WO2023224095A1 - 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 - Google Patents

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 Download PDF

Info

Publication number
WO2023224095A1
WO2023224095A1 PCT/JP2023/018608 JP2023018608W WO2023224095A1 WO 2023224095 A1 WO2023224095 A1 WO 2023224095A1 JP 2023018608 W JP2023018608 W JP 2023018608W WO 2023224095 A1 WO2023224095 A1 WO 2023224095A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
fluorine
compound
represented
Prior art date
Application number
PCT/JP2023/018608
Other languages
English (en)
French (fr)
Inventor
優 丹治
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023224095A1 publication Critical patent/WO2023224095A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/18Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/19Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and carboxyl groups, other than cyano groups, bound to the same saturated acyclic carbon skeleton
    • C07C255/20Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and carboxyl groups, other than cyano groups, bound to the same saturated acyclic carbon skeleton the carbon skeleton being further substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/14Unsaturated ethers
    • C07C43/178Unsaturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/18Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/50Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
    • C10M105/54Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen containing carbon, hydrogen, halogen and oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds

Definitions

  • the present invention relates to a fluorine-containing ether compound, a lubricant for a magnetic recording medium, and a magnetic recording medium.
  • some magnetic recording media have a recording layer formed on a substrate and a protective layer made of carbon or the like formed on the recording layer.
  • the protective layer protects the information recorded on the recording layer and improves the sliding properties of the magnetic head.
  • simply providing a protective layer on the recording layer does not provide sufficient durability of the magnetic recording medium. For this reason, a lubricant is generally applied to the surface of the protective layer to form a lubricant layer.
  • a lubricant used when forming a lubricant layer of a magnetic recording medium for example, a compound having a polar group such as a hydroxyl group or an amino group at the end of a fluorine-based polymer having a repeating structure containing -CF 2 - is used. It has been proposed that it contains
  • Patent Document 1 a divalent linking group containing a secondary hydroxyl group and a terminal group are bonded in this order to both ends of a perfluoropolyether chain via a methylene group (-CH 2 -).
  • a fluorine-containing ether compound is disclosed.
  • Patent Document 2 a glycerin structure (-O-CH 2 -CH(OH)-CH 2 -O-) is arranged in the center of the chain structure, and methylene groups (-CH 2 -) are placed on both sides of the glycerin structure (-O-CH 2 -CH(OH)-CH 2 -O-).
  • a fluorine-containing ether compound in which a perfluoropolyether chain, a divalent linking group containing a secondary hydroxyl group, and a terminal group having a polar group are bonded in this order through the perfluoropolyether chain.
  • Patent Document 3 a perfluoropolyether chain and a terminal group are connected on both sides of a divalent linking group containing a primary hydroxyl group and a secondary hydroxyl group via a methylene group (-CH 2 -).
  • a fluorine-containing ether compound is disclosed in which the fluorine-containing ether compounds are bonded in this order.
  • Patent Document 4 discloses that three perfluoropolyether chains have a skeleton bonded via a linking group having a secondary hydroxyl group, and on both sides of the skeleton, a secondary
  • a fluorine-containing ether compound is disclosed in which a divalent linking group containing a hydroxyl group and a terminal group having a polar group are respectively bonded in this order.
  • Patent Document 5 discloses a method for producing a polyol (per)fluoropolyether derivative useful as a lubricant for magnetic media.
  • a protected triol having two protected hydroxyl functional groups and one free hydroxyl group is reacted with an activating agent to form an activated protected triol, and a functionalized (per)fluoropolyether derivative is prepared. It is described that a protected polyol (per)fluoropolyether derivative is produced by a nucleophilic substitution reaction with a hydroxyl group located at the terminal of the hydroxyl group.
  • the present invention has been made in view of the above circumstances, and can form a lubricant layer that has excellent chemical resistance and can suppress pickup, and can be suitably used as a material for a lubricant for magnetic recording media.
  • the purpose of the present invention is to provide a fluorine-containing ether compound.
  • Another object of the present invention is to provide a lubricant for magnetic recording media that contains the fluorine-containing ether compound of the present invention, has good chemical resistance, and can form a lubricant layer that is highly effective in suppressing pickup.
  • Another object of the present invention is to provide a magnetic recording medium that has a lubricating layer containing the fluorine-containing ether compound of the present invention, has good chemical resistance, and is highly effective in suppressing pickup.
  • a first aspect of the present invention provides the following fluorine-containing ether compound.
  • a fluorine-containing ether compound represented by the following formula (1).
  • R 1 -R 2 -CH 2 -R 3 [-CH 2 -R 4 -CH 2 -R 3 ] x -CH 2 -R 5 -R 6 (1)
  • R 1 and R 6 are each independently an organic group having 1 to 50 carbon atoms;
  • R 2 is represented by the following formula (2-1) or (2-2).
  • R 5 is a divalent linking group represented by the following formula (2-3) or (2-4); x represents an integer of 0 to 2; R 3 is a perfluoropolyether chain; when x is 1 or 2, two or three R 3 may be partially or completely the same or different; R 4 is , is a divalent linking group represented by the following formula (3-1) or (3-2); When x is 2, the two R 4s may be the same or different. Also good.)
  • n1 represents an integer from 2 to 4; in formula (2-1), the dotted line bonded to the carbon atom indicates the bond bonded to R 1 , and the oxygen atom The dotted line bonded to indicates the bond bonded to the methylene group.)
  • the dotted line bonded to the carbon atom indicates the bond bonded to R 1 , and the dotted line bonded to the oxygen atom indicates the bond bonded to the methylene group.
  • n2 represents an integer from 2 to 4; in formula (2-3), the dotted line bonded to the carbon atom indicates the bond bonded to R 6 , and the oxygen atom The dotted line bonded to indicates the bond bonded to the methylene group.
  • formula (2-4) the dotted line bonded to the carbon atom indicates the bond bonded to R 6 , and the dotted line bonded to the oxygen atom indicates the bond bonded to the methylene group.
  • n3 represents an integer of 2 to 4; y1 represents an integer of 1 to 3; y2 represents an integer of 1 to 3; at least one of y1 and y2 is 1.
  • the dotted line bonded to the oxygen atom on the left side shows the bond bonded to the methylene group on the R 1 side, and the dotted line bonded to the oxygen atom on the right side is bonded to the methylene group on the R 6 side.
  • y3 represents an integer of 1 to 3
  • y4 represents an integer of 1 to 3
  • at least one of y3 and y4 is 1; bonded to the oxygen atom on the left side
  • the dotted line indicates the bond bonded to the methylene group on the R1 side
  • the dotted line bonded to the oxygen atom on the right side indicates the bond bonded to the methylene group on the R6 side.
  • the fluorine-containing ether compound of the first aspect of the present invention preferably has the characteristics described in [2] to [10] below. It is also preferable to arbitrarily combine two or more of the features described in [2] to [10] below.
  • R 2 in the above formula (1) is the above formula (2-1)
  • R 5 is the above formula (2-3)
  • all x R 4 are the above formula (3-1).
  • the fluorine-containing ether according to [2] wherein the values of n1 in the formula (2-1), n2 in the formula (2-3), and n3 in the formula (3-1) are all the same. Compound.
  • R 2 in the formula (1) is the formula (2-2), R 5 is the formula (2-4), and all x R 4 are the formula (3-2).
  • R 1 and R 6 in the formula (1) each independently represent an organic group having a polar group, an organic group having a carbon-carbon unsaturated bond, or having both a polar group and a carbon-carbon unsaturated bond.
  • the polar group is at least one selected from the group consisting of a hydroxyl group, an amino group, a carboxy group, a formyl group, a carbonyl group, a sulfo group, a cyano group, and a group having an amide bond
  • the carbon-carbon unsaturated bond is at least one selected from the group consisting of an aromatic hydrocarbon group that may have a substituent, an unsaturated heterocyclic group, an alkenyl group, and an alkynyl group, [1] -
  • the fluorine-containing ether compound according to any one of [4].
  • Each of the (x+1) R 3 's in the formula (1) is independently any one selected from perfluoropolyether chains represented by the following formulas (4-1) to (4-4).
  • the fluorine-containing ether compound according to any one of [1] to [7].
  • a second aspect of the present invention provides the following lubricant for magnetic recording media.
  • a lubricant for magnetic recording media comprising the fluorine-containing ether compound according to any one of [1] to [10].
  • a third aspect of the present invention provides the following magnetic recording medium. [12] A magnetic recording medium in which at least a magnetic layer, a protective layer, and a lubricant layer are sequentially provided on a substrate, A magnetic recording medium characterized in that the lubricating layer contains the fluorine-containing ether compound according to any one of [1] to [10].
  • the magnetic recording medium according to the third aspect of the present invention preferably has the characteristics described in [13] below. [13] The magnetic recording medium according to [12], wherein the lubricating layer has an average thickness of 0.5 nm to 2.0 nm.
  • the fluorine-containing ether compound of the present invention is a compound represented by the above formula (1), and is suitable as a material for a lubricant for magnetic recording media. Since the lubricant for magnetic recording media of the present invention contains the fluorine-containing ether compound of the present invention, it is possible to form a lubricant layer that has good resistance to chemical substances and is highly effective in suppressing pickup.
  • the magnetic recording medium of the present invention has a lubricating layer containing the fluorine-containing ether compound of the present invention. Therefore, the magnetic recording medium of the present invention has good chemical substance resistance, high pick-up suppressing effect, and excellent reliability and durability. Further, the lubricating layer of the magnetic recording medium of the present invention has good resistance to chemical substances and can suppress pickup, so that the thickness can be reduced and the flying height of the magnetic head can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a magnetic recording medium of the present invention.
  • fluorine-containing ether compounds having polar groups such as hydroxyl groups have been preferably used as materials for magnetic recording medium lubricants (hereinafter sometimes abbreviated as "lubricants") applied to the surface of the protective layer. It is being The polar group contained in the fluorine-containing ether compound combines with the active sites on the protective layer to improve the adhesion of the lubricating layer to the protective layer. In conventional fluorine-containing ether compounds, a polar group is placed at the end of a chain structure. Further, when the fluorine-containing ether compound has a plurality of perfluoropolyether chains, a polar group is arranged between adjacent perfluoropolyether chains.
  • the fluorine-containing ether compound contained in the lubricating layer contains polar groups that are not adsorbed to the active sites on the protective layer, contaminants are likely to be taken in near these polar groups, and the chemical substances in the lubricating layer Resistance decreases. Further, the polar groups in the fluorine-containing ether compound that are not adsorbed to the active sites on the protective layer may be adsorbed to the magnetic head, and the fluorine-containing ether compound may be picked up by the magnetic head using this as a starting point.
  • the fluorine-containing ether compound contained in the lubricant layer contains polar groups that are not adsorbed to the active sites on the protective layer, the chemical substance resistance and pick-up suppressing effect of the lubricant layer are likely to be insufficient. .
  • the present inventor focused on the bonding behavior between the polar groups contained in the fluorine-containing ether compound and the active sites on the protective layer, and found that polar groups that do not participate in bonding with the active sites on the protective layer are unlikely to occur.
  • Intensive studies were conducted to realize a fluorine-containing ether compound.
  • the present inventor discovered that among the polar groups contained in the fluorine-containing ether compound, a divalent linking group located between adjacent perfluoropolyether chains and between a perfluoropolyether chain and a terminal group It has been found that the secondary hydroxyl groups contained in are less likely to participate in bonding with the active sites on the protective layer.
  • the present inventor has discovered that the secondary hydroxyl group contained in the divalent linking group located between adjacent perfluoropolyether chains and between the perfluoropolyether chain and the terminal group of the fluorine-containing ether compound. was chemically modified and converted into a primary hydroxyl group. Then, a lubricating layer was formed using the converted fluorine-containing ether compound. As a result, it was found that chemical substance resistance and pick-up suppressing effect were improved. This is presumed to be because the fluorine-containing ether compound is less likely to produce hydroxyl groups that do not bond with the active sites present on the protective layer.
  • the present inventor has conducted extensive studies and determined that a specific divalent terminal linking group having only one primary hydroxyl group is arranged between the perfluoropolyether chain and the terminal group, and When it has two or three ether chains, it is a fluorine-containing ether compound in which a specific divalent intermediate linking group having only one primary hydroxyl group is arranged between adjacent perfluoropolyether chains. I found out something good.
  • the two terminal linking groups (in the case of having multiple perfluoropolyether chains, the two terminal linking groups and one or two intermediate linking groups) each branch from the chain structure of the fluorine-containing ether compound to form an ether bond. It has a side chain moiety that is The side chain portion has a primary hydroxyl group placed at the tip, and a methylene group (-CH 2 - ) has a linking group.
  • the fluorine-containing ether compound In such a fluorine-containing ether compound, polar groups that do not bond with the functional groups (active sites) present on the protective layer are difficult to form for the reasons described below. Therefore, it is presumed that the fluorine-containing ether compound has excellent chemical substance resistance and can form a lubricating layer with a high pick-up suppressing effect.
  • each of the above two terminal linking groups (in the case of having multiple perfluoropolyether chains, the above two terminal linking groups and one or two intermediate linking groups) has only one primary hydroxyl group. It is sterically vacant compared to the case where it has a secondary hydroxyl group instead of a primary hydroxyl group.
  • the primary hydroxyl groups of the above two terminal linking groups are connected to adjacent perfluoropolyether chains, each terminal linking group (
  • active points on the protective layer may be activated by a bulky portion in the fluorine-containing ether compound, such as a tertiary carbon to which the side chain moieties of the above two terminal linking groups and one or two intermediate linking groups are bonded.
