinner lubricating layer can be formed with a sufficient coverage. Furthermore, since the fluorine-containing ether compound has appropriate flexibility, a lubricating layer with better flying stability can be formed.
  • formula (4-1) there is no particular restriction on the arrangement order of the repeating units (OCF 2 CF 2 ) and (OCF 2 ).
  • the number h of (OCF 2 CF 2 ) and the number i of (OCF 2 ) may be the same or different.
  • the PFPE chain represented by formula (4-1) may be a polymer of (OCF 2 CF 2 ).
  • the PFPE chain represented by formula (4-1) is a random copolymer, a block copolymer, or an alternating copolymer consisting of (OCF 2 CF 2 ) and (OCF 2 ). Good too.
  • h indicating the average degree of polymerization is 1 to 20, i is 0 to 20, j is 1 to 15, and k is 1 to 10, so good lubrication is achieved.
  • the resulting fluorine-containing ether compound provides a lubricating layer with properties.
  • h and i, which indicate the average degree of polymerization are 20 or less, j is 15 or less, and k is 10 or less, so the viscosity of the fluorine-containing ether compound is high. It is preferable because it does not become too thick and the lubricant containing it is easy to apply.
  • h, i, j, and k which indicate the average degree of polymerization, are preferably from 1 to 10 because the fluorine-containing ether compound easily spreads on the protective layer and provides a lubricating layer with a uniform thickness. , more preferably from 1.5 to 8, and even more preferably from 2 to 7.
  • formula (4-4) there is no particular restriction on the arrangement order of the repeating units (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O).
  • the number w8 of (CF 2 CF 2 CF 2 O) and the number w9 of (CF 2 CF 2 O) indicating the average degree of polymerization may be the same or different.
  • Formula (4-4) includes a random copolymer, a block copolymer, or an alternating copolymer consisting of monomer units (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O). It may be.
  • w8 and w9 indicating the average degree of polymerization are each independently from 1 to 20, preferably from 1 to 15, and more preferably from 1 to 10.
  • w7 and w10 in formula (4-4) are average values indicating the number of CF 2 and each independently represents 1 to 2.
  • w7 and w10 are determined depending on the structure of the repeating unit arranged at the end of the chain structure in the PFPE chain represented by formula (4-4).
  • R 1 and R 4 are terminal groups having 1 to 50 carbon atoms and having one or more polar groups.
  • R 1 and R 4 each have one or more polar groups, so when a lubricant containing them is used to form a lubricant layer on the protective layer, , a favorable interaction occurs between the lubricating layer and the protective layer.
  • R 1 and R 4 can be appropriately selected depending on the performance required of a lubricant containing a fluorine-containing ether compound.
  • R 1 and R 4 may be the same or different.
  • the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, and a lubricating layer with better adhesion can be formed.
  • the number of polar groups contained in each of R 1 and R 4 is 1 or more, preferably 1 to 3, and more preferably 2 to 3. This is because the fluorine-containing ether compound has high adhesion to the protective layer and can form a lubricating layer with superior floating stability and corrosion inhibiting effect.
  • the type of polar group possessed by R 1 and/or R 4 containing two or more polar groups may be only one type. However, two or more types may be used.
  • R 1 and R 4 contain one or more hydroxyl groups as polar groups.
  • the polar group of R 1 and/or R 4 contains a hydroxyl group
  • the total number of hydroxyl groups contained in R 1 and hydroxyl groups contained in R 4 in formula (1) is preferably 2 to 6, It is more preferably 3 to 5, and most preferably 3 to 4.
  • the fluorine-containing ether compound can form a lubricating layer with high adhesion to the protective layer.
  • the total number of the above-mentioned hydroxyl groups is 6 or less, the number of hydroxyl groups that are not involved in the bonding between the lubricating layer and the active sites on the protective layer decreases. Therefore, it is possible to prevent the hydroxyl groups that are not involved in the bonding between the lubricating layer and the active sites on the protective layer from agglomerating, forming protrusions, and colliding with the magnetic head. Therefore, it is possible to form a lubricating layer with better flying stability.
  • the total number of the above-mentioned hydroxyl groups is 4 or less, the hydrophobicity of the lubricating layer containing the fluorine-containing ether compound will be sufficiently high. Therefore, it is possible to prevent water, which causes corrosion of the magnetic recording medium, from being attracted to the lubricating layer. Therefore, it is possible to form a lubricating layer that can more effectively suppress contamination and corrosion of the magnetic recording medium.
  • the number of hydroxyl groups contained in R 1 and/or R 4 whose polar group is only a hydroxyl group is preferably 2 to 3, respectively. It is more preferable that When the number of hydroxyl groups contained in R 1 and/or R 4 in which the polar group is only a hydroxyl group is 2 or more, the lubricating layer containing the fluorine-containing ether compound has high adhesion (adhesion) with the protective layer. This improves the flying stability of the magnetic recording medium.
  • the number of hydroxyl groups contained in R 1 and/or R 4 in which the polar group is only a hydroxyl group is 3 or less, in a magnetic recording medium having a lubricating layer containing a fluorine-containing ether compound, the fluorine-containing ether compound If the polarity is too high, the lubricating layer can prevent water from being induced on the surface of the protective layer, which can cause corrosion.
  • the terminal groups represented by R 1 and R 4 each have 1 to 50 carbon atoms, preferably 3 to 20 carbon atoms, and more preferably 4 to 15 carbon atoms. Since the number of carbon atoms in the terminal group represented by R 1 and R 4 is 1 or more, the hydrophobicity of the terminal group portion can be ensured. Therefore, water that causes corrosion can be prevented from being attracted to the lubricant layer, resulting in a lubricant layer with good corrosion resistance. Since the number of carbon atoms in the terminal groups represented by R 1 and R 4 is 50 or less, the terminal group portion has a flexible structure. As a result, a thin lubricant layer can be formed with sufficient coverage, resulting in a lubricant layer with good flying stability.
  • the terminal group represented by R 1 preferably has an oxygen atom at the end bonded to CH 2 adjacent to R 2a .
  • the terminal group represented by R 4 preferably has an oxygen atom at the end that is bonded to CH 2 adjacent to R 2d .
  • the oxygen atoms located at the ends of the terminal groups represented by R 1 and R 4 form an ether bond (-O-) with the atoms bonded on both sides thereof.
  • R 1 and R 4 are preferably a terminal group of one of the following formulas (2-1) to (2-4). , R 1 and R 4 are each independently a terminal group of any one of the following formulas (2-1) to (2-4).
  • Each of the hydroxyl groups included in formulas (2-1) to (2-3) is bonded to a different carbon atom.
  • carbon atoms to which hydroxyl groups are bonded are bonded to each other via a linking group containing a carbon atom to which a hydroxyl group is not bonded. Therefore, when at least one of R 1 and R 4 is represented by formulas (2-1) to (2-3), the fluorine-containing ether compound represented by formula (1), for example, has a hydroxyl group bonded to it. It has better hydrophobicity than the case where the carbon atoms bond to each other.
  • the lubricating layer containing the fluorine-containing ether compound represented by formula (1) is free from water penetration. It is presumed that corrosion of the magnetic recording medium can be effectively suppressed.
  • the terminal hydroxyl group is Both the hydroxyl group and the hydroxyl group adjacent to the terminal hydroxyl group can be oriented to allow close contact with the protective layer. Therefore, it is presumed that excellent flying stability can be obtained. From the above, it is preferable that at least one of R 1 and R 4 is one of formulas (2-1) to (2-3).
  • the linking group between the carbon atom to which the terminal hydroxyl group is bonded and the carbon atom to which the hydroxyl group adjacent to the terminal hydroxyl group is bonded is Contains oxygen atoms.
  • the above-mentioned linking group has a linear structure consisting of 3 to 8 atoms including carbon atoms to which no hydroxyl group is bonded. Even when the above-mentioned linking group contains an oxygen atom, if it has a linear structure consisting of three or more atoms including a carbon atom to which a hydroxyl group is not bonded, a fluorine-containing ether compound having good hydrophobicity. becomes.
  • the above-mentioned connecting group has a linear structure consisting of three or more atoms
  • the molecular mobility is appropriate, intramolecular aggregation is less likely to occur, and excellent adhesion with the protective layer can be obtained.
  • the above-mentioned connecting group has a linear structure consisting of 8 or less atoms
  • the hydrophobicity of the connecting group is too high and does not interfere with the adhesion with the protective layer.
  • a lubricating layer containing a fluorine-containing ether compound in which the connecting group contains an oxygen atom and has a linear structure consisting of the above number of atoms has excellent adhesion with the protective layer and has high flying stability. It can prevent water from entering and has a high corrosion inhibiting effect on magnetic recording media.
  • the linking group between the carbon atom to which the terminal hydroxyl group is bonded and the carbon atom to which the hydroxyl group adjacent to the terminal hydroxyl group is bonded does not contain an oxygen atom. Therefore, intramolecular interaction is small, intramolecular aggregation is less likely to occur, and it has excellent adhesion with the protective layer. Further, the above-mentioned linking group has a linear structure consisting of 1 to 3 atoms including a carbon atom to which no hydroxyl group is bonded.
  • the linking group does not contain an oxygen atom and has a linear structure consisting of one or more atoms containing a carbon atom to which no hydroxyl group is bonded
  • the fluorine-containing ether compound has good hydrophobicity.
  • the above-mentioned connecting group has a linear structure consisting of three or less atoms
  • the hydrophobicity of the connecting group is too high and does not interfere with the adhesion with the protective layer.
  • a lubricating layer containing a fluorine-containing ether compound in which the connecting group does not contain oxygen atoms and has a linear structure consisting of the number of atoms described above has excellent adhesion with the protective layer and has high flying stability. It can prevent water from entering, and has a high corrosion inhibiting effect on magnetic recording media.
  • the carbon atoms contained in the linking group arranged between the carbon atoms to which the hydroxyl group is bonded affect the hydrophobicity of the fluorine-containing ether compound. play a role in improving
  • the flexibility of the terminal groups (R 1 and R 4 ) may decrease, making it difficult to uniformly cover the entire surface of the protective layer. Therefore, in formula (2-1), q is preferably 1 or 2, and more preferably 1.
  • s is preferably 1 or 2, more preferably 1.
  • t is preferably 1 or 2, more preferably 1.
  • v is preferably 1 or 2, more preferably 1.
  • the terminal groups represented by formulas (2-1) to (2-3) all have only a hydroxyl group as a polar group.
  • the number of hydroxyl groups contained in R 1 and/or R 4 whose polar group is only a hydroxyl group is 2 to 2, respectively. It is preferably 3, and more preferably 2.
  • the number of hydroxyl groups is p+1, so p is preferably 1 or 2, more preferably 1.
  • the number of hydroxyl groups is r+2, so r is preferably 0 or 1, more preferably 0.
  • the number of hydroxyl groups is u+2, so u is preferably 0 or 1, more preferably 0.
  • the double bond may be a carbon-carbon bond, a carbon-oxygen bond, or a carbon-nitrogen bond.
  • the triple bond may be either a carbon-carbon bond or a carbon-nitrogen bond.
  • the organic group containing a double bond or triple bond represented by X is specifically selected from aromatic hydrocarbons, unsaturated heterocycles, alkenyl groups, alkynyl groups, cyano groups, and groups having amide bonds. Examples include organic groups containing at least one of the following.
  • the organic group represented by X may include a polar group. The number of carbon atoms contained in the organic group represented by X is preferably 2 to 15, more preferably 2 to 10.
  • the bond between the terminal group represented by formula (2-4) and the active site on the protective layer will be explained.
  • the hydroxyl group contained in formula (2-4) exhibits adsorption ability when the hydrogen atom interacts with locally charged sites on the protective layer through hydrogen bonds.
  • aromatic hydrocarbons, unsaturated heterocycles, alkenyl groups, and alkynyl groups have nonlocal charges. Therefore, the organic group represented by X contained in formula (2-4) is an organic group containing at least one selected from aromatic hydrocarbons, unsaturated heterocycles, alkenyl groups, and alkynyl groups.
  • the organic group represented by X exhibits adsorption ability by interacting with a region on the protective layer where the charge distribution is wide. Further, the cyano group and the group having an amide bond have a non-local charge and a broadly polarized charge. Therefore, when the organic group represented by X contained in formula (2-4) contains at least one selected from a cyano group and a group having an amide bond, the organic group represented by X is It can interact with both locally charged sites and sites with a spread charge distribution on the protective layer.
  • a lubricating layer containing a fluorine-containing ether compound in which at least one of R 1 and R 4 is represented by formula (2-4) has excellent adhesion with the protective layer, exhibits high floating stability, and has a high resistance to water penetration. This makes it possible to prevent corrosion, resulting in a highly effective corrosion inhibiting effect on magnetic recording media. From the above, it is preferable that at least one of R 1 and R 4 is represented by formula (2-4).
  • l in formula (2-4) is an integer of 1 to 3, preferably an integer of 1 to 2, and most preferably 1.
  • the number of l in formula (2-4) is the same as the number of hydroxyl groups in the terminal group contained in R 1 or R 4 . If l (the number of hydroxyl groups) in formula (2-4) is 3 or less, there will be too many hydroxyl groups in the terminal group represented by formula (2-4), and water that causes corrosion will form in the lubricating layer. A lubricating layer with good corrosion resistance can be obtained.
  • l m's each independently represent an integer of 1 to 4
  • l n's each independently represent an integer of 1 to 4.
  • m+n in one repeating unit (-(CH 2 ) m -CH(OH)-(CH 2 ) n -O-) in formula (2-4) is preferably 2 to 4, and preferably 2 to 4. More preferably, it is 3. This is because the structure of the repeating unit does not become rigid due to too many carbon atoms in the alkylene group in the repeating unit. Therefore, the end group portion has a flexible structure, and a thinner lubricant layer can be formed with sufficient coverage, resulting in a lubricant layer with good flying stability.
  • At least one of m and n in one repeating unit (-(CH 2 ) m -CH(OH)-(CH 2 ) n -O-) in formula (2-4) is 1. preferable. This is because the mobility of the hydroxyl group does not decrease due to too many carbon atoms in the alkylene group between the carbon atom to which the hydroxyl group is bonded and the ether oxygen atom.
  • X in formula (2-4) contains an aromatic hydrocarbon or an unsaturated heterocycle
  • X is -(CH 2 ) z1 -R 5 (wherein z1 represents an integer of 0 to 3; R 5 represents an aromatic hydrocarbon or an unsaturated heterocycle).
  • X in formula (2-4) contains an alkenyl group or an alkynyl group
  • X is preferably an alkenyl group having 2 to 8 carbon atoms or an alkynyl group having 3 to 8 carbon atoms.
  • X in formula (2-4) contains a cyano group or a group having an amide bond
  • X may be an organic group containing an aromatic hydrocarbon or an unsaturated heterocycle, which has a cyano group, an acetamido group, or a carboxamide group as a substituent.
  • Examples of the organic group containing a double bond or triple bond represented by X in formula (2-4) include phenyl group, methoxyphenyl group, fluorinated phenyl group, naphthyl group, and phenethyl group.
  • methoxyphenethyl group fluorinated phenethyl group, benzyl group, methoxybenzyl group, naphthylmethyl group, methoxynaphthyl group, pyrrolyl group, pyrazolyl group, methylpyrazolylmethyl group, imidazolyl group, furyl group, furfuryl group, oxazolyl group, isoxazolyl group , thienyl group, thienylethyl group, thiazolyl group, methylthiazolylethyl group, isothiazolyl group, pyridyl group, pyrimidinyl group, pyridazinyl group, pyrazinyl group, indolinyl group, benzofuranyl group, benzothienyl group, benzimidazolyl group, benzoxazolyl group group, benzothiazolyl group, benzopyrazolyl group, benzisoxazolyl group
  • the organic group represented by a fluorinated phenethyl group, a cyanoethyl group, a cyanopropyl group, an acetamidoethyl group, an acetamidopropyl group, and a phenyl group, a methoxyphenyl group, an allyl group, a butenyl group, a thienylethyl group, and a cyanoethyl group. , a cyanopropyl group, an acetamidoethyl group, and an acetamidopropyl group.
  • the organic group represented by X in formula (2-4) is either a cyanoethyl group or an acetamidoethyl group
  • the polarity of the organic group represented by It is possible to form a lubricating layer with excellent adhesion to the protective layer and better flying stability.
  • the organic group represented by X is any of an allyl group, a methoxyphenyl group, or a thienylethyl group
  • the organic group represented by A good lubricating layer can be formed.
  • R 1 and R 4 is a terminal group of one of the above formulas (2-1) to (2-4), and the other is a terminal group represented by the above formulas (2-1) to (2-4).
  • the other terminal group may be a terminal group having 1 to 50 carbon atoms and having one or more polar groups.
  • the other terminal group includes, for example, a terminal group having a hydroxyl group other than the terminal groups represented by the above formulas (2-1) to (2-4).
  • -OCH 2 CH 2 OH, -OCH 2 CH 2 CH 2 OH, -OCH 2 CH(OH)CH 2 OH, -OCH 2 CH(OH)CH 2 OCH examples include 2CH (OH) CH2OH .
  • R 2a and R 2d in formula (1) are the same, R 2b and R 2c are the same, and the atom contained in R 3a and R It is preferable that the atoms contained in 3c are arranged symmetrically with respect to R 3b , and that R 1 and R 4 are the same. This is because the fluorine-containing ether compound can be produced easily and efficiently. Furthermore, in the fluorine-containing ether compound represented by formula (1), all four R 2 in formula (1) are the same, and the atoms contained in R 3a and the atoms contained in R 3c are in R 3b . It is more preferable that R 1 and R 4 are the same. This is because the fluorine-containing ether compound can be produced easily and efficiently. Furthermore, it is more preferable that three R3s are the fluorine-containing ether compound represented by formula (3) because it can be produced more easily and efficiently.
  • the total number of hydroxyl groups contained in the molecule is preferably 5 to 9, more preferably 5 to 8.
  • the adsorption power of the entire molecule to the protective layer can be ensured, and a thinner lubricating layer can be formed with a sufficient coverage.
  • a lubricating layer with better flying stability can be formed.
  • the hydrophilicity of the entire molecule does not become too high, and water that causes corrosion can be prevented from being attracted to the lubricating layer, making it more resistant. Can form a lubricating layer with good corrosive properties.
  • the fluorine-containing ether compound represented by formula (1) is preferably one of the compounds represented by the following formulas (A) to (Z).
  • the compound represented by formula (1) is one of the compounds represented by the following formulas (A) to (Z)
  • the raw material is easily available and it has excellent adhesion even if it is thin.
  • Rf 1 , Rf 2 , and Rf 3 representing PFPE chains each have the following structure. That is, in the compounds represented by the following formulas (A) to (W) and (Z), Rf 1 is a PFPE chain represented by the above formula (4-1). In the compounds represented by the following formulas (X) and (Z), Rf 2 is a PFPE chain represented by the above formula (4-2). In the compound represented by the following formula (Y), Rf 3 is a PFPE chain represented by the above formula (4-3).
  • h and i in Rf 1 representing the PFPE chain in formulas (A) to (Z), j in Rf 2 , and k in Rf 3 are values indicating the average degree of polymerization, so they are not necessarily integers. do not have.
  • R 3 are all linking groups represented by formula (3).
  • R 1 and R 4 is a terminal group represented by any one of formulas (2-1) to (2-4). .
  • R 1 and R 4 in the formula (1) are terminal groups represented by the above formula (2-1), p is 1, and q is 1.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-1), p is 1, and q is 2.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-2), r is 0, and s is 1.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-3), and t is 1, u is 0, and v is 1. .
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by the above formula (2-1), p is 1, and q is 1.
  • R 4 is -OCH 2 CH(OH)CH 2 OH.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by the above formula (2-1), p is 1, and q is 1.
  • R 4 is -OCH 2 CH (OH) CH 2 OCH 2 CH (OH) CH 2 OH.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-1), p is 2, and q is 1.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by the above formula (2-1), p is 1, q is 1, and R 4 is the above formula ( In the terminal group represented by 2-1), p is 2 and q is 1.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-2), r is 1, and s is 1.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-3), and t is 1, u is 1, and v is 1. .
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-4), l is 2, m is 1, n is 1, and X is an allyl group.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-4), l is 1, m is 1, n is 1, and is p-methoxyphenyl group.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by the above formula (2-1), p is 1, q is 1, and R 4 is the above formula ( In the terminal group represented by 2-4), l is 1, m is 1, n is 1, and X is a p-methoxyphenyl group.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-4), l is 1, m is 1, n is 1, and is a thienylethyl group.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in the formula (1) are terminal groups represented by the above formula (2-4), l is 1, m is 1, n is 1, and is a cyanoethyl group.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by the above formula (2-1), p is 1, q is 1, and R 4 is the above formula ( In the terminal group represented by 2-4), l is 1, m is 1, n is 1, and X is a cyanoethyl group.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-4), l is 1, m is 1, n is 1, and is an acetamidoethyl group.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 in formula (1) is a terminal group represented by the above formula (2-1), p is 1, q is 1, and R 4 is the above formula ( In the terminal group represented by 2-4), l is 1, m is 1, n is 1, and X is an acetamidoethyl group.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-1), p is 1, and q is 1.
  • R 3a is a linking group represented by the above formula (3-3), f is 2, R 3b is a linking group represented by the above formula (3), and R 3c is a linking group represented by the above formula (3-2).
  • e is 2 in the linking group represented by The four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-1), p is 1, and q is 1.
  • R 3a and R 3c are connecting groups represented by the above formula (3), R 3b is a connecting group represented by the above formula (3-3), and f is 2.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-1), p is 1, and q is 1.
  • R 3a and R 3c are linking groups represented by the above formula (3), R 3b is a linking group represented by the above formula (3-1), and d is 2.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-1), p is 1, and q is 1.
  • R 3a and R 3c are linking groups represented by the above formula (3)
  • R 3b is a linking group represented by the above formula (3-4), and g is 0.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-1), p is 1, and q is 1.
  • R 3a and R 3c are linking groups represented by the above formula (3)
  • R 3b is a linking group represented by the above formula (3-4), and g is 4.
  • the four R 2 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-1), p is 1, and q is 1.
  • the four R 2 's are PFPE chains represented by the above formula (4-2).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-1), p is 1, and q is 1.
  • the four R 2 's are PFPE chains represented by the above formula (4-3).
  • R 1 and R 4 in formula (1) are terminal groups represented by the above formula (2-1), p is 1, and q is 1.
  • R 2a and R 2d are PFPE chains represented by the above formula (4-2), and R 2b and R 2c are PFPE chains represented by the above formula (4-1).
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different or may be partially or entirely the same; Me represents a methyl group.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different or partially or entirely the same; Me represents a methyl group.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; h and i in the four Rf 1s , respectively They may be different, or may be partially or entirely the same.
  • j indicates the average degree of polymerization and represents 1 to 15; j in the four Rf 2 's may be different, or may be partially or completely the same. There may be.
  • k indicates the average degree of polymerization and represents 1 to 10; the k's in the four Rf 3's may be different, or may be partly or completely the same.
  • j indicates the average degree of polymerization and represents 1 to 15; In the two Rf 2 , j may be the same or different; Formula In the two Rf 1s in (Z), h and i indicate the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; In the two Rf 1s , h and i are the same, respectively. (It may be different or it may be different.)
  • the fluorine-containing ether compound of the present embodiment preferably has a number average molecular weight (Mn) in the range of 500 to 10,000, more preferably in the range of 1,000 to 8,000, and more preferably in the range of 1,500 to 7,000. More preferably, it is within the range of 2,000 to 6,000.
  • Mn number average molecular weight
  • the lubricating layer made of the lubricant containing the fluorine-containing ether compound of this embodiment has excellent heat resistance.
  • the number average molecular weight of the fluorine-containing ether compound is more preferably 1000 or more.
  • the number average molecular weight of the fluorine-containing ether compound becomes appropriate, and by applying a lubricant containing this, a thin lubricating layer can be easily formed.
  • the number average molecular weight of the fluorine-containing ether compound is more preferably 8,000 or less because it provides a viscosity that is easy to handle when applied to a lubricant.
  • the number average molecular weight (Mn) of the fluorine-containing ether compound is a value measured by 1 H-NMR and 19 F-NMR using AVANCE III400 manufactured by Bruker Biospin. Specifically, the number of repeating units of the PFPE chain is calculated from the integral value measured by 19 F-NMR, and the number average molecular weight is determined.
  • NMR nuclear magnetic resonance
  • the sample is diluted into a hexafluorobenzene/d-acetone (4/1 v/v) solvent.
  • the standard for 19 F-NMR chemical shift is the peak of hexafluorobenzene at -164.7 ppm
  • the standard for 1 H-NMR chemical shift is the peak of acetone at 2.2 ppm.
  • the fluorine-containing ether compound of this embodiment is preferably subjected to molecular weight fractionation by an appropriate method to have a molecular weight dispersity (weight average molecular weight (Mw)/number average molecular weight (Mn) ratio) of 1.3 or less.
  • the method for molecular weight fractionation is not particularly limited, but for example, molecular weight fractionation by silica gel column chromatography, gel permeation chromatography (GPC), etc., molecular weight fractionation by supercritical extraction, etc. can be used.
  • the method for producing the fluorine-containing ether compound of this embodiment is not particularly limited, and can be produced using a conventionally known production method.
  • the fluorine-containing ether compound of this embodiment can be manufactured using, for example, the manufacturing method shown below.
  • FIG. 1 is a flowchart for explaining an example of the method for producing a fluorine-containing ether compound of the present invention.