  • the binding with is not easily inhibited.
  • primary hydroxyl groups can generally move more freely than secondary hydroxyl groups. Therefore, the primary hydroxyl groups of the above two terminal linking groups (or the above two terminal linking groups and one or two intermediate linking groups) each spontaneously interact with the active site on the protective layer. Can be moved. From these facts, the primary hydroxyl groups of the above two terminal linking groups (or the above two terminal linking groups and one or two intermediate linking groups) can easily bond with the active sites on the protective layer. can be formed into
  • terminal linking groups are arranged between both terminal groups and the perfluoropolyether chain. Therefore, the distance between the primary hydroxyl group of the terminal linking group located at one end of the chain structure and the primary hydroxyl group of the terminal linking group located at the other end of the chain structure becomes close. It's never too much.
  • each perfluoropolyether chain is arranged between each of the above terminal linking groups and one or two intermediate linking groups. Become what you are.
  • the distance between the primary hydroxyl group of each terminal linking group and the primary hydroxyl group of one or two intermediate linking groups does not become too close. Furthermore, when the above-mentioned fluorine-containing ether compound has three perfluoropolyether chains, two intermediate linking groups are present. In this case, since the perfluoropolyether chains are arranged between adjacent intermediate linking groups, the distance between the primary hydroxyl groups possessed by the adjacent intermediate linking groups does not become too close to each other.
  • the above two terminal linking groups in the case of having multiple perfluoropolyether chains, the above two terminal linking groups and one or two intermediate linking groups
  • the above two terminal linking groups and one or two intermediate linking groups have 1
  • the bonding of the primary hydroxyl group with the active site on the protective layer is less likely to be inhibited by the primary hydroxyl group of other terminal linking groups (or other terminal linking groups and intermediate linking groups) contained in the fluorine-containing ether compound.
  • the distance between the primary hydroxyl groups of two terminal linking groups (or the distance between the primary hydroxyl groups of each terminal linking group, the distance between the primary hydroxyl groups of each terminal linking group and the The distance between the primary hydroxyl groups of one or two intermediate linking groups and the distance between the primary hydroxyl groups of adjacent intermediate linking groups does not become too close. Therefore, the primary hydroxyl groups of the two terminal linking groups (or the terminal linking group and one or two intermediate linking groups) are unlikely to aggregate with each other.
  • the two terminal linking groups (or the two terminal linking groups and one or two intermediate linking groups) have only one primary hydroxyl group and contain It has a side chain portion branched from the chain structure of the fluorine ether compound and connected to an ether bond.
  • the side chain portions of the two terminal linking groups (or the two terminal linking groups and one or two intermediate linking groups) branch from the chain structure and form an ether bond. Therefore, the flexibility of the side chain portion is better than when the side chain portion is directly bonded to the chain structure (bonded through a carbon-carbon bond). Therefore, the primary hydroxyl group of the side chain portion of the above two terminal linking groups (or the above two terminal linking groups and one or two intermediate linking groups) is capable of bonding with the active site on the protective layer. can be easily formed.
  • the primary hydroxyl group of the terminal linking group is less likely to be inhibited from bonding with the active site on the protective layer by the polar group of the terminal group.
  • the distance between the primary hydroxyl group of the terminal linking group and the polar group of the terminal group is appropriate, even if the terminal group contains a polar group, the terminal linking group adjacent to the terminal group The primary hydroxyl group and the polar group of the terminal group are unlikely to aggregate.
  • the flexibility of the side chain portion of the above two terminal linking groups is good, the primary hydroxyl groups of the side chain moieties can move spontaneously, are difficult to aggregate, and the primary hydroxyl groups of other terminal linking groups (or other terminal linking groups and intermediate linking groups) have The polar group of the terminal group and the bulky part in the fluorine-containing ether compound do not easily inhibit the bonding with the active sites on the protective layer. For these reasons, in the above-mentioned fluorine-containing ether compound, polar groups that do not bond with the functional groups (active sites) present on the protective layer are unlikely to form.
  • the present inventors have confirmed that by using a lubricant containing the above-mentioned fluorine-containing ether compound, it is possible to form a lubricant layer that has good chemical resistance and is highly effective in suppressing pick-up, and has conceived the present invention.
  • a lubricant containing the above-mentioned fluorine-containing ether compound it is possible to form a lubricant layer that has good chemical resistance and is highly effective in suppressing pick-up, and has conceived the present invention.
  • preferred examples of the fluorine-containing ether compound, the lubricant for magnetic recording media, and the magnetic recording media of the present invention will be described in detail. Note that the present invention is not limited only to the embodiments shown below. The present invention allows additions, omissions, substitutions, and changes in number, amount, position, ratio, material, configuration, etc., without departing from the spirit of the invention.
  • the fluorine-containing ether compound of this embodiment is represented by the following formula (1).
  • R 1 -R 2 -CH 2 -R 3 [-CH 2 -R 4 -CH 2 -R 3 ] x -CH 2 -R 5 -R 6 (1)
  • R 1 and R 6 are each independently an organic group having 1 to 50 carbon atoms;
  • R 2 is represented by the following formula (2-1) or (2-2).
  • R 5 is a divalent linking group represented by the following formula (2-3) or (2-4); x represents an integer of 0 to 2; R 3 is a perfluoropolyether chain; when x is 1 or 2, two or three R 3 may be partially or completely the same or different; R 4 is , is a divalent linking group represented by the following formula (3-1) or (3-2); When x is 2, the two R 4s may be the same or different. Also good.)
  • n1 represents an integer from 2 to 4; in formula (2-1), the dotted line bonded to the carbon atom indicates the bond bonded to R 1 , and the oxygen atom The dotted line bonded to indicates the bond bonded to the methylene group.)
  • the dotted line bonded to the carbon atom indicates the bond bonded to R 1 , and the dotted line bonded to the oxygen atom indicates the bond bonded to the methylene group. .
  • n2 represents an integer from 2 to 4;
  • the dotted line bonded to the carbon atom indicates the bond bonded to R 6 , and the oxygen atom The dotted line bonded to indicates the bond bonded to the methylene group.
  • the dotted line bonded to the carbon atom indicates the bond bonded to R 6 , and the dotted line bonded to the oxygen atom indicates the bond bonded to the methylene group. .
  • the dotted line bonded to the oxygen atom on the left side shows the bond bonded to the methylene group on the R 1 side, and the dotted line bonded to the oxygen atom on the right side is bonded to the methylene group on the R 6 side.
  • the fluorine-containing ether compound of the present embodiment has a divalent terminal linking group represented by R 2 having only one primary hydroxyl group, and one to three terminal linking groups represented by R 3 .
  • a perfluoropolyether chain (hereinafter sometimes referred to as a PFPE chain), 0 to 2 divalent intermediate linking groups represented by R 4 having only one primary hydroxyl group, and one primary hydroxyl group.
  • the divalent terminal linking group represented by R 5 having only R 5 has a chain structure skeleton connected via a methylene group. Terminal groups consisting of organic groups having 1 to 50 carbon atoms, represented by R 1 and R 6 , are bonded to both ends of the skeleton, respectively.
  • x represents an integer of 0 to 2.
  • x is 2 or less, the molecule does not become too large. Therefore, the fluorine-containing ether compound can move freely on the protective layer, easily wets and spreads on the protective layer, and easily provides a lubricating layer having a uniform thickness.
  • x is preferably 1 or 2, since the resulting fluorine-containing ether compound has even better chemical substance resistance and can form a lubricating layer with a higher pick-up suppressing effect.
  • R 2 and R 5 are divalent terminal linking groups having only one primary hydroxyl group.
  • R 2 and R 5 each have no secondary hydroxyl group and only one primary hydroxyl group. Therefore, compared to the case where R 2 and R 5 each have a secondary hydroxyl group, the hydroxyl groups contained in R 2 and R 5 are more likely to interact with the active sites on the protective layer.
  • the fluorine-containing ether compound represented by formula (1) can form a lubricating layer that has excellent chemical resistance and is highly effective in suppressing pick-up.
  • R 2 is a divalent linking group represented by formula (2-1) or (2-2).
  • the terminal of R 2 on the R 3 side is an oxygen atom.
  • the end of R 2 on the R 3 side is bonded to the methylene group bonded to R 3 via an ether bond.
  • the terminal of R 2 on the R 1 side is a carbon atom.
  • the end of R 2 on the R 1 side is bonded to R 1 .
  • R 2 is the main chain part forming the chain structure of the fluorine-containing ether compound, and the side branched from the main chain part and ether bonded at the carbon atom located at the end of R 1 side of R 2 It has a chain part.
  • a primary hydroxyl group is placed at the tip of the side chain portion, and the carbon atom to which the primary hydroxyl group is bonded is bonded to the oxygen atom (etheric oxygen atom) bonded to the carbon atom in the main chain portion. It has a linking group containing a methylene group (-CH 2 -).
  • the carbon atom located at the end of R 1 side of R 2 has -(CH 2 ) n1 OH in formula (2-1) or -(CH 2 ) n1 OH in formula (2-1) or (2 -CH 2 CH 2 OCH 2 CH 2 OH in -2) is bonded.
  • the side chain portion of R 2 has an ether bond to the carbon atom located at the end of R 2 on the R 1 side, so that the carbon atom located at the end of R 2 on the R 1 side
  • the flexibility of the side chain portion of R 2 is better than when the side chain portion of R 2 is directly bonded (bonded through a carbon-carbon bond).
  • the side chain portion of R 2 has a chain structure of appropriate length that includes a linking group. Therefore, the side chain portion of R 2 tends to interact with the active site on the protective layer.
  • n1 is an integer from 2 to 4.
  • n1 is 2 or more, the distance between the primary hydroxyl group contained in R 2 and a bulky site such as a PFPE chain in the fluorine-containing ether compound or a tertiary carbon located at the end of R 2 on the R 1 side is sufficiently far away, making it easy for the primary hydroxyl group contained in R 2 to move freely.
  • n1 is 4 or less, the flexibility of -(CH 2 ) n1 OH in formula (2-1) is maintained.
  • n1 is preferably 2 to 3, and most preferably 2, since -(CH 2 ) n1 OH can move flexibly.
  • -CH 2 CH 2 OCH 2 CH 2 OH contains an ether bond (-O-). Therefore, --CH 2 CH 2 OCH 2 CH 2 OH in formula (2-2) maintains flexibility of movement.
  • R 5 is a divalent linking group represented by formula (2-3) or (2-4).
  • the terminal of R 5 on the R 3 side is an oxygen atom.
  • the end of R 5 on the R 3 side is bonded to the methylene group bonded to R 3 via an ether bond.
  • the terminal of R 5 on the R 6 side is a carbon atom.
  • the end of R 5 on the R 6 side is bonded to R 6 .
  • R 5 is the main chain part forming the chain structure of the fluorine-containing ether compound, and the side branched from the main chain part and ether bonded at the carbon atom located at the end of R 5 on the R 6 side. It has a chain part.
  • the side chain portion has a primary hydroxyl group placed at the tip, and the carbon atom to which the primary hydroxyl group is bonded and the oxygen atom (etheric oxygen atom) bonded to the carbon atom in the main chain portion. ) has a linking group containing a methylene group (-CH 2 -).
  • the carbon atom arranged at the end of R 6 side of R 5 has -(CH 2 ) n2 OH in formula (2-3) or formula (2 -CH 2 CH 2 OCH 2 CH 2 OH in -4) is bonded.
  • the side chain portion of R 5 has an ether bond to the carbon atom located at the end of R 5 on the R 6 side, so that the carbon atom located at the end of R 5 on the R 6 side
  • the flexibility of the side chain portion of R 5 is better than when the side chain portion of R 5 is directly bonded (bonded through a carbon-carbon bond).
  • the side chain portion of R 5 has a chain structure of appropriate length that includes a linking group. Therefore, the side chain portion of R5 tends to interact with the active site on the protective layer.
  • n2 is an integer from 2 to 4.
  • n2 is 2 or more, the distance between the primary hydroxyl group contained in R 5 and a bulky site such as a PFPE chain in the fluorine-containing ether compound or a tertiary carbon located at the end of R 5 on the R 6 side is sufficiently far away, and the primary hydroxyl group contained in R 5 can easily move freely.
  • n2 is 4 or less, the flexibility of -(CH 2 ) n1 OH in formula (2-3) is maintained.
  • n2 is preferably 2 to 3, and most preferably 2, since -(CH 2 ) n2 OH can move flexibly.
  • -CH 2 CH 2 OCH 2 CH 2 OH contains an ether bond (-O-). Therefore, --CH 2 CH 2 OCH 2 CH 2 OH in formula (2-4) maintains flexibility of movement.
  • R 2 and R 5 may be the same or different. It is preferable that R 2 and R 5 are the same, since the fluorine-containing ether compound is easy to manufacture.
  • "R 2 and R 5 are the same” means that -CH 2 -R 3 [-CH 2 -R 4 —CH 2 —R 3 ] x —CH 2 — means that the atoms contained in R 2 and the atoms contained in R 5 are arranged symmetrically.
  • R 2 is formula (2-1)
  • R 5 is formula (2-3)
  • n1 in formula (2-1) is and a fluorine-containing ether compound in which n2 in formula (2-3) is the same, or a fluorine-containing ether compound in which R 2 is formula (2-2) and R 5 is formula (2-4). It is preferable that there be.
  • each PFPE chain represented by R 3 is bonded to each other via -CH 2 -R 4 -CH 2 - .
  • x R 4 's are a divalent intermediate linking group having only one primary hydroxyl group.