  • (a) shown in FIG. 1 is a flowchart showing all steps in the method for producing a fluorine-containing ether compound.
  • (b) shown in FIG. 1 is a flowchart showing the connecting structure manufacturing process in (a) shown in FIG.
  • (c) shown in FIG. 1 is a flowchart showing the compound structure manufacturing process in (a) shown in FIG.
  • the method for producing a fluorine-containing ether compound of the present embodiment includes an end production step S1, a connected structure production step S2, and a compound structure production step S3.
  • End manufacturing process S1 In the edge production step S1, intermediate compound 1a having a group corresponding to R 1 -CH 2 -R 2a -CH 2 - in formula (1) and -CH 2 -R 2d -CH 2 in formula (1) -
  • An intermediate compound 1b having a group corresponding to R 4 is prepared. Either intermediate compound 1a or intermediate compound 1b may be produced first.
  • intermediate compound 1a and intermediate compound 1b can be produced, for example, by the method shown below.
  • a fluorine-based compound in which a hydroxymethyl group (-CH 2 OH) is placed at both ends of a perfluoropolyether chain corresponding to R 2a in formula (1) is prepared, and a The hydroxyl group of the hydroxymethyl group is reacted with an epoxy compound having a group corresponding to R 1 in formula (1). This yields an intermediate compound 1a having a group corresponding to R 1 at one end of the perfluoropolyether chain corresponding to R 2a .
  • the epoxy compound having a group corresponding to R 1 (or a group corresponding to R 4 ) in formula (1) for example, compounds represented by the following formulas (5-1) to (5-14) are used. be able to.
  • THP in the following formulas (5-1) to (5-10) represents a tetrahydropyranyl group.
  • Me in the following formula (5-11) represents a methyl group.
  • An epoxy compound having a group corresponding to R 1 (or a group corresponding to R 4 ) in formula (1) can be produced, for example, using the method shown below. That is, as shown in the following formula (6-1), an alcohol having a structure corresponding to a part of the terminal group represented by R 1 (or R 4 ) in formula (1), and a halogen compound having an epoxy group. It can be produced using a method of reacting with.
  • R represents a structure corresponding to a part of the terminal group represented by R 1 or R 4 in formula (1); a1 represents an integer of 1 or more.
  • the above-mentioned epoxy compound can also be produced using the method shown below. That is, as shown in the following formula (6-2), an alcohol having a structure corresponding to a part of the terminal group represented by R 1 (or R 4 ) in formula (1) and a halogen compound having an alkenyl group. react with. Thereafter, it can be produced using a method in which the obtained compound is oxidized by acting with m-chloroperbenzoic acid (mCPBA).
  • mCPBA m-chloroperbenzoic acid
  • R represents a structure corresponding to a part of the terminal group represented by R 1 or R 4 in formula (1); a2 represents an integer of 1 or more.
  • the above-mentioned epoxy compound can also be produced using the method shown below. That is, as shown in the following formula (6-3), an alcohol having a structure corresponding to a part of the terminal group represented by R 1 (or R 4 ) in formula (1), an alkenyl group and an epoxy group are combined. Addition reaction is carried out with the compound containing the compound. Thereafter, it can be produced by using a method in which the compound obtained by the addition reaction is oxidized by acting with m-chloroperbenzoic acid (mCPBA). After appropriately protecting the hydroxyl group generated by the addition reaction, it may be oxidized using mCPBA.
  • mCPBA m-chloroperbenzoic acid
  • R represents a structure corresponding to a part of the terminal group represented by R 1 or R 4 in formula (1); a3 and a4 each represent an integer of 0 or more; Y represents O or CH2 .
  • connection structure manufacturing process S2 In the linked structure manufacturing step S2, intermediate compound 3 having a group corresponding to -R 3a -CH 2 -R 2b -CH 2 -R 3b -CH 2 -R 2c -CH 2 -R 3c - in formula (1) Manufacture.
  • the connecting structure manufacturing process S2 may be performed after the end manufacturing process S1 or before the end manufacturing process S1.
  • the connection structure manufacturing process S2 includes a connection end manufacturing process S21, an R 2b side reaction process S22, and an R 2c side reaction process S23.
  • an intermediate compound 2a having a group corresponding to -R 3a -CH 2 -R 2b -CH 2 - in formula (1) and -CH 2 -R 2c - in formula (1) are used.
  • An intermediate compound 2b having a group corresponding to CH 2 --R 3c -- is produced. Either of the intermediate compound 2a and the intermediate compound 2b may be produced first.
  • the R 2b side reaction step S22 the R 2b side end of the compound having a group corresponding to R 3b in formula (1) is reacted with the intermediate compound 2a.
  • the R 2c side reaction step S23 the R 2c side end of the compound having a group corresponding to R 3b in formula (1) is reacted with the intermediate compound 2b.
  • the R 2c side reaction step S23 may be performed after the R 2b side reaction step S22 or before the R 2b side reaction step S22.
  • R 2b and R 2c in formula (1) are the same, and the atoms contained in R 3a and the atoms contained in R 3c are symmetrical with respect to R 3b .
  • the intermediate compound 2a and the intermediate compound 2b can be produced simultaneously in the linked structure production step S2. Therefore, a compound in which R 2b and R 2c in formula (1) are the same and the atoms contained in R 3a and the atoms contained in R 3c are arranged symmetrically with respect to R 3b can be easily produced efficiently. can.
  • intermediate compound 2a and intermediate compound 2b can be produced, for example, by the method shown below.
  • R 2b and R 2c are different and/or the atoms contained in R 3a and the atoms contained in R 3c are not arranged symmetrically with respect to R 3b (intermediate compound 2a and intermediate compound 2b If different)>
  • a fluorine compound in which a hydroxymethyl group (-CH 2 OH) is placed at both ends of a perfluoropolyether chain corresponding to R 2b in formula (1) is prepared, and a fluorine-based compound is prepared in which a hydroxymethyl group (-CH 2 OH) is placed at one end.
  • the hydroxyl group of the hydroxymethyl group is reacted with a halogen compound or an epoxy compound having an alkenyl group corresponding to R 3a . This yields an intermediate compound 2a having an alkenyl group corresponding to R 3a at one end of the perfluoropolyether chain corresponding to R 2b .
  • an intermediate compound 2a ( Intermediate compound 2b) is obtained.
  • halogen compound or epoxy compound having an alkenyl group corresponding to R 3a (or R 3c ) in formula (1) for example, compounds represented by the following formulas (7-1) to (7-5) are used. be able to.
  • the R 2b side reaction step S22 and the R 2c side reaction step S23 can be performed, for example, by the method shown below. ⁇ If R 2b and R 2c are different and/or the atoms contained in R 3a and the atoms contained in R 3c are not arranged symmetrically with respect to R 3b (intermediate compound 2a and intermediate compound 2b If different)> After reacting one molecule of intermediate compound 2a with a halogen compound or diepoxy compound having an epoxy group corresponding to R 3b (R 2b side reaction step S22), the obtained compound is converted into one molecule of intermediate compound 2b. ( R2c side reaction step S23).
  • intermediate compound 2b is reacted with a halogen compound or diepoxy compound having an epoxy group corresponding to R 3b (R 2c side reaction step S23), and then the obtained compound is used as one molecule of intermediate compound. React with compound 2a (R 2b side reaction step S22).
  • R 2b side reaction step S22 the perfluoropolyether chains corresponding to R 2b and R 2c in formula (1) are bonded to the linking group corresponding to R 3b via the methylene group, and each of the R 3a
  • An intermediate compound 3 is obtained having an alkenyl group corresponding to and an alkenyl group corresponding to R 3c .
  • halogen compound or diepoxy compound having an epoxy group corresponding to R 3b in formula (1) for example, compounds represented by the following formulas (8-1) to (8-5) can be used.
  • the compound structure manufacturing step S3 includes an R1 side reaction step S31 and an R4 side reaction step S32, as shown in FIG. 1(c).
  • R 1 side reaction step S31 the R 3a side end of intermediate compound 3 (or intermediate compound 3-1 described below) is reacted with intermediate compound 1a.
  • R 4 side reaction step S32 the R 3c side end of intermediate compound 3 (or intermediate compound 3-1 described later) is reacted with the intermediate compound 1b.
  • the R 4 side reaction step S32 may be performed after the R 1 side reaction step S31 or before the R 1 side reaction step S31.
  • the intermediate compound 1a is Since the group corresponding to R 1 -CH 2 -R 2a -CH 2 - in R 1 -CH 2 - and the group corresponding to -CH 2 -R 2d -CH 2 -R 4 in intermediate compound 1b are the same, R 1
  • the side reaction step S31 and the R4 side reaction step S32 can be performed simultaneously. Therefore, a compound in which R 2a and R 2d are the same and R 1 and R 4 are the same in formula (1) can be efficiently and easily produced.
  • R 2a and R 2d in formula (1) are the same, R 2b and R 2c are the same, and the atom contained in R 3a
  • step S3 it is possible to use a method in which the R 1 side reaction step S31 and the R 4 side reaction step S32 are performed simultaneously, which allows for more efficient and easier production.
  • R 1 side reaction step S31 and the R 4 side reaction step S32 can be performed, for example, by the method shown below.
  • Intermediate compound 3 used in compound structure manufacturing step S3 corresponds to -R 3a -CH 2 -R 2b -CH 2 -R 3b -CH 2 -R 2c -CH 2 -R 3c - in formula (1) Any substance having a group may be used.
  • the intermediate compound 3 manufactured in the connected structure manufacturing step S2 of this embodiment may be used as it is, or the intermediate compound 3 manufactured in the connected structure manufacturing step S2 It is also possible to use a compound in which the carbon-carbon double bonds present at both ends of 3 are oxidized to form epoxy groups, which is determined as appropriate depending on the type of intermediate compound 1a and intermediate compound 1b. can.
  • the intermediate compound 3 is an intermediate compound (hereinafter referred to as An example of using a compound (referred to as "intermediate compound 3-1”) will be explained.
  • Intermediate compound 3-1 has a perfluoropolyether chain corresponding to R 2b and a perfluoropolyether chain corresponding to R 2c in formula (1) connected to a linking group corresponding to R 3b via a methylene group, respectively. It has an epoxy group corresponding to R 3a at its R 2b end, and an epoxy group corresponding to R 3c at its R 2c end.
  • the reaction of oxidizing the carbon-carbon double bonds present at both ends of intermediate compound 3 to produce intermediate compound 3-1 is carried out after appropriately protecting the hydroxyl group of intermediate compound 3. Good too.
  • the fluorine-containing ether compound of the present embodiment is a compound represented by formula (1), and is a divalent linking group having one or more polar groups sandwiched between two methylene groups (-CH 2 -). It has a skeleton in which four perfluoropolyether chains (R 2a , R 2b , R 2c , and R 2d ) are bonded via (R 3a , R 3b , and R 3c ) to form a skeleton. At least one of the three linking groups is represented by formula (3), and a terminal group having 1 to 50 carbon atoms (R 1 and R 4 ) are bonded. Therefore, the lubricant layer formed on the protective layer using the lubricant containing the fluorine-containing ether compound of this embodiment has good flying stability of the magnetic head and is highly effective in suppressing corrosion of the magnetic recording medium. .
  • intermediate compound 1a having a group corresponding to R 1 -CH 2 -R 2a -CH 2 - and -CH 2 -R 2d -CH 2 -R
  • Intermediate compound 1b having a group corresponding to 4
  • Intermediate compound 2a having a group corresponding to -R 3a -CH 2 -R 2b -CH 2 -
  • -CH 2 -R 2c -CH 2 -R 3c
  • intermediate compound 3 having a group corresponding to -R 3a -CH 2 -R 2b -CH 2 -R 3b -CH 2 -R 2c -CH 2 -R 3c - is produced.
  • R 3a side end of intermediate compound 3 (or intermediate compound 3-1 obtained by oxidizing this) and intermediate compound 1a are reacted to form intermediate compound 3 (or intermediate compound 3-1 obtained by oxidizing this).
  • the fluorine-containing ether compound represented by formula (1) can be produced with high purity.
  • a method for producing a fluorine-containing ether compound ⁇ 1> a fluorine-based compound in which hydroxymethyl groups (-CH 2 OH) are arranged at both ends of the perfluoropolyether chain is mixed with epichlorohydrin.
  • a reaction method (for example, the method described in Patent Document 5), ⁇ 2> A fluorine-based compound in which a hydroxymethyl group (-CH 2 OH) is placed at both ends of a perfluoropolyether chain is reacted with glycidol.
  • a method for example, the method described in Patent Document 6 of reacting a mixture obtained by using a diepoxy compound with a diepoxy compound.
  • a compound corresponding to the divalent linking group (R 3a , R 3b , and R 3c ) and a perfluoropolyether chain (R 2a , R 2b , R 2c , and R 2d ) are randomly reacted to produce a mixture of fluorine-containing ether compounds having different numbers of perfluoropolyether chains contained in the molecule.
  • the target compound and the by-product contained in the generated mixture are difficult to separate by column chromatography due to their close polarity, and difficult to separate by distillation due to their close boiling points. Therefore, the resulting mixture makes it difficult to isolate the target compound.
  • the mixtures obtained by the methods ⁇ 1> and ⁇ 2> above contain compounds that have poor adhesion to the protective layer, have three or less perfluoropolyether chains, and/or have poor molecular fluidity. , compounds having 5 or more perfluoropolyether chains are often contained as by-products.
  • the method for producing a fluorine-containing ether compound of the present embodiment the production of such by-products can be suppressed, and a lubricating layer with a uniform coating state and excellent adhesion to the protective layer is easily formed. fluorine-containing ether compounds can be selectively produced.
  • the magnetic recording medium lubricant of this embodiment contains a fluorine-containing ether compound represented by the above formula (1).
  • the lubricant of this embodiment may be made of known materials used as lubricant materials as long as the properties of the fluorine-containing ether compound represented by formula (1) are not impaired. They can be mixed and used depending on the situation.
  • known materials include FOMBLIN (registered trademark) ZDIAC, FOMBLIN ZDEAL, FOMBLIN AM-2001 (manufactured by Solvay Solexis), Moresco A20H (manufactured by Moresco), and the like.
  • the known material used in combination with the lubricant of this embodiment preferably has a number average molecular weight of 1,000 to 10,000.
  • the fluorine-containing ether compound represented by the above formula (1) in the lubricant of this embodiment contains other materials of the fluorine-containing ether compound represented by the above formula (1)
  • the fluorine-containing ether compound represented by the above formula (1) in the lubricant of this embodiment The content of is preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 90% by mass or more, and particularly preferably 95% by mass or more.
  • the lubricant of this embodiment contains a fluorine-containing ether compound represented by the above formula (1). Therefore, the lubricant of this embodiment can be uniformly applied in a thin thickness, and has a thin thickness, provides good flying stability of the magnetic head, and forms a lubricant layer that is highly effective in suppressing corrosion of the magnetic recording medium. can.
  • the magnetic recording medium of this embodiment has at least a magnetic layer, a protective layer, and a lubricating layer provided in this order on a substrate.
  • one or more underlayers can be provided between the substrate and the magnetic layer as necessary.
  • at least one of an adhesion layer and a soft magnetic layer may be provided between the underlayer and the substrate.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the magnetic recording medium of the present invention.
  • the magnetic recording medium 10 of this embodiment includes, on a substrate 11, an adhesion layer 12, a soft magnetic layer 13, a first underlayer 14, a second underlayer 15, a magnetic layer 16, a protective layer 17, It has a structure in which lubricating layers 18 are sequentially provided.
  • substrate for example, a nonmagnetic substrate in which a film made of NiP or NiP alloy is formed on a base made of metal or alloy material such as Al or Al alloy can be used. Further, as the substrate 11, a nonmagnetic substrate made of a nonmetallic material such as glass, ceramics, silicon, silicon carbide, carbon, or resin may be used, or a substrate made of a nonmetallic material such as NiP or a NiP alloy may be used. A nonmagnetic substrate having a film formed thereon may also be used.
  • the adhesion layer 12 prevents the progress of corrosion of the substrate 11 that occurs when the substrate 11 and the soft magnetic layer 13 provided on the adhesion layer 12 are placed in contact with each other.
  • the material of the adhesion layer 12 can be appropriately selected from, for example, Cr, Cr alloy, Ti, Ti alloy, CrTi, NiAl, AlRu alloy, etc.
  • the adhesion layer 12 can be formed by, for example, a sputtering method.
  • the soft magnetic layer 13 preferably has a structure in which a first soft magnetic film, an intermediate layer made of a Ru film, and a second soft magnetic film are laminated in this order. That is, the soft magnetic layer 13 has a structure in which the soft magnetic films above and below the intermediate layer are coupled by anti-ferro coupling (AFC) by sandwiching an intermediate layer made of a Ru film between two soft magnetic films. It is preferable to have.
  • AFC anti-ferro coupling
  • the material for the first soft magnetic film and the second soft magnetic film examples include CoZrTa alloy and CoFe alloy. It is preferable that Zr, Ta, or Nb be added to the CoFe alloy used for the first soft magnetic film and the second soft magnetic film. This promotes amorphization of the first soft magnetic film and the second soft magnetic film. As a result, it becomes possible to improve the orientation of the first underlayer (seed layer) and to reduce the flying height of the magnetic head.
  • the soft magnetic layer 13 can be formed by, for example, a sputtering method.
  • the first underlayer 14 is a layer that controls the orientation and crystal size of the second underlayer 15 and magnetic layer 16 provided thereon.
  • Examples of the first underlayer 14 include a Cr layer, a Ta layer, a Ru layer, a CrMo alloy layer, a CoW alloy layer, a CrW alloy layer, a CrV alloy layer, a CrTi alloy layer, and the like.
  • the first base layer 14 can be formed by, for example, a sputtering method.
  • the second underlayer 15 is a layer that controls the orientation of the magnetic layer 16 to be good.
  • the second base layer 15 is preferably a layer made of Ru or Ru alloy.
  • the second base layer 15 may be a single layer or may be a plurality of layers. When the second base layer 15 is composed of multiple layers, all the layers may be composed of the same material, or at least one layer may be composed of different materials.
  • the second base layer 15 can be formed by, for example, a sputtering method.
  • the magnetic layer 16 is made of a magnetic film whose axis of easy magnetization is perpendicular or horizontal to the substrate surface.
  • the magnetic layer 16 is a layer containing Co and Pt.
  • the magnetic layer 16 may be a layer containing oxide, Cr, B, Cu, Ta, Zr, etc. to improve SNR characteristics. Examples of the oxide contained in the magnetic layer 16 include SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3 , and TiO 2 .
  • the magnetic layer 16 may be composed of one layer, or may be composed of a plurality of magnetic layers made of materials with different compositions.
  • the first magnetic layer contains Co, Cr, and Pt, and is further oxidized. It is preferable to have a granular structure made of a material containing substances.
  • the oxide contained in the first magnetic layer it is preferable to use, for example, an oxide of Cr, Si, Ta, Al, Ti, Mg, Co, or the like. Among them, TiO 2 , Cr 2 O 3 , SiO 2 and the like can be particularly preferably used.
  • the first magnetic layer is preferably made of a composite oxide containing two or more types of oxides.
  • Cr 2 O 3 --SiO 2 , Cr 2 O 3 --TiO 2 , SiO 2 --TiO 2 and the like can be particularly preferably used.
  • the first magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re in addition to Co, Cr, Pt, and oxides. can be included.
  • the second magnetic layer can be made of the same material as the first magnetic layer. Preferably, the second magnetic layer has a granular structure.
  • the third magnetic layer preferably has a non-granular structure made of a material containing Co, Cr, and Pt and no oxide.
  • the third magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn in addition to Co, Cr, and Pt. be able to.
  • the magnetic layer 16 When the magnetic layer 16 is formed of a plurality of magnetic layers, it is preferable to provide a nonmagnetic layer between adjacent magnetic layers.
  • the magnetic layer 16 consists of three layers: a first magnetic layer, a second magnetic layer, and a third magnetic layer, there is a gap between the first magnetic layer and the second magnetic layer, and between the second magnetic layer and the third magnetic layer. It is preferable to provide a nonmagnetic layer between them.
  • the nonmagnetic layer provided between adjacent magnetic layers of the magnetic layer 16 is, for example, Ru, Ru alloy, CoCr alloy, CoCrX1 alloy (X1 is Pt, Ta, Zr, Re, Ru, Cu, Nb, Ni, Mn, Represents one or more elements selected from Ge, Si, O, N, W, Mo, Ti, V, and B), etc. can be suitably used.
  • an alloy material containing an oxide, a metal nitride, or a metal carbide for the nonmagnetic layer provided between adjacent magnetic layers of the magnetic layer 16.
  • the oxide for example, SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2 or the like can be used.
  • the metal nitride for example, AlN, Si 3 N 4 , TaN, CrN, etc. can be used.
  • the metal carbide for example, TaC, BC, SiC, etc. can be used.
  • the nonmagnetic layer can be formed by, for example, a sputtering method.
  • the magnetic layer 16 is preferably a perpendicular magnetic recording magnetic layer in which the axis of easy magnetization is perpendicular to the substrate surface.
  • the magnetic layer 16 may be a magnetic layer for longitudinal magnetic recording.
  • the magnetic layer 16 may be formed by any conventionally known method, such as vapor deposition, ion beam sputtering, and magnetron sputtering.
  • the magnetic layer 16 is usually formed by a sputtering method.
  • Protective layer 17 protects magnetic layer 16 .
  • the protective layer 17 may be composed of one layer or may be composed of multiple layers.
  • a carbon-based protective layer can be preferably used, and an amorphous carbon protective layer is particularly preferable. It is preferable that the protective layer 17 is a carbon-based protective layer because the interaction with the polar groups (especially hydroxyl groups) contained in the fluorine-containing ether compound in the lubricating layer 18 is further enhanced.
  • the adhesion between the carbon-based protective layer and the lubricating layer 18 can be achieved by using hydrogenated carbon and/or nitrogenated carbon as the carbon-based protective layer and adjusting the hydrogen content and/or nitrogen content in the carbon-based protective layer. It is controllable.
  • the hydrogen content in the carbon-based protective layer is preferably 3 at.% to 20 at.% when measured by hydrogen forward scattering (HFS).
  • the nitrogen content in the carbon-based protective layer is preferably 4 atomic % to 15 atomic % when measured by X-ray photoelectron spectroscopy (XPS).
  • the hydrogen and/or nitrogen contained in the carbon-based protective layer does not need to be uniformly contained throughout the carbon-based protective layer.
  • the carbon-based protective layer is preferably a compositionally graded layer in which the protective layer 17 on the lubricating layer 18 side contains nitrogen and the protective layer 17 on the magnetic layer 16 side contains hydrogen. In this case, the adhesion between the magnetic layer 16 and lubricating layer 18 and the carbon-based protective layer is further improved.
  • the thickness of the protective layer 17 is preferably 1 nm to 7 nm. When the thickness of the protective layer 17 is 1 nm or more, sufficient performance as the protective layer 17 can be obtained. It is preferable that the thickness of the protective layer 17 is 7 nm or less from the viewpoint of making the protective layer 17 thinner.
  • a sputtering method using a target material containing carbon As a method for forming the protective layer 17, a sputtering method using a target material containing carbon, a CVD (chemical vapor deposition) method using a hydrocarbon raw material such as ethylene or toluene, an IBD (ion beam deposition) method, etc. can be used. can.
  • a carbon-based protective layer as the protective layer 17 it can be formed by, for example, a DC magnetron sputtering method.
  • the amorphous carbon protective layer formed by plasma CVD has a uniform surface and low roughness.
  • Lubricating layer 18 prevents contamination of magnetic recording medium 10. Furthermore, the lubricating layer 18 reduces the frictional force of the magnetic head of the magnetic recording/reproducing device that slides on the magnetic recording medium 10, thereby improving the durability of the magnetic recording medium 10.
  • the lubricating layer 18 is formed on and in contact with the protective layer 17, as shown in FIG.
  • the lubricant layer 18 is formed by applying the magnetic recording medium lubricant of the above-described embodiment onto the protective layer 17. Therefore, the lubricating layer 18 contains the above-mentioned fluorine-containing ether compound.
  • the lubricating layer 18 is bonded to the protective layer 17 with a high bonding force, especially when the protective layer 17 disposed below the lubricating layer 18 is a carbon-based protective layer. As a result, even if the lubricating layer 18 is thin, it is easy to obtain a magnetic recording medium 10 in which the surface of the protective layer 17 is coated with a high coverage rate, and contamination of the surface of the magnetic recording medium 10 can be effectively prevented. .
  • the average thickness of the lubricating layer 18 is preferably 0.5 nm (5 ⁇ ) to 2.0 nm (20 ⁇ ), more preferably 0.5 nm (5 ⁇ ) to 1.2 nm (12 ⁇ ).
  • the average thickness of the lubricant layer 18 is 0.5 nm or more, the lubricant layer 18 does not have an island shape or a mesh shape and is formed with a uniform thickness. Therefore, the surface of the protective layer 17 can be covered with the lubricating layer 18 at a high coverage rate. Further, by setting the average thickness of the lubricant layer 18 to 2.0 nm or less, the lubricant layer 18 can be made sufficiently thin, and the flying height of the magnetic head can be made sufficiently small.
  • Method for forming a lubricating layer As a method for forming the lubricating layer 18, for example, a magnetic recording medium in the process of being manufactured in which each layer up to the protective layer 17 is formed on the substrate 11 is prepared, and a lubricating layer forming solution is applied onto the protective layer 17.
  • a method of drying is a method of drying.
  • the lubricant layer forming solution can be obtained by dispersing and dissolving the magnetic recording medium lubricant of the above-described embodiment in a solvent as necessary to obtain a viscosity and concentration suitable for the coating method.
  • the solvent used in the lubricating layer forming solution include fluorine-based solvents such as Vertrell (registered trademark) XF (trade name, manufactured by DuPont Mitsui Fluorochemicals Co., Ltd.).
  • the method for applying the lubricant layer forming solution is not particularly limited, and examples thereof include a spin coating method, a spray method, a paper coating method, a dipping method, and the like.
  • the dip method for example, the method shown below can be used.
  • the substrate 11 on which each layer up to the protective layer 17 has been formed is immersed in a lubricating layer forming solution placed in a dipping tank of a dip coater.
  • the substrate 11 is pulled up from the immersion bath at a predetermined speed.
  • the lubricating layer forming solution is applied to the surface of the protective layer 17 of the substrate 11.
  • the lubricating layer forming solution can be uniformly applied to the surface of the protective layer 17, and the lubricating layer 18 can be formed on the protective layer 17 with a uniform thickness.
  • the substrate 11 on which the lubricant layer 18 is formed is subjected to heat treatment.
  • the heat treatment temperature is preferably 100°C to 180°C, more preferably 100°C to 160°C.
  • the heat treatment temperature is 100° C. or higher, the effect of improving the adhesion between the lubricating layer 18 and the protective layer 17 can be sufficiently obtained.
  • the heat treatment time can be adjusted as appropriate depending on the heat treatment temperature, and is preferably 10 minutes to 120 minutes.
  • the lubricant layer 18 may be irradiated with ultraviolet (UV) light before or after heat treatment.
  • UV ultraviolet
  • the magnetic recording medium 10 of this embodiment has at least a magnetic layer 16, a protective layer 17, and a lubricating layer 18 provided in this order on a substrate 11.
  • a lubricating layer 18 containing the above-mentioned fluorine-containing ether compound is formed on and in contact with the protective layer 17 . Even if the lubricating layer 18 is thin, it has excellent adhesion, good flying stability, and is highly effective in inhibiting corrosion of the magnetic recording medium. Therefore, the magnetic recording medium 10 of this embodiment has excellent reliability and durability.
  • the magnetic recording medium 10 of this embodiment can have a low flying height of the magnetic head (for example, 10 nm or less), and can be used for a long period of time even under harsh environments associated with diversification of applications. It operates stably throughout. Therefore, the magnetic recording medium 10 of this embodiment is particularly suitable as a magnetic disk mounted in a magnetic disk device of the LUL (Load/Unload) system.
  • LUL Load/Unload
  • Example 1 A compound represented by the above formula (A) was obtained by the method shown below.
  • (Edge manufacturing process S1) HOCH 2 CF 2 O (CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH (in the formula, h indicating the average degree of polymerization is 4.5, i indicating the average degree of polymerization is 4.5) (number average molecular weight 1000, molecular weight distribution 1.1) 10 g, and 2.06 g of the compound represented by the above formula (5-1). and 10 mL of t-butanol and stirred at room temperature until homogeneous to form a mixture. 0.37 g of potassium tert-butoxide was added to this mixture, and the mixture was stirred at 70° C. for 16 hours to react.
  • the compound represented by formula (5-1) was synthesized by protecting ethylene glycol monoallyl ether with dihydropyran and then oxidizing it with m-chloroperbenzoic acid.
  • Rf 1 in formula (9) is a PFPE chain represented by the above formula (4-1); in Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization. represents 4.5: THP represents a tetrahydropyranyl group.
  • reaction product obtained after the reaction was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate.
  • Ta silica gel column chromatography
  • Rf 1 in formula (10) is a PFPE chain represented by the above formula (4-1); in Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization. represents 4.5.
  • reaction solution obtained after the reaction was returned to room temperature, 50 g of 10% hydrogen chloride/methanol solution (hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 4 hours. Thereafter, the reaction solution was transferred little by little into a separatory funnel containing 100 mL of saturated aqueous sodium bicarbonate solution, and extracted twice with 200 mL of ethyl acetate. The organic layer was washed with 100 mL of brine, 100 mL of saturated sodium bicarbonate solution, and 100 mL of brine in this order, and dehydrated with anhydrous sodium sulfate. After filtering off the desiccant, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain 7.74 g of a compound represented by the following formula (11) as intermediate compound 3.
  • Rf 1 in formula (11) is a PFPE chain represented by the above formula (4-1); in the two Rf 1s , h indicating the average degree of polymerization represents 4.5, and the average degree of polymerization is The i shown represents 4.5.
  • reaction solution obtained after the reaction was transferred little by little to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate.
  • the organic layer was washed with 100 mL of brine, 100 mL of saturated sodium bicarbonate solution, and 100 mL of brine in this order, and dehydrated with anhydrous sodium sulfate. After filtering off the desiccant, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain 4.65 g of a compound represented by the following formula (12) as intermediate compound 3-1.
  • Rf 1 in formula (12) is a PFPE chain represented by the above formula (4-1); in the two Rf 1s , h indicating the average degree of polymerization represents 4.5, and the average degree of polymerization is i represents 4.5; THP represents a tetrahydropyranyl group.
  • reaction solution obtained after the reaction was returned to room temperature, 50 g of 10% hydrogen chloride/methanol solution (hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 4 hours. Thereafter, the reaction solution was transferred little by little into a separatory funnel containing 100 mL of saturated aqueous sodium bicarbonate solution, and extracted twice with 200 mL of ethyl acetate. The organic layer was washed with 100 mL of brine, 100 mL of saturated sodium bicarbonate solution, and 100 mL of brine in this order, and dehydrated with anhydrous sodium sulfate.
  • Example 2 A compound represented by the above formula (B) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (5-2) was used instead of the compound represented by formula (5-1), and compound (B) (formula (B ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 3 A compound represented by the above formula (C) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (5-3) was used instead of the compound represented by formula (5-1), and compound (C) (formula (C ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • the compound represented by formula (5-3) was synthesized by protecting 3-buten-1-ol with dihydropyran and then oxidizing it with m-chloroperbenzoic acid.
  • Example 4 A compound represented by the above formula (D) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (5-4) was used instead of the compound represented by formula (5-1), and compound (D) (formula (D ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • the compound represented by formula (5-4) is obtained by reacting 3-buten-1-ol with 2-(2-bromoethoxy)tetrahydro-2H-pyran and then reacting with m-chloroperbenzoic acid. Synthesized by oxidation.
  • Example 5 A compound represented by the above formula (E) was obtained by the method shown below. (Edge manufacturing process S1) The same operation as in Example 1 was performed to obtain a compound represented by the above formula (9) as intermediate compound 1a. In addition, the same operation as the end manufacturing step S1 in Example 1 was performed except that the compound represented by formula (5-5) was used instead of the compound represented by formula (5-1), A compound represented by the following formula (13) was obtained as intermediate compound 1b.
  • the compound represented by formula (5-5) was synthesized by protecting allyl alcohol with dihydropyran and then oxidizing it with m-chloroperbenzoic acid.
  • Rf 1 in formula (13) is a PFPE chain represented by the above formula (4-1); in Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization. represents 4.5; THP represents a tetrahydropyranyl group.
  • the reaction product obtained after the reaction was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate.
  • the organic layer was washed with water and dehydrated with anhydrous sodium sulfate. After filtering off the desiccant, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain 3.31 g of a compound represented by the following formula (14) as an intermediate compound.
  • Rf 1 in formula (14) is a PFPE chain represented by the above formula (4-1); in the three Rf 1s , h indicating the average degree of polymerization is 4.5, and the average degree of polymerization is i represents 4.5; THP represents a tetrahydropyranyl group.
  • reaction solution obtained after the reaction was returned to room temperature, 50 g of 10% hydrogen chloride/methanol solution (hydrogen chloride-methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 4 hours. Thereafter, the reaction solution was transferred little by little into a separatory funnel containing 100 mL of saturated aqueous sodium bicarbonate solution, and extracted twice with 200 mL of ethyl acetate. The organic layer was washed with 100 mL of brine, 100 mL of saturated sodium bicarbonate solution, and 100 mL of brine in this order, and dehydrated with anhydrous sodium sulfate.
  • Example 6 A compound represented by the above formula (F) was obtained by the method shown below. The same operation as in Example 5 was carried out except that the compound represented by formula (5-6) was used instead of the compound represented by formula (5-5), and compound (F) (formula (F ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • the compound represented by formula (5-6) is obtained by reacting two molecules of dihydropyran with one molecule of 3-allyloxy-1,2-propanediol and then oxidizing it with m-chloroperbenzoic acid. It was synthesized by
  • Example 7 A compound represented by the above formula (G) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (5-7) was used instead of the compound represented by formula (5-1), and compound (G) (formula (G ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • the compound represented by formula (5-7) is obtained by subjecting the compound represented by formula (5-1) to an addition reaction with allyl alcohol, and then protecting the compound using dihydropyran and further treating with m-chlorofiltrate. It was synthesized by oxidation with benzoic acid.
  • Example 8 A compound represented by the above formula (H) was obtained by the method shown below. The same operation as in Example 5 was carried out except that the compound represented by formula (5-7) was used instead of the compound represented by formula (5-5), and compound (H) (formula (H ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 9 A compound represented by the above formula (I) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (5-8) was used instead of the compound represented by formula (5-1), and compound (I) (formula (I ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • the compound represented by formula (5-8) is obtained by subjecting the compound represented by formula (5-3) to an addition reaction with allyl alcohol, and then protecting the compound using dihydropyran and further treating with m-chloroperoxide. It was synthesized by oxidation with benzoic acid.
  • Example 10 A compound represented by the above formula (J) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (5-9) was used instead of the compound represented by formula (5-1), and compound (J) (formula (J ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • the compound represented by formula (5-9) is obtained by subjecting the compound represented by formula (5-1) to an addition reaction with 3-buten-1-ol, and then protecting the compound using dihydropyran. It was further synthesized by oxidation with m-chloroperbenzoic acid.
  • Example 11 A compound represented by the above formula (K) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (5-10) was used instead of the compound represented by formula (5-1), and compound (K) (formula (K ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • the compound represented by formula (5-10) is obtained by reacting one molecule of epibromohydrin with two molecules of allyl alcohol, protecting it with dihydropyran, and then converting one molecule of carbon to carbon. It was synthesized by oxidizing the double bond with m-chloroperbenzoic acid.
  • Example 12 A compound represented by the above formula (L) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (5-11) was used instead of the compound represented by formula (5-1), and compound (L) (formula (L ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5; Me represents a methyl group) was obtained.
  • Example 13 A compound represented by the above formula (M) was obtained by the method shown below. The same operation as in Example 5 was carried out except that the compound represented by formula (5-11) was used instead of the compound represented by formula (5-5), and compound (M) (formula (M ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5; Me represents a methyl group) was obtained.
  • Example 14 A compound represented by the above formula (N) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (5-12) was used instead of the compound represented by formula (5-1), and compound (N) (formula (N ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 15 A compound represented by the above formula (O) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (5-13) was used instead of the compound represented by formula (5-1), and compound (O) (formula (O ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 16 A compound represented by the above formula (P) was obtained by the method shown below. The same operation as in Example 5 was carried out except that the compound represented by formula (5-13) was used instead of the compound represented by formula (5-5), and compound (P) (formula (P ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 17 A compound represented by the above formula (Q) was obtained by the method shown below. The same operation as in Example 1 was performed except that the compound represented by formula (5-14) was used instead of the compound represented by formula (5-1), and compound (Q) (formula (Q ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 18 A compound represented by the above formula (R) was obtained by the method shown below. The same operation as in Example 5 was carried out except that the compound represented by formula (5-14) was used instead of the compound represented by formula (5-5), and compound (R) (formula (R ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 19 A compound represented by the above formula (S) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (7-2) was used instead of the compound represented by formula (7-1), and compound (S) (formula (S ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 20 A compound represented by the above formula (T) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (8-2) was used instead of the compound represented by formula (8-1), and compound (T) (formula (T ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 21 A compound represented by the above formula (U) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (8-3) was used instead of the compound represented by formula (8-1), and compound (U) (formula (U ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 22 A compound represented by the above formula (V) was obtained by the method shown below. The same operation as in Example 1 was performed except that the compound represented by formula (8-4) was used instead of the compound represented by formula (8-1), and compound (V) (formula (V ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 23 A compound represented by the above formula (W) was obtained by the method shown below. The same operation as in Example 1 was carried out except that the compound represented by formula (8-5) was used instead of the compound represented by formula (8-1), and compound (W) (formula (W ) in Rf 1 is a PFPE chain represented by the above formula (4-1); in the four Rf 1s , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4. .5) was obtained.
  • Example 24 A compound represented by the above formula (X) was obtained by the method shown below. HOCH 2 CF 2 O(CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH (in the formula, h indicating the average degree of polymerization is 4.5, and i indicating the average degree of polymerization is 4. 5), instead of the compound represented by HOCH 2 CF 2 CF 2 O(CF 2 CF 2 CF 2 O) j CF 2 CF 2 CH 2 OH (in the formula, j indicating the average degree of polymerization is 4 The same operation as in Example 1 was carried out except that the compound represented by formula (X) (number average molecular weight 1000, molecular weight distribution 1.1) was used. Rf 2 is a PFPE chain represented by the above formula (4-2); in the four Rf 2s , j indicating the average degree of polymerization is 4.5) was obtained.
  • Example 25 A compound represented by the above formula (Y) was obtained by the method shown below. HOCH 2 CF 2 O(CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH (in the formula, h indicating the average degree of polymerization is 4.5, and i indicating the average degree of polymerization is 4. 5) , instead of the compound represented by HOCH 2 CF 2 CF 2 CF 2 O(CF 2 CF 2 CF 2 O) The same operation as in Example 1 was carried out except that the compound (Y) (number average molecular weight 1000, molecular weight distribution 1.1) was used (number average molecular weight 1000, molecular weight distribution 1.1).
  • Rf 3 in formula (Y) is a PFPE chain represented by the above formula (4-3); in the four Rf 3 , k indicating the average degree of polymerization represents 3.0). Obtained.
  • Example 26 A compound represented by the above formula (Z) was obtained by the method shown below.
  • HOCH 2 CF 2 O (CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH (h indicating the average degree of polymerization in the formula is 4.5, and the average degree of polymerization i is 4.5) instead of the compound represented by HOCH 2 CF 2 CF 2 O ( CF 2 CF 2 CF 2 O) j, which indicates the degree of molecular weight, is 4.5 .
  • R 1 , R 2 (R 2a , R 2b , R 2c , and R The structures of R 2d ), R 3 (R 3a , R 3b and R 3c ), and R 4 are shown in Tables 1 and 2.
  • Rf 1 in formula (ZA) is a PFPE chain represented by the above formula (4-1); in the two Rf 1 , h indicating the average degree of polymerization is 4.5, and i is 4.5. be.
  • Rf 1 and Rf 1 ' in formula (ZB) are PFPE chains represented by the above formula (4-1); in Rf 1 , h indicating the average degree of polymerization is 4.5, and i is 4. 5; in the two Rf 1 ', h indicating the average degree of polymerization is 7.0, and i is 0.)
  • Rf 1 in formula (ZC) is a PFPE chain represented by the above formula (4-1); in the three Rf 1 , h indicating the average degree of polymerization is 4.5, and i is 4.5. be.
  • Rf 1 in formula (ZD) is a PFPE chain represented by the above formula (4-1); in the three Rf 1 , h indicating the average degree of polymerization is 7.0, and i is 0. )
  • Rf 2 in the formula (ZE) is a PFPE chain represented by the above formula (4-2); in the four Rf 2 , j indicating the average degree of polymerization represents 4.5.
  • the compound (ZE) corresponds to a compound obtained by extracting only a compound having four PFPE chains from the mixture described in Examples of Patent Document 5.
  • Rf 2 in the formula (ZF) is a PFPE chain represented by the above formula (4-2); in the four Rf 2 , j indicating the average degree of polymerization represents 4.5.
  • lubricating layer forming solutions were prepared using the compounds obtained in Examples 1 to 26 and Comparative Examples 1 to 6 by the method shown below. Then, using the obtained lubricant layer forming solution, lubricant layers of magnetic recording media were formed by the method shown below to obtain magnetic recording media of Examples 1 to 26 and Comparative Examples 1 to 6.
  • “Lubricant layer forming solution” The compounds obtained in Examples 1 to 26 and Comparative Examples 1 to 6 were each dissolved in a fluorine-based solvent, Bartrel (registered trademark) The solution was diluted with Bartrel XF so that the film thickness would be 9.0 ⁇ to 9.5 ⁇ when mixed, and a solution for forming a lubricating layer was prepared.
  • Magnetic recording medium A magnetic recording medium was prepared in which an adhesive layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer were sequentially provided on a substrate having a diameter of 65 mm.
  • the protective layer was made of carbon.
  • the lubricating layer forming solutions of Examples 1 to 26 and Comparative Examples 1 to 6 were applied by dipping onto the protective layer of the magnetic recording medium in which each layer up to the protective layer was formed. Note that the dipping method was performed under the conditions of a dipping speed of 10 mm/sec, a dipping time of 30 sec, and a pulling rate of 1.2 mm/sec.
  • the magnetic recording medium coated with the lubricant layer forming solution is placed in a constant temperature bath, and heat treatment is performed at 120°C for 10 days to remove the solvent in the lubricant layer forming solution and improve the adhesion between the protective layer and the lubricant layer.
  • a lubricating layer was formed on the protective layer by performing this for a few minutes, and a magnetic recording medium was obtained.
  • the thickness of the lubricating layer of the magnetic recording media of Examples 1 to 26 and Comparative Examples 1 to 6 thus obtained was measured using a Fourier transform infrared spectrophotometer (FT-IR, trade name: Nicolet iS50, Thermo (manufactured by Fisher Scientific). The results are shown in Tables 3 and 4.
  • FT-IR Fourier transform infrared spectrophotometer
  • the glide test examines whether there are any protrusions on the surface of the magnetic recording medium. In other words, when a magnetic head is used to read and write information on a magnetic recording medium, if there is a protrusion on the surface of the magnetic recording medium that is higher than the flying height (distance between the magnetic recording medium and the magnetic head), the magnetic head This can cause damage to the magnetic head or defects to the magnetic recording medium due to collision with the protrusion. In the glide test, 50 magnetic recording media are inspected for the presence or absence of protrusions with a height greater than the flying height on the surface.
  • the interval between the magnetic recording head for inspection and the magnetic recording medium is set to 0.25 microinch, the magnetic head for inspection is moved over the magnetic recording medium, and the magnetic recording medium is removed from the magnetic recording head for inspection. If a signal caused by a collision with a protrusion on the surface of the magnetic recording medium was output, the magnetic recording medium was determined to be defective, and otherwise, it was determined to be acceptable. Then, evaluation was made using the number of magnetic recording media that were determined to be acceptable among the 50 magnetic recording media.
  • Evaluation criteria A+: Less than 100 places A: 100 places or more, less than 200 places B: 200 places or more, less than 300 places C: 300 places or more, less than 1000 places D: 1000 places or more
  • the magnetic recording media of Examples 1 to 26 had evaluation results of A+, A, or B in all evaluation items, and the overall evaluation was A or B. From this, it was confirmed that the lubricating layers of the magnetic recording media of Examples 1 to 26 had good flying stability of the magnetic head and were highly effective in inhibiting corrosion of the magnetic recording media.
  • the lubricating layers of the magnetic recording media of Examples 7 to 10, 17, 21, and 22 using compounds (G) to (J), (Q), (U), and (V) were evaluated for flying stability. was A+, which was good.
  • Compounds (G) to (J) have a total of 8 or more hydroxyl groups in the compound, each of the three R 3 is represented by formula (3), and in both terminal groups, the carbon to which the hydroxyl group is bonded is The atoms are bonded to each other via a linking group containing a carbon atom to which no hydroxyl group is bonded.
  • Examples 7 to 10 using compounds (G) to (J) have a high adsorption force of the entire molecule to the protective layer, good adhesion to the protective layer, and a lubricant with better floating stability. It is thought that a layer was obtained.
  • compound (Q) has a group having a highly polar amide bond at both ends. For this reason, it is considered that in Example 17 using compound (Q), a lubricating layer having a high adsorption force to the protective layer and better flying stability was obtained.
  • compounds (U) and (V) have a total of 8 or more hydroxyl groups in the compound, the number of hydroxyl groups contained in R 3b is 2, and in both terminal groups, the carbon to which the hydroxyl group is bonded.
  • the atoms are bonded to each other via a linking group containing a carbon atom to which no hydroxyl group is bonded.
  • R 3b is represented by formula (3-1) and d is 2
  • R 3b is represented by formula (3-4) and g is 0, so that in R 3b
  • the structure between the carbon atoms to which the two hydroxyl groups are bonded is flexible, and the two hydroxyl groups in R 3b easily interact with the protective layer.
  • Examples 21 and 22 using compounds (U) and (V) have a high adsorption force of the entire molecule to the protective layer, good adhesion to the protective layer, and a lubricant with better flying stability. It is thought that a layer was obtained.
  • Examples 2 to 4, 11, 12, 14, 19, and 20 using compounds (B) to (D), (K), (L), (N), (S), and (T) The corrosion resistance of the lubricating layer of the recording medium was evaluated as A+, which was particularly good.
  • R 1 and R 4 of compounds (B) and (D) have a structure in which one methylene group is extended from R 1 and R 4 of compound (A).
  • R 3 in compounds (S) and (T) has a structure in which one or two methylene groups of one or two R 3 out of the three R 3 in compound (A) are extended.
  • R 1 and R 4 of compound (C) have a structure with fewer ether bonds than R 1 and R 4 of compound (A). As a result, the entire molecule of compound (C) has higher hydrophobicity than compound (A). Therefore, it is considered that Example 3 had a higher corrosion resistance evaluation than Example 1.
  • Compounds (K), (L), and (N) each have a highly hydrophobic allyl group, methoxyphenyl group, or thienylethyl group at both ends. Therefore, Compounds (K), (L), and (N) have higher hydrophobicity as a whole molecule than Compound (A). As a result, it is considered that Examples 11, 12, and 14 had higher corrosion resistance evaluations than Example 1.
  • Compounds (G), (I), and (J) used in Examples 7, 9, and 10 all have three hydroxyl groups in both R 1 and R 4 .
  • Examples 9 and 10 using Compounds (I) and (J) had better corrosion resistance than Example 7 using Compound (G). This is considered to be because the entire molecules of Compounds (I) and (J) have higher hydrophobicity than Compound (G). More specifically, R 1 and R 4 of compound (I) have fewer ether bonds than R 1 and R 4 of compound (G). Furthermore, R 1 and R 4 of compound (J) have a structure in which one methylene group is extended compared to R 1 and R 4 of compound (G). From these facts, it is estimated that Compounds (I) and (J) have higher hydrophobicity of the entire molecule than Compound (G).
  • Comparative Examples 1 to 4 are due to the small number of perfluoropolyether chains in the compounds (ZA) to (ZD) and the small number of divalent linking groups arranged between the perfluoropolyether chains. It is estimated that there is. This is considered to be the reason why the compounds (ZA) to (ZD) lacked adhesion (adsorption power) to the protective layer.
  • Comparative Example 5 the evaluation of floating stability was D, and the evaluation of corrosion resistance was C.
  • four perfluoropolyether chains have a skeleton bonded through three glycerin structures (-OCH 2 CH (OH) CH 2 O-), and hydroxyl groups are connected through methylene groups on both sides of the skeleton.
  • a compound (ZE) in which is bound to was used.
  • the terminal hydroxyl group is bonded to the methylene group bonded to the perfluoropolyether chain. Therefore, the acidity of the terminal hydroxyl group is high, and the terminal portion of the fluorine-containing ether compound cannot be sufficiently adsorbed onto the protective layer. From this, it is considered that the lubricating layer of Comparative Example 5 had poor adhesion to the protective layer, resulting in significantly inferior flying stability and corrosion resistance of the magnetic head.
  • Comparative Example 6 the evaluation of floating stability was D, and the evaluation of corrosion resistance was C.
  • all three linking groups arranged between four perfluoropolyether chains have a relatively rigid structure with an alkylene group having 4 carbon atoms between the carbon atoms to which the hydroxyl group is bonded. It does not have a glycerin structure (-OCH 2 CH (OH) CH 2 O-) which has excellent flexibility.
  • the lubricant for magnetic recording media containing the fluorine-containing ether compound of the present invention By using the lubricant for magnetic recording media containing the fluorine-containing ether compound of the present invention, even if the thickness is thin, it has excellent adhesion, the flying stability of the magnetic head is good, and the corrosion of the magnetic recording medium is suppressed. A highly effective lubricating layer can be formed.
  • SYMBOLS 10 Magnetic recording medium, 11... Substrate, 12... Adhesion layer, 13... Soft magnetic layer, 14... First underlayer, 15... Second underlayer, 16... - Magnetic layer, 17... protective layer, 18... lubricating layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)