  • each of x R 4 does not have a secondary hydroxyl group and has only one primary hydroxyl group. Therefore, the hydroxyl group contained in R 4 is more likely to interact with the active site on the protective layer, compared to the case where x R 4 each have a secondary hydroxyl group.
  • the fluorine-containing ether compound represented by formula (1) can form a lubricating layer that has excellent chemical resistance and is highly effective in suppressing pick-up.
  • R 4 is a divalent linking group represented by formula (3-1) or (3-2).
  • R 4 has oxygen atoms at both ends. Both terminals of R 4 are bonded to the methylene group bonded to R 3 via an ether bond.
  • R 4 is a carbon atom bonded to the main chain portion forming the chain structure of the fluorine-containing ether compound and the oxygen atoms located at both ends of R 4 through 1 to 3 methylene groups, respectively. It has a side chain portion branched from the main chain portion and bonded to an ether bond.
  • a primary hydroxyl group is placed at the tip of the side chain portion, and the carbon atom to which the primary hydroxyl group is bonded is bonded to the oxygen atom (etheric oxygen atom) bonded to the carbon atom in the main chain portion. It has a linking group containing a methylene group (-CH 2 -).
  • the two oxygen atoms placed at both ends of R 4 and the carbon atoms bonded via 1 to 3 methylene groups are bonded as side chain moieties by ether bonds in formula (3-1). -(CH 2 ) n3 OH or -CH 2 CH 2 OCH 2 CH 2 OH in formula (3-2) is bonded.
  • the side chain portion of R 4 has an ether bond to the carbon atom forming the main chain portion of R 4 , so that the carbon atom forming the main chain portion of R 4 has a
  • the flexibility of the side chain portion of R 4 is better compared to the case where the side chain portion of R 4 is directly bonded (bonded through a carbon-carbon bond).
  • the side chain portion of R 4 has a chain structure of appropriate length that includes a linking group. Therefore, the side chain portion of R4 tends to interact with the active site on the protective layer.
  • n3 is an integer from 2 to 4.
  • the primary hydroxyl group contained in R4 , the PFPE chain in the fluorine-containing ether compound, and the carbon atoms forming the main chain part of R4, and the side chain part of R4 is The distance to a bulky site such as an ether bonded tertiary carbon becomes sufficiently long, making it easy for the primary hydroxyl group contained in R4 to move freely.
  • n3 is 4 or less, the flexibility of -(CH 2 ) n3 OH in formula (3-1) is maintained. Since -(CH 2 ) n3 OH can move flexibly, n3 is preferably 2 to 3, and most preferably 2.
  • y1 is an integer from 1 to 3
  • y2 is an integer from 1 to 3.
  • At least one of y1 and y2 is 1. Since at least one of y1 and y2 is 1, it becomes a fluorine-containing ether compound that is easy to manufacture.
  • y2 when only y1 is 1 among y1 and y2 (or y1 when only y2 is 1) maintains the flexibility of the entire divalent linking group represented by formula (3-1) Therefore, it is 3 or less, preferably 2 or less.
  • y1 and y2 it is more preferable that y1 is 1 and y2 is 1 in order to maintain the flexibility of the entire divalent linking group represented by formula (3-1).
  • y3 is an integer from 1 to 3
  • y4 is an integer from 1 to 3.
  • At least one of y3 and y4 is 1. Since at least one of y3 and y4 is 1, it becomes a fluorine-containing ether compound that is easy to manufacture.
  • y4 when only y3 is 1 among y3 and y4 (or y3 when only y4 is 1) maintains the flexibility of the entire divalent linking group represented by formula (3-2) Therefore, it is 3 or less, preferably 2 or less.
  • y3 and y4 it is more preferable that y3 is 1 and y4 is 1 in order to maintain flexibility of the entire divalent linking group represented by formula (3-2).
  • the two R 4 's may be the same or different.
  • the resulting fluorine-containing ether compound is easy to produce, which is preferable.
  • "Two R 4s are the same” means that the atoms contained in the two R 4s are arranged symmetrically with respect to R 3 located at the center of the chain structure of the molecule. That is, when x is 2, the fluorine-containing ether compound represented by formula (1) has two R 4 of formula (3-1), and two R 4 of formula (3-1).
  • R 4 on the R 1 side is represented by the formula (3-2)
  • y3 in the formula (3-2) is 1 and y4 is 2
  • R 4 on the R 6 side is represented by the formula (3-2). 2
  • y3 in formula (3-2) is 2 and y4 is 1, the two R 4s are the same.
  • R 2 is formula (2-1), R 5 is formula (2-3), and all x R 4 are formula (3- 1) is preferred.
  • y1 in formula (3-1) be 1 and y2 be 1.
  • the values of n1 in formula (2-1), n2 in formula (2-3), and n3 in formula (3-1) are all the same. This is because the fluorine-containing ether compound can be produced easily and efficiently.
  • R 2 is formula (2-2), R 5 is formula (2-4), and all x R 4 are formula (3- 2) is also preferable. This is because the fluorine-containing ether compound can be produced easily and efficiently.
  • R 2 is formula (2-2)
  • R 5 is formula (2-4)
  • all x R 4 are formula (3-2)
  • y3 in formula (3-2) is 1 and y4 is more preferably 1.
  • R 3 In the fluorine-containing ether compound represented by formula (1), (x+1) R 3 's are each independently a perfluoropolyether chain.
  • the PFPE chains represented by R 3 cover the surface of the protective layer and provide lubrication to the lubricant layer. This reduces the frictional force between the magnetic head and the protective layer.
  • the PFPE chain represented by R 3 is appropriately selected depending on the performance required of a lubricant containing a fluorine-containing ether compound.
  • the fluorine-containing ether compound represented by formula (1) when x is 1 or 2, two or three R 3 's may be partially or entirely the same or different. good. It is preferable that all (x+1) R 3 's are the same. This is because the coating state of the fluorine-containing ether compound on the protective layer becomes uniform, resulting in a lubricating layer with better adhesion.
  • Two or more R 3s out of (x+1) R 3s are the same means that out of (x+1) R 3s , two or more R 3s with the same repeating unit structure of the PFPE chain are included. It means there is.
  • the same R 3 also includes those having the same repeating unit structure but different average degrees of polymerization.
  • Examples of the PFPE chain represented by R 3 include those made of a perfluoroalkylene oxide polymer or copolymer.
  • Examples of the perfluoroalkylene oxide include perfluoromethylene oxide, perfluoroethylene oxide, perfluoro-n-propylene oxide, perfluoroisopropylene oxide, and perfluorobutylene oxide.
  • (x+1) R 3 in formula (1) are each independently a PFPE chain represented by the following formula (4) derived from a perfluoroalkylene oxide polymer or copolymer.
  • w2, w3, w4, and w5 indicate the average degree of polymerization, and each independently represents 0 to 20; however, w2, w3, w4, and w5 do not all become 0 at the same time;
  • w1 and w6 are average values representing the number of CF 2 and each independently represents 1 to 3; (CF 2 O), (CF 2 CF 2 O), (CF There are no particular restrictions on the arrangement order of 2 CF 2 CF
  • w2, w3, w4, and w5 represent average degrees of polymerization, and each independently represents 0 to 20, preferably 0 to 15, and more preferably 0 to 10. It may be 1-8, 2-6, 3-5, etc.
  • w1 and w6 are average values indicating the number of CF 2 and each independently represents 1 to 3.
  • w1 and w6 are determined depending on the structure of repeating units arranged at the ends of the chain structure in the PFPE chain represented by formula (4).
  • (CF 2 O), (CF 2 CF 2 O), (CF 2 CF 2 CF 2 O), and (CF 2 CF 2 CF 2 CF 2 O) in formula (4) are repeating units. There is no particular restriction on the arrangement order of the repeating units in formula (4). Furthermore, there is no particular restriction on the number of types of repeating units in formula (4).
  • the (x+1) R 3 's in formula (1) are each independently selected from the PFPE chains represented by the following formulas (4-1) to (4-4).
  • (x+1) R 3 are each independently selected from the PFPE chains represented by formulas (4-1) to (4-4)
  • a lubricating layer having good lubricity can be obtained.
  • the resulting fluorine-containing ether compound is obtained.
  • (x+1) R 3 are each independently selected from the PFPE chains represented by formulas (4-1) to (4-4)
  • the number of carbon atoms in the PFPE chain The ratio of the number of oxygen atoms (number of ether bonds (-O-)) to Therefore, the fluorine-containing ether compound has appropriate hardness.
  • the fluorine-containing ether compound coated on the protective layer is unlikely to aggregate on the protective layer, and a thinner lubricating layer can be formed with a sufficient coverage. Furthermore, since the fluorine-containing ether compound has appropriate flexibility, a lubricating layer with better chemical substance resistance can be formed.
  • formula (4-1) there is no particular restriction on the arrangement order of the repeating units (OCF 2 CF 2 ) and (OCF 2 ).
  • the number h of (OCF 2 CF 2 ) and the number i of (OCF 2 ) may be the same or different.
  • the PFPE chain represented by formula (4-1) may be a polymer of (OCF 2 CF 2 ).
  • the PFPE chain represented by formula (4-1) is a random copolymer, a block copolymer, or an alternating copolymer consisting of (OCF 2 CF 2 ) and (OCF 2 ). Good too.
  • h indicating the average degree of polymerization is 1 to 20, i is 0 to 20, j is 1 to 15, and k is 1 to 10, so good lubrication is achieved.
  • the resulting fluorine-containing ether compound provides a lubricating layer with properties.
  • h and i, which indicate the average degree of polymerization are 20 or less, j is 15 or less, and k is 10 or less, so the viscosity of the fluorine-containing ether compound is high. It is preferable because it does not become too thick and the lubricant containing it is easy to apply.
  • h, i, j, and k which indicate the average degree of polymerization, are preferably from 1 to 10 because the fluorine-containing ether compound easily spreads on the protective layer and provides a lubricating layer with a uniform thickness. , more preferably from 1.5 to 8, and even more preferably from 2 to 7.
  • formula (4-4) there is no particular restriction on the arrangement order of the repeating units (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O).
  • the number w8 of (CF 2 CF 2 CF 2 O) and the number w9 of (CF 2 CF 2 O) indicating the average degree of polymerization may be the same or different.
  • Formula (4-4) includes a random copolymer, a block copolymer, or an alternating copolymer consisting of monomer units (CF 2 CF 2 CF 2 O) and (CF 2 CF 2 O). It may be.
  • w8 and w9 indicating the average degree of polymerization are each independently from 1 to 20, preferably from 1 to 15, and more preferably from 1 to 10.
  • w7 and w10 in formula (4-4) are average values indicating the number of CF 2 and each independently represents 1 to 2.
  • w7 and w10 are determined depending on the structure of the repeating unit arranged at the end of the chain structure in the PFPE chain represented by formula (4-4).
  • the terminal groups represented by R 1 and R 6 are each independently an organic group having 1 to 50 carbon atoms.
  • the terminal groups represented by R 1 and R 6 are each independently preferably an organic group having 1 to 20 carbon atoms, more preferably an organic group having 2 to 10 carbon atoms.
  • the terminal group represented by R 1 preferably has a carbon atom at the end that is bonded to R 2 .
  • the terminal group represented by R 6 preferably has a carbon atom at the end that is bonded to R 5 .
  • the primary hydroxyl group of R 2 ( or R 5 ) adjacent to R 1 (or R 6 ) is prevented from bonding with the active site on the protective layer by the polar group of R 1 (or R 6 ). It becomes even more difficult to be inhibited.
  • the terminal groups represented by R 1 and R 6 do not contain a secondary hydroxyl group (that is, the fluorine-containing ether compound represented by formula (1) does not contain a secondary hydroxyl group) in order to further improve chemical resistance. It is preferable that there is no R 1 and R 6 may each independently be an organic group having a polar group, an organic group having a carbon-carbon unsaturated bond, or an organic group having both a polar group and a carbon-carbon unsaturated bond. preferable.
  • the polar group is a hydroxyl group (-OH), an amino group (-NR 7 R 8 ; R 7 and R 8 are each independently a hydrogen atom or an organic group), or a carboxy group.
  • (-COOH), formyl group (-(C O)H), carbonyl group (-CO-), sulfo group (-SO 3 H), cyano group (-CN), and group having an amide bond (-NR 9 COR 10 or -CONR 11 R 12 ; R 9 , R 10 , R 11 and R 12 are each independently a hydrogen atom or an organic group).
  • R 9 and R 10 may be bonded to each other to form a ring
  • R 11 and R 12 may be bonded to each other to form a ring.
  • R 9 , R 10 , R 11 and R 12 in the group having an amide bond are each independently selected from the group consisting of a hydrogen atom, a methyl group, an ethyl group, a propyl group, and a butyl group.
  • these polar groups at least one polar group selected from the group consisting of a hydroxyl group, a cyano group, and a group having an amide bond is more preferable. This is because the fluorine-containing ether compound has better resistance to chemical substances and can form a lubricating layer with a higher pick-up suppressing effect.
  • the number of polar groups is preferably 1 to 3, more preferably 1 to 2. When the number of polar groups is two or more, some or all of the polar groups may be the same or different.
  • the organic group having a polar group is -CH 2 -Y, -CH 2 CH 2 -Y, -CH 2 -O-CH 2 CH 2 -Y, -CH 2 -O-CH 2 CH 2 CH 2 -Y, -CH 2 -O-CH 2 CH(OH)CH 2 -O-CH 2 CH 2 -Y, or -CH 2 -O-CH 2 CH(OH)CH 2 -O-CH 2 CH 2 CH 2 - It is preferably represented by Y (Y in each of the above formulas is a polar group).