Abstract

下記式で表される含フッ素エーテル化合物。R1-CH2-R2a-CH2-R3a-CH2-R2b-CH2-R3b-CH2-R2c-CH2-R3c-CH2-R2d-CH2-R4(R2a、R2b、R2cおよびR2dは、パーフルオロポリエーテル鎖である。R3a、R3bおよびR3cは、極性基を1つ以上有する2価の連結基である。R3a、R3bおよびR3cのうち少なくとも1つは-OCH2CH(OH)CH2O-で表される。R1およびR4は、極性基を1つ以上有する炭素原子数1~50の末端基であり、同じであっても異なっていても良い。)

Description

含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体
 本発明は、含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体に関する。
 本願は、2022年8月31日に、日本に出願された特願2022-137937号に基づき優先権を主張し、その内容をここに援用する。
 磁気記録再生装置における記録密度を向上させるために、高記録密度に適した磁気記録媒体の開発が進められている。
 従来、磁気記録媒体として、基板上に記録層を形成し、記録層上にカーボン等の保護層を形成したものがある。保護層は、記録層に記録された情報を保護するとともに、磁気ヘッドの摺動性を高める。しかし、記録層上に保護層を設けただけでは、磁気記録媒体の耐久性は十分に得られない。このため、一般に、保護層の表面に潤滑剤を塗布して潤滑層を形成している。
 磁気記録媒体の潤滑層を形成する際に用いられる潤滑剤としては、例えば、-CF-を含む繰り返し構造を有するフッ素系のポリマーの末端に、水酸基、アミノ基などの極性基を有する化合物を含有するものが提案されている。
 例えば、特許文献1には、グリセリン構造(-OCHCH(OH)CHO-)の両端にメチレン基(-CH-)を介して、2つのパーフルオロポリエーテル鎖が結合した骨格を有し、その両末端にメチレン基を介して、極性基を有する末端基が結合している含フッ素エーテル化合物が開示されている。
 また、特許文献2および特許文献3には、3つのパーフルオロポリエーテル鎖が、極性基を1つ有する連結基を介して結合した骨格を有し、その両側にメチレン基(-CH-)を介して、極性基を有する末端基がそれぞれ結合されている含フッ素エーテル化合物が開示されている。
 また、特許文献4には、3つのパーフルオロポリエーテル鎖が、極性基を1つ以上有する連結基を介して結合した骨格を有し、その両側にメチレン基(-CH-)を介して、極性基を有する末端基がそれぞれ結合されている含フッ素エーテル化合物が開示されている。
 また、特許文献5には、複数のパーフルオロポリエーテル鎖が、極性基を有する脂肪族炭化水素鎖によって連結されている含フッ素ポリマーが開示されている。
 また、特許文献6には、複数のパーフルオロポリエーテル基が、少なくとも1つの水酸基を有する炭化水素基からなる連結基を介して連結され、両末端に少なくとも1つの水酸基を有する末端基が配置されたフルオロポリエーテル化合物が開示されている。
国際公開第2021/251335号 国際公開第2018/116742号 国際公開第2017/145995号 米国特許出願公開第2016/0260452号明細書 特開2007-231056号公報 特許第6763980号公報
 磁気記録再生装置においては、より一層、磁気ヘッドの浮上量を小さくすることが要求されている。このため、磁気記録媒体における潤滑層の厚みを、より薄くすることが求められている。
 しかしながら、一般的に潤滑層の厚みを薄くすると、磁気記録媒体の耐腐食性が低下する傾向がある。また、潤滑層の厚みを薄くすると、磁気ヘッドの浮上安定性が不十分となる場合があった。
 本発明は、上記事情を鑑みてなされたものであり、磁気ヘッドの浮上安定性が良好であって、磁気記録媒体の腐食抑制効果の高い潤滑層を形成でき、磁気記録媒体用潤滑剤の材料として好適に用いることができる含フッ素エーテル化合物およびその製造方法を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含み、磁気ヘッドの浮上安定性が良好で、磁気記録媒体の腐食抑制効果の高い潤滑層を形成できる磁気記録媒体用潤滑剤を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含む潤滑層を有し、磁気ヘッドの浮上安定性が良好で、優れた耐腐食性を有する磁気記録媒体を提供することを目的とする。
 本発明は以下の態様を含む。
 本発明の第一の態様は、以下の含フッ素エーテル化合物を提供する。
[1] 下記式(1)で表されることを特徴とする、含フッ素エーテル化合物。
 R-CH-R2a-CH-R3a-CH-R2b-CH-R3b-CH-R2c-CH-R3c-CH-R2d-CH-R  (1)
(式(1)中、R2a、R2b、R2cおよびR2dは、パーフルオロポリエーテル鎖である;R2a、R2b、R2cおよびR2dは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;R3a、R3bおよびR3cは、極性基を1つ以上有する2価の連結基である;R3a、R3bおよびR3cは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;R3a、R3bおよびR3cのうち少なくとも1つは式(3)で表される;RおよびRは、極性基を1つ以上有する炭素原子数1~50の末端基であり、同じであっても異なっていても良い。)
-OCHCH(OH)CHO- (3)
 本発明の第一の態様の前記含フッ素エーテル化合物は、以下の[2]~[12]に記載される特徴を有することが好ましい。以下の[2]~[12]に記載される特徴は、2つ以上を任意に組み合わせることも好ましい。
[2] 前記式(1)におけるRおよびRのうち少なくとも一方が、下記式(2-1)~(2-4)のいずれかの末端基である、[1]に記載の含フッ素エーテル化合物。
Figure JPOXMLDOC01-appb-C000003
(式(2-1)中、pは1~3の整数を表し、qは1~3の整数を表す。)
(式(2-2)中、rは0~2の整数を表し、sは1~3の整数を表す。)
(式(2-3)中、tは1~3の整数を表し、uは0~2の整数を表し、vは1~3の整数を表す。)
(式(2-4)中、lは1~3の整数を表し、l個のmはそれぞれ独立して1~4の整数を表し、l個のnはそれぞれ独立して1~4の整数を表す;Xは、二重結合または三重結合を含む有機基を表す。)
[3] 前記式(1)におけるR3a、R3bおよびR3cの有する極性基が、全て水酸基である、[1]または[2]に記載の含フッ素エーテル化合物。
[4] 前記式(1)におけるRの有する水酸基と、Rの有する水酸基との合計数が2~6である、[1]~[3]のいずれかに記載の含フッ素エーテル化合物。
[5] 前記式(1)におけるR3a、R3bおよびR3cがすべて式(3)で表される、[1]~[4]のいずれかに記載の含フッ素エーテル化合物。
[6] 前記式(1)におけるR3a、R3bおよびR3cのうち1つまたは2つが、式(3)ではない2価の連結基であって、前記式(3)ではない2価の連結基がそれぞれ独立に、水酸基を1~3つ有する、炭素原子数4~9の2価の連結基である、[1]~[4]のいずれかに記載の含フッ素エーテル化合物。
[7] 前記式(3)ではない2価の連結基がそれぞれ独立に、下記式(3-1)~(3-4)のいずれかで表される連結基である、[6]に記載の含フッ素エーテル化合物。
Figure JPOXMLDOC01-appb-C000004

(式(3-1)中、dは2または3を表す。)
(式(3-2)中、eは2~4の整数を表す;式(3-2)中、左側の酸素原子は、式(1)中のR側のメチレン基に結合し、右側の酸素原子は、式(1)中のR側のメチレン基に結合する。)
(式(3-3)中、fは2~4の整数を表す;式(3-3)中、左側の酸素原子は、式(1)中のR側のメチレン基に結合し、右側の酸素原子は、式(1)中のR側のメチレン基に結合する。)
(式(3-4)中、gは0~4の整数を表す。)
[8] 前記式(1)におけるR2aとR2dとが同じであり、R2bとR2cとが同じであり、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されており、RとRとが同じである、[1]~[7]のいずれかに記載の含フッ素エーテル化合物。
[9] 前記式(1)におけるR2a、R2b、R2c、およびR2dがすべて同じであり、R3a、R3b、およびR3cがすべて式(3)で表され、RとRとが同じである、[5]に記載の含フッ素エーテル化合物。
[10] 前記式(1)におけるR2a、R2b、R2c、およびR2dが、それぞれ独立に、下記式(4)で表されるパーフルオロポリエーテル鎖である、[1]~[9]のいずれかに記載の含フッ素エーテル化合物。
 -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (4)(式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(4)における繰り返し単位である(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)の配列順序には、特に制限はない。)
[11] 前記式(1)におけるR2a、R2b、R2c、およびR2dが、それぞれ独立に、下記式(4-1)~(4-4)で表されるパーフルオロポリエーテル鎖から選ばれるいずれか1種である、[1]~[9]のいずれかに記載の含フッ素エーテル化合物。
 -CF-(OCFCF-(OCF-OCF-  (4-1)
(式(4-1)中、hおよびiは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
 -CFCF-(OCFCFCF-OCFCF-  (4-2)
(式(4-2)中、jは平均重合度を示し、1~15を表す。)
 -CFCFCF-(OCFCFCFCF-OCFCFCF-  (4-3)
(式(4-3)中、kは平均重合度を示し、1~10を表す。)
 -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-  (4-4)
(式(4-4)中、w8、w9は平均重合度を示し、それぞれ独立に1~20を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
[12] 数平均分子量が500~10000の範囲内である、[1]~[11]のいずれかに記載の含フッ素エーテル化合物。
 本発明の第二の態様は、以下の磁気記録媒体用潤滑剤を提供する。
[13] [1]~[12]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
 本発明の第三の態様は、以下の磁気記録媒体を提供する。
[14] 基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
 前記潤滑層が、[1]~[12]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
 本発明の第三の態様の磁気記録媒体は、以下の[15]に記載される特徴を有することが好ましい。
[15] 前記潤滑層の平均膜厚が、0.5nm~2.0nmである、[14]に記載の磁気記録媒体。
 本発明の第四の態様は、以下の含フッ素エーテル化合物の製造方法を提供する。
[16] [1]に記載の含フッ素エーテル化合物を製造する方法であり、
 前記式(1)におけるR-CH-R2a-CH-に対応する基を有する中間体化合物1aと、前記式(1)における-CH-R2d-CH-Rに対応する基を有する中間体化合物1bとを製造する端部製造工程と、
 前記式(1)における-R3a-CH-R2b-CH-R3b-CH-R2c-CH-R3c-に対応する基を有する中間体化合物3を製造する連結構造製造工程と、
 前記中間体化合物3のR3a側端部と前記中間体化合物1aとを反応させるR側反応工程と、前記中間体化合物3のR3c側端部と前記中間体化合物1bとを反応させるR側反応工程とを含む化合物構造製造工程とを有し、
 前記連結構造製造工程が、前記式(1)における-R3a-CH-R2b-CH-に対応する基を有する中間体化合物2aと、前記式(1)における-CH-R2c-CH-R3c-に対応する基を有する中間体化合物2bを製造する連結端部製造工程と、
 前記式(1)におけるR3bに対応する基を有する化合物のR2b側端部と前記中間体化合物2aとを反応させるR2b側反応工程と、
 前記R3bに対応する基を有する化合物のR2c側端部と前記中間体化合物2bとを反応させるR2c側反応工程とを含むことを特徴とする、含フッ素エーテル化合物の製造方法。
 本発明の第四の態様の含フッ素エーテル化合物の製造方法は、以下の[17]に記載される特徴を有することが好ましい。
[17] 前記式(1)におけるR2aとR2dとが同じであり、R2bとR2cとが同じであり、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されており、RとRとが同じである、含フッ素エーテル化合物を製造する方法であり、
 前記端部製造工程において、前記中間体化合物1aと前記中間体化合物1bとを同時に製造し、
 前記連結端部製造工程において、前記中間体化合物2aと前記中間体化合物2bとを同時に製造し、前記R2b側反応工程と前記R2c側反応工程とを同時に行い、
 前記化合物構造製造工程において、前記R側反応工程と前記R側反応工程とを同時に行うことを特徴とする、[16]に記載の含フッ素エーテル化合物の製造方法。
 本発明の含フッ素エーテル化合物は、上記式(1)で表される化合物であり、磁気記録媒体用潤滑剤の材料として好適である。
 本発明の含フッ素エーテル化合物の製造方法によれば、上記式(1)で表される化合物を製造できる。
 本発明の磁気記録媒体用潤滑剤は、本発明の含フッ素エーテル化合物を含む。このため、本発明の磁気記録媒体用潤滑剤は、薄い厚みで均一に塗布することができ、厚みが薄く、磁気ヘッドの浮上安定性が良好で、磁気記録媒体の腐食抑制効果の高い潤滑層を形成できる。
 本発明の磁気記録媒体は、本発明の含フッ素エーテル化合物を含む潤滑層を有する。本発明の磁気記録媒体の有する潤滑層は、厚みが薄くても、良好な磁気ヘッドの浮上安定性が得られ、かつ磁気記録媒体の腐食を効果的に抑制できる。このため、本発明の磁気記録媒体では、潤滑層の厚みを薄くして、磁気ヘッドの浮上量を低減できる。また、本発明の磁気記録媒体は、磁気ヘッドの浮上安定性が良好で、磁気記録媒体の腐食抑制効果の高い潤滑層を有するため、信頼性および耐久性に優れる。
本発明の含フッ素エーテル化合物の製造方法の一例を説明するためのフローチャートである。 本発明の磁気記録媒体の一実施形態を示した概略断面図である。
 本発明者らは、上記課題を解決するために、以下に示すように、鋭意研究を重ねた。
 従来、保護層の表面に塗布される磁気記録媒体用潤滑剤(以下、「潤滑剤」と略記する場合がある。)の材料として、鎖状構造の末端に水酸基などの極性基を有する含フッ素エーテル化合物が、好ましく用いられている。含フッ素エーテル化合物中の極性基は、保護層上の活性点と結合して、潤滑層の保護層に対する密着性を向上させる。このことから、潤滑剤の材料として、鎖状構造の末端だけでなく、鎖状構造の中央部分にも極性基を有する含フッ素エーテル化合物が、特に好ましく用いられている。
 しかしながら、従来の潤滑剤を用いて保護層上に厚みの薄い潤滑層を形成した場合、以下に示すように、磁気ヘッドの浮上安定性が良好で、かつ磁気記録媒体の腐食抑制効果の高い潤滑層を実現することは困難であった。
 すなわち、保護層上に潤滑剤を塗布して厚みの薄い潤滑層を形成する場合、潤滑剤の保護層に対する密着性が不足していると、保護層上に塗布された潤滑剤の状態が嵩高いものとなり、保護層上に潤滑剤を均一に塗布することが困難となる。このため、潤滑層の厚みを薄くすると、潤滑層に突起などが形成されやすくなり、潤滑層の浮上安定性が不十分となる。また、保護層に対する潤滑層の被覆状態が不均一であると、潤滑層による腐食抑制効果が十分に得られない。したがって、潤滑剤の保護層に対する密着性が不十分である場合、膜厚を厚くして、保護層に対する潤滑層の被覆状態を均一にしないと、十分な浮上安定性および耐腐食性が得られなかった。
 そこで、本発明者らは、含フッ素エーテル化合物に含まれる極性基と、保護層上の活性点との結合に着目した。そして、保護層上の活性点との結合に関与しない極性基が生じにくく、保護層に対して良好な密着性を有し、厚みを薄くしても保護層に対する被覆状態が均一で、磁気ヘッドの浮上安定性、および磁気記録媒体の腐食抑制効果の高い潤滑層を形成できる含フッ素エーテル化合物を実現すべく、鋭意検討を重ねた。
 その結果、2つのメチレン基(-CH-)間に挟まれた1つ以上の極性基を有する2価の連結基を介して、4つのパーフルオロポリエーテル鎖が結合した骨格を有し、骨格に含まれる3つの連結基のうち少なくとも1つがグリセリン構造(-OCHCH(OH)CHO-)であり、骨格の両側にメチレン基(-CH-)を介して、1つ以上の極性基を有する炭素原子数1~50の末端基が結合した含フッ素エーテル化合物とすればよいことを見出した。
 このような含フッ素エーテル化合物では、以下に示す理由により、保護層上に多数存在する官能基(活性点)と結合しない極性基が生じにくく、保護層に対して良好な密着性を有する。このことから、上記含フッ素エーテル化合物は、厚みを薄くしても、均一な被覆状態を有する潤滑層を形成できるものと推定される。
 すなわち、上記の含フッ素エーテル化合物では、含フッ素エーテル化合物中の3つの2価の連結基の間、および2価の連結基と2つの末端基との間に、それぞれパーフルオロポリエーテル鎖が配置されている。このため、隣接する2価の連結基の有する極性基同士の距離、および末端基の有する極性基と、末端基に隣接する2価の連結基の有する極性基との距離が適正である。また、3つの2価の連結基のうち少なくとも1つは柔軟性に優れたグリセリン構造(-OCHCH(OH)CHO-)である。グリセリン構造の両端部に配置された酸素原子は、その両側に配置されるメチレン基(-CH-)とエーテル結合(-O-)を形成する。この2つのエーテル結合は、上記の含フッ素エーテル化合物に適度な柔軟性を付与し、グリセリン構造の有する1つの水酸基と保護層との親和性を増大させる。
 このように、上記の含フッ素エーテル化合物では、2つの末端基および3つの2価の連結基の有する極性基同士の距離が適正であるため、2つの末端基および3つの2価の連結基の有する極性基同士が凝集しにくく、保護層上の活性点と結合しない極性基が生じにくい。しかも、4つのパーフルオロポリエーテル鎖の両端部がそれぞれ、末端基および/または2価の連結基の有する極性基によって保護層に密着される。さらに、上記の含フッ素エーテル化合物に少なくとも1つ含まれるグリセリン構造(-OCHCH(OH)CHO-)の有する1つの水酸基(-OH)が、含フッ素エーテル化合物と保護層とを密着させる。これらのことから、保護層上に塗布された含フッ素エーテル化合物の状態が嵩高いものとなりにくく、含フッ素エーテル化合物が保護層上に濡れ広がりやすい。その結果、上記の含フッ素エーテル化合物は、厚みを薄くしても均一な被覆状態を有する潤滑層を形成できるものと推定される。
 さらに、本発明者らは、上記の含フッ素エーテル化合物を含む潤滑剤を用いることにより、厚みが薄くても、磁気ヘッドの浮上安定性が良好で、かつ磁気記録媒体の腐食抑制効果の高い潤滑層を形成できることを確認し、本発明を想到した。
 以下、本発明の含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体の好ましい例について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、本発明の趣旨を逸脱しない範囲で、数、量、位置、比率、材料、構成、種類、順番等について、付加、省略、置換、変更が可能である。
[含フッ素エーテル化合物]
 本実施形態の含フッ素エーテル化合物は、下記式(1)で表される。
 R-CH-R2a-CH-R3a-CH-R2b-CH-R3b-CH-R2c-CH-R3c-CH-R2d-CH-R  (1)
(式(1)中、R2a、R2b、R2cおよびR2dは、パーフルオロポリエーテル鎖である;R2a、R2b、R2cおよびR2dは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;R3a、R3bおよびR3cは、極性基を1つ以上有する2価の連結基である;R3a、R3bおよびR3cは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;R3a、R3bおよびR3cのうち少なくとも1つは式(3)で表される;RおよびRは、極性基を1つ以上有する炭素原子数1~50の末端基であり、同じであっても異なっていても良い。)
-OCHCH(OH)CHO- (3)
 本実施形態の含フッ素エーテル化合物は、式(1)で示されるように、R3a、R3bおよびR3c(以下、これらを総称して「R」という場合がある。)で示される極性基を1つ以上有する2価の連結基を3つ有し、R2a、R2b、R2cおよびR2d(以下、これらを総称して「R」という場合がある。)で示されるパーフルオロポリエーテル鎖(以下、「PFPE鎖」という場合がある。)を4つ有する。式(1)で示されるように、2つのメチレン基間に挟まれた2価の連結基Rを介して、4つのパーフルオロポリエーテル鎖Rが結合してなる骨格の両側には、メチレン基と、RまたはRで示される末端基とがこの順にそれぞれ結合されている。
 本実施形態の含フッ素エーテル化合物は、極性基を1つ以上有する2価の連結基R3bを中心として、その両側にPFPE鎖(R2b、R2c)、2価の連結基(R3a、R3c)、PFPE鎖(R2a、R2d)がこの順にそれぞれ配置された骨格を有し、その両側に末端基(RまたはR)がそれぞれ配置された構造を有する。このため、本実施形態の含フッ素エーテル化合物は、保護層に対して良好な密着性を有し、保護層上に均一に濡れ広がりやすく、厚みを薄くしても、均一な膜厚を有する潤滑層が得られやすい。
 これに対し、例えば、極性基を1つ以上有する2価の連結基の両側に、それぞれPFPE鎖が配置された骨格を有する、PFPE鎖を2つ有する化合物、およびPFPE鎖を中心とし、その両側に極性基を1つ以上有する2価の連結基と、PFPE鎖とがこの順に配置された骨格を有する、PFPE鎖を3つ有する化合物では、骨格の有する連結基の数が少ないため、保護層に対する密着性が不十分となる。その結果、保護層上に濡れ広がりにくく、含フッ素エーテル化合物の保護層に対する被覆状態が不均一となりやすい。また、PFPE鎖と、極性基を1つ以上有する2価の連結基とが交互に配置された骨格であって、5つ以上のPFPE鎖と4つ以上の2価の連結基とからなる骨格を有する化合物では、分子全体が大きくなり、運動性が低下するため、保護層上に濡れ広がりにくくなる。したがって、5つ以上のPFPE鎖と4つ以上の2価の連結基とからなる骨格を有する化合物も、含フッ素エーテル化合物の保護層に対する被覆状態が不均一となりやすい。
(R(R3a、R3bおよびR3c)で示される2価の連結基)
 式(1)で表される含フッ素エーテル化合物において、3つのRは、それぞれ極性基を1つ以上有する2価の連結基である。3つのRのうち少なくとも1つは式(3)で表される。本明細書において、式(3)で表される連結基を「グリセリン構造」という場合がある。Rは、4つのRで示されるPFPE鎖の間にそれぞれ配置されている。このことにより、Rは、含フッ素エーテル化合物と保護層とを密着させ、厚みの薄い潤滑層を十分な被覆率で形成する。
 式(1)中、3つのRは、一部または全部が同じであっても良いし、それぞれ異なっていても良い。3つのRのうち少なくとも1つは式(3)であり、3つのRのうち2つが式(3)であることが好ましく、3つのRすべてが式(3)であることがより好ましい。3つのRのうち2つが式(3)であると、含フッ素エーテル化合物と保護層との密着性がより一層良好となる。また、3つのRのうち2つが式(3)である場合、R3aとR3cが式(3)であることが好ましい。含フッ素エーテル化合物の保護層に対する被覆状態がより一層均一となるためである。3つのR(R3a、R3bおよびR3c)がすべて式(3)であると、含フッ素エーテル化合物の保護層に対する被覆状態がより一層均一となり、磁気ヘッドの浮上安定性、および磁気記録媒体の腐食抑制効果のより高い潤滑層を形成できる。
 Rで示される2価の連結基は、その両端部に酸素原子が配置された基であることが好ましい。連結基の両端部に配置された酸素原子は、Rの両側に配置されるメチレン基(-CH-)とエーテル結合(-O-)を形成する。この2つのエーテル結合は、式(1)で表される含フッ素エーテル化合物に適度な柔軟性を付与し、Rで示される2価の連結基の有する極性基と保護層との親和性を増大させる。
 Rで示される2価の連結基は、炭素原子間に酸素原子を含んでもよい、炭素原子数3~9のアルキレン基の有する炭素原子の1つ以上に、極性基が結合しており、両端部が酸素原子である基であることが好ましい。炭素原子数3~9のアルキレン基としては、炭素原子数3~6のアルキレン基であることが好ましく、炭素原子数3~4のアルキレン基であることがより好ましい。炭素原子数3~9のアルキレン基は、直鎖状の構造を有することが好ましい。Rは、特に、直鎖状の炭素原子数3~9のアルキレン基の、酸素原子に隣接しない炭素原子に、極性基が結合していることが好ましい。これは、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層となるためである。
 Rの有する極性基としては、例えば、水酸基(-OH)、アミノ基(-NH)、カルボキシ基(-COOH)、ホルミル基(-(C=O)H)、カルボニル基(-CO-)、スルホ基(-SOH)、シアノ基(-CN)、アミド結合を有する基(例えば、-CONHまたは-NHCOCH)などが挙げられる。これらの中でも特に、3つのRがそれぞれ極性基として水酸基を含むことが好ましい。水酸基は、保護層、とりわけ炭素系の材料で形成された保護層との相互作用が大きい。このため、3つのRがそれぞれ極性基として水酸基を含むと、含フッ素エーテル化合物を含む潤滑層が、より一層保護層との密着性が高いものとなる。本実施形態では、より一層保護層との密着性が高い含フッ素エーテル化合物となるため、3つのR(R3a、R3bおよびR3c)の有する極性基が、全て水酸基であることがより好ましい。
 3つのRがそれぞれ有する極性基の数は、1~3であることが好ましく、1または2であることがより好ましい。いずれかのRが2以上の極性基を有する場合、極性基の種類は一部または全部が同じであっても良いし、それぞれ異なっていても良い。
 式(1)におけるR3a、R3bおよびR3cのうち1つまたは2つが、式(3)ではない2価の連結基である場合、式(3)ではない2価の連結基がそれぞれ独立に、水酸基を1~3つ有する、炭素原子数4~9の2価の連結基であることが好ましい。式(3)ではない2価の連結基は、酸素原子(-O-)、メチレン基(-CH-)、および水酸基が結合したメチレン基(-CH(OH)-)の組み合わせからなる2価の連結基であることがより好ましい。
 式(3)ではない2価の連結基はそれぞれ独立に、下記式(3-1)~(3-4)のうちいずれかであることが好ましい。式(3-1)~(3-4)中、最も左側の酸素原子は、式(1)中のR側のメチレン基に結合し、最も右側の酸素原子は、式(1)中のR側のメチレン基に結合する。
 式(3)ではない2価の連結基がそれぞれ独立に、式(3-1)~(3-4)のうちいずれかであると、式(1)で表される含フッ素エーテル化合物の合成が容易であり、好ましい。
Figure JPOXMLDOC01-appb-C000005