  • the terminal group When the terminal group has a carbon-carbon unsaturated bond, the terminal group is at least one selected from the group consisting of an aromatic hydrocarbon group which may have a substituent, an unsaturated heterocyclic group, an alkenyl group, and an alkynyl group. Preferably, it is an organic group having one type of carbon-carbon unsaturated bond.
  • the aromatic hydrocarbon group which may have a substituent include a phenyl group, a methoxyphenyl group, a fluorinated phenyl group, a naphthyl group, a methoxynaphthyl group, and the like.
  • unsaturated heterocyclic groups include pyrrolyl group, pyrazolyl group, imidazolyl group, furyl group, furfuryl group, oxazolyl group, isoxazolyl group, thienyl group, thiazolyl group, isothiazolyl group, pyridyl group, pyrimidinyl group, pyridazinyl group, pyrazinyl group, and indolinyl group.
  • Examples of the alkenyl group include allyl group and butenyl group.
  • Examples of the alkynyl group include propargyl group.
  • the terminal group has a carbon-carbon unsaturated bond
  • the terminal group has any one type of carbon-carbon unsaturated bond selected from the group consisting of phenyl group, methoxyphenyl group, naphthyl group, thienyl group, and allyl group. It is preferable that the organic group has This is because the fluorine-containing ether compound has better chemical substance resistance and can form a lubricating layer with a higher pick-up suppressing effect.
  • the organic group having a carbon-carbon unsaturated bond is -CH 2 -O-Z or -CH 2 CH 2 -O-Z (in the formula, Z is an aromatic hydrocarbon which may have a substituent) It is preferably one selected from the group consisting of a group, an unsaturated heterocyclic group, an alkenyl group, and an alkynyl group.
  • An organic group having both a polar group and a carbon-carbon unsaturated bond is -CH 2 -O-CH 2 CH(OH)CH 2 -O-Z, or -CH 2 CH 2 -O-CH 2 CH( OH)CH 2 -O-Z (Z in the formula is any one selected from the group consisting of an aromatic hydrocarbon group that may have a substituent, an unsaturated heterocyclic group, an alkenyl group, and an alkynyl group) ) is preferable.
  • R 1 and R 6 are each independently preferably a terminal group represented by any one of the following formulas (5-1) to (5-8). .
  • the following formulas (5-1) to (5-3) are all organic groups having only one primary hydroxyl group which is a polar group.
  • the following formula (5-4) is an organic group having one primary hydroxyl group and one secondary hydroxyl group as polar groups.
  • the following formula (5-5) is an organic group having one secondary hydroxyl group as a polar group and further having one allyl group which is a group having a carbon-carbon unsaturated bond.
  • the following formula (5-6) is an organic group having one secondary hydroxyl group as a polar group and further having one phenyl group which is a group having a carbon-carbon unsaturated bond.
  • the following formula (5-7) is an organic group having one cyano group which is a polar group.
  • the following formula (5-8) is an organic group having one group (-NHCOCH 3 ) having an amide bond, which is a polar group.
  • a lubricating layer containing a fluorine-containing ether compound is preferable because it has even better adhesion with the protective layer and can be made thinner. The reason for this will be explained below.
  • the carbon atom to which the primary hydroxyl group located at the tip is bonded and the oxygen atom bonded to the carbon atom in the main chain portion form a methylene group (- They are bonded via a linking group containing CH 2 -).
  • R 1 (or R 6 ) contains a polar group
  • the distance between the polar group of R 1 (or R 6 ) and the primary hydroxyl group of R 2 (or R 5 ) is It becomes appropriate.
  • the primary hydroxyl group of R 2 (or R 5 ) and the polar group of R 1 (or R 6 ) are less likely to be inhibited from bonding with the active sites on the protective layer by other polar groups.
  • the primary hydroxyl group of R 2 (or R 5 ) and the polar group of R 1 (or R 6 ) are unlikely to aggregate.
  • the primary hydroxyl group of R 2 (or R 5 ) and the polar group of R 1 (or R 6 ) can be independently adsorbed to the active sites on the protective layer.
  • a lubricating layer containing a fluorine-containing ether compound having a polar end group represented by R 1 and/or R 6 has even better adhesion with the protective layer, and has good properties even if it is thin. It exhibits resistance to chemical substances and is highly effective in suppressing pickup.
  • the total number of polar groups contained in R 1 and R 6 is 1 or more in order to improve adhesion with the protective layer and realize a thin lubricating layer. It is preferable that it is, and it is more preferable that it is 2 or more.
  • the total number of polar groups contained in R 1 and R 6 is such that the total number of polar groups becomes too large and some polar groups do not participate in bonding with the protective layer. In order to prevent this, the number is preferably 4 or less, more preferably 3 or less, and most preferably 2 or less.
  • the lubricating layer containing the fluorine-containing ether compound has even better adhesion with the protective layer and can be made thinner. It is preferable because it can be done. The reason for this will be explained below.
  • the many functional groups (active sites) present on the protective layer there are locally charged sites and sites with a wide charge distribution.
  • the hydroxyl group contained in R 2 , R 4 and R 5 in formula (1) and the carbon-carbon unsaturated bond contained in the terminal group represented by R 1 and/or R 6 are mutually bonded to each other on the protective layer. Adsorbs to the site.
  • the hydroxyl groups contained in R 2 , R 4 and R 5 in formula (1) are activated by hydrogen atoms interacting with locally charged sites on the protective layer through hydrogen bonds. Indicates adsorption capacity.
  • the carbon-carbon unsaturated bond contained in the terminal group represented by R 1 and/or R 6 has a non-local charge, so it interacts with a region on the protective layer where the charge distribution is wide. The adsorption capacity is shown by
  • the hydroxyl group contained in R 2 , R 4 and R 5 in formula (1) and the carbon-carbon unsaturated bond contained in the terminal group represented by R 1 and/or R 6 are the functional groups on the protective layer.
  • Each group (active site) can interact independently.
  • a lubricating layer containing a fluorine-containing ether compound in which the end group represented by R 1 and/or R 6 has a carbon-carbon unsaturated bond has even better adhesion with the protective layer and is thinner. It also shows good resistance to chemical substances and has a high pick-up suppressing effect.
  • the types of terminal groups represented by R 1 and R 6 can be appropriately selected depending on the performance required of the lubricant containing the fluorine-containing ether compound.
  • R 1 and R 6 may be the same or different.
  • the coating state of the fluorine-containing ether compound on the protective layer becomes more uniform, and a lubricating layer with better adhesion can be formed.
  • R 1 --R 2 -- and R 6 --R 5 -- in formula (1) are preferably the same. This is because the fluorine-containing ether compound can be produced easily and efficiently.
  • (x+1) R 3 in formula (1) are all the same, x R 4 are all the same, and R 1 -R 2 - and R 6 -R 5 - are more preferably the same. This is because the fluorine-containing ether compound can be produced more easily and efficiently.
  • the fluorine-containing ether compound represented by formula (1) is preferably one of the compounds represented by the following formulas (A) to (X) and (XX).
  • the compound represented by formula (1) is one of the compounds represented by the following formulas (A) to (X), (XX)
  • the raw materials are easily available, and the chemical substance resistance is good, A lubricating layer with a high pick-up suppressing effect can be formed.
  • Rf 1 , Rf 2 and Rf 3 representing PFPE chains have the following structures, respectively. That is, in the compounds represented by the following formulas (A) to (K), (N) to (R), (T) to (W), and (XX), Rf 1 is represented by the above formula (4-1). The PFPE chains represented. In the compounds represented by the following formulas (L), (S), and (X), Rf 2 is a PFPE chain represented by the above formula (4-2). In the compound represented by the following formula (M), Rf 3 is a PFPE chain represented by the above formula (4-3).
  • h and i in Rf 1 representing the PFPE chain in formulas (A) to (X) and (XX), j in Rf 2 , and k in Rf 3 are values indicating the average degree of polymerization, so they are not necessarily integers. There is no guarantee that it will be.
  • R 2 is a linking group represented by the above formula (2-1) or (2-2), and R 5 is a linking group represented by the above formula (2-3) or (2-4).
  • x in formula (1) is 0 and R 4 is not included in the structure.
  • x in formula (1) is 1 or 2, and each contains one or two R 4 in the structure.
  • R 4 is a linking group represented by the above formula (3-1) or (3-2).
  • R 1 and R 6 are any of the terminal groups represented by the above formulas (5-1) to (5-8).
  • Each of R 2 is a linking group represented by the above formula (2-1), and n1 is 2.
  • Each of R 5 is a linking group represented by the above formula (2-3), and n2 is 2.
  • All R 3 are PFPE chains represented by the above formula (4-1).
  • x in formula (1) is 0.
  • R 1 and R 6 are both terminal groups represented by the above formula (5-1), and R 3 is the terminal group represented by the above formula (4-1).
  • R 2 is a linking group represented by the above formula (2-1), and n1 is 3.
  • R 5 is a linking group represented by the above formula (2-3), and n2 is 3.
  • R 2 is a linking group represented by the above formula (2-1), and n1 is 4.
  • R 5 is a linking group represented by the above formula (2-3), and n2 is 4.
  • R 1 and R 6 are terminal groups represented by the above formula (5-1).
  • R 2 is a linking group represented by the above formula (2-2).
  • R 5 is a linking group represented by the above formula (2-4).
  • R 3 is a PFPE chain represented by the above formula (4-1).
  • x in formula (1) is 0.
  • R 1 and R 6 are both terminal groups represented by the above formula (5-1).
  • Each of R 2 is a linking group represented by the above formula (2-1), and n1 is 2.
  • Each of R 5 is a linking group represented by the above formula (2-3), and n2 is 2.
  • R 3 is a PFPE chain represented by the above formula (4-2).
  • R 3 is a PFPE chain represented by the above formula (4-3).
  • x in formula (1) is 1.
  • R 2 is a linking group represented by the above formula (2-1), and n1 is 2.
  • R 5 is a linking group represented by the above formula (2-3), and n2 is 2.
  • R 4 is a linking group represented by the above formula (3-1), n3 is 2, y1 is 1, and y2 is 1.
  • both of the two R 3 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 are terminal groups represented by the above formula (5-1).
  • R 1 and R 6 are terminal groups represented by the above formula (5-3).
  • R 1 and R 6 are terminal groups represented by the above formula (5-7).
  • R 1 and R 6 are terminal groups represented by the above formula (5-1).
  • R 2 is a linking group represented by the above formula (2-1), and n1 is 3.
  • R 5 is a linking group represented by the above formula (2-3), and n2 is 3.
  • R 4 is a linking group represented by the above formula (3-1), n3 is 3, y1 is 1, and y2 is 1.
  • Both R 3 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 are terminal groups represented by the above formula (5-1).
  • R 2 is a linking group represented by the above formula (2-2).
  • R 5 is a linking group represented by the above formula (2-4).
  • R 4 is a linking group represented by the above formula (3-2), y3 is 1, and y4 is 1.
  • Both R 3 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 are terminal groups represented by the above formula (5-1).
  • R 2 is a linking group represented by the above formula (2-1), and n1 is 2.
  • R 5 is a linking group represented by the above formula (2-3), and n2 is 2.
  • R 4 is a linking group represented by the above formula (3-1), n3 is 2, y1 is 1, and y2 is 1.
  • Both R 3 's are PFPE chains represented by the above formula (4-2).
  • x in formula (1) is 2.
  • R 2 is a linking group represented by the above formula (2-1), and n1 is 2.
  • R 5 is a linking group represented by the above formula (2-3), and n2 is 2.
  • Both of the two R 4 are linking groups represented by the above formula (3-1), n3 is 2, y1 is 1, and y2 is 1.
  • All three R 3 's are PFPE chains represented by the above formula (4-1).
  • R 1 and R 6 are terminal groups represented by the above formula (5-1).
  • R 1 and R 6 are terminal groups represented by the above formula (5-3).
  • R 1 and R 6 are terminal groups represented by the above formula (5-7).
  • x in formula (1) is 2.
  • R 1 and R 6 are terminal groups represented by the above formula (5-1).
  • R 2 is a linking group represented by the above formula (2-2).
  • R 5 is a linking group represented by the above formula (2-4).
  • Both R 4 are linking groups represented by the above formula (3-2), y3 is 1, and y4 is 1. All three R 3 's are PFPE chains represented by the above formula (4-1).
  • x in formula (1) is 2.
  • R 1 and R 6 are terminal groups represented by the above formula (5-1).
  • R 2 is a linking group represented by the above formula (2-1), and n1 is 2.
  • R 5 is a linking group represented by the above formula (2-3), and n2 is 2.
  • Both R 4 are linking groups represented by the above formula (3-1), n3 is 2, y1 is 1, and y2 is 1. All three R 3 's are PFPE chains represented by the above formula (4-2).
  • x in formula (1) is 1.
  • R 1 and R 6 are terminal groups represented by the above formula (5-2).
  • R 2 is a linking group represented by the above formula (2-1), and n1 is 2.
  • R 5 is a linking group represented by the above formula (2-3), and n2 is 2.
  • R 4 is a linking group represented by the above formula (3-1), n3 is 2, y1 is 1, and y2 is 1.
  • Both R 3 's are PFPE chains represented by the above formula (4-1).
  • h and i represent the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; In the two Rf 1s , the average degree of polymerization is the same. may be different, or may be different.
  • h and i represent the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; In the two Rf 1s , the average degree of polymerization is the same.