(式(3-1)中、dは2または3を表す。)
(式(3-2)中、eは2~4の整数を表す;式(3-2)中、左側の酸素原子は、式(1)中のR側のメチレン基に結合し、右側の酸素原子は、式(1)中のR側のメチレン基に結合する。)
(式(3-3)中、fは2~4の整数を表す;式(3-3)中、左側の酸素原子は、式(1)中のR側のメチレン基に結合し、右側の酸素原子は、式(1)中のR側のメチレン基に結合する。)
(式(3-4)中、gは0~4の整数を表す。)
 式(3-1)中のdは2または3であり、2であることが好ましい。式(3-1)中のdが2であると、Rで示される2価の連結基の親水性が高くなりすぎず、潤滑層に腐食の原因となる水が誘引されることを防止でき、耐腐食性のより良好な潤滑層が得られる。
 式(3-2)中、eは2~4の整数であり、2または3であることが好ましく、2であることがより好ましい。これは、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層となるためである。
 式(3-3)中、fは2~4の整数であり、2または3であることが好ましく、2であることがより好ましい。これは、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層となるためである。
 式(3-4)中、gは0~4の整数であり、0~2の整数であることが好ましく、0であることがより好ましい。これは、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層となるためである。
 式(3-2)および(3-3)で示される連結基は、式(3)(グリセリン構造)に1~3つのメチレン基を伸長させた構造を有する。このため、3つのRのうち、少なくとも1つが式(3-2)または(3-3)である含フッ素エーテル化合物を含む潤滑層は、3つのRがすべて式(3)(グリセリン構造)である化合物と比較して、疎水性の良好なものとなる。その結果、磁気記録媒体の腐食の原因となる水が侵入することを効果的に阻害でき、磁気記録媒体の腐食抑制効果が高い潤滑層となる。
 式(1)において、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されていることが好ましい。例えば、R3aとR3cが式(3)で表される化合物;R3aとR3cが式(3-1)で表され、式(3-1)中のdの値が同じである化合物;R3aとR3cの一方が式(3-2)で表され、他方が式(3-3)で表され、式(3-2)中のeと式(3-3)中のfが同じ値である化合物;R3aとR3cが式(3-4)で表され、式(3-4)中のgの値が同じである化合物などが挙げられる。R3aとR3cの一方が式(3-2)で表され、他方が式(3-3)で表され、式(3-2)中のeと式(3-3)中のfが同じ値である場合、R3aが式(3-3)で表され、R3cが式(3-2)で表されることが好ましい。
(R(R2a、R2b、R2cおよびR2d)で示されるPFPE鎖)
 式(1)で表される含フッ素エーテル化合物において、Rは、パーフルオロポリエーテル鎖である。Rで示されるPFPE鎖は、本実施形態の含フッ素エーテル化合物を含む潤滑剤を保護層上に塗布して潤滑層を形成した場合に、保護層の表面を被覆するとともに、潤滑層に潤滑性を付与して磁気ヘッドと保護層との摩擦力を低減させる。Rで示されるPFPE鎖は、含フッ素エーテル化合物を含む潤滑剤に求められる性能等に応じて適宜選択される。
 式(1)で表される含フッ素エーテル化合物は、R2a、R2b、R2c、およびR2dの4つのPFPE鎖を含む。式(1)で表される含フッ素エーテル化合物は、4つのPFPE鎖を含むので、例えば、1つのみPFPE鎖を有する骨格、または極性基を有する連結基を介して2つまたは3つのPFPE鎖が結合している骨格を有する含フッ素エーテル化合物と比較して、末端基(式(1)におけるR、R)および骨格中に含まれる連結基(式(1)におけるR3a、R3bおよびR3c)の有する極性基同士が凝集しにくい。このため、式(1)で表される含フッ素エーテル化合物は、分子中の極性基同士が凝集することによって保護層との密着性が不十分となり、浮上安定性および耐腐食性が低下することが抑制されたものとなる。
 4つのRは、一部または全部が同じであってもよいし、それぞれ異なっていても良い。4つのRのうち、R2aとR2dが同じで、かつR2bとR2cが同じであることが好ましく、4つのRが全て同じであることがより好ましい。これは、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層となるためである。
 4つのRのうち2つ以上のRが同じであるとは、4つのRのうち、PFPE鎖の繰り返し単位の構造が同じRが2つ以上含まれていることを意味する。同じRには、繰り返し単位の構造が同じであって平均重合度が異なるものも含まれる。
 Rで示されるPFPE鎖としては、パーフルオロアルキレンオキシドの重合体または共重合体からなるものなどが挙げられる。パーフルオロアルキレンオキシドとしては、例えば、パーフルオロメチレンオキシド、パーフルオロエチレンオキシド、パーフルオロ-n-プロピレンオキシド、パーフルオロイソプロピレンオキシド、パーフルオロブチレンオキシドなどが挙げられる。
 式(1)におけるRは、それぞれ独立に、例えば、パーフルオロアルキレンオキシドの重合体または共重合体に由来する下記式(4)で表されるPFPE鎖であることが好ましい。
 -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (4)(式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(4)における繰り返し単位である(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)の配列順序には、特に制限はない。)
 式(4)中、w2、w3、w4、w5は、平均重合度を示し、それぞれ独立に0~20を表し、0~15であることが好ましく、0~10であることがより好ましい。
 式(4)中、w1、w6は、CFの数を示す平均値であり、それぞれ独立に1~3を表す。w1、w6は、式(4)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
 式(4)における(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)は、繰り返し単位である。式(4)における繰り返し単位の配列順序には、特に制限はない。また、式(4)における繰り返し単位の種類の数にも、特に制限はない。
 Rで示されるPFPE鎖は、具体的には、それぞれ独立に、下記式(4-1)~(4-4)で表されるPFPE鎖から選ばれるいずれか1種であることが好ましい。
 4つのRがそれぞれ式(4-1)~(4-4)で表されるPFPE鎖から選ばれるいずれか1種であると、良好な潤滑性を有する潤滑層が得られる含フッ素エーテル化合物となる。また、4つのRがそれぞれ式(4-1)~(4-4)で表されるPFPE鎖から選ばれるいずれか1種である場合、PFPE鎖中の炭素原子数に対する酸素原子数(エーテル結合(-O-)数)の割合が適正である。このため、適度な硬さを有する含フッ素エーテル化合物となる。よって、保護層上に塗布された含フッ素エーテル化合物が、保護層上で凝集しにくく、より一層厚みの薄い潤滑層を十分な被覆率で形成できる。また、含フッ素エーテル化合物が適度な柔軟性を有することにより、浮上安定性のより良好な潤滑層を形成できる。
 -CF-(OCFCF-(OCF-OCF-  (4-1)
(式(4-1)中、hおよびiは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
 -CFCF-(OCFCFCF-OCFCF-  (4-2)
(式(4-2)中、jは平均重合度を示し、1~15を表す。)
 -CFCFCF-(OCFCFCFCF-OCFCFCF-  (4-3)
(式(4-3)中、kは平均重合度を示し、1~10を表す。)
 -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-  (4-4)
(式(4-4)中、w8、w9は平均重合度を示し、それぞれ独立に1~20を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
 式(4-1)において、繰り返し単位である(OCFCF)と(OCF)との配列順序に、特に制限はない。式(4-1)において、(OCFCF)の数hと(OCF)の数iは同じであってもよいし、異なっていてもよい。式(4-1)で表されるPFPE鎖は、(OCFCF)の重合体であってもよい。また、式(4-1)で表されるPFPE鎖は、(OCFCF)と(OCF)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれかであってもよい。
 式(4-1)~(4-3)においては、平均重合度を示すhが1~20、iが0~20、jが1~15、kが1~10であるので、良好な潤滑性を有する潤滑層が得られる含フッ素エーテル化合物となる。また、式(4-1)~(4-3)においては、平均重合度を示すh、iが20以下、jが15以下、kが10以下であるので、含フッ素エーテル化合物の粘度が高くなりすぎず、これを含む潤滑剤が塗布しやすいものとなり、好ましい。平均重合度を示すh、i、j、kは、保護層上に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすい含フッ素エーテル化合物となるため、1~10であることが好ましく、1.5~8であることがより好ましく、2~7であることがさらに好ましい。
 式(4-4)において、繰り返し単位である(CFCFCFO)と(CFCFO)との配列順序には、特に制限はない。式(4-4)において、平均重合度を示す(CFCFCFO)の数w8と(CFCFO)の数w9は同じであってもよいし、異なっていてもよい。式(4-4)は、モノマー単位(CFCFCFO)と(CFCFO)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれかを含むものであってもよい。
 式(4-4)において、平均重合度を示すw8およびw9は、それぞれ独立に1~20であり、1~15であることが好ましく、さらに1~10であることがより好ましい。
 式(4-4)におけるw7およびw10は、CFの数を示す平均値であり、それぞれ独立に1~2を表す。w7およびw10は、式(4-4)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
(RおよびRで示される末端基)
 式(1)で表される含フッ素エーテル化合物において、RおよびRは、極性基を1つ以上有する炭素原子数1~50の末端基である。式(1)で表される含フッ素エーテル化合物では、RおよびRがそれぞれ1つ以上の極性基を有するため、これを含む潤滑剤を用いて保護層上に潤滑層を形成した場合に、潤滑層と保護層との間に好適な相互作用が発生する。RおよびRは、含フッ素エーテル化合物を含む潤滑剤に求められる性能などに応じて適宜選択できる。
 RおよびRは、同じであっても異なっていても良い。RとRが同じであると、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層を形成できる。
 RおよびRの有する極性基としては、例えば、水酸基(-OH)、アミノ基(-NH)、カルボキシ基(-COOH)、ホルミル基(-(C=O)H)、カルボニル基(-CO-)、スルホ基(-SOH)、シアノ基(-CN)、アミド結合を有する基(例えば、-CONHまたは-NHCOCH)などが挙げられる。
 RおよびRにそれぞれ含まれる極性基の数は、1以上であり、1~3であることが好ましく、2~3であることがより好ましい。保護層との密着性が高く、浮上安定性および腐食抑制効果のより優れた潤滑層を形成できる含フッ素エーテル化合物となるためである。
 Rおよび/またはRに含まれる極性基の数が2以上である場合、極性基を2以上含むRおよび/またはRの有する極性基の種類は、1種のみであってもよいし、2種以上であってもよい。
 RおよびRは、極性基として1以上の水酸基を含むことが好ましい。Rおよび/またはRの有する極性基が水酸基を含む場合、式(1)におけるRに含まれる水酸基とRに含まれる水酸基との合計数は、2~6であることが好ましく、3~5であることがより好ましく、3~4であることが最も好ましい。上記の水酸基の合計数が2以上であると、RおよびRの有する水酸基と保護層との相互作用がより効果的に得られる。その結果、保護層との密着性が高い潤滑層を形成できる含フッ素エーテル化合物となる。また、上記の水酸基の合計数が6以下であると、潤滑層と保護層上の活性点との結合に関与していない水酸基が少なくなる。このため、潤滑層と保護層上の活性点との結合に関与していない水酸基が凝集し、突起となって磁気ヘッドと衝突することを防止できる。よって、浮上安定性のより優れた潤滑層を形成できるものとなる。また、上記の水酸基の合計数が4以下であると、含フッ素エーテル化合物を含む潤滑層の疎水性が十分に高いものとなる。このため、磁気記録媒体の腐食の原因となる水を潤滑層に誘引することを防止できる。よって、磁気記録媒体の汚染および腐食を、より効果的に抑制できる潤滑層を形成できるものとなる。
 Rおよび/またはRが極性基として水酸基のみを有する場合、極性基が水酸基のみであるRおよび/またはRに含まれる水酸基の数は、それぞれ2~3であることが好ましく、2であることがより好ましい。極性基が水酸基のみであるRおよび/またはRに含まれる水酸基の数がそれぞれ2以上であると、含フッ素エーテル化合物を含む潤滑層は、保護層との付着性(密着性)が高いものとなり、磁気記録媒体の浮上安定性が向上する。また、極性基が水酸基のみであるRおよび/またはRに含まれる水酸基の数がそれぞれ3以下であると、含フッ素エーテル化合物を含む潤滑層を有する磁気記録媒体において、含フッ素エーテル化合物の極性が高すぎて、潤滑層によって、腐食の原因となる水が保護層表面に誘起されることを防止できる。さらに、極性基が水酸基のみであるRおよび/またはRに含まれる水酸基の数がそれぞれ2以下であると、含フッ素エーテル化合物を含む潤滑層において、含フッ素エーテル化合物の末端基に含まれる水酸基同士が凝集することを防止できる。
 RおよびRで表される末端基は、それぞれ炭素原子数が1~50であり、3~20であることが好ましく、4~15であることがより好ましい。RおよびRで表される末端基の炭素原子数が1以上であるので、末端基部分の疎水性が担保できる。このため、腐食の原因となる水が潤滑層に誘引されることを防止でき、耐腐食性の良好な潤滑層となる。RおよびRで表される末端基の炭素原子数が50以下であるので、末端基部分が柔軟な構造となる。その結果、厚みの薄い潤滑層を十分な被覆率で形成でき、浮上安定性の良好な潤滑層となる。
 Rで示される末端基は、R2aに隣接するCHに結合する側の端部に酸素原子を有していることが好ましい。また、Rで示される末端基は、R2dに隣接するCHに結合する側の端部に酸素原子を有していることが好ましい。RおよびRで示される末端基の端部に配置された酸素原子は、その両側に結合される原子とエーテル結合(-O-)を形成する。これらのエーテル結合は、式(1)で表される含フッ素エーテル化合物に適度な柔軟性を付与し、RおよびRで示される末端基の有する極性基と保護層との親和性を増大させる。
 式(1)で表される含フッ素エーテル化合物は、RおよびRのうち少なくとも一方が、下記式(2-1)~(2-4)のうちいずれかの末端基であることが好ましく、RおよびRの両方が、それぞれ独立に、下記式(2-1)~(2-4)のうちいずれかの末端基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000006

(式(2-1)中、pは1~3の整数を表し、qは1~3の整数を表す。)
(式(2-2)中、rは0~2の整数を表し、sは1~3の整数を表す。)
(式(2-3)中、tは1~3の整数を表し、uは0~2の整数を表し、vは1~3の整数を表す。)
(式(2-4)中、lは1~3の整数を表し、l個のmはそれぞれ独立して1~4の整数を表し、l個のnはそれぞれ独立して1~4の整数を表す;Xは、二重結合または三重結合を含む有機基を表す。)
 式(2-1)~(2-3)に含まれる各水酸基は、それぞれ異なる炭素原子に結合している。式(2-1)~(2-3)において、水酸基の結合している炭素原子同士は、水酸基の結合していない炭素原子を含む連結基を介して結合している。このため、RおよびRのうち少なくとも一方が式(2-1)~(2-3)である場合、式(1)で表される含フッ素エーテル化合物は、例えば、水酸基の結合している炭素原子同士が結合している末端基を有する場合と比較して、疎水性が良好である。その結果、RおよびRのうち少なくとも一方が式(2-1)~(2-3)である場合、式(1)で表される含フッ素エーテル化合物を含む潤滑層は、水の侵入を防止でき、磁気記録媒体の腐食を効果的に抑制できるものと推定される。また、水酸基の結合している炭素原子同士が、水酸基の結合していない炭素原子を含む連結基を介して結合している場合、水酸基の結合していない炭素原子を含む連結基によって、末端水酸基と、末端水酸基に隣接する水酸基の両方とも、保護層へ密着できる配向となることができる。このため、優れた浮上安定性が得られるものと推定される。
 以上のことから、RおよびRのうち少なくとも一方が式(2-1)~(2-3)のいずれかであると好ましい。
 さらに、式(2-1)および(2-3)で表される末端基では、末端水酸基が結合する炭素原子と、末端水酸基に隣接する水酸基が結合する炭素原子との間の連結基が、酸素原子を含む。上記連結基は、水酸基の結合していない炭素原子を含む3~8原子からなる直鎖状の構造を有する。上記連結基が酸素原子を含む場合であっても、水酸基の結合していない炭素原子を含む3つ以上の原子からなる直鎖状の構造である場合、良好な疎水性を有する含フッ素エーテル化合物となる。また、上記連結基が3つ以上の原子からなる直鎖状の構造である場合、分子の運動性が適切であり、分子内凝集が起こりにくく、保護層との優れた密着性が得られる。また、上記連結基が8つ以下の原子からなる直鎖状の構造である場合、連結基の疎水性が高すぎて、保護層との密着性に支障を来すことがない。これらのことから、上記連結基が、酸素原子を含み、上記原子数からなる直鎖状の構造である含フッ素エーテル化合物を含む潤滑層は、保護層との密着性に優れ、高い浮上安定性を示し、水の侵入を防止でき、磁気記録媒体の腐食抑制効果の高いものとなる。
 また、式(2-2)で表される末端基では、末端水酸基が結合する炭素原子と、末端水酸基に隣接する水酸基が結合する炭素原子との間の連結基が、酸素原子を含まない。このため、分子内相互作用が小さく、分子内凝集が起こりにくく、保護層との優れた密着性を有する。また、上記連結基は、水酸基の結合していない炭素原子を含む1~3原子からなる直鎖状の構造を有する。上記連結基が酸素原子を含まず、水酸基の結合していない炭素原子を含む1つ以上の原子からなる直鎖状の構造である場合、良好な疎水性を有する含フッ素エーテル化合物となる。また、上記連結基が3つ以下の原子からなる直鎖状の構造である場合、連結基の疎水性が高すぎて、保護層との密着性に支障を来すことがない。これらのことから、上記連結基が、酸素原子を含まず、上記原子数からなる直鎖状の構造である含フッ素エーテル化合物を含む潤滑層は、保護層との密着性に優れ、高い浮上安定性を示し、水の侵入を防止でき、磁気記録媒体の腐食抑制効果の高いものとなる。
 式(2-1)~(2-3)で表される末端基において、水酸基の結合している炭素原子間に配置された連結基に含まれる炭素原子は、含フッ素エーテル化合物の疎水性を向上させる役割を担う。一方で、連結基に含まれる炭素原子数が多すぎると、末端基(RおよびR)の柔軟性が低下して、保護層の全面を均一に被覆することが難しくなることがある。
 このため、式(2-1)中、qは1または2であることが好ましく、1であることがより好ましい。また、式(2-2)中、sは1または2であることが好ましく、1であることがより好ましい。同様に、式(2-3)中、tは1または2であることが好ましく、1であることがより好ましい。vは1または2であることが好ましく、1であることがより好ましい。
 式(2-1)~(2-3)で表される末端基は、いずれも極性基として水酸基のみを有する。上述したように、Rおよび/またはRが極性基として水酸基のみを有するものである場合、極性基が水酸基のみであるRおよび/またはRに含まれる水酸基の数は、それぞれ2~3であることが好ましく、2であることがより好ましい。
 式(2-1)中、水酸基の数はp+1個であるから、pは1または2であることが好ましく、1であることがより好ましい。式(2-2)中、水酸基の数はr+2個であるから、rは0または1であることが好ましく、0であることがより好ましい。式(2-3)中、水酸基の数はu+2個であるから、uは0または1であることが好ましく、0であることがより好ましい。
 式(2-4)中、Xで表される二重結合または三重結合を含む有機基において、二重結合は炭素-炭素結合、炭素-酸素結合、炭素-窒素結合のいずれであってもよく、三重結合は炭素-炭素結合、炭素-窒素結合のいずれであってもよい。Xで表される二重結合または三重結合を含む有機基としては、具体的には、芳香族炭化水素、不飽和複素環、アルケニル基、アルキニル基、シアノ基、アミド結合を有する基から選択される少なくとも1つを含む有機基などが挙げられる。Xで表される有機基は、極性基を含むものであってもよい。Xで表される有機基に含まれる炭素原子数は、2~15であることが好ましく、2~10であることがより好ましい。
 ここで、式(2-4)で表される末端基と、保護層上の活性点との結合について説明する。保護層上に多数存在している官能基(活性点)には、局所的に帯電した部位と、電荷の分布が広がっている部位とが存在する。式(2-4)中に含まれる水酸基は、水素原子が水素結合を介して、保護層上の局所的に帯電した部位と相互作用をすることにより吸着能を示す。一方、芳香族炭化水素、不飽和複素環、アルケニル基、およびアルキニル基は、非局在的な電荷を有する。このため、式(2-4)中に含まれるXで表される有機基が、芳香族炭化水素、不飽和複素環、アルケニル基、アルキニル基から選択される少なくとも1つを含む有機基である場合、Xで表される有機基は、保護層上の電荷の分布が広がっている部位と相互作用をすることにより吸着能を示す。また、シアノ基およびアミド結合を有する基は、非局在的な電荷を有しつつ、広く分極した電荷を持っている。このため、式(2-4)中に含まれるXで表される有機基が、シアノ基およびアミド結合を有する基から選択される少なくとも1つを含む場合、Xで表される有機基は、保護層上の局所的に帯電した部位および電荷の分布が広がっている部位の双方と、相互作用できる。
 したがって、式(2-4)中に含まれる水酸基と、二重結合または三重結合を含む有機基とは、互いに保護層上の別の部位に吸着できる。ゆえに、式(2-4)中に含まれる水酸基と、二重結合または三重結合を含む有機基は、保護層上の官能基(活性点)にそれぞれ独立に相互作用できる。その結果、RおよびRのうち少なくとも一方が式(2-4)である含フッ素エーテル化合物を含む潤滑層は、保護層との密着性に優れ、高い浮上安定性を示し、水の侵入を防止でき、磁気記録媒体の腐食抑制効果の高いものとなる。
 以上のことから、RおよびRのうち少なくとも一方が式(2-4)であると好ましい。
 式(2-4)中のlは1~3の整数であり、1~2の整数であることが好ましく、1であることが最も好ましい。式(2-4)中のlの数は、RまたはRに含まれる末端基中の水酸基の数と同じである。式(2-4)中のl(水酸基の数)が3以下であると、式(2-4)で表される末端基の水酸基が多すぎることによって、腐食の原因となる水が潤滑層に誘引されることを防止でき、耐腐食性の良好な潤滑層が得られる。
 式(2-4)中のlが2または3である場合、2または3個の繰り返し単位(-(CH-CH(OH)-(CH-O-)中のmとnの組み合わせは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。
 式(2-4)中におけるl個のmはそれぞれ独立して1~4の整数を表し、l個のnはそれぞれ独立して1~4の整数を表す。式(2-4)中における1つの繰り返し単位(-(CH-CH(OH)-(CH-O-)中のm+nは、2~4であることが好ましく、2~3であることがより好ましい。これは、繰り返し単位中のアルキレン基の炭素原子数が多すぎることによって、繰り返し単位の構造が剛直になることがないためである。よって、末端基部分が柔軟な構造を有するものとなり、より一層厚みの薄い潤滑層を十分な被覆率で形成でき、浮上安定性の良好な潤滑層となる。
 式(2-4)中における1つの繰り返し単位(-(CH-CH(OH)-(CH-O-)中のmとnのうち、少なくとも一方が1であることが好ましい。これは、水酸基が結合している炭素原子とエーテル酸素原子との間のアルキレン基の炭素原子数が多すぎることによって、水酸基の運動性が低下することがないためである。
 式(2-4)中のXが、芳香族炭化水素または不飽和複素環を含む場合、Xは、-(CHz1-R(式中、z1は0~3の整数を表す;Rは芳香族炭化水素または不飽和複素環を表す。)であることが好ましい。芳香族炭化水素および不飽和複素環は、環構造上に置換基を有していてもよい。置換基としては、メチル基、エチル基、メトキシ基、エトキシ基、ハロゲノ基、シアノ基、アセトアミド基(-NH(C=O)CH)、カルボキサミド基(-(C=O)NH)などが挙げられる。
 式(2-4)中のXが、アルケニル基またはアルキニル基を含む場合、Xは、炭素原子数2~8のアルケニル基、または炭素原子数3~8のアルキニル基であることが好ましい。
 式(2-4)中のXが、シアノ基またはアミド結合を有する基を含む場合、Xは、-(CHz2-R(式中、z2は1~5の整数を表す;Rは-CN、-NH(C=O)CH、または-(C=O)NHを表す。)であることが好ましい。また、上記のようにXは、シアノ基、アセトアミド基、またはカルボキサミド基を置換基として有する、芳香族炭化水素または不飽和複素環を含む有機基であってもよい。
 式(2-4)中のXで表される二重結合または三重結合を含む有機基としては、例えば、具体的には、フェニル基、メトキシフェニル基、フッ化フェニル基、ナフチル基、フェネチル基、メトキシフェネチル基、フッ化フェネチル基、ベンジル基、メトキシベンジル基、ナフチルメチル基、メトキシナフチル基、ピロリル基、ピラゾリル基、メチルピラゾリルメチル基、イミダゾリル基、フリル基、フルフリル基、オキサゾリル基、イソオキサゾリル基、チエニル基、チエニルエチル基、チアゾリル基、メチルチアゾリルエチル基、イソチアゾリル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、インドリニル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾピラゾリル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、キノリル基、イソキノリル基、キナゾリニル基、キノキサリニル基、フタラジニル基、シンノリニル基、ビニル基、アリル基、ブテニル基、プロピニル基、プロパルギル基、ブチニル基、メチルブチニル基、ペンチニル基、メチルペンチニル基、ヘキシニル基、シアノエチル基、シアノプロピル基、シアノフェニル基、アセトアミドエチル基(-CHCHNH(C=O)CH)、アセトアミドプロピル基(-CHCHCHNH(C=O)CH)、アセトアミドフェニル基、カルボキサミドエチル基(-CHCH(C=O)NH)、カルボキサミドプロピル基(-CHCHCH(C=O)NH)、カルボキサミドフェニル基などが挙げられる。
 式(2-4)中のXで表される有機基は、上記の中でも、フェニル基、メトキシフェニル基、チエニルエチル基、ナフチル基、ブテニル基、アリル基、プロパルギル基、フェネチル基、メトキシフェネチル基、フッ化フェネチル基、シアノエチル基、シアノプロピル基、アセトアミドエチル基、アセトアミドプロピル基から選ばれるいずれかであることが好ましく、フェニル基、メトキシフェニル基、アリル基、ブテニル基、チエニルエチル基、シアノエチル基、シアノプロピル基、アセトアミドエチル基、アセトアミドプロピル基から選ばれるいずれかであることがより好ましい。
 特に、式(2-4)中のXで表される有機基が、シアノエチル基、アセトアミドエチル基のいずれかである場合、Xで表される有機基の極性が高いものとなるため、より一層保護層との密着性に優れ、より浮上安定性の良好な潤滑層を形成できるものとなる。また、Xで表される有機基が、アリル基、メトキシフェニル基、チエニルエチル基のいずれかである場合、Xで表される有機基の疎水性が高いものとなるため、より耐腐食性の良好な潤滑層を形成できるものとなる。
 RおよびRのうち一方が、上記式(2-1)~(2-4)のうちいずれかの末端基であり、他方が上記式(2-1)~(2-4)で表される末端基以外の末端基である場合、他方の末端基は、極性基を1つ以上有する炭素原子数1~50の末端基であればよい。
 この場合、他方の末端基としては、例えば、上記式(2-1)~(2-4)で表される末端基以外の、水酸基を有する末端基が挙げられる。具体的には、例えば、他方の末端基として、-OCHCHOH、-OCHCHCHOH、-OCHCH(OH)CHOH、-OCHCH(OH)CHOCHCH(OH)CHOHなどが挙げられる。
 式(1)で表される含フッ素エーテル化合物においては、式(1)におけるR2aとR2dとが同じであり、R2bとR2cとが同じであり、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されており、RとRとが同じであることが好ましい。これは、容易に効率よく製造できる含フッ素エーテル化合物となるためである。
 さらに、式(1)で表される含フッ素エーテル化合物においては、式(1)における4つのRが全て同じであり、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されており、RとRとが同じであることがより好ましい。これは、容易に効率よく製造できる含フッ素エーテル化合物となるためである。さらに、3つのRが式(3)である含フッ素エーテル化合物である場合、より容易に効率よく製造でき、より好ましい。
 式(1)で表される含フッ素エーテル化合物においては、分子中に含まれる水酸基の合計数が、5~9であることが好ましく、5~8であることがより好ましい。分子中に含まれる水酸基の合計数が5以上であると、分子全体の保護層に対する吸着力を担保でき、より一層厚みの薄い潤滑層を十分な被覆率で形成できる。その結果、より浮上安定性の良好な潤滑層を形成できる。また、分子中に含まれる水酸基の合計数が9以下であると、分子全体の親水性が高くなりすぎることがなく、腐食の原因となる水を潤滑層に誘引することを防止でき、より耐腐食性の良好な潤滑層を形成できる。
 式(1)で表される含フッ素エーテル化合物は、具体的には、下記式(A)~(Z)で表されるいずれかの化合物であることが好ましい。
 式(1)で表される化合物が下記式(A)~(Z)で表されるいずれかの化合物である場合、原料が入手しやすく、しかも、厚みが薄くても優れた密着性を有し、浮上安定性がより一層良好で、磁気記録媒体の腐食抑制効果の高い潤滑層を形成できる。
 下記式(A)~(Z)で表される化合物において、PFPE鎖を表すRf、Rf、Rfは、それぞれ下記の構造である。すなわち、下記式(A)~(W)、(Z)で表される化合物において、Rfは、上記式(4-1)で表されるPFPE鎖である。下記式(X)、(Z)で表される化合物において、Rfは、上記式(4-2)で表されるPFPE鎖である。下記式(Y)で表される化合物において、Rfは、上記式(4-3)で表されるPFPE鎖である。なお、式(A)~(Z)中のPFPE鎖を表すRfにおけるhおよびi、Rfにおけるj、Rfにおけるkは、平均重合度を示す値であるため、必ずしも整数になるとは限らない。
Figure JPOXMLDOC01-appb-C000007
 下記式(A)~(R)、(X)~(Z)で表される化合物は、いずれも3つのRが式(3)で表される連結基である。
 下記式(A)~(Z)で表される化合物は、いずれもRおよびRのうち少なくとも一方が式(2-1)~(2-4)のいずれかで示される末端基である。
 下記式(A)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが1、qが1である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(B)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが1、qが2である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(C)で表される化合物は、式(1)におけるRおよびRが上記式(2-2)で表される末端基でrが0、sが1である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(D)で表される化合物は、式(1)におけるRおよびRが上記式(2-3)で表される末端基でtが1、uが0、vが1である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(E)で表される化合物は、式(1)におけるRが上記式(2-1)で表される末端基でpが1、qが1である。Rが-OCHCH(OH)CHOHである。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(F)で表される化合物は、式(1)におけるRが上記式(2-1)で表される末端基でpが1、qが1である。Rが-OCHCH(OH)CHOCHCH(OH)CHOHである。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(G)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが2、qが1である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(H)で表される化合物は、式(1)におけるRが上記式(2-1)で表される末端基でpが1、qが1であり、Rが上記式(2-1)で表される末端基でpが2、qが1である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(I)で表される化合物は、式(1)におけるRおよびRが上記式(2-2)で表される末端基でrが1、sが1である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(J)で表される化合物は、式(1)におけるRおよびRが上記式(2-3)で表される末端基でtが1、uが1、vが1である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(K)で表される化合物は、式(1)におけるRおよびRが上記式(2-4)で表される末端基でlが2、mが1、nが1、Xがアリル基である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(L)で表される化合物は、式(1)におけるRおよびRが上記式(2-4)で表される末端基でlが1、mが1、nが1、Xがp-メトキシフェニル基である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(M)で表される化合物は、式(1)におけるRが上記式(2-1)で表される末端基でpが1、qが1であり、Rが上記式(2-4)で表される末端基でlが1、mが1、nが1、Xがp-メトキシフェニル基である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(N)で表される化合物は、式(1)におけるRおよびRが上記式(2-4)で表される末端基でlが1、mが1、nが1、Xがチエニルエチル基である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(O)で表される化合物は、式(1)におけるRおよびRが上記式(2-4)で表される末端基でlが1、mが1、nが1、Xがシアノエチル基である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(P)で表される化合物は、式(1)におけるRが上記式(2-1)で表される末端基でpが1、qが1であり、Rが上記式(2-4)で表される末端基でlが1、mが1、nが1、Xがシアノエチル基である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(Q)で表される化合物は、式(1)におけるRおよびRが上記式(2-4)で表される末端基でlが1、mが1、nが1、Xがアセトアミドエチル基である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(R)で表される化合物は、式(1)におけるRが上記式(2-1)で表される末端基でpが1、qが1であり、Rが上記式(2-4)で表される末端基でlが1、mが1、nが1、Xがアセトアミドエチル基である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(S)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが1、qが1である。R3aが上記式(3-3)で表される連結基でfが2であり、R3bが上記式(3)で表される連結基であり、R3cが上記式(3-2)で表される連結基でeが2である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(T)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが1、qが1である。R3aおよびR3cが上記式(3)で表される連結基であり、R3bが上記式(3-3)で表される連結基でfが2である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(U)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが1、qが1である。R3aおよびR3cが上記式(3)で表される連結基であり、R3bが上記式(3-1)で表される連結基でdが2である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(V)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが1、qが1である。R3aおよびR3cが上記式(3)で表される連結基であり、R3bが上記式(3-4)で表される連結基でgが0である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(W)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが1、qが1である。R3aおよびR3cが上記式(3)で表される連結基であり、R3bが上記式(3-4)で表される連結基でgが4である。4つのRが上記式(4-1)で表されるPFPE鎖である。
 下記式(X)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが1、qが1である。4つのRが上記式(4-2)で表されるPFPE鎖である。
 下記式(Y)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが1、qが1である。4つのRが上記式(4-3)で表されるPFPE鎖である。
 下記式(Z)で表される化合物は、式(1)におけるRおよびRが上記式(2-1)で表される末端基でpが1、qが1である。R2aおよびR2dが上記式(4-2)で表されるPFPE鎖であり、R2bおよびR2cが上記式(4-1)で表されるPFPE鎖である。
Figure JPOXMLDOC01-appb-C000008