  • h and i represent the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; In the two Rf 1s , the average degree of polymerization is the same. may be different, or may be different.
  • h and i represent the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; In the two Rf 1s , the average degree of polymerization is the same.
  • h and i represent the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; In the two Rf 1s , the average degree of polymerization is the same. may be different, or may be different.
  • j indicates the average degree of polymerization and represents 1 to 15; in the two Rf 2 , the average degree of polymerization may be the same or different.
  • h and i represent the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; In the three Rf 1s , the average degree of polymerization is They may be different, or the average degree of polymerization in the two or three Rf 1s may be the same.
  • j indicates the average degree of polymerization and represents 1 to 15; In the three Rf 2 , the average degree of polymerization may be different from each other, or two or three The average degree of polymerization in Rf 2 may be the same.
  • h and i represent the average degree of polymerization, h represents 1 to 20, and i represents 0 to 20; In the two Rf 1s , the average degree of polymerization is the same. may be different, or may be different.
  • the number average molecular weight (Mn) of the fluorine-containing ether compound of the present embodiment is preferably within the range of 500 to 10,000, particularly preferably within the range of 1,000 to 5,000.
  • the lubricating layer made of the lubricant containing the fluorine-containing ether compound of this embodiment has excellent heat resistance.
  • the number average molecular weight of the fluorine-containing ether compound is more preferably 1000 or more. Further, when the number average molecular weight is 10,000 or less, the viscosity of the fluorine-containing ether compound becomes appropriate, and by applying a lubricant containing this, a thin lubricating layer can be easily formed.
  • the number average molecular weight of the fluorine-containing ether compound is preferably 5,000 or less since it has a viscosity that is easy to handle when applied to a lubricant.
  • the number average molecular weight (Mn) of the fluorine-containing ether compound is a value measured by 1 H-NMR and 19 F-NMR using AVANCE III400 manufactured by Bruker Biospin. Specifically, the number of repeating units of the PFPE chain is calculated from the integral value measured by 19 F-NMR, and the number average molecular weight is determined.
  • NMR nuclear magnetic resonance
  • a sample is diluted into a hexafluorobenzene/d-acetone (4/1 v/v) solvent.
  • the standard for 19 F-NMR chemical shift is the peak of hexafluorobenzene at -164.7 ppm
  • the standard for 1 H-NMR chemical shift is the peak of acetone at 2.2 ppm.
  • the fluorine-containing ether compound of this embodiment is preferably subjected to molecular weight fractionation by an appropriate method to have a molecular weight dispersity (weight average molecular weight (Mw)/number average molecular weight (Mn) ratio) of 1.3 or less.
  • the method for molecular weight fractionation is not particularly limited, but for example, molecular weight fractionation by silica gel column chromatography, gel permeation chromatography (GPC), etc., molecular weight fractionation by supercritical extraction, etc. can be used.
  • the method for producing the fluorine-containing ether compound of this embodiment is not particularly limited, and can be produced using a conventionally known production method.
  • the fluorine-containing ether compound of the present embodiment is produced by, for example, as shown below, a first reaction step of forming a main chain portion that becomes a chain structure of the fluorine-containing ether compound, and a side chain branching from the main chain portion. It can be manufactured using a manufacturing method having a second reaction step of forming a portion.
  • the first reaction step is carried out on the main chain portion of the chain structure of the fluorine-containing ether compound in formula (1), which becomes R 2 , R 5 (R 2 , R 4 , R 5 when x is 1 or 2).
  • R 2 and R 5 when x is 1 or 2, R 2 , R 4 , and R 5 ) in the first intermediate compound are arranged in the main chain portions of the formula (1), respectively. It is preferable that the step is to chemically modify the secondary hydroxyl group contained in the secondary hydroxyl group to form a side chain portion having a primary hydroxyl group.
  • the group corresponding to the main chain portion of R 2 and the group corresponding to the main chain portion of R 5 have a hydroxyl group of a hydroxymethyl group and an epoxy group of an epoxy compound in the first reaction step, respectively.
  • One secondary hydroxyl group generated by the reaction is placed.
  • the first reaction step corresponds to the hydroxyl group of the hydroxymethyl group located at one end of the fluorine-based compound, the group corresponding to R 6 in formula (1), and the main chain portion of R 5 .
  • the hydroxyl group of the hydroxymethyl group located at the other end of the above fluorine-based compound corresponds to R 1 in formula (1). It may also be a step of reacting an epoxy compound corresponding to a group to which a group corresponding to the main chain portion of R 2 is bonded.
  • one end of the perfluoropolyether chain corresponding to R3 has a group in which a group corresponding to R1 and a group corresponding to the main chain portion of R2 are bonded, and the other end has a group in which a group corresponding to R1 and a group corresponding to the main chain portion of R2 are bonded.
  • a first intermediate compound 1b having a group in which a group corresponding to R 6 and a group corresponding to the main chain portion of R 5 are bonded is obtained.
  • the group corresponding to the main chain portion of R 2 and the group corresponding to the main chain portion of R 5 have a hydroxyl group of a hydroxymethyl group and an epoxy group of an epoxy compound in the first reaction step, respectively.
  • One secondary hydroxyl group generated by the reaction is placed.
  • the epoxy compound corresponding to the group bonded with a group corresponding to for example, compounds represented by the following formulas (7-1) to (7-8) can be used.
  • THP represents a tetrahydropyranyl group.
  • MOM represents a methoxymethyl group.
  • the epoxy compound used in the first reaction step is obtained by, for example, reacting an alcohol having a structure corresponding to R 1 (or R 6 ) of the fluorine-containing ether compound to be produced with epichlorohydrin or epibromohydrin. It can be synthesized by this method.
  • the epoxy compound used in the first reaction step may be synthesized by a method of oxidizing a compound having a carbon-carbon double bond, or a commercially available product may be purchased and used.
  • a second intermediate compound 2b having a side chain portion of R 2 and a side chain portion of R 5 can be obtained by purifying by a known method such as column chromatography if necessary.
  • the order in which the first intermediate compound 1a or the first intermediate compound 1b is reacted is that a halide having a protected hydroxyl group corresponding to the side chain moiety of R2 is reacted with a halide having a protected hydroxyl group corresponding to the side chain moiety of R5 . Whichever halide has a hydroxyl group may come first.
  • Examples of the halide having a protected hydroxyl group corresponding to the side chain moiety of R 2 (or the side chain moiety of R 5 ) in formula (1) used in the second reaction step include the following formula (8-1): Compounds represented by ⁇ (8-4), etc. can be used.
  • THP represents a tetrahydropyranyl group.
  • the protecting group derived from a halide having a protected hydroxyl group, which the second intermediate compound 2a or the second intermediate compound 2b has, is removed by a known method depending on the type of the protecting group. Perform the deprotection reaction. As a result, one primary hydroxyl group is placed at the tip of the side chain portion of R 2 and the side chain portion of R 5 in formula (1), respectively. By performing the above steps, a fluorine-containing ether compound in which x in formula (1) is 0 can be obtained.
  • the hydroxyl group located at one end of the hydroxymethyl group located at both ends of the above fluorine-based compound can be purified by a known method such as column chromatography if necessary. A compound is obtained by reacting a methyl group with an epoxy compound.
  • the hydroxyl group of the hydroxymethyl group located at one end of the precursor compound 11a is reacted with a halogen compound having an epoxy group corresponding to the main chain portion of R4 in formula (1).
  • the structure corresponding to the main chain portion of R 4 has a perfluoropolyether chain corresponding to R 3 at both ends, and a group corresponding to R 1 and a main chain portion of R 2 at both ends.
  • one secondary hydroxyl group generated by the reaction between the hydroxyl group of the hydroxymethyl group and the epoxy group of the epoxy compound is arranged in the group corresponding to the main chain portion of R4 .
  • Precursor compound 11b has a group in which a group corresponding to R 1 and a group corresponding to the main chain portion of R 2 are bonded to one end of the perfluoropolyether chain corresponding to R 3 on the R 1 side. .
  • one secondary hydroxyl group generated by the reaction between the hydroxyl group of the hydroxymethyl group and the epoxy group of the epoxy compound is arranged in the group corresponding to the main chain portion of R 2 .
  • a fluorine-based compound is prepared in which hydroxymethyl groups (-CH 2 OH) are placed at both ends of the perfluoropolyether chain corresponding to R 3 on the R 6 side in formula (1).
  • the hydroxymethyl groups located at both ends of this fluorine-based compound the hydroxyl group of one hydroxymethyl group corresponds to the group corresponding to R 6 in formula (1) and the main chain portion of R 5 . and an epoxy compound corresponding to the group to which the group is bonded.
  • the hydroxyl group located at one end of the hydroxymethyl group located at both ends of the above fluorine-based compound can be purified by a known method such as column chromatography if necessary.
  • a compound is obtained by reacting a methyl group with an epoxy compound.
  • a precursor having a group in which a group corresponding to R 6 and a group corresponding to the main chain portion of R 5 are bonded to one end of the perfluoropolyether chain corresponding to R 3 on the R 6 side Compound 11c is obtained.
  • one secondary hydroxyl group generated by the reaction between the hydroxyl group of the hydroxymethyl group and the epoxy group of the epoxy compound is arranged in the group corresponding to the main chain portion of R5 .
  • the hydroxyl group of the hydroxymethyl group located at one end of the precursor compound 11b is reacted with a halogen compound having an epoxy group corresponding to the main chain portion of R 4 in formula (1). Then, the obtained reaction product is reacted with the hydroxyl group of the hydroxymethyl group located at one end of the precursor compound 11c. Note that, after reacting a halogen compound having an epoxy group corresponding to the main chain portion of R 4 in formula (1) with precursor compound 11c, the obtained reaction product is reacted with precursor compound 11b. You may let them.
  • a perfluoropolyether chain corresponding to R 3 on the R 1 side is present at the end of the R 1 side of the structure corresponding to the main chain portion of R 4 , and a perfluoropolyether chain corresponding to R 3 on the R 1 side is further attached to the end of the structure corresponding to the main chain portion of R 1 .
  • It has a group in which the corresponding group and the group corresponding to the main chain portion of R 2 are bonded, and the R 3 on the R 6 side is attached to the end on the R 6 side of the structure corresponding to the main chain portion of R 4 .
  • the first intermediate compound 1d has a perfluoropolyether chain corresponding to , and further has a group at the end of which a group corresponding to R 6 and a group corresponding to the main chain portion of R 5 are bonded. is obtained.
  • one secondary hydroxyl group generated by the reaction of the hydroxyl group of the hydroxymethyl group and the epoxy group is arranged in the group corresponding to the main chain portion of R4 .
  • Examples of the halogen compound having an epoxy group corresponding to the main chain portion of R 4 used in the first reaction step of the second production method include epibromohydrin, epichlorohydrin, 2-bromoethyloxirane, 3 - Bromopropyloxirane, 2-chloroethyloxirane, 3-chloropropyloxirane, etc. can be used, R 4 in formula (1) is represented by formula (3-1), and y1 in formula (3-1) , y2 are both 1, or when R 4 is represented by formula (3-2) and y3 and y4 in formula (3-2) are both 1, for example, epibromohydrin, epi Chlorhydrin can be used.
  • a group in which a group corresponding to R 1 in formula (1) and a group corresponding to the main chain portion of R 2 are bonded (or a group corresponding to R 6 in the first reaction step of the second production method)
  • the same epoxy compound as in the first production method can be used as the epoxy compound corresponding to the group (to which the group corresponding to the main chain portion of R 5 is bonded).
  • R 2 , R 4 and R 5 in formula (1) are added to the secondary hydroxyl group of the first intermediate compound 1c or 1d produced in the first reaction step.
  • the halides having a protected hydroxyl group corresponding to each side chain moiety are reacted sequentially using a known method to produce the second intermediate compound 2d.
  • a second intermediate compound 2d having a side chain moiety of R2 , a side chain moiety of R4 , and a side chain moiety of R5 is purified by a known method such as column chromatography as necessary. is obtained.
  • the order in which the halides having protected hydroxyl groups corresponding to the side chain portions of R 2 , R 4 , and R 5 are reacted with the first intermediate compound 1c or the first intermediate compound 1d is not particularly limited.
  • Examples of the halides having protected hydroxyl groups corresponding to the side chain moieties of R 2 , R 4 and R 5 in formula (1) used in the second reaction step of the second production method include those used in the first production method.
  • the same halides having protected hydroxyl groups corresponding to the side chain moieties of R 2 and R 5 in formula (1) that can be used in the method can be used.
  • the protecting group derived from a halide having a protected hydroxyl group, which the second intermediate compound 2c or the second intermediate compound 2d has, is removed by a known method depending on the type of the protecting group. Perform the deprotection reaction. As a result, one primary hydroxyl group is placed at the tip of each of the side chain portions of R 2 , R 4 , and R 5 in formula (1). By performing the above steps, a fluorine-containing ether compound in which x in formula (1) is 1 is obtained.
  • a fluorine-based compound in which hydroxymethyl groups (-CH 2 OH) are arranged at both ends of the perfluoropolyether chain corresponding to R 3 in formula (1) is prepared.
  • the hydroxyl groups of the hydroxymethyl groups located at both ends of the fluorine-based compound are reacted with a halogen compound having an epoxy group corresponding to the main chain portion of R 4 in formula (1).
  • a precursor compound 11d having an epoxy group corresponding to the main chain portion of R 4 at both ends of the perfluoropolyether chain corresponding to R 3 in formula (1) is obtained.