(式(A)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(B)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(C)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000009
(式(D)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(E)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(F)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000010
(式(G)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(H)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(I)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000011
(式(J)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(K)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(L)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい;Meは、メチル基を表す。)
Figure JPOXMLDOC01-appb-C000012
(式(M)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい;Meは、メチル基を表す。)
(式(N)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(O)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000013
(式(P)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(Q)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(R)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000014
(式(S)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(T)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(U)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000015

(式(V)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(W)中の4つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;4つのRfにおけるh、iは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000016
(式(X)中の4つのRfにおいて、jは平均重合度を示し、1~15を表す;4つのRfにおけるjは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(Y)中の4つのRfにおいて、kは平均重合度を示し、1~10を表す;4つのRfにおけるkは、それぞれ異なっていてもよいし、一部または全部が同じであってもよい。)
(式(Z)中の2つのRfにおいて、jは平均重合度を示し、1~15を表す;2つのRfにおいて、jは同じであってもよいし、異なっていてもよい;式(Z)中の2つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;2つのRfにおいて、h、iはそれぞれ同じであってもよいし、異なっていてもよい。)
 本実施形態の含フッ素エーテル化合物は、数平均分子量(Mn)が500~10000の範囲内であることが好ましく、1000~8000の範囲内であることがより好ましく、1500~7000の範囲内であることがさらに好ましく、2000~6000の範囲内であることが特に好ましい。数平均分子量が500以上であると、本実施形態の含フッ素エーテル化合物を含む潤滑剤からなる潤滑層が優れた耐熱性を有するものとなる。含フッ素エーテル化合物の数平均分子量は、1000以上であることがより好ましい。また、数平均分子量が10000以下であると、含フッ素エーテル化合物の粘度が適正なものとなり、これを含む潤滑剤を塗布することによって、容易に膜厚の薄い潤滑層を形成できる。含フッ素エーテル化合物の数平均分子量は、潤滑剤に適用した場合に扱いやすい粘度となるため、8000以下であることがより好ましい。
 含フッ素エーテル化合物の数平均分子量(Mn)は、ブルカー・バイオスピン社製AVANCEIII400によるH-NMRおよび19F-NMRによって測定された値である。具体的には、19F-NMRによって測定された積分値よりPFPE鎖の繰り返し単位数を算出し、数平均分子量を求める。NMR(核磁気共鳴)の測定においては、試料をヘキサフルオロベンゼン/d-アセトン(4/1v/v)溶媒へ希釈して測定する。19F-NMRケミカルシフトの基準は、ヘキサフルオロベンゼンのピークを-164.7ppmとし、H-NMRケミカルシフトの基準は、アセトンのピークを2.2ppmとする。
 本実施形態の含フッ素エーテル化合物は、適当な方法で分子量分画することにより、分子量分散度(重量平均分子量(Mw)/数平均分子量(Mn)比)を1.3以下とすることが好ましい。
 本実施形態において、分子量分画する方法としては、特に制限されないが、例えば、シリカゲルカラムクロマトグラフィー法、ゲルパーミエーションクロマトグラフィー(GPC)法などによる分子量分画、超臨界抽出法による分子量分画等を用いることができる。
「製造方法」
 本実施形態の含フッ素エーテル化合物の製造方法は、特に限定されるものではなく、従来公知の製造方法を用いて製造できる。本実施形態の含フッ素エーテル化合物は、例えば、以下に示す製造方法を用いて製造できる。
 図1は、本発明の含フッ素エーテル化合物の製造方法の一例を説明するためのフローチャートである。図1に示される(a)は、含フッ素エーテル化合物の製造方法における全工程を示したフローチャートである。図1に示される(b)は、図1に示される(a)における連結構造製造工程を示したフローチャートである。図1に示される(c)は、図1に示される(a)における化合物構造製造工程を示したフローチャートである。
 本実施形態の含フッ素エーテル化合物の製造方法は、図1に示される(a)に示すように、端部製造工程S1と、連結構造製造工程S2と、化合物構造製造工程S3とを有する。
[端部製造工程S1]
 端部製造工程S1では、式(1)におけるR-CH-R2a-CH-に対応する基を有する中間体化合物1aと、式(1)における-CH-R2d-CH-Rに対応する基を有する中間体化合物1bとを製造する。中間体化合物1aと中間体化合物1bとは、どちらを先に製造してもよい。
 本実施形態の製造方法において、含フッ素エーテル化合物として、式(1)におけるR2aとR2dとが同じで、RとRとが同じである化合物を製造する場合、端部製造工程S1において、中間体化合物1aと中間体化合物1bとを同時に製造できる。したがって、式(1)におけるR2aとR2dとが同じで、RとRとが同じである化合物は、効率よく容易に製造できる。
 中間体化合物1aおよび中間体化合物1bは、具体的には、例えば、以下に示す方法により製造できる。
<R2aとR2d、RとRの少なくとも一方が異なる場合(中間体化合物1aと中間体化合物1bとが異なる場合)>
 まず、式(1)におけるR2aに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意し、その一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)におけるRに対応する基を有するエポキシ化合物とを反応させる。このことにより、R2aに対応するパーフルオロポリエーテル鎖の一方の末端に、Rに対応する基を有する中間体化合物1aが得られる。
 次に、式(1)におけるR2dに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意し、その一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)におけるRに対応する基を有するエポキシ化合物とを反応させる。このことにより、R2dに対応するパーフルオロポリエーテル鎖の一方の末端に、Rに対応する基を有する中間体化合物1bが得られる。
<R2aとR2dが同じであり、RとRが同じである場合(中間体化合物1aと中間体化合物1bが同じである場合)>
 まず、式(1)におけるR2a(=R2d)に対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。次いで、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基と、式(1)におけるRに対応する基(=Rに対応する基)を有するエポキシ化合物とを反応させる。このことにより、R2a(=R2d)に対応するパーフルオロポリエーテル鎖の一方の末端に、Rに対応する基(=Rに対応する基)を有する中間体化合物1a(=中間体化合物1b)が得られる。
 式(1)におけるRに対応する基(またはRに対応する基)を有するエポキシ化合物としては、例えば、下記式(5-1)~(5-14)で表される化合物などを用いることができる。下記式(5-1)~(5-10)中のTHPは、テトラヒドロピラニル基を表す。下記式(5-11)中のMeは、メチル基を表す。
 上記フッ素系化合物と上記エポキシ化合物とを反応させて、上記中間体化合物1a(または中間体化合物1b)を合成する場合、上記エポキシ化合物の有する水酸基を適切な保護基を用いて保護してから、上記フッ素系化合物と反応させても良い。
Figure JPOXMLDOC01-appb-C000017
 式(1)におけるRに対応する基(またはRに対応する基)を有するエポキシ化合物は、例えば、以下に示す方法を用いて製造できる。すなわち、下記式(6-1)に示すように、式(1)におけるR(またはR)で表される末端基の一部に対応する構造を有するアルコールと、エポキシ基を有するハロゲン化合物とを反応させる方法を用いて製造できる。
Figure JPOXMLDOC01-appb-C000018
(式(6-1)中、Rは式(1)におけるRまたはRで表される末端基の一部に対応する構造を示す;a1は、1以上の整数を表す。)
 また、上記エポキシ化合物は、以下に示す方法を用いても製造できる。すなわち、下記式(6-2)に示すように、式(1)におけるR(またはR)で表される末端基の一部に対応する構造を有するアルコールと、アルケニル基を有するハロゲン化合物とを反応させる。その後、得られた化合物に、m-クロロ過安息香酸(mCPBA)を作用させて酸化させる方法を用いて製造できる。
Figure JPOXMLDOC01-appb-C000019
(式(6-2)中、Rは式(1)におけるRまたはRで表される末端基の一部に対応する構造を示す;a2は、1以上の整数を表す。)
 また、上記エポキシ化合物は、以下に示す方法を用いても製造できる。すなわち、下記式(6-3)に示すように、式(1)におけるR(またはR)で表される末端基の一部に対応する構造を有するアルコールと、アルケニル基およびエポキシ基を有する化合物とを付加反応させる。その後、付加反応により得られた化合物に、m-クロロ過安息香酸(mCPBA)を作用させて酸化させる方法を用いて製造できる。付加反応により生じた水酸基を適切に保護した後、mCPBAを用いて酸化させてもよい。
Figure JPOXMLDOC01-appb-C000020
(式(6-3)中、Rは式(1)におけるRまたはRで表される末端基の一部に対応する構造を示す;a3およびa4は、それぞれ0以上の整数を表す;Yは、OまたはCHを表す。)
[連結構造製造工程S2]
 連結構造製造工程S2では、式(1)における-R3a-CH-R2b-CH-R3b-CH-R2c-CH-R3c-に対応する基を有する中間体化合物3を製造する。
 連結構造製造工程S2は、端部製造工程S1の後に行ってもよいし、端部製造工程S1の前に行ってもよい。
 連結構造製造工程S2は、図1に示される(b)に示すように、連結端部製造工程S21と、R2b側反応工程S22と、R2c側反応工程S23とを含む。
 連結端部製造工程S21では、式(1)における-R3a-CH-R2b-CH-に対応する基を有する中間体化合物2aと、式(1)における-CH-R2c-CH-R3c-に対応する基を有する中間体化合物2bとを製造する。中間体化合物2aと中間体化合物2bとは、どちらを先に製造してもよい。
 R2b側反応工程S22では、式(1)におけるR3bに対応する基を有する化合物のR2b側端部と中間体化合物2aとを反応させる。R2c側反応工程S23では、式(1)におけるR3bに対応する基を有する化合物のR2c側端部と中間体化合物2bとを反応させる。R2c側反応工程S23は、R2b側反応工程S22の後に行ってもよいし、R2b側反応工程S22の前に行ってもよい。
 本実施形態の製造方法において、含フッ素エーテル化合物として、式(1)におけるR2bとR2cとが同じで、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されている化合物を製造する場合、連結構造製造工程S2において、中間体化合物2aと中間体化合物2bとを同時に製造できる。したがって、式(1)におけるR2bとR2cとが同じで、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されている化合物は、効率よく容易に製造できる。また、中間体化合物2aと中間体化合物2bとを同時に製造した場合、中間体化合物2aと中間体化合物2bとが同じものとなる。このため、R2b側反応工程S22とR2c側反応工程S23とを同時に行うことができる。よって、式(1)におけるR2bとR2cとが同じで、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されている化合物は、生産性に優れる。
 中間体化合物2aおよび中間体化合物2bは、具体的には、例えば、以下に示す方法により製造できる。
<R2bとR2cが異なる、および/またはR3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されていない場合(中間体化合物2aと中間体化合物2bとが異なる場合)>
 まず、式(1)におけるR2bに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意し、その一方の末端に配置されたヒドロキシメチル基の水酸基と、R3aに対応するアルケニル基を有するハロゲン化合物またはエポキシ化合物とを反応させる。このことにより、R2bに対応するパーフルオロポリエーテル鎖の一方の末端に、R3aに対応するアルケニル基を有する中間体化合物2aが得られる。
 次に、式(1)におけるR2cに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意し、その一方の末端に配置されたヒドロキシメチル基の水酸基と、R3cに対応するアルケニル基を有するハロゲン化合物またはエポキシ化合物とを反応させる。このことにより、R2cに対応するパーフルオロポリエーテル鎖の一方の末端に、R3cに対応する基を有する中間体化合物2bが得られる。
<R2bとR2cが同じであり、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されている場合(中間体化合物2aと中間体化合物2bが同じである場合)>
 式(1)におけるR2b(=R2c)に対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。次いで、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基と、R3a(=R3c)に対応するアルケニル基を有するハロゲン化合物またはエポキシ化合物とを反応させる。このことにより、式(1)におけるR2b(=R2c)に対応するパーフルオロポリエーテル鎖の一方の末端に、R3a(=R3c)に対応するアルケニル基を有する中間体化合物2a(=中間体化合物2b)が得られる。
 式(1)におけるR3a(またはR3c)に対応するアルケニル基を有するハロゲン化合物またはエポキシ化合物としては、例えば、下記式(7-1)~(7-5)で表される化合物などを用いることができる。
Figure JPOXMLDOC01-appb-C000021
 R2b側反応工程S22およびR2c側反応工程S23は、具体的には、例えば、以下に示す方法により行うことができる。
<R2bとR2cが異なる、および/またはR3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されていない場合(中間体化合物2aと中間体化合物2bとが異なる場合)>
 1分子の中間体化合物2aと、R3bに対応するエポキシ基を有するハロゲン化合物またはジエポキシ化合物とを反応させた(R2b側反応工程S22)後、得られた化合物を1分子の中間体化合物2bと反応させる(R2c側反応工程S23)。
 または、1分子の中間体化合物2bと、R3bに対応するエポキシ基を有するハロゲン化合物またはジエポキシ化合物とを反応させた(R2c側反応工程S23)後、得られた化合物を1分子の中間体化合物2aと反応させる(R2b側反応工程S22)。
 このことにより、式(1)におけるR2bおよびR2cに対応するパーフルオロポリエーテル鎖が、R3bに対応する連結基とそれぞれメチレン基を介して結合し、その両方の末端にそれぞれ、R3aに対応するアルケニル基とR3cに対応するアルケニル基とを有する中間体化合物3が得られる。
<R2bとR2cが同じであり、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されている場合(中間体化合物2aと中間体化合物2bが同じである場合)>
 2分子の中間体化合物2a(=中間体化合物2b)と、R3bに対応するエポキシ基を有するハロゲン化合物またはジエポキシ化合物とを反応させる。このことにより、式(1)におけるR2b(=R2c)に対応するパーフルオロポリエーテル鎖がR3bに対応する連結基とメチレン基を介して結合し、その両方の末端に、R3a(=R3c)に対応するアルケニル基を有する中間体化合物3が得られる。
 式(1)におけるR3bに対応するエポキシ基を有するハロゲン化合物またはジエポキシ化合物としては、例えば、下記式(8-1)~(8-5)で表される化合物などを用いることができる。
Figure JPOXMLDOC01-appb-C000022
[化合物構造製造工程S3]
 化合物構造製造工程S3は、図1に示される(c)に示すように、R側反応工程S31と、R側反応工程S32とを含む。R側反応工程S31では、中間体化合物3(または後述の中間体化合物3-1)のR3a側端部と中間体化合物1aとを反応させる。R側反応工程S32では、中間体化合物3(または後述の中間体化合物3-1)のR3c側端部と前記中間体化合物1bとを反応させる。R側反応工程S32は、R側反応工程S31の後に行ってもよいし、R側反応工程S31の前に行ってもよい。
 本実施形態の製造方法において、含フッ素エーテル化合物として、式(1)におけるR2aとR2dとが同じで、RとRとが同じである化合物を製造する場合、中間体化合物1aの有するR-CH-R2a-CH-に対応する基と、中間体化合物1bの有する-CH-R2d-CH-Rに対応する基とが同じであるため、R側反応工程S31とR側反応工程S32とを同時に行うことができる。したがって、式(1)におけるR2aとR2dとが同じで、RとRとが同じである化合物は、効率よく容易に製造できる。
 特に、本実施形態の製造方法において、含フッ素エーテル化合物として、式(1)におけるR2aとR2dとが同じであり、R2bとR2cとが同じであり、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されており、RとRとが同じである化合物を製造する場合、端部製造工程S1において、中間体化合物1aと中間体化合物1bとを同時に製造し、連結構造製造工程S2において、中間体化合物2aと中間体化合物2bとを同時に製造し、R2b側反応工程S22とR2c側反応工程S23とを同時に行い、化合物構造製造工程S3において、R側反応工程S31とR側反応工程S32とを同時に行う方法を用いることができ、より効率よく容易に製造できる。
 R側反応工程S31およびR側反応工程S32は、具体的には、例えば、以下に示す方法により行うことができる。
 化合物構造製造工程S3において使用する中間体化合物3は、式(1)における-R3a-CH-R2b-CH-R3b-CH-R2c-CH-R3c-に対応する基を有するものであればよい。具体的には、化合物構造製造工程S3を行うに際し、本実施形態の連結構造製造工程S2において製造した中間体化合物3をそのまま使用してもよいし、連結構造製造工程S2において製造した中間体化合物3の両末端に存在する炭素-炭素二重結合を、酸化してエポキシ基とする処理を行ったものを使用してもよく、中間体化合物1aおよび中間体化合物1bの種類に応じて適宜決定できる。
 本実施形態では、中間体化合物3として、連結構造製造工程S2において製造した中間体化合物3の両末端に存在する炭素-炭素二重結合を、酸化してエポキシ基とした中間体化合物(以下、「中間体化合物3-1」という。)を用いる場合を例に挙げて説明する。中間体化合物3-1は、式(1)におけるR2bに対応するパーフルオロポリエーテル鎖とR2cに対応するパーフルオロポリエーテル鎖とが、R3bに対応する連結基とそれぞれメチレン基を介して結合し、そのR2b側の末端にR3aに対応するエポキシ基を有し、R2c側の末端にR3cに対応するエポキシ基を有する。
 中間体化合物3の両末端に存在する炭素-炭素二重結合を酸化して、中間体化合物3-1を生成させる反応は、中間体化合物3の有する水酸基を適切に保護してから実施してもよい。
<R2aとR2d、RとRの少なくとも一方が異なる場合(中間体化合物1aと中間体化合物1bとが異なる場合)>
 1分子の中間体化合物1aと中間体化合物3-1のR2b側の末端に存在するエポキシ基とを付加反応させた(R側反応工程S31)後、得られた化合物を1分子の中間体化合物1bと反応させる(R側反応工程S32)。
 または、1分子の中間体化合物1bと中間体化合物3-1のR2c側の末端に存在するエポキシ基とを付加反応させた(R側反応工程S32)後、得られた化合物を1分子の中間体化合物1aと反応させる(R側反応工程S31)。
<R2aとR2dが同じであり、RとRが同じである場合(中間体化合物1aと中間体化合物1bとが同じである場合)>
 2分子の中間体化合物1a(=中間体化合物1b)と、中間体化合物3-1の両末端に存在するエポキシ基とを付加反応させる。
 このようにしてR側反応工程S31およびR側反応工程S32を行った後、反応生成物の有する保護基を適切な反応剤を用いて脱保護する。
 以上の工程を行うことにより、式(1)で表される化合物を製造できる。
 本実施形態の含フッ素エーテル化合物は、式(1)で表される化合物であり、2つのメチレン基(-CH-)間に挟まれた1つ以上の極性基を有する2価の連結基(R3a、R3b、およびR3c)を介して、4つのパーフルオロポリエーテル鎖(R2a、R2b、R2c、およびR2d)が結合した骨格を有し、骨格を形成している3つの連結基のうち少なくとも1つが式(3)で表され、骨格の両側にメチレン基(-CH-)を介して極性基を1つ以上有する炭素原子数1~50の末端基(RおよびR)が結合している。このため、本実施形態の含フッ素エーテル化合物を含む潤滑剤を用いて保護層上に形成した潤滑層は、磁気ヘッドの浮上安定性が良好で、磁気記録媒体の腐食抑制効果の高いものとなる。
 また、本実施形態の含フッ素エーテル化合物の製造方法では、R-CH-R2a-CH-に対応する基を有する中間体化合物1aと、-CH-R2d-CH-Rに対応する基を有する中間体化合物1bと、-R3a-CH-R2b-CH-に対応する基を有する中間体化合物2aと、-CH-R2c-CH-R3c-に対応する基を有する中間体化合物2bとを製造する。そして、R3bに対応する基を有する化合物のR2b側端部と中間体化合物2aとを反応させ、R3bに対応する基を有する化合物のR2c側端部と中間体化合物2bとを反応させて、-R3a-CH-R2b-CH-R3b-CH-R2c-CH-R3c-に対応する基を有する中間体化合物3を製造する。その後、中間体化合物3(またはこれを酸化して得られた中間体化合物3-1)のR3a側端部と中間体化合物1aとを反応させ、中間体化合物3(またはこれを酸化して得られた中間体化合物3-1)のR3c側端部と中間体化合物1bとを反応させる。このため、2つのメチレン基間に挟まれた2価の連結基(R3a、R3b、およびR3c)を介して、4つのパーフルオロポリエーテル鎖(R2a、R2b、R2c、およびR2d)が結合した骨格を有する式(1)で表される本実施形態の含フッ素エーテル化合物を選択的に製造できる。
 本実施形態の含フッ素エーテル化合物の製造方法によれば、式(1)で表される含フッ素エーテル化合物を、高い純度で製造できる。これに対し、含フッ素エーテル化合物を製造する方法として、<1>パーフルオロポリエーテル鎖の両末端にそれぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を、エピクロロヒドリンと反応させる方法(例えば、特許文献5に記載の方法)、<2>パーフルオロポリエーテル鎖の両末端にそれぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を、グリシドールと反応させて得た混合物を、ジエポキシ化合物と反応させる方法(例えば、特許文献6に記載の方法)がある。
 従来知られている上記<1>および<2>の方法では、2価の連結基(R3a、R3b、およびR3c)に対応する化合物と、パーフルオロポリエーテル鎖(R2a、R2b、R2c、およびR2d)に対応する化合物とがランダムに反応し、分子中に含まれるパーフルオロポリエーテル鎖の数が異なる含フッ素エーテル化合物の混合物が生成する。生成した混合物中に含まれる目的化合物と副生成物とは、極性が近くカラムクロマトグラフィーによる分離が難しいし、沸点が近く蒸留による分離も難しい。したがって、生成した混合物は、目的化合物を単離しにくいものである。このため、上記<1>および<2>の方法では、2つのメチレン基間に挟まれた2価の連結基(R3a、R3b、およびR3c)を介して、4つのパーフルオロポリエーテル鎖(R2a、R2b、R2c、およびR2d)が結合した所望する骨格を有する含フッ素エーテル化合物を高純度で得ることは困難である。
 また、上記<1>および<2>の方法により得られた混合物には、保護層に対する密着性の乏しい、パーフルオロポリエーテル鎖の数が3以下の化合物、および/または分子の流動性の乏しい、パーフルオロポリエーテル鎖の数が5以上の化合物が、副生成物として多く含まれる。
 これに対し、本実施形態の含フッ素エーテル化合物の製造方法では、このような副生成物の生成を抑制でき、保護層に対する被覆状態が均一で密着性に優れる潤滑層が形成されやすい本実施形態の含フッ素エーテル化合物を選択的に製造できる。
[磁気記録媒体用潤滑剤]
 本実施形態の磁気記録媒体用潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含む。
 本実施形態の潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含むことによる特性を損なわない範囲内であれば、潤滑剤の材料として使用されている公知の材料を、必要に応じて混合して用いることができる。
 公知の材料の具体例としては、例えば、FOMBLIN(登録商標) ZDIAC、FOMBLIN ZDEAL、FOMBLIN AM-2001(以上Solvay Solexis社製)、Moresco A20H(Moresco社製)等が挙げられる。
 本実施形態の潤滑剤と混合して用いる公知の材料は、数平均分子量が1000~10000であることが好ましい。
 本実施形態の潤滑剤が、上記式(1)で表される含フッ素エーテル化合物の他の材料を含む場合、本実施形態の潤滑剤中の上記式(1)で表される含フッ素エーテル化合物の含有量は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。
 本実施形態の潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含む。このため、本実施形態の潤滑剤は、薄い厚みで均一に塗布することができ、厚みが薄く、磁気ヘッドの浮上安定性が良好であり、磁気記録媒体の腐食抑制効果の高い潤滑層を形成できる。
[磁気記録媒体]
 本実施形態の磁気記録媒体は、基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられたものである。
 本実施形態の磁気記録媒体では、基板と磁性層との間に、必要に応じて1層または2層以上の下地層を設けることができる。また、下地層と基板との間に、付着層および軟磁性層の少なくとも一方を設けることもできる。
 図2は、本発明の磁気記録媒体の一実施形態を示す概略断面図である。
 本実施形態の磁気記録媒体10は、基板11上に、付着層12と、軟磁性層13と、第1下地層14と、第2下地層15と、磁性層16と、保護層17と、潤滑層18とが順次設けられた構造をなしている。
「基板」
 基板11としては、例えば、AlもしくはAl合金などの金属または合金材料からなる基体上に、NiPまたはNiP合金からなる膜が形成された非磁性基板等を用いることができる。
 また、基板11としては、ガラス、セラミックス、シリコン、シリコンカーバイド、カーボン、樹脂などの非金属材料からなる非磁性基板を用いてもよいし、これらの非金属材料からなる基体上にNiPまたはNiP合金の膜を形成した非磁性基板を用いてもよい。
「付着層」
 付着層12は、基板11と、付着層12上に設けられる軟磁性層13とを接して配置した場合に生じる、基板11の腐食の進行を防止する。
 付着層12の材料は、例えば、Cr、Cr合金、Ti、Ti合金、CrTi、NiAl、AlRu合金等から適宜選択できる。付着層12は、例えば、スパッタリング法により形成できる。
「軟磁性層」
 軟磁性層13は、第1軟磁性膜と、Ru膜からなる中間層と、第2軟磁性膜とが順に積層された構造を有していることが好ましい。すなわち、軟磁性層13は、2層の軟磁性膜の間にRu膜からなる中間層を挟み込むことによって、中間層の上下の軟磁性膜がアンチ・フェロ・カップリング(AFC)結合した構造を有していることが好ましい。
 第1軟磁性膜および第2軟磁性膜の材料としては、CoZrTa合金、CoFe合金などが挙げられる。
 第1軟磁性膜および第2軟磁性膜に使用されるCoFe合金には、Zr、Ta、Nbの何れかを添加することが好ましい。これにより、第1軟磁性膜および第2軟磁性膜の非晶質化が促進される。その結果、第1下地層(シード層)の配向性を向上させることが可能になるとともに、磁気ヘッドの浮上量を低減することが可能となる。
 軟磁性層13は、例えば、スパッタリング法により形成できる。
「第1下地層」
 第1下地層14は、その上に設けられる第2下地層15および磁性層16の配向および結晶サイズを制御する層である。
 第1下地層14としては、例えば、Cr層、Ta層、Ru層、あるいはCrMo合金層、CoW合金層、CrW合金層、CrV合金層、CrTi合金層などからなるものが挙げられる。
 第1下地層14は、例えば、スパッタリング法により形成できる。
「第2下地層」
 第2下地層15は、磁性層16の配向が良好になるように制御する層である。第2下地層15は、RuまたはRu合金からなる層であることが好ましい。
 第2下地層15は、1層からなる層であってもよいし、複数層から構成されていてもよい。第2下地層15が複数層からなる場合、全ての層が同じ材料から構成されていてもよいし、少なくとも一層が異なる材料から構成されていてもよい。
 第2下地層15は、例えば、スパッタリング法により形成できる。
「磁性層」
 磁性層16は、磁化容易軸が基板面に対して垂直または水平方向を向いた磁性膜からなる。磁性層16は、CoとPtとを含む層である。磁性層16は、SNR特性を改善するために、酸化物、Cr、B、Cu、Ta、Zr等を含む層であってもよい。
 磁性層16に含有される酸化物としては、SiO、SiO、Cr、CoO、Ta、TiO等が挙げられる。
 磁性層16は、1層から構成されていてもよいし、組成の異なる材料からなる複数の磁性層から構成されていてもよい。
 例えば、磁性層16が、下から順に積層された第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層は、Co、Cr、Ptを含み、さらに酸化物を含んだ材料からなるグラニュラー構造であることが好ましい。第1磁性層に含有される酸化物としては、例えば、Cr、Si、Ta、Al、Ti、Mg、Co等の酸化物を用いることが好ましい。その中でも、特に、TiO、Cr、SiO等を好適に用いることができる。また、第1磁性層は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも、特に、Cr-SiO、Cr-TiO、SiO-TiO等を好適に用いることができる。
 第1磁性層は、Co、Cr、Pt、酸化物の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。
 第2磁性層には、第1磁性層と同様の材料を用いることができる。第2磁性層は、グラニュラー構造であることが好ましい。
 第3磁性層は、Co、Cr、Ptを含み、酸化物を含まない材料からなる非グラニュラー構造であることが好ましい。第3磁性層は、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を含むことができる。
 磁性層16が複数の磁性層で形成されている場合、隣接する磁性層の間には、非磁性層を設けることが好ましい。磁性層16が、第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層と第2磁性層との間と、第2磁性層と第3磁性層との間に、非磁性層を設けることが好ましい。
 磁性層16の隣接する磁性層間に設けられる非磁性層は、例えば、Ru、Ru合金、CoCr合金、CoCrX1合金(X1は、Pt、Ta、Zr、Re、Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Bの中から選ばれる1種または2種以上の元素を表す。)等を好適に用いることができる。
 磁性層16の隣接する磁性層間に設けられる非磁性層には、酸化物、金属窒化物、または金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiO等を用いることができる。金属窒化物として、例えば、AlN、Si、TaN、CrN等を用いることができる。金属炭化物として、例えば、TaC、BC、SiC等を用いることができる。
 非磁性層は、例えば、スパッタリング法により形成できる。
 磁性層16は、より高い記録密度を実現するために、磁化容易軸が基板面に対して垂直方向を向いた垂直磁気記録の磁性層であることが好ましい。磁性層16は、面内磁気記録の磁性層であってもよい。
 磁性層16は、蒸着法、イオンビームスパッタ法、マグネトロンスパッタ法等、従来公知のいかなる方法によって形成してもよい。磁性層16は、通常、スパッタリング法により形成される。
「保護層」
 保護層17は、磁性層16を保護する。保護層17は、1層から構成されていてもよいし、複数層から構成されていてもよい。保護層17としては、炭素系保護層を好ましく用いることができ、特にアモルファス炭素保護層が好ましい。保護層17が炭素系保護層であると、潤滑層18中の含フッ素エーテル化合物に含まれる極性基(特に水酸基)との相互作用が一層高まるため、好ましい。
 炭素系保護層と潤滑層18との付着力は、炭素系保護層を水素化炭素および/または窒素化炭素とし、炭素系保護層中の水素含有量および/または窒素含有量を調節することにより制御可能である。炭素系保護層中の水素含有量は、水素前方散乱法(HFS)で測定したときに3原子%~20原子%であることが好ましい。また、炭素系保護層中の窒素含有量は、X線光電子分光分析法(XPS)で測定したときに、4原子%~15原子%であることが好ましい。
 炭素系保護層に含まれる水素および/または窒素は、炭素系保護層全体に均一に含有される必要はない。炭素系保護層は、例えば、保護層17の潤滑層18側に窒素を含有させ、保護層17の磁性層16側に水素を含有させた組成傾斜層とすることが好適である。この場合、磁性層16および潤滑層18と、炭素系保護層との付着力が、より一層向上する。
 保護層17の膜厚は、1nm~7nmであることが好ましい。保護層17の膜厚が1nm以上であると、保護層17としての性能が充分に得られる。保護層17の膜厚が7nm以下であると、保護層17の薄膜化の観点から好ましい。