  • fluorine-based compound a fluorine-based compound in which hydroxymethyl groups are arranged at both ends of the perfluoropolyether chain corresponding to R 3 located at the center of the main chain among the three R 3 is used. Except for this, precursor compound 11e is produced in the same manner as precursor compound 11d. Precursor compound 11e has epoxy groups corresponding to the main chain portion of R 4 at both ends of the perfluoropolyether chain corresponding to R 3 located at the center of the main chain among the three R 3 s.
  • the precursor compound 11b and the precursor compound 11c are manufactured in the same manner as the second manufacturing method. Then, the hydroxyl group of the hydroxymethyl group located at one end of the precursor compound 11b is reacted with the epoxy group corresponding to the main chain portion of R4 located at one end of the precursor compound 11e. The obtained reaction product is reacted with the hydroxyl group of the hydroxymethyl group located at one end of the precursor compound 11c to produce the first intermediate compound 1f. Note that, after reacting the precursor compound 11e and the precursor compound 11c, the obtained reaction product may be reacted with the precursor compound 11b. In the first intermediate compound 1f, one secondary hydroxyl group generated by the reaction of the hydroxyl group of the hydroxymethyl group and the epoxy group is arranged in each of the groups corresponding to the two main chain portions of R 4 .
  • a first intermediate compound 1e is produced by using a precursor compound 11f shown below in place of the precursor compound 11d having epoxy groups corresponding to the main chain portion of R4 at both ends of the polyether chain. Ru.
  • a first intermediate compound 1f is produced using a precursor compound 11f shown below.
  • Precursor compound 11f can be produced by the method shown below. That is, at both ends of the perfluoropolyether chain corresponding to R 3 (if some or all of the three R 3 are different, the R 3 that is located in the center of the main chain among the three R 3 ) , fluorine-based compounds each having a hydroxymethyl group are prepared. The hydroxyl group of the hydroxymethyl group located at one end of the fluorine-based compound is reacted with a halogen compound having an epoxy group corresponding to the main chain portion of R 4 on the R 1 side. Thereafter, the hydroxyl group of the hydroxymethyl group located at the other end of the fluorine-based compound is reacted with a halogen compound having an epoxy group corresponding to the main chain portion of R 4 on the R 6 side.
  • both perfluoropolyether chains corresponding to R 3 (if some or all of the three R 3 are different, the R 3 that is located in the center of the main chain among the three R 3 )
  • Precursor compounds 11f having epoxy groups corresponding to different R 4 main chain portions at the ends are obtained.
  • the order in which they are reacted with the fluorine-based compound is a halogen compound having an epoxy group corresponding to the main chain portion of R4 on the R1 side, and a halogen compound having an epoxy group corresponding to the main chain portion of R4 on the R6 side. It doesn't matter which one comes first.
  • the halogen compound having an epoxy group corresponding to the main chain portion of R 4 on the R 1 side and R 4 on the R 6 side used in the first reaction step of the third production method includes the first reaction step of the second production method.
  • the same halogen compound having an epoxy group corresponding to the main chain portion of R 4 used in the step can be used.
  • R 4 on the R 1 side is represented by formula (3-1), and in formula (3-1),
  • y1 is 1 and y2 is 2
  • y3 in formula (3-2) is 1 and y4 is 2
  • 2 -Chloroethyloxirane and 2-bromoethyloxirane can be used.
  • R 4 on the R 1 side is represented by the formula (3-1), and y1 in the formula (3-1) is 1 and y2 is 3, or when R 4 on the R 1 side is represented by the formula (3-1), -2), and when y3 in formula (3-2) is 1 and y4 is 3, 3-chloropropyloxirane or 3-bromopropyloxirane can be used.
  • R 4 on the R 6 side is represented by formula (3-1), and in formula (3-1),
  • y1 is 2 and y2 is 1, or when R 4 on the R 6 side is represented by formula (3-2) and y3 in formula (3-2) is 2 and y4 is 1, 2 -Chloroethyloxirane and 2-bromoethyloxirane can be used.
  • R 4 on the R 6 side is represented by the formula (3-1), and y1 in the formula (3-1) is 3 and y2 is 1, or R 4 on the R 6 side is represented by the formula (3-1), -2), in which y3 is 3 and y4 is 1, 3-chloropropyloxirane or 3-bromopropyloxirane can be used.
  • a second intermediate having a side chain moiety of R2 , two side chain moieties of R4 , and a side chain moiety of R5 is purified by a known method such as column chromatography as necessary.
  • Compound 2f is obtained.
  • the order in which the halides having protected hydroxyl groups corresponding to the respective side chain moieties of R 2 and R 4 and R 5 are reacted with the first intermediate compound 1e or the first intermediate compound 1f is not particularly limited. .
  • Examples of the halides having protected hydroxyl groups corresponding to the side chain moieties of R 2 and two R 4 and R 5 in formula (1) used in the second reaction step of the third production method include, for example, The same halides as those having protected hydroxyl groups corresponding to the side chain moieties of R 2 , R 4 , and R 5 in formula (1) that can be used in the production method 2 can be used.
  • the protecting group derived from a halide having a protected hydroxyl group, which the second intermediate compound 2e or the second intermediate compound 2f has, is removed by a known method depending on the type of the protecting group. Perform the deprotection reaction. As a result, one primary hydroxyl group is placed at each tip of the side chain portion of R 2 , the two side chain portions of R 4 , and the side chain portion of R 5 in formula (1). By performing the above steps, a fluorine-containing ether compound in which x in formula (1) is 2 can be obtained.
  • the magnetic recording medium lubricant of this embodiment contains a fluorine-containing ether compound represented by the above formula (1).
  • the lubricant of this embodiment may be made of known materials used as lubricant materials as long as the properties of the fluorine-containing ether compound represented by formula (1) are not impaired. They can be mixed and used depending on the situation.
  • the known material used in combination with the lubricant of this embodiment preferably has a number average molecular weight of 1,000 to 10,000.
  • the fluorine-containing ether compound represented by the above formula (1) in the lubricant of this embodiment contains other materials of the fluorine-containing ether compound represented by the above formula (1)
  • the fluorine-containing ether compound represented by the above formula (1) in the lubricant of this embodiment The content of is preferably 50% by mass or more, more preferably 70% by mass or more.
  • the lubricant of this embodiment contains the fluorine-containing ether compound represented by the above formula (1), it can form a lubricant layer that has good chemical resistance and is highly effective in suppressing pick-up.
  • the magnetic recording medium of this embodiment has at least a magnetic layer, a protective layer, and a lubricating layer provided in this order on a substrate.
  • one or more underlayers can be provided between the substrate and the magnetic layer as necessary.
  • at least one of an adhesion layer and a soft magnetic layer may be provided between the underlayer and the substrate.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the magnetic recording medium of the present invention.
  • the magnetic recording medium 10 of this embodiment includes, on a substrate 11, an adhesion layer 12, a soft magnetic layer 13, a first underlayer 14, a second underlayer 15, a magnetic layer 16, a protective layer 17, It has a structure in which lubricating layers 18 are sequentially provided.
  • substrate for example, a nonmagnetic substrate in which a film made of NiP or NiP alloy is formed on a base made of metal or alloy material such as Al or Al alloy can be used. Further, as the substrate 11, a nonmagnetic substrate made of a nonmetallic material such as glass, ceramics, silicon, silicon carbide, carbon, or resin may be used, or NiP or a NiP alloy may be used on a substrate made of these nonmetallic materials. A nonmagnetic substrate having a film formed thereon may also be used.
  • the adhesion layer 12 prevents the progress of corrosion of the substrate 11 that occurs when the substrate 11 and the soft magnetic layer 13 provided on the adhesion layer 12 are placed in contact with each other.
  • the material of the adhesion layer 12 can be appropriately selected from, for example, Cr, Cr alloy, Ti, Ti alloy, CrTi, NiAl, AlRu alloy, etc.
  • the adhesion layer 12 can be formed by, for example, a sputtering method.
  • the soft magnetic layer 13 preferably has a structure in which a first soft magnetic film, an intermediate layer made of a Ru film, and a second soft magnetic film are laminated in this order. That is, the soft magnetic layer 13 has a structure in which the soft magnetic films above and below the intermediate layer are coupled by anti-ferro coupling (AFC) by sandwiching an intermediate layer made of a Ru film between two soft magnetic films. It is preferable to have.
  • AFC anti-ferro coupling
  • the material for the first soft magnetic film and the second soft magnetic film examples include CoZrTa alloy and CoFe alloy. It is preferable that Zr, Ta, or Nb be added to the CoFe alloy used for the first soft magnetic film and the second soft magnetic film. This promotes amorphization of the first soft magnetic film and the second soft magnetic film. As a result, it becomes possible to improve the orientation of the first underlayer (seed layer) and to reduce the flying height of the magnetic head.
  • the soft magnetic layer 13 can be formed by, for example, a sputtering method.
  • the first underlayer 14 is a layer that controls the orientation and crystal size of the second underlayer 15 and magnetic layer 16 provided thereon.
  • Examples of the first underlayer 14 include a Cr layer, a Ta layer, a Ru layer, a CrMo alloy layer, a CoW alloy layer, a CrW alloy layer, a CrV alloy layer, a CrTi alloy layer, and the like.
  • the first base layer 14 can be formed by, for example, a sputtering method.
  • the second underlayer 15 is a layer that controls the orientation of the magnetic layer 16 to be good.
  • the second base layer 15 is preferably a layer made of Ru or Ru alloy.
  • the second base layer 15 may be a single layer or may be a plurality of layers. When the second base layer 15 is composed of multiple layers, all the layers may be composed of the same material, or at least one layer may be composed of different materials.
  • the second base layer 15 can be formed by, for example, a sputtering method.
  • the magnetic layer 16 is made of a magnetic film whose axis of easy magnetization is perpendicular or horizontal to the substrate surface.
  • the magnetic layer 16 is a layer containing Co and Pt.
  • the magnetic layer 16 may be a layer containing oxide, Cr, B, Cu, Ta, Zr, etc. to improve SNR characteristics. Examples of the oxide contained in the magnetic layer 16 include SiO 2 , SiO, Cr 2 O 3 , CoO, Ta 2 O 3 , and TiO 2 .
  • the magnetic layer 16 may be composed of one layer, or may be composed of a plurality of magnetic layers made of materials with different compositions.
  • the first magnetic layer contains Co, Cr, and Pt, and is further oxidized. It is preferable to have a granular structure made of a material containing substances.
  • the oxide contained in the first magnetic layer it is preferable to use, for example, an oxide of Cr, Si, Ta, Al, Ti, Mg, Co, or the like. Among them, TiO 2 , Cr 2 O 3 , SiO 2 and the like can be particularly preferably used.
  • the first magnetic layer is preferably made of a composite oxide containing two or more types of oxides.
  • Cr 2 O 3 --SiO 2 , Cr 2 O 3 --TiO 2 , SiO 2 --TiO 2 and the like can be particularly preferably used.
  • the first magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, and Re in addition to Co, Cr, Pt, and oxides. can be included.
  • the same material as the first magnetic layer can be used for the second magnetic layer.
  • the second magnetic layer has a granular structure.
  • the third magnetic layer preferably has a non-granular structure made of a material containing Co, Cr, and Pt and no oxide.
  • the third magnetic layer contains one or more elements selected from B, Ta, Mo, Cu, Nd, W, Nb, Sm, Tb, Ru, Re, and Mn in addition to Co, Cr, and Pt. be able to.
  • the magnetic layer 16 When the magnetic layer 16 is formed of a plurality of magnetic layers, it is preferable to provide a non-magnetic layer between adjacent magnetic layers.
  • the magnetic layer 16 consists of three layers: a first magnetic layer, a second magnetic layer, and a third magnetic layer, there is a gap between the first magnetic layer and the second magnetic layer, and between the second magnetic layer and the third magnetic layer. It is preferable to provide a nonmagnetic layer between them.
  • the nonmagnetic layer provided between adjacent magnetic layers of the magnetic layer 16 is, for example, Ru, Ru alloy, CoCr alloy, CoCrX1 alloy (X1 is Pt, Ta, Zr, Re, Ru, Cu, Nb, Ni, Mn, Represents one or more elements selected from Ge, Si, O, N, W, Mo, Ti, V, and B), etc. can be suitably used.
  • an alloy material containing an oxide, a metal nitride, or a metal carbide for the nonmagnetic layer provided between adjacent magnetic layers of the magnetic layer 16.
  • the oxide for example, SiO 2 , Al 2 O 3 , Ta 2 O 5 , Cr 2 O 3 , MgO, Y 2 O 3 , TiO 2 or the like can be used.
  • the metal nitride for example, AlN, Si 3 N 4 , TaN, CrN, etc. can be used.
  • the metal carbide for example, TaC, BC, SiC, etc. can be used.
  • the nonmagnetic layer can be formed by, for example, a sputtering method.
  • the magnetic layer 16 is preferably a perpendicular magnetic recording magnetic layer in which the axis of easy magnetization is perpendicular to the substrate surface.
  • the magnetic layer 16 may be a magnetic layer for longitudinal magnetic recording.
  • the magnetic layer 16 may be formed by any conventionally known method, such as vapor deposition, ion beam sputtering, and magnetron sputtering.
  • the magnetic layer 16 is usually formed by a sputtering method.
  • Protective layer 17 protects magnetic layer 16 .
  • the protective layer 17 may be composed of one layer or may be composed of multiple layers.
  • a carbon-based protective layer can be preferably used, and an amorphous carbon protective layer is particularly preferable. It is preferable that the protective layer 17 is a carbon-based protective layer because the interaction with the polar groups (especially hydroxyl groups) contained in the fluorine-containing ether compound in the lubricating layer 18 is further enhanced.
  • the adhesion between the carbon-based protective layer and the lubricating layer 18 can be achieved by using hydrogenated carbon and/or nitrogenated carbon as the carbon-based protective layer and adjusting the hydrogen content and/or nitrogen content in the carbon-based protective layer. It is controllable.
  • the hydrogen content in the carbon-based protective layer is preferably 3 at.% to 20 at.% when measured by hydrogen forward scattering (HFS).
  • the nitrogen content in the carbon-based protective layer is preferably 4 atomic % to 15 atomic % when measured by X-ray photoelectron spectroscopy (XPS).
  • the hydrogen and/or nitrogen contained in the carbon-based protective layer does not need to be uniformly contained throughout the carbon-based protective layer.
  • the carbon-based protective layer is preferably a compositionally graded layer in which the protective layer 17 on the lubricating layer 18 side contains nitrogen and the protective layer 17 on the magnetic layer 16 side contains hydrogen. In this case, the adhesion between the magnetic layer 16 and lubricating layer 18 and the carbon-based protective layer is further improved.
  • the thickness of the protective layer 17 is preferably 1 nm to 7 nm. When the thickness of the protective layer 17 is 1 nm or more, sufficient performance as the protective layer 17 can be obtained. It is preferable that the thickness of the protective layer 17 is 7 nm or less from the viewpoint of making the protective layer 17 thinner.
  • a sputtering method using a target material containing carbon As a method for forming the protective layer 17, a sputtering method using a target material containing carbon, a CVD (chemical vapor deposition) method using a hydrocarbon raw material such as ethylene or toluene, an IBD (ion beam deposition) method, etc. can be used. can.
  • a carbon-based protective layer as the protective layer 17 it can be formed by, for example, a DC magnetron sputtering method.
  • the amorphous carbon protective layer formed by plasma CVD has a uniform surface and low roughness.
  • Lubricating layer 18 prevents contamination of magnetic recording medium 10. Furthermore, the lubricating layer 18 reduces the frictional force of the magnetic head of the magnetic recording/reproducing device that slides on the magnetic recording medium 10, thereby improving the durability of the magnetic recording medium 10.
  • the lubricating layer 18 is formed on and in contact with the protective layer 17, as shown in FIG.
  • the lubricant layer 18 is formed by applying the magnetic recording medium lubricant of the above-described embodiment onto the protective layer 17. Therefore, the lubricating layer 18 contains the above-mentioned fluorine-containing ether compound.
  • the lubricating layer 18 is bonded to the protective layer 17 with a high bonding force, especially when the protective layer 17 disposed below the lubricating layer 18 is a carbon-based protective layer. As a result, even if the lubricating layer 18 is thin, it is easy to obtain a magnetic recording medium 10 in which the surface of the protective layer 17 is coated with a high coverage rate, and contamination of the surface of the magnetic recording medium 10 can be effectively prevented. .
  • the average thickness of the lubricating layer 18 is preferably 0.5 nm (5 ⁇ ) to 2.0 nm (20 ⁇ ), more preferably 0.5 nm (5 ⁇ ) to 1.2 nm (12 ⁇ ).
  • the average thickness of the lubricant layer 18 is 0.5 nm or more, the lubricant layer 18 does not have an island shape or a mesh shape and is formed with a uniform thickness. Therefore, the surface of the protective layer 17 can be covered with the lubricating layer 18 at a high coverage rate. Further, by setting the average thickness of the lubricant layer 18 to 2.0 nm or less, the lubricant layer 18 can be made sufficiently thin, and the flying height of the magnetic head can be made sufficiently small.
  • Method for forming a lubricating layer In order to form the lubricating layer 18, for example, a method of preparing a magnetic recording medium in the process of being manufactured in which each layer up to the protective layer 17 is formed on the substrate 11, and applying a lubricating layer forming solution on the protective layer 17 is performed. Can be mentioned.
  • the lubricant layer forming solution can be obtained by dispersing and dissolving the magnetic recording medium lubricant of the above-described embodiment in a solvent as necessary to obtain a viscosity and concentration suitable for the coating method.
  • the solvent used in the lubricating layer forming solution include fluorine-based solvents such as Vertrell (registered trademark) XF (trade name, manufactured by DuPont Mitsui Fluorochemicals Co., Ltd.).
  • the method for applying the lubricant layer forming solution is not particularly limited, and examples thereof include a spin coating method, a spray method, a paper coating method, a dipping method, and the like.
  • the dip method for example, the method shown below can be used.
  • the substrate 11 on which each layer up to the protective layer 17 has been formed is immersed in a lubricating layer forming solution placed in a dipping tank of a dip coater.
  • the substrate 11 is pulled up from the immersion bath at a predetermined speed.
  • the lubricating layer forming solution is applied to the surface of the protective layer 17 of the substrate 11.
  • the lubricating layer forming solution can be uniformly applied to the surface of the protective layer 17, and the lubricating layer 18 can be formed on the protective layer 17 with a uniform thickness.
  • the substrate 11 on which the lubricant layer 18 is formed is subjected to heat treatment.
  • the heat treatment temperature is preferably 100°C to 180°C, more preferably 100°C to 160°C.
  • the heat treatment temperature is 100° C. or higher, the effect of improving the adhesion between the lubricating layer 18 and the protective layer 17 can be sufficiently obtained.
  • the heat treatment time can be adjusted as appropriate depending on the heat treatment temperature, and is preferably 10 minutes to 120 minutes.
  • the lubricant layer 18 may be irradiated with ultraviolet (UV) light before or after heat treatment.
  • UV ultraviolet
  • the magnetic recording medium 10 of this embodiment has at least a magnetic layer 16, a protective layer 17, and a lubricating layer 18 provided in this order on a substrate 11.
  • a lubricating layer 18 containing the above-mentioned fluorine-containing ether compound is formed on and in contact with the protective layer 17 .
  • This lubricating layer 18 has good resistance to chemical substances and is highly effective in suppressing pickup. Therefore, the magnetic recording medium 10 of this embodiment is excellent in reliability, particularly in suppressing silicon contamination and in durability. Therefore, the magnetic recording medium 10 of this embodiment can have a low flying height of the magnetic head (for example, 10 nm or less), and is stable for a long period of time even under harsh environments associated with diversification of applications. and it works. Therefore, the magnetic recording medium 10 of this embodiment is particularly suitable as a magnetic disk mounted in a magnetic disk device of the LUL (Load/Unload) system.
  • Example 1 A compound represented by the above formula (A) was obtained by the method shown below. (First reaction step) HOCH 2 CF 2 O (CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH (in the formula, h indicating the average degree of polymerization is 4.5, i indicating the average degree of polymerization is 4.5) (number average molecular weight 1000, molecular weight distribution 1.1) 10 g, and 4.75 g of the compound represented by the above formula (7-1). , t-butanol (20 mL) and stirred at room temperature until homogeneous to form a mixture. 0.90 g of potassium tert-butoxide was added to this mixture, and the mixture was stirred at 70° C. for 16 hours to react.
  • the compound represented by formula (7-1) was synthesized by a method in which the hydroxyl group of 3-buten-1-ol was protected using dihydropyran and then oxidized with m-chloroperbenzoic acid.
  • the reaction product obtained after the reaction was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate.
  • the organic layer was washed with water and dehydrated with anhydrous sodium sulfate. After filtering off the desiccant, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain 11.31 g of a compound represented by the following formula (9) as a first intermediate compound.
  • Rf 1 in formula (9) is a PFPE chain represented by the above formula (4-1); in Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization. represents 4.5; THP represents a tetrahydropyranyl group.
  • reaction solution obtained was returned to room temperature, 5 g of 10% hydrogen chloride/methanol solution (hydrogen chloride/methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 4 hours. Thereafter, the reaction solution was transferred little by little into a separatory funnel containing 100 mL of saturated aqueous sodium bicarbonate solution, and extracted twice with 200 mL of ethyl acetate. The organic layer was washed with 100 mL of brine, 100 mL of saturated sodium bicarbonate solution, and 100 mL of brine in this order, and dehydrated with anhydrous sodium sulfate.
  • hydrogen chloride/methanol solution hydrogen chloride/methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 2 A compound represented by the above formula (B) was obtained by the method shown below. The same operation as in Example 1 was carried out, except that the compound represented by formula (7-2) was used instead of the compound represented by formula (7-1), and compound (B) (formula ( Rf 1 in B) is a PFPE chain represented by the above formula (4-1). In Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4.5. 5) was obtained.
  • the compound represented by formula (7-2) was synthesized by a method in which the hydroxyl group of allyl alcohol was protected using dihydropyran and then oxidized with m-chloroperbenzoic acid.
  • Example 3 A compound represented by the above formula (C) was obtained by the method shown below. The same operation as in Example 1 was carried out, except that the compound represented by formula (7-3) was used instead of the compound represented by formula (7-1), and compound (C) (formula ( Rf 1 in C) is a PFPE chain represented by the above formula (4-1). In Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4.5. 5) was obtained.
  • the compound represented by formula (7-3) was synthesized by a method in which the hydroxyl group of ethylene glycol monoallyl ether was protected using dihydropyran and then oxidized with m-chloroperbenzoic acid.
  • Example 4 A compound represented by the above formula (D) was obtained by the method shown below. The same operation as in Example 1 was carried out, except that the compound represented by formula (7-4) was used instead of the compound represented by formula (7-1), and compound (D) (formula ( Rf 1 in D) is a PFPE chain represented by the above formula (4-1). In Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4.5. 5) was obtained.
  • the compound represented by formula (7-4) was synthesized by the method shown below. One hydroxyl group of ethylene glycol was protected using dihydropyran, and then reacted with allyl glycidyl ether. The secondary hydroxyl group generated after the reaction was protected with methoxymethyl chloride, and then synthesized by oxidation with m-chloroperbenzoic acid.
  • Example 5 A compound represented by the above formula (E) was obtained by the method shown below. The same operation as in Example 1 was carried out, except that the compound represented by formula (7-5) was used instead of the compound represented by formula (7-1), and compound (E) (formula ( Rf 1 in E) is a PFPE chain represented by the above formula (4-1). In Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4.5. 5.41g of the product was obtained. The compound represented by formula (7-5) was synthesized by the method shown below. Epichlorohydrin was reacted with allyl alcohol in twice the molar amount. The secondary hydroxyl group generated after the reaction was protected using methoxymethyl chloride, and then one carbon-carbon double bond was oxidized with m-chloroperbenzoic acid to synthesize it.
  • Example 6 A compound represented by the above formula (F) was obtained by the method shown below. The same operation as in Example 1 was carried out, except that the compound represented by formula (7-6) was used instead of the compound represented by formula (7-1), and compound (F) (formula ( Rf 1 in F) is a PFPE chain represented by the above formula (4-1). In Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4.5. 5.) was obtained. The compound represented by formula (7-6) was synthesized by the method shown below. Phenol and allyl glycidyl ether were reacted. The secondary hydroxyl group generated after the reaction was protected using methoxymethyl chloride and synthesized by oxidizing with m-chloroperbenzoic acid.
  • Example 7 A compound represented by the above formula (G) was obtained by the method shown below. The same operation as in Example 1 was carried out, except that the compound represented by formula (7-7) was used instead of the compound represented by formula (7-1), and compound (G) (formula ( Rf 1 in G) is a PFPE chain represented by the above formula (4-1). In Rf 1 , h indicating the average degree of polymerization is 4.5, and i indicating the average degree of polymerization is 4. 5) was obtained. The compound represented by formula (7-7) was synthesized by reacting 3-cyanopropanol and epibromohydrin.
  • Example 8 A compound represented by the above formula (H) was obtained by the method shown below. The same operation as in Example 1 was carried out, except that the compound represented by formula (7-8) was used instead of the compound represented by formula (7-1), and compound (H) (formula ( Rf 1 in H) is a PFPE chain represented by the above formula (4-1). In Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4.5. 5) was obtained. The compound represented by formula (7-8) was synthesized by reacting acetaminoethanol and epibromohydrin.
  • Example 9 A compound represented by the above formula (I) was obtained by the method shown below. The same operation as in Example 1 was carried out, except that the compound represented by formula (8-2) was used instead of the compound represented by formula (8-1), and compound (I) (formula ( Rf 1 in I) is a PFPE chain represented by the above formula (4-1). In Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4.5. 5) was obtained. The compound represented by formula (8-2) was synthesized by protecting the hydroxyl group of 3-bromopropanol using dihydropyran.
  • Example 10 A compound represented by the above formula (J) was obtained by the method shown below. The same operation as in Example 1 was carried out, except that the compound represented by formula (8-3) was used instead of the compound represented by formula (8-1), and compound (J) (formula ( Rf 1 in J) is a PFPE chain represented by the above formula (4-1). In Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization represents 4.5. 5) was obtained.
  • the compound represented by formula (8-3) was synthesized by protecting the hydroxyl group of 4-bromobutanol using dihydropyran.
  • Example 11 A compound represented by the above formula (K) was obtained by the method shown below. The same operation as in Example 1 was carried out, except that the compound represented by formula (8-4) was used instead of the compound represented by formula (8-1), and compound (K) (formula ( Rf 1 in K) is a PFPE chain represented by the above formula (4-1). In Rf 1 , h indicating the average degree of polymerization is 4.5, and i indicating the average degree of polymerization is 4.5. 5) was obtained.
  • the compound represented by formula (8-4) was synthesized by brominating one hydroxyl group of diethylene glycol using phosphorus tribromide, and then protecting the other hydroxyl group using dihydropyran.