 保護層17の成膜方法としては、炭素を含むターゲット材を用いるスパッタ法、エチレンやトルエン等の炭化水素原料を用いるCVD(化学蒸着法)法、IBD(イオンビーム蒸着)法等を用いることができる。
 保護層17として炭素系保護層を形成する場合、例えば、DCマグネトロンスパッタリング法により成膜することができる。特に、保護層17として炭素系保護層を形成する場合、プラズマCVD法により、アモルファス炭素保護層を成膜することが好ましい。プラズマCVD法により成膜したアモルファス炭素保護層は、表面が均一で、粗さが小さいものとなる。
「潤滑層」
 潤滑層18は、磁気記録媒体10の汚染を防止する。また、潤滑層18は、磁気記録媒体10上を摺動する磁気記録再生装置の磁気ヘッドの摩擦力を低減させて、磁気記録媒体10の耐久性を向上させる。
 潤滑層18は、図2に示すように、保護層17上に接して形成されている。潤滑層18は、保護層17上に上述した実施形態の磁気記録媒体用潤滑剤を塗布することにより形成されたものである。したがって、潤滑層18は、上述の含フッ素エーテル化合物を含む。
 潤滑層18は、潤滑層18の下に配置されている保護層17が、炭素系保護層である場合、特に、保護層17と高い結合力で結合される。その結果、潤滑層18の厚みが薄くても、高い被覆率で保護層17の表面が被覆された磁気記録媒体10が得られやすくなり、磁気記録媒体10の表面の汚染を効果的に防止できる。
 潤滑層18の平均膜厚は、0.5nm(5Å)~2.0nm(20Å)であることが好ましく、0.5nm(5Å)~1.2nm(12Å)であることがより好ましい。潤滑層18の平均膜厚が0.5nm以上であると、潤滑層18がアイランド状または網目状とならずに均一の膜厚で形成される。そのため、潤滑層18によって、保護層17の表面を高い被覆率で被覆できる。また、潤滑層18の平均膜厚を2.0nm以下にすることで、潤滑層18を充分に薄膜化でき、磁気ヘッドの浮上量を充分に小さくできる。
「潤滑層の形成方法」
 潤滑層18を形成する方法としては、例えば、基板11上に保護層17までの各層が形成された製造途中の磁気記録媒体を用意し、保護層17上に潤滑層形成用溶液を塗布し、乾燥させる方法が挙げられる。
 潤滑層形成用溶液は、上述の実施形態の磁気記録媒体用潤滑剤を必要に応じて、溶媒に分散溶解させ、塗布方法に適した粘度および濃度とすることにより得られる。
 潤滑層形成用溶液に用いられる溶媒としては、例えば、バートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)等のフッ素系溶媒等が挙げられる。
 潤滑層形成用溶液の塗布方法は、特に限定されないが、例えば、スピンコート法、スプレイ法、ペーパーコート法、ディップ法等が挙げられる。
 ディップ法を用いる場合、例えば、以下に示す方法を用いることができる。まず、ディップコート装置の浸漬槽に入れられた潤滑層形成用溶液中に、保護層17までの各層が形成された基板11を浸漬する。次いで、浸漬槽から基板11を所定の速度で引き上げる。このことにより、潤滑層形成用溶液を基板11の保護層17上の表面に塗布する。
 ディップ法を用いることで、潤滑層形成用溶液を保護層17の表面に均一に塗布することができ、保護層17上に均一な膜厚で潤滑層18を形成できる。
 本実施形態においては、潤滑層18を形成した基板11に熱処理を施すことが好ましい。熱処理を施すことにより、潤滑層18と保護層17との密着性が向上し、潤滑層18と保護層17との付着力が向上する。
 熱処理温度は100℃~180℃とすることが好ましく、100℃~160℃とすることがより好ましい。熱処理温度が100℃以上であると、潤滑層18と保護層17との密着性を向上させる効果が充分に得られる。また、熱処理温度を180℃以下にすることで、熱処理による潤滑層18の熱分解を防止できる。熱処理時間は、熱処理温度に応じて適宜調整でき、10分~120分とすることが好ましい。
 本実施形態においては、潤滑層18の保護層17に対する付着力をより一層向上させるために、熱処理前もしくは熱処理後の潤滑層18に、紫外線(UV)を照射する処理を行ってもよい。
 本実施形態の磁気記録媒体10は、基板11上に、少なくとも磁性層16と、保護層17と、潤滑層18とが順次設けられたものである。本実施形態の磁気記録媒体10では、保護層17上に接して上述の含フッ素エーテル化合物を含む潤滑層18が形成されている。この潤滑層18は、膜厚が薄くても、優れた密着性を有し、良好な浮上安定性を有し、磁気記録媒体の腐食抑制効果が高い。よって、本実施形態の磁気記録媒体10は、信頼性、耐久性に優れる。このことから、本実施形態の磁気記録媒体10は、磁気ヘッドの浮上量の低い(例えば、10nm以下)ものとすることができ、用途の多様化に伴う厳しい環境下であっても、長期に亘って安定して動作する。したがって、本実施形態の磁気記録媒体10は、特にLUL(Load Unload)方式の磁気ディスク装置に搭載される磁気ディスクとして好適である。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例のみに限定されない。
[実施例1]
 以下に示す方法により、上記式(A)で表される化合物を得た。
(端部製造工程S1)
 窒素ガス雰囲気下で100mLナスフラスコにHOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)10gと、上記式(5-1)で表される化合物2.06gと、t-ブタノール10mLとを仕込み、室温で均一になるまで撹拌し、混合物とした。この混合物にカリウムtert-ブトキシド0.37gを加え、70℃で16時間撹拌して反応させた。
 なお、式(5-1)で表される化合物は、エチレングリコールモノアリルエーテルを、ジヒドロピランを用いて保護した後、m-クロロ過安息香酸を作用させて酸化することにより合成した。
 反応後に得られた反応生成物を25℃に冷却し、水100mLを入れた分液漏斗に移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体化合物1a(=中間体化合物1b)として下記式(9)で示される化合物5.23gを得た。
Figure JPOXMLDOC01-appb-C000023
(式(9)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す:THPはテトラヒドロピラニル基を表す。)
(連結構造製造工程S2)
(連結端部製造工程S21)
 窒素ガス雰囲気下で200mLナスフラスコにHOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)20gと、水素化ナトリウム0.88gと、N,N-ジメチルホルムアミド20mLとを仕込み、氷浴下で発泡が収まるまで撹拌し、混合物とした。この混合物に式(7-1)で表される化合物(臭化アリル)2.42gを加え、室温下で4時間撹拌して反応させた。
 反応後に得られた反応生成物を25℃に冷却し、水100mLを入れた分液漏斗に移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体化合物2a(=中間体化合物2b)として下記式(10)で示される化合物10.51gを得た。
Figure JPOXMLDOC01-appb-C000024
(式(10)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
(R2b側反応工程S22およびR2c側反応工程S23)
 窒素ガス雰囲気下で100mLナスフラスコに、上記で得られた中間体化合物2a(=中間体化合物2b)である式(10)で示される化合物10.51gと、上記式(8-1)で表される化合物(エピブロモヒドリン)0.76gと、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌し、混合物とした。この混合物にカリウムtert-ブトキシド0.52gを加え、70℃で16時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、10%塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)50gを加え、室温で4時間撹拌した。その後、反応液を飽和重曹水100mLが入った分液漏斗に少しずつ移し、酢酸エチル200mLで2回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、中間体化合物3として下記式(11)で示される化合物7.74gを得た。
Figure JPOXMLDOC01-appb-C000025
(式(11)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
(化合物構造製造工程S3)
 窒素ガス雰囲気下で100mLナスフラスコに、上記で得られた中間体化合物3である式(11)で示される化合物7.74gと、ジヒドロピラン1.22gと、p-トルエンスルホン酸一水和物0.07gと、塩化メチレン20mLとを仕込み、室温で3時間撹拌し、反応させた。反応液にトリエチルアミン0.07gを加えて処理し、濃縮した。
 続いて、得られた混合物にm-クロロ過安息香酸2.50gと塩化メチレン20mLとを仕込み、室温で18時間撹拌した。
 反応後に得られた反応液を水100mLが入った分液漏斗に少しずつ移し、酢酸エチル100mLで3回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、中間体化合物3-1として下記式(12)で示される化合物4.65gを得た。
Figure JPOXMLDOC01-appb-C000026
(式(12)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す;THPはテトラヒドロピラニル基を表す。)
(R側反応工程S31およびR側反応工程S32)
 窒素ガス雰囲気下で100mLナスフラスコに、上記で得られた中間体化合物1a(=中間体化合物1b)である式(9)で示される化合物5.23gと、中間体化合物3-1である式(12)で表される化合物4.42gと、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌し、混合物とした。この混合物にカリウムtert-ブトキシド0.15gを加え、70℃で16時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、10%塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)50gを加え、室温で4時間撹拌した。その後、反応液を飽和重曹水100mLが入った分液漏斗に少しずつ移し、酢酸エチル200mLで2回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、化合物(A)(式(A)中のRfは、上記式(4-1)で表されるPFPE鎖である。4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.51g得た。
 得られた化合物(A)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(40H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例2]
 以下に示す方法により、上記式(B)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-2)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(B)(式(B)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.72g得た。
 なお、式(5-2)で表される化合物は、1,3-プロパンジオールの片方の水酸基を、ジヒドロピランを用いて保護した後、エピブロモヒドリンを作用させることにより合成した。
 得られた化合物(B)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.65-1.85(4H)、3.65-3.85(40H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例3]
 以下に示す方法により、上記式(C)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-3)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(C)(式(C)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.25g得た。
 なお、式(5-3)で表される化合物は、3-ブテン-1-オールを、ジヒドロピランを用いて保護した後、m-クロロ過安息香酸を作用させて酸化することにより合成した。
 得られた化合物(C)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.65-1.85(4H)、3.65-3.85(32H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例4]
 以下に示す方法により、上記式(D)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-4)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(D)(式(D)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.67g得た。
 なお、式(5-4)で表される化合物は、3-ブテン-1-オールに、2-(2-ブロモエトキシ)テトラヒドロ-2H-ピランを作用させた後、m-クロロ過安息香酸で酸化することにより合成した。
 得られた化合物(D)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.65-1.85(4H)、3.65-3.85(32H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例5]
 以下に示す方法により、上記式(E)で表される化合物を得た。
(端部製造工程S1)
 実施例1と同様の操作を行い、中間体化合物1aとして上記式(9)で示される化合物を得た。
 また、式(5-1)で表される化合物の代わりに、式(5-5)で表される化合物を用いたこと以外は実施例1における端部製造工程S1と同様な操作を行い、中間体化合物1bとして下記式(13)で示される化合物を得た。
 なお、式(5-5)で示される化合物は、アリルアルコールを、ジヒドロピランを用いて保護した後、m-クロロ過安息香酸を作用させて酸化することにより合成した。
Figure JPOXMLDOC01-appb-C000027
(式(13)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す;THPはテトラヒドロピラニル基を表す。)
(化合物構造製造工程S3)
 実施例1と同様にして連結構造製造工程S2を行うことにより製造した中間体化合物3を用いて、実施例1と同様にして中間体化合物3-1として式(12)で示される化合物を得た。
(R側反応工程S31)
 窒素ガス雰囲気下で100mLナスフラスコに、中間体化合物1aである式(9)で示される化合物2.65gと、中間体化合物3-1である式(12)で表される化合物4.84gと、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌し、混合物とした。この混合物にカリウムtert-ブトキシド0.15gを加え、70℃で16時間撹拌して反応させた。
 反応後に得られた反応生成物を25℃に冷却し、水100mLを入れた分液漏斗に移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、中間体化合物である下記式(14)で示される化合物3.31gを得た。
Figure JPOXMLDOC01-appb-C000028
(式(14)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す;THPはテトラヒドロピラニル基を表す。)
(R側反応工程S32)
 続いて、窒素ガス雰囲気下で100mLナスフラスコに、中間体化合物1bである式(13)で示される化合物2.32gと、R側反応工程S31において製造した中間体化合物である式(14)で表される化合物3.31gと、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌し、混合物とした。この混合物にカリウムtert-ブトキシド0.15gを加え、70℃で16時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、10%塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)50gを加え、室温で4時間撹拌した。その後、反応液を飽和重曹水100mLが入った分液漏斗に少しずつ移し、酢酸エチル200mLで2回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、化合物(E)(式(E)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.08g得た。
 得られた化合物(E)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(36H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例6]
 以下に示す方法により、上記式(F)で表される化合物を得た。
 式(5-5)で表される化合物の代わりに、式(5-6)で表される化合物を用いたこと以外は実施例5と同様な操作を行い、化合物(F)(式(F)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.11g得た。
 なお、式(5-6)で表される化合物は、1分子の3-アリルオキシ-1,2-プロパンジオールに対し、2分子のジヒドロピランを作用させた後、m-クロロ過安息香酸で酸化することにより合成した。
 得られた化合物(F)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(42H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例7]
 以下に示す方法により、上記式(G)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-7)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(G)(式(G)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.83g得た。
 なお、式(5-7)で表される化合物は、式(5-1)で表される化合物とアリルアルコールとを付加反応させた後、ジヒドロピランを用いて保護し、さらにm-クロロ過安息香酸で酸化することにより合成した。
 得られた化合物(G)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(52H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例8]
 以下に示す方法により、上記式(H)で表される化合物を得た。
 式(5-5)で表される化合物の代わりに、式(5-7)で表される化合物を用いたこと以外は実施例5と同様な操作を行い、化合物(H)(式(H)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.25g得た。
 得られた化合物(H)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(46H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例9]
 以下に示す方法により、上記式(I)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-8)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(I)(式(I)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.53g得た。
 なお、式(5-8)で表される化合物は、式(5-3)で表される化合物とアリルアルコールとを付加反応させた後、ジヒドロピランを用いて保護し、さらにm-クロロ過安息香酸で酸化することにより合成した。
 得られた化合物(I)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.65-1.85(4H)、3.65-3.85(44H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例10]
 以下に示す方法により、上記式(J)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-9)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(J)(式(J)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.24g得た。
 なお、式(5-9)で表される化合物は、式(5-1)で表される化合物と3-ブテン-1-オールとを付加反応させた後、ジヒドロピランを用いて保護し、さらにm-クロロ過安息香酸で酸化することにより合成した。
 得られた化合物(J)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.65-1.85(4H)、3.65-3.85(52H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例11]
 以下に示す方法により、上記式(K)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-10)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(K)(式(K)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.91g得た。
 なお、式(5-10)で表される化合物は、1分子のエピブロモヒドリンに対し、2分子のアリルアルコールを反応させた後、ジヒドロピランを用いて保護し、さらに一方の炭素-炭素二重結合をm-クロロ過安息香酸で酸化することにより合成した。
 得られた化合物(K)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(46H)、3.85-4.10(16H)、5.40-6.10(3H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例12]
 以下に示す方法により、上記式(L)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-11)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(L)(式(L)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す;Meは、メチル基を表す。)を4.08g得た。
 なお、式(5-11)で表される化合物は、p-メトキシフェノールとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(L)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(36H)、3.85-4.10(16H)、6.70-7.40(10H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例13]
 以下に示す方法により、上記式(M)で表される化合物を得た。
 式(5-5)で表される化合物の代わりに、式(5-11)で表される化合物を用いたこと以外は実施例5と同様な操作を行い、化合物(M)(式(M)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す;Meは、メチル基を表す。)を2.41g得た。
 得られた化合物(M)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(38H)、3.85-4.10(16H)、6.70-7.40(5H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例14]
 以下に示す方法により、上記式(N)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-12)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(N)(式(N)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.67g得た。
 なお、式(5-12)で表される化合物は、2-チオフェンエタノールとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(N)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.20-2.30(4H)、3.65-3.85(34H)、3.85-4.10(16H)、6.30-7.60(6H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例15]
 以下に示す方法により、上記式(O)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-13)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(O)(式(O)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.94g得た。
 なお、式(5-13)で表される化合物は、2-シアノエタノールとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(O)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00-2.10(4H)、3.65-3.85(34H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例16]
 以下に示す方法により、上記式(P)で表される化合物を得た。
 式(5-5)で表される化合物の代わりに、式(5-13)で表される化合物を用いたこと以外は実施例5と同様な操作を行い、化合物(P)(式(P)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.32g得た。
 得られた化合物(P)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=2.00-2.10(2H)、3.65-3.85(37H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例17]
 以下に示す方法により、上記式(Q)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに、式(5-14)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(Q)(式(Q)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.61g得た。
 なお、式(5-14)で表される化合物は、2-アセトアミドエタノールとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(Q)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.90-2.05(6H)、3.65-3.85(38H)、3.85-4.10(16H)、6.30-6.50(2H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例18]
 以下に示す方法により、上記式(R)で表される化合物を得た。
 式(5-5)で表される化合物の代わりに、式(5-14)で表される化合物を用いたこと以外は実施例5と同様な操作を行い、化合物(R)(式(R)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.14g得た。
 得られた化合物(R)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.90-2.05(3H)、3.65-3.85(39H)、3.85-4.10(16H)、6.30-6.50(1H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例19]
 以下に示す方法により、上記式(S)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-2)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(S)(式(S)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.41g得た。
 得られた化合物(S)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.65-1.85(4H)、3.65-3.85(40H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例20]
 以下に示す方法により、上記式(T)で表される化合物を得た。
 式(8-1)で表される化合物の代わりに、式(8-2)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(T)(式(T)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.75g得た。
 得られた化合物(T)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.65-1.85(2H)、3.65-3.85(40H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例21]
 以下に示す方法により、上記式(U)で表される化合物を得た。
 式(8-1)で表される化合物の代わりに、式(8-3)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(U)(式(U)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.62g得た。
 得られた化合物(U)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(46H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例22]
 以下に示す方法により、上記式(V)で表される化合物を得た。
 式(8-1)で表される化合物の代わりに、式(8-4)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(V)(式(V)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.24g得た。
 得られた化合物(V)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(42H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例23]
 以下に示す方法により、上記式(W)で表される化合物を得た。
 式(8-1)で表される化合物の代わりに、式(8-5)で表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(W)(式(W)中のRfは、上記式(4-1)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を3.24g得た。
 得られた化合物(W)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.25-1.85(8H)、3.65-3.85(42H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(36F)、-78.5(8F)、-80.5(8F)、-91.0~-88.5(72F)
[実施例24]
 以下に示す方法により、上記式(X)で表される化合物を得た。
 HOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物の代わりに、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すjは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたこと以外は実施例1と同様な操作を行い、化合物(X)(式(X)中のRfは、上記式(4-2)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すjは4.5を表す。)を3.92g得た。
 得られた化合物(X)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(40H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(72F)、-86.4(16F)、-124.3(16F)、-130.0~-129.0(36F)
[実施例25]
 以下に示す方法により、上記式(Y)で表される化合物を得た。
 HOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物の代わりに、HOCHCFCFCFO(CFCFCFCFO)CFCFCFCHOH(式中の平均重合度を示すkは3.0である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたこと以外は実施例1と同様な操作を行い、化合物(Y)(式(Y)中のRfは、上記式(4-3)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すkは3.0を表す。)を3.67g得た。
 得られた化合物(Y)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(40H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(64F)、-122.5(16F)、-126.0(48F)、-129.0~-128.0(16F)
[実施例26]
 以下に示す方法により、上記式(Z)で表される化合物を得た。
 端部製造工程S1においてHOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物の代わりに、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すjは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたことと、連結構造製造工程S2においてHOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物の代わりに、HOCHCFO(CFCFO)CFCHOHで表される化合物を用いたこと以外は実施例1と同様な操作を行い、化合物(Z)(式(Z)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すhは2.0を表し、平均重合度を示すiは0を表す;式(Z)中のRfは、上記式(4-2)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すjは4.5を表す。)を3.15g得た。
 得られた化合物(Z)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.65-3.85(40H)、3.85-4.10(16H)
19F-NMR(acetone-D):δ[ppm]=-80.5(8F)、-91.0~-88.5(16F)-84.0~-83.0(36F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(18F)
 このようにして得られた実施例1~26の化合物(A)~(Z)を、それぞれ式(1)に当てはめたときのR、R(R2a、R2b、R2c、およびR2d)、R(R3a、R3bおよびR3c)、Rの構造を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030