  • Example 12 A compound represented by the above formula (L) was obtained by the method shown below. Instead of the compound represented by HOCH 2 CF 2 O(CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH, HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) j Except for using a compound (number average molecular weight 1000, molecular weight distribution 1.1) represented by CF 2 CF 2 CH 2 OH (j indicating the average degree of polymerization in the formula is 4.5). The same operation as in Example 1 was performed, and compound (L) (Rf 2 in formula (L) is a PFPE chain represented by the above formula (4-2). In Rf 2 , j indicating the average degree of polymerization (represents 4.5) was obtained.
  • Example 13 A compound represented by the above formula (M) was obtained by the method shown below. Instead of the compound represented by HOCH 2 CF 2 O (CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH, HOCH 2 CF 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) k CF 2 CF 2 CF 2 CH 2 OH (k indicating the average degree of polymerization in the formula is 3.0) (number average molecular weight 1000, molecular weight distribution 1.1) was used. Except that 4.10 g of 3.0 (k indicating the average degree of polymerization) was obtained.
  • Example 14 A compound represented by the above formula (N) was obtained by the method shown below. (First reaction step) HOCH 2 CF 2 O (CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH (in the formula, h indicating the average degree of polymerization is 4.5, i indicating the average degree of polymerization is 4.5) (number average molecular weight 1000, molecular weight distribution 1.1) 20 g, and 2.06 g of the compound represented by the above formula (7-1). , t-butanol (20 mL) and stirred at room temperature until homogeneous to form a mixture. 0.90 g of potassium tert-butoxide was added to this mixture, and the mixture was stirred at 70° C. for 16 hours to react.
  • the reaction product obtained after the reaction was cooled to 25°C, transferred to a separatory funnel containing 100 mL of water, and extracted three times with 100 mL of ethyl acetate.
  • the organic layer was washed with water and dehydrated with anhydrous sodium sulfate. After filtering off the desiccant, the filtrate was concentrated, and the residue was purified by silica gel column chromatography to obtain 8.41 g of a compound represented by the following formula (10) as a precursor compound.
  • Rf 1 in formula (10) is a PFPE chain represented by the above formula (4-1); in Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization. represents 4.5; THP represents a tetrahydropyranyl group.
  • Rf 1 in formula (11) is a PFPE chain represented by the above formula (4-1); in the two Rf 1s , h indicating the average degree of polymerization represents 4.5, and the average degree of polymerization is i represents 4.5; THP represents a tetrahydropyranyl group.
  • reaction solution obtained was returned to room temperature, 5 g of 10% hydrogen chloride/methanol solution (hydrogen chloride/methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 4 hours. Thereafter, the reaction solution was transferred little by little into a separatory funnel containing 100 mL of saturated aqueous sodium bicarbonate solution, and extracted twice with 200 mL of ethyl acetate. The organic layer was washed with 100 mL of brine, 100 mL of saturated sodium bicarbonate solution, and 100 mL of brine in this order, and dehydrated with anhydrous sodium sulfate.
  • hydrogen chloride/methanol solution hydrogen chloride/methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 15 A compound represented by the above formula (O) was obtained by the method shown below. The same operation as in Example 14 was carried out, except that the compound represented by formula (7-3) was used instead of the compound represented by formula (7-1), and compound (O) (formula ( Rf 1 in O) is a PFPE chain represented by the above formula (4-1). In the two Rf 1s , h indicating the average degree of polymerization represents 4.5, and i indicating the average degree of polymerization 4.5) was obtained.
  • Example 16 A compound represented by the above formula (P) was obtained by the method shown below. The same operation as in Example 14 was carried out, except that the compound represented by formula (7-7) was used instead of the compound represented by formula (7-1), and compound (P) (formula ( Rf 1 in P) is a PFPE chain represented by the above formula (4-1). In the two Rf 1s , h indicating the average degree of polymerization represents 4.5, and i indicating the average degree of polymerization 4.5) was obtained.
  • Example 17 A compound represented by the above formula (Q) was obtained by the method shown below. The same operation as in Example 14 was carried out, except that the compound represented by formula (8-2) was used instead of the compound represented by formula (8-1), and compound (Q) (formula ( Rf 1 in Q) is a PFPE chain represented by the above formula (4-1); in the two Rf 1s , h indicating the average degree of polymerization represents 4.5, and i indicating the average degree of polymerization 4.5) was obtained.
  • Example 18 A compound represented by the above formula (R) was obtained by the method shown below. The same operation as in Example 14 was carried out, except that the compound represented by formula (8-4) was used instead of the compound represented by formula (8-1), and compound (R) (formula ( Rf 1 in R) is a PFPE chain represented by the above formula (4-1); in the two Rf 1s , h indicating the average degree of polymerization represents 4.5, and i indicating the average degree of polymerization 4.5) was obtained.
  • Example 19 A compound represented by the above formula (S) was obtained by the method shown below. Instead of the compound represented by HOCH 2 CF 2 O(CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH, HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) j Except for using a compound (number average molecular weight 1000, molecular weight distribution 1.1) represented by CF 2 CF 2 CH 2 OH (j indicating the average degree of polymerization in the formula is 4.5).
  • Example 20 A compound represented by the above formula (T) was obtained by the method shown below. (First reaction step) In the same manner as in Example 14, a compound represented by formula (10) was obtained as a precursor compound. Then, in the reaction to obtain the first intermediate compound in Example 14, the same operation as in Example 14 was performed, except that the compound represented by formula (12) was used instead of epibromohydrin. 7.81 g of a compound represented by the following formula (13) was obtained as a first intermediate compound.
  • the compound represented by formula (12) is HOCH 2 CF 2 O (CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH (in the formula, h indicating the average degree of polymerization is 4.5. It was synthesized by a method of reacting a compound represented by (number average molecular weight: 1000, molecular weight distribution: 1.1) with epibromohydrin.
  • Rf 1 in formula (12) is a PFPE chain represented by the above formula (4-1); in Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization. represents 4.5.
  • Rf 1 in formula (13) is a PFPE chain represented by the above formula (4-1); in the three Rf 1s , h indicating the average degree of polymerization is 4.5, and the average degree of polymerization is i represents 4.5; THP represents a tetrahydropyranyl group.
  • reaction solution obtained was returned to room temperature, 5 g of 10% hydrogen chloride/methanol solution (hydrogen chloride/methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.) was added, and the mixture was stirred at room temperature for 4 hours. Thereafter, the reaction solution was transferred little by little into a separatory funnel containing 100 mL of saturated aqueous sodium bicarbonate solution, and extracted twice with 200 mL of ethyl acetate. The organic layer was washed with 100 mL of brine, 100 mL of saturated sodium bicarbonate solution, and 100 mL of brine in this order, and dehydrated with anhydrous sodium sulfate.
  • hydrogen chloride/methanol solution hydrogen chloride/methanol reagent (5-10%) manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 21 A compound represented by the above formula (U) was obtained by the method shown below. The same operation as in Example 20 was carried out, except that the compound represented by formula (7-3) was used instead of the compound represented by formula (7-1), and compound (U) (formula ( Rf 1 in U) is a PFPE chain represented by the above formula (4-1). In the three Rf 1s , h indicating the average degree of polymerization represents 4.5, and i indicating the average degree of polymerization 4.5) was obtained.
  • Example 22 A compound represented by the above formula (V) was obtained by the method shown below. The same operation as in Example 20 was carried out, except that the compound represented by formula (7-7) was used instead of the compound represented by formula (7-1), and compound (V) (formula ( Rf 1 in V) is a PFPE chain represented by the above formula (4-1). In the three Rf 1s , h indicating the average degree of polymerization represents 4.5, and i indicating the average degree of polymerization 4.5) was obtained.
  • Example 23 A compound represented by the above formula (W) was obtained by the method shown below. The same operation as in Example 20 was carried out, except that the compound represented by formula (8-4) was used instead of the compound represented by formula (8-1), and compound (W) (formula ( Rf 1 in W) is a PFPE chain represented by the above formula (4-1). In the three Rf 1s , h indicating the average degree of polymerization represents 4.5, and i indicating the average degree of polymerization 4.5) was obtained.
  • Example 24 A compound represented by the above formula (X) was obtained by the method shown below. Instead of the compound represented by HOCH 2 CF 2 O(CF 2 CF 2 O) h (CF 2 O) i CF 2 CH 2 OH, HOCH 2 CF 2 CF 2 O (CF 2 CF 2 CF 2 O) j Except for using a compound (number average molecular weight 1000, molecular weight distribution 1.1) represented by CF 2 CF 2 CH 2 OH (j indicating the average degree of polymerization in the formula is 4.5).
  • Example 25 A compound represented by the above formula (XX) was obtained by the method shown below. The same operation as in Example 14 was carried out, except that the compound represented by formula (7-2) was used instead of the compound represented by formula (7-1), and compound (XX) (formula ( Rf 1 in XX) is a PFPE chain represented by the above formula (4-1); in the two Rf 1s , h indicating the average degree of polymerization represents 4.5, and i indicating the average degree of polymerization 4.5) was obtained. The obtained compound (XX) was subjected to 1 H-NMR and 19 F-NMR measurements, and the structure was identified based on the following results.
  • Rf 1 in formula (Y) is a PFPE chain represented by the above formula (4-1); in Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization. represents 4.5.
  • Rf 1 in formula (Z) is a PFPE chain represented by the above formula (4-1); in the two Rf 1s , h indicating the average degree of polymerization represents 4.5, and the average degree of polymerization is The i shown represents 4.5.
  • Rf 2 in formula (AA) is a PFPE chain represented by the above formula (4-2); in the two Rf 2 , j indicating the average degree of polymerization is 4.5.
  • Rf 2 in formula (AB) is a PFPE chain represented by the above formula (4-2); in the two Rf 2 , j indicating the average degree of polymerization is 4.5.
  • Rf 1 in formula (AC) is a PFPE chain represented by the above formula (4-1); in the three Rf 1s , h indicating the average degree of polymerization represents 7.0, and the average degree of polymerization is The i shown here represents 0.)
  • Rf 1 in formula (AD) is a PFPE chain represented by the above formula (4-1); in Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization. represents 4.5.
  • Rf 1 in formula (AE) is a PFPE chain represented by the above formula (4-1); in Rf 1 , h representing the average degree of polymerization represents 4.5, and i representing the average degree of polymerization. represents 4.5.
  • lubricating layer forming solutions were prepared using the compounds obtained in Examples 1 to 25 and Comparative Examples 1 to 7 by the method shown below. Then, using the obtained lubricant layer forming solution, lubricant layers of magnetic recording media were formed by the method shown below to obtain magnetic recording media of Examples 1 to 25 and Comparative Examples 1 to 7.
  • “Lubricant layer forming solution” The compounds obtained in Examples 1 to 25 and Comparative Examples 1 to 7 were each dissolved in a fluorine-based solvent, Bartrel (registered trademark) The solution was diluted with Bartrel XF so that the film thickness would be 9.0 ⁇ to 9.5 ⁇ when mixed, and a solution for forming a lubricating layer was prepared.
  • Magnetic recording medium A magnetic recording medium was prepared in which an adhesive layer, a soft magnetic layer, a first underlayer, a second underlayer, a magnetic layer, and a protective layer were sequentially provided on a substrate having a diameter of 65 mm.
  • the protective layer was made of carbon.
  • the lubricant layer forming solutions of Examples 1 to 25 and Comparative Examples 1 to 7 were applied by dipping onto the protective layer of the magnetic recording medium in which each layer up to the protective layer was formed. Note that the dipping method was performed under the conditions of a dipping speed of 10 mm/sec, a dipping time of 30 sec, and a pulling rate of 1.2 mm/sec.
  • the magnetic recording medium coated with the lubricant layer forming solution is placed in a constant temperature bath, and heat treatment is performed at 120°C for 10 days to remove the solvent in the lubricant layer forming solution and improve the adhesion between the protective layer and the lubricant layer.
  • a lubricating layer was formed on the protective layer by performing this for a few minutes, and a magnetic recording medium was obtained.
  • the magnetic recording medium to be evaluated was held in the presence of siloxane-based Si rubber for 240 hours in a high-temperature environment with a temperature of 85° C. and a humidity of 0%.
  • the amount of Si adsorbed on the surface of the magnetic recording medium was analyzed and measured using secondary ion mass spectrometry (SIMS), and the degree of contamination by Si ions was evaluated as the amount of Si adsorbed.
  • SIMS secondary ion mass spectrometry
  • the Si adsorption amount was evaluated based on the following evaluation criteria using the numerical value when the result of Comparative Example 1 was set as 1.00. The results are shown in Tables 3 and 4.
  • Si adsorption amount is less than 0.70 (Si adsorption amount is very small)
  • Si adsorption amount is 0.70 or more and less than 0.90 (Si adsorption amount is small)
  • Si adsorption amount is 0.90 or more and less than 1.10 (Si adsorption amount is large)
  • Si adsorption amount is very large
  • compounds (A) to (X) and (XX) are all fluorine-containing ether compounds represented by formula (1). More specifically, compounds ( A) to (X) and (XX) all have R 2 , R 3 and When R 5 and R 3 are arranged between the terminal group (R 6 ) and R 4 is arranged between R 3 , none of them contain a secondary hydroxyl group and are fluorine-containing. It has a side chain part that is branched from the chain structure of the ether compound and has an ether bond. It is presumed that this is due to the presence of a linking group containing a methylene group (-CH 2 -) that connects the carbon atom of the moiety and the oxygen atom that is bonded to it.
  • a linking group containing