 
[比較例1]
 下記式(ZA)で表される化合物を、特許文献1に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000031
(式(ZA)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すhは4.5、iは4.5である。)
[比較例2]
 下記式(ZB)で表される化合物を、特許文献2に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000032
(式(ZB)中のRfおよびRf’は、上記式(4-1)で表されるPFPE鎖である;Rfにおいて、平均重合度を示すhは4.5、iは4.5である;2つのRf’において、平均重合度を示すhは7.0、iは0である。)
[比較例3]
 下記式(ZC)で表される化合物を、特許文献3に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000033
(式(ZC)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRfにおいて、平均重合度を示すhは4.5、iは4.5である。)
[比較例4]
 下記式(ZD)で表される化合物を、特許文献4に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000034
(式(ZD)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRfにおいて、平均重合度を示すhは7.0、iは0である。)
[比較例5]
 以下に示す方法により、下記式(ZE)で表される化合物を得た。
 端部製造工程S1において、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すjは4.5である。)で表される化合物の片方の水酸基を、ジヒドロピランを用いて保護し、中間体化合物1a(=中間体化合物1b)として用いたこと以外は、実施例24と同様な操作を行い、化合物(ZE)を得た。
Figure JPOXMLDOC01-appb-C000035
(式(ZE)中のRfは、上記式(4-2)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すjは4.5を表す。)
 なお、化合物(ZE)は、特許文献5の実施例に記載の混合物のうち、PFPE鎖の数が4つの化合物のみを抽出したものに相当する。
[比較例6]
 以下に示す方法により、下記式(ZF)で表される化合物を得た。
 式(5-1)で表される化合物の代わりに式(5-5)で表される化合物を用い、式(7-1)で表される化合物の代わりに式(7-5)で表される化合物を用い、式(8-1)で表される化合物の代わりに式(8-5)で表される化合物を用いたこと以外は実施例24と同様な操作を行い、化合物(ZF)を得た。
Figure JPOXMLDOC01-appb-C000036
(式(ZF)中のRfは、上記式(4-2)で表されるPFPE鎖である;4つのRfにおいて、平均重合度を示すjは4.5を表す。)
 なお、化合物(ZF)は、特許文献6の実施例に記載の混合物のうち、PFPE鎖の数が4つの化合物のみを抽出したものに相当する。
 なお、式(7-5)で表される化合物は、m-クロロ過安息香酸を用いて1,7-オクタジエンの片方の炭素-炭素二重結合を酸化することにより得た。
 このようにして得られた実施例1~26および比較例1~6の化合物の数平均分子量(Mn)を、上記の方法により測定した。その結果を表3および表4に示す。
 次に、以下に示す方法により、実施例1~26および比較例1~6で得られた化合物を用いて潤滑層形成用溶液を調製した。そして、得られた潤滑層形成用溶液を用いて、以下に示す方法により、磁気記録媒体の潤滑層を形成し、実施例1~26および比較例1~6の磁気記録媒体を得た。
「潤滑層形成用溶液」
 実施例1~26および比較例1~6で得られた化合物を、それぞれフッ素系溶媒であるバートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)に溶解し、保護層上に塗布した時の膜厚が9.0Å~9.5ÅになるようにバートレルXFで希釈し、潤滑層形成用溶液とした。
「磁気記録媒体」
 直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けた磁気記録媒体を用意した。保護層は、炭素からなるものとした。
 保護層までの各層の形成された磁気記録媒体の保護層上に、実施例1~26および比較例1~6の潤滑層形成用溶液を、ディップ法により塗布した。なお、ディップ法は、浸漬速度10mm/sec、浸漬時間30sec、引き上げ速度1.2mm/secの条件で行った。
 その後、潤滑層形成用溶液を塗布した磁気記録媒体を恒温槽に入れ、潤滑層形成用溶液中の溶媒を除去して保護層と潤滑層との密着性を向上させる熱処理を、120℃で10分間行うことにより保護層上に潤滑層を形成し、磁気記録媒体を得た。
(膜厚測定)
 このようにして得られた実施例1~26および比較例1~6の磁気記録媒体の有する潤滑層の膜厚を、フーリエ変換赤外分光光度計(FT-IR、商品名:Nicolet iS50、Thermo Fisher Scientific社製)を用いて測定した。その結果を表3および表4に示す。
 次に、実施例1~26および比較例1~6の磁気記録媒体に対して、以下に示す浮上安定性試験および耐腐食性試験を行った。
(浮上安定性試験)
 下記のグライド試験およびクリーデンス測定を行い、以下の評価基準に基づいて浮上安定性を評価した。その結果を表3および表4に示す。
「グライド試験」
 グライド試験では、磁気記録媒体の表面に突起物が無いかどうかを検査する。すなわち、磁気ヘッドを用いて磁気記録媒体に対して記録再生を行う際に、磁気記録媒体の表面に浮上量(磁気記録媒体と磁気ヘッドの間隔)以上の高さの突起があると、磁気ヘッドが突起に衝突して磁気ヘッドが損傷したり、磁気記録媒体に欠陥が発生したりする原因となる。グライド試験では、磁気記録媒体50枚について、表面の浮上量以上の高さの突起の有無を検査する。
 具体的には、検査用磁気ヘッドと磁気記録媒体との間の間隔を0.25マイクロインチに設定し、磁気記録媒体上で検査用磁気ヘッドを移動させ、検査用磁気ヘッドから、磁気記録媒体の表面の突起物との衝突に起因するシグナルが出力された場合、その磁気記録媒体を不良品と判断し、それ以外は合格と判定した。そして、50枚の磁気記録媒体のうち、合格と判定された磁気記録媒体の枚数を用いて評価した。
「クリーデンス測定」
 上記のグライド試験を実施した際に、一時的にノイズが増大し、磁気記録媒体上の同じ場所であるのに、複数回の測定のうち、表面の突起物との衝突に起因するシグナルが検出されたり、検出されなかったりすることがある。このような現象をクリーデンスと呼ぶ。クリーデンスは、グライド試験において、突起物として検出せず、グライド試験の合否の判断には用いない。しかしながら、グライド試験において一時的にノイズが増大することは、一般に、潤滑剤層の不均一性あるいは比較的柔らかい異物の存在を示す。このため、磁気記録媒体についてグライド試験を行って、検出されたクリーデンスの回数の合計を、グライド試験を行った磁気記録媒体の枚数(50枚)で除することにより、グリーデンス平均値を算出し、潤滑剤層の平滑性および清浄度を表す指標として用いた。
「評価基準」
A+:グライド試験合格枚数45枚以上かつクリーデンス平均値0.5未満
A:グライド試験合格枚数45枚以上かつクリーデンス平均値0.5以上1.0未満
B:グライド試験合格枚数45枚以上かつクリーデンス平均値1.0以上5.0未満
C:グライド試験合格枚数45枚以上かつクリーデンス平均値5.0以上
D:グライド試験合格枚数45枚未満
(耐腐食性試験)
 磁気記録媒体を温度85℃、相対湿度90%の条件下に48時間曝露した。その後、磁気記録媒体上の表面に生じた直径5ミクロン以上のコロージョンスポットの数を、光学表面分析装置(ケーエルエー・テンコール株式会社製Candela7140)を用いて数え、以下の評価基準に基づいて評価した。その結果を表3および表4に示す。
「評価基準」
A+:100箇所未満
A:100箇所以上、200箇所未満
B:200箇所以上、300箇所未満
C:300箇所以上、1000箇所未満
D:1000箇所以上
(総合評価)
 浮上安定性試験および耐腐食性試験の結果から、以下の基準に基づき総合評価を行った。
「総合評価」
A:浮上安定性試験の評価および耐腐食性試験の評価の両方がA+またはA
B:浮上安定性試験の評価および耐腐食性試験の評価の一方がB、もう一方がA+、AまたはB
C:浮上安定性試験の評価および耐腐食性試験の評価の一方がC、もう一方がA+、A、BまたはC
D:浮上安定性試験の評価および耐腐食性試験の評価の少なくとも一方がD
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
 表3に示すように、実施例1~26の磁気記録媒体は、すべての評価項目において評価結果がA+、A、またはBであり、総合評価はAまたはBとなった。このことから、実施例1~26の磁気記録媒体の潤滑層は、磁気ヘッドの浮上安定性が良好であり、磁気記録媒体の腐食抑制効果が高いことが確認できた。
 特に、化合物(G)~(J)、(Q)、(U)、(V)を用いた実施例7~10、17、21、22の磁気記録媒体の潤滑層は、浮上安定性の評価がA+であり、良好であった。
 化合物(G)~(J)は、化合物中の水酸基の合計が8以上であり、3つのRがそれぞれ式(3)で表され、かつ両方の末端基において、水酸基の結合している炭素原子同士が、水酸基の結合していない炭素原子を含む連結基を介して結合している。このため、化合物(G)~(J)を用いた実施例7~10は、分子全体の保護層に対する吸着力が高く、保護層に対する密着性が良好で、より優れた浮上安定性を有する潤滑層が得られたものと考えられる。
 また、化合物(Q)は、両末端に極性の高いアミド結合を有する基を有している。このため、化合物(Q)を用いた実施例17は、保護層に対する吸着力が高く、より良好な浮上安定性を有する潤滑層が得られたものと考えられる。
 また、化合物(U)、(V)は、化合物中の水酸基の合計が8以上であり、R3bに含まれる水酸基数が2であり、かつ両方の末端基において、水酸基の結合している炭素原子同士が、水酸基の結合していない炭素原子を含む連結基を介して結合している。化合物(U)においてR3bは式(3-1)で表されdが2であり、化合物(V)においてR3bは式(3-4)で表されgが0であるので、R3b中の2つの水酸基が結合している炭素原子間の構造が柔軟であり、R3b中の2つの水酸基が保護層と相互作用しやすい。このため、化合物(U)、(V)を用いた実施例21、22は、分子全体の保護層に対する吸着力が高く、保護層に対する密着性が良好で、より優れた浮上安定性を有する潤滑層が得られたものと考えられる。
 実施例12、14、15、17において使用した化合物(L)、(N)、(O)、(Q)は、いずれも化合物中の水酸基の合計が5つである。これらのうち、化合物(O)、(Q)を用いた実施例15、17では、実施例12、14と比較して、浮上安定性が良好であった。これは、化合物(O)の有するシアノ基および化合物(Q)の有するアミド結合を有する基が、極性が高く、かつ保護層上の局所的に帯電した部位および電荷の分布が広がっている部位の双方と、相互作用できるためであると推定される。
 また、化合物(B)~(D)、(K)、(L)、(N)、(S)、(T)を用いた実施例2~4、11、12、14、19、20の磁気記録媒体の潤滑層は、耐腐食性の評価がA+であり、特に良好であった。
 化合物(B)、(D)のRおよびRは、化合物(A)のRおよびRに対しメチレン基を1つ伸長させた構造となっている。また、化合物(S)、(T)のRは、化合物(A)の3つのRのうち1つまたは2つのRのメチレン基を1つ伸長させた構造となっている。このように、化合物(B)、(D)、(S)、(T)は、メチレン基を伸長させた構造を有することにより、化合物(A)と比較して、分子全体の疎水性が高い。このため、実施例2、4、19、20は、実施例1と比較して、耐腐食性の評価が高くなったものと考えられる。
 化合物(C)のRおよびRは、化合物(A)のRおよびRと比較してエーテル結合が少ない構造となっている。これにより、化合物(C)は、化合物(A)と比較して、分子全体の疎水性が高い。このため、実施例3は、実施例1と比較して、耐腐食性の評価が高くなったものと考えられる。
 また、化合物(K)、(L)、(N)は、両末端に疎水性の高いアリル基、メトキシフェニル基、チエニルエチル基のいずれかを有している。したがって、化合物(K)、(L)、(N)は、化合物(A)と比較して、分子全体の疎水性が高い。その結果、実施例11、12、14は、実施例1と比較して、耐腐食性の評価が高くなったものと考えられる。
 実施例7、9、10において使用した化合物(G)、(I)、(J)は、いずれもRおよびRの双方に水酸基を3つずつ有する。これらのうち、化合物(I)、(J)を用いた実施例9、10では、化合物(G)を用いた実施例7と比較して、耐腐食性が良好であった。これは、化合物(I)、(J)が、化合物(G)と比較して、分子全体の疎水性が高いためであると考えられる。
 より詳細には、化合物(I)のRおよびRは、化合物(G)のRおよびRと比較してエーテル結合が少ない。また、化合物(J)のRおよびRは、化合物(G)のRおよびRと比較してメチレン基を1つ伸長させた構造となっている。これらのことから、化合物(I)、(J)は、化合物(G)と比較して分子全体の疎水性が高いものと推定される。
 また、表4に示すように、2つのパーフルオロポリエーテル鎖が、グリセリン構造(-OCHCH(OH)CHO-)を介して結合した骨格を有する化合物(ZA)を用いた比較例1では、浮上安定性の評価がCとなり、総合評価がCとなった。また、3つのパーフルオロポリエーテル鎖が、2つの2価の連結基を介して結合した骨格を有する化合物(ZB)~(ZD)を用いた比較例2~4では、浮上安定性の評価および耐腐食性の評価がいずれもCまたはDとなった。
 比較例1~4の結果は、化合物(ZA)~(ZD)中のパーフルオロポリエーテル鎖の数が少なく、パーフルオロポリエーテル鎖間に配置される2価の連結基の数が少ないためであると推定される。このことにより、化合物(ZA)~(ZD)は、保護層に対する密着性(吸着力)が不足したものと考えられる。
 また、比較例5では、浮上安定性の評価がDであり、耐腐食性の評価がCであった。比較例5では、4つのパーフルオロポリエーテル鎖が、3つのグリセリン構造(-OCHCH(OH)CHO-)を介して結合した骨格を有し、その両側にメチレン基を介して水酸基が結合した化合物(ZE)を用いた。化合物(ZE)では、末端の水酸基が、パーフルオロポリエーテル鎖に結合されたメチレン基に結合している。このため、末端の水酸基の酸性度が高く、含フッ素エーテル化合物の末端部分が保護層に対して十分に吸着できない。このことから、比較例5の潤滑層は、保護層に対する密着性が乏しく、磁気ヘッドの浮上安定性及び耐腐食性が著しく劣る結果になったものと考えられる。
 さらに、比較例6では、浮上安定性の評価はDであり、耐腐食性の評価はCであった。比較例6では、4つのパーフルオロポリエーテル鎖が、炭素原子数が8であって水酸基を2つ有している3つの連結基を介して結合した骨格を有する化合物(ZF)を用いた。化合物(ZF)では、4つのパーフルオロポリエーテル鎖間に配置された3つの連結基全てが、水酸基の結合している炭素原子間に、炭素原子数4のアルキレン基を有する比較的剛直な構造であり、柔軟性に優れるグリセリン構造(-OCHCH(OH)CHO-)を有さない。したがって、化合物(ZF)の有する3つの連結基は、いずれも柔軟に運動できず、3つの連結基がそれぞれ有している水酸基は、保護層に対して十分に吸着できない。このことにより、比較例6の潤滑層は、密着性が乏しく、磁気ヘッドの浮上安定性及び耐腐食性が著しく劣る結果になったものと考えられる。
 本発明の含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を用いることにより、厚みが薄くても、優れた密着性を有し、磁気ヘッドの浮上安定性が良好で、磁気記録媒体の腐食抑制効果が高い潤滑層を形成できる。
 10・・・磁気記録媒体、11・・・基板、12・・・付着層、13・・・軟磁性層、14・・・第1下地層、15・・・第2下地層、16・・・磁性層、17・・・保護層、18・・・潤滑層。

Claims (17)

  1.  下記式(1)で表されることを特徴とする、含フッ素エーテル化合物。
     R-CH-R2a-CH-R3a-CH-R2b-CH-R3b-CH-R2c-CH-R3c-CH-R2d-CH-R  (1)
    (式(1)中、R2a、R2b、R2cおよびR2dは、パーフルオロポリエーテル鎖である;R2a、R2b、R2cおよびR2dは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;R3a、R3bおよびR3cは、極性基を1つ以上有する2価の連結基である;R3a、R3bおよびR3cは、一部または全部が同じであっても良いし、それぞれ異なっていても良い;R3a、R3bおよびR3cのうち少なくとも1つは式(3)で表される;RおよびRは、極性基を1つ以上有する炭素原子数1~50の末端基であり、同じであっても異なっていても良い。)
    -OCHCH(OH)CHO- (3)
  2.  前記式(1)におけるRおよびRのうち少なくとも一方が、下記式(2-1)~(2-4)のいずれかの末端基である、請求項1に記載の含フッ素エーテル化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(2-1)中、pは1~3の整数を表し、qは1~3の整数を表す。)
    (式(2-2)中、rは0~2の整数を表し、sは1~3の整数を表す。)
    (式(2-3)中、tは1~3の整数を表し、uは0~2の整数を表し、vは1~3の整数を表す。)
    (式(2-4)中、lは1~3の整数を表し、l個のmはそれぞれ独立して1~4の整数を表し、l個のnはそれぞれ独立して1~4の整数を表す;Xは、二重結合または三重結合を含む有機基を表す。)
  3.  前記式(1)におけるR3a、R3bおよびR3cの有する極性基が、全て水酸基である、請求項1または請求項2に記載の含フッ素エーテル化合物。
  4.  前記式(1)におけるRの有する水酸基と、Rの有する水酸基との合計数が2~6である、請求項1または請求項2に記載の含フッ素エーテル化合物。
  5.  前記式(1)におけるR3a、R3bおよびR3cがすべて式(3)で表される、請求項1または請求項2に記載の含フッ素エーテル化合物。
  6.  前記式(1)におけるR3a、R3bおよびR3cのうち1つまたは2つが、式(3)ではない2価の連結基であって、前記式(3)ではない2価の連結基がそれぞれ独立に、水酸基を1~3つ有する、炭素原子数4~9の2価の連結基である、請求項1または請求項2に記載の含フッ素エーテル化合物。
  7.  前記式(3)ではない2価の連結基がそれぞれ独立に、下記式(3-1)~(3-4)のいずれかで表される連結基である、請求項6に記載の含フッ素エーテル化合物。
    Figure JPOXMLDOC01-appb-C000002

    (式(3-1)中、dは2または3を表す。)
    (式(3-2)中、eは2~4の整数を表す;式(3-2)中、左側の酸素原子は、式(1)中のR側のメチレン基に結合し、右側の酸素原子は、式(1)中のR側のメチレン基に結合する。)
    (式(3-3)中、fは2~4の整数を表す;式(3-3)中、左側の酸素原子は、式(1)中のR側のメチレン基に結合し、右側の酸素原子は、式(1)中のR側のメチレン基に結合する。)
    (式(3-4)中、gは0~4の整数を表す。)
  8.  前記式(1)におけるR2aとR2dとが同じであり、R2bとR2cとが同じであり、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されており、RとRとが同じである、請求項1または請求項2に記載の含フッ素エーテル化合物。
  9.  前記式(1)におけるR2a、R2b、R2c、およびR2dがすべて同じであり、R3a、R3b、およびR3cがすべて式(3)で表され、RとRとが同じである、請求項5に記載の含フッ素エーテル化合物。
  10.  前記式(1)におけるR2a、R2b、R2c、およびR2dが、それぞれ独立に、下記式(4)で表されるパーフルオロポリエーテル鎖である、請求項1または請求項2に記載の含フッ素エーテル化合物。
     -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (4)(式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(4)における繰り返し単位である(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)の配列順序には、特に制限はない。)
  11.  前記式(1)におけるR2a、R2b、R2c、およびR2dが、それぞれ独立に、下記式(4-1)~(4-4)で表されるパーフルオロポリエーテル鎖から選ばれるいずれか1種である、請求項1または請求項2に記載の含フッ素エーテル化合物。
     -CF-(OCFCF-(OCF-OCF-  (4-1)
    (式(4-1)中、hおよびiは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
     -CFCF-(OCFCFCF-OCFCF-  (4-2)
    (式(4-2)中、jは平均重合度を示し、1~15を表す。)
     -CFCFCF-(OCFCFCFCF-OCFCFCF-  (4-3)
    (式(4-3)中、kは平均重合度を示し、1~10を表す。)
     -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-  (4-4)
    (式(4-4)中、w8、w9は平均重合度を示し、それぞれ独立に1~20を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
  12.  数平均分子量が500~10000の範囲内である、請求項1または請求項2に記載の含フッ素エーテル化合物。
  13.  請求項1または請求項2に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
  14.  基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
     前記潤滑層が、請求項1または請求項2に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
  15.  前記潤滑層の平均膜厚が、0.5nm~2.0nmである、請求項14に記載の磁気記録媒体。
  16.  請求項1に記載の含フッ素エーテル化合物を製造する方法であり、
     前記式(1)におけるR-CH-R2a-CH-に対応する基を有する中間体化合物1aと、前記式(1)における-CH-R2d-CH-Rに対応する基を有する中間体化合物1bとを製造する端部製造工程と、
     前記式(1)における-R3a-CH-R2b-CH-R3b-CH-R2c-CH-R3c-に対応する基を有する中間体化合物3を製造する連結構造製造工程と、
     前記中間体化合物3のR3a側端部と前記中間体化合物1aとを反応させるR側反応工程と、前記中間体化合物3のR3c側端部と前記中間体化合物1bとを反応させるR側反応工程とを含む化合物構造製造工程とを有し、
     前記連結構造製造工程が、前記式(1)における-R3a-CH-R2b-CH-に対応する基を有する中間体化合物2aと、前記式(1)における-CH-R2c-CH-R3c-に対応する基を有する中間体化合物2bを製造する連結端部製造工程と、
     前記式(1)におけるR3bに対応する基を有する化合物のR2b側端部と前記中間体化合物2aとを反応させるR2b側反応工程と、
     前記R3bに対応する基を有する化合物のR2c側端部と前記中間体化合物2bとを反応させるR2c側反応工程とを含むことを特徴とする、含フッ素エーテル化合物の製造方法。
  17.  前記式(1)におけるR2aとR2dとが同じであり、R2bとR2cとが同じであり、R3aに含まれる原子とR3cに含まれる原子とがR3bに対して対称配置されており、RとRとが同じである、含フッ素エーテル化合物を製造する方法であり、
     前記端部製造工程において、前記中間体化合物1aと前記中間体化合物1bとを同時に製造し、
     前記連結端部製造工程において、前記中間体化合物2aと前記中間体化合物2bとを同時に製造し、前記R2b側反応工程と前記R2c側反応工程とを同時に行い、
     前記化合物構造製造工程において、前記R側反応工程と前記R側反応工程とを同時に行うことを特徴とする、請求項16に記載の含フッ素エーテル化合物の製造方法。
PCT/JP2023/031187 2022-08-31 2023-08-29 含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体 WO2024048569A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-137937 2022-08-31
JP2022137937 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048569A1 true WO2024048569A1 (ja) 2024-03-07

Family

ID=90099492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031187 WO2024048569A1 (ja) 2022-08-31 2023-08-29 含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体

Country Status (1)

Country Link
WO (1) WO2024048569A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145995A1 (ja) * 2016-02-22 2017-08-31 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2018116742A1 (ja) * 2016-12-20 2018-06-28 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131993A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131961A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021251335A1 (ja) * 2020-06-11 2021-12-16 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145995A1 (ja) * 2016-02-22 2017-08-31 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2018116742A1 (ja) * 2016-12-20 2018-06-28 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131993A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131961A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021251335A1 (ja) * 2020-06-11 2021-12-16 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Similar Documents

Publication Publication Date Title
JP7213813B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7149947B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
CN114845984B (zh) 含氟醚化合物、磁记录介质用润滑剂及磁记录介质
WO2021020066A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7138644B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7435589B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021054202A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019087548A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
CN114867707B (zh) 含氟醚化合物、磁记录介质用润滑剂及磁记录介质
WO2021132252A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021251335A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2018139058A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023286626A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024048569A1 (ja) 含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022039079A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023112813A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224095A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024024781A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024071392A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224093A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023033055A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024071399A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021251318A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022215726A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022215703A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860331

Country of ref document: EP

Kind code of ref document: A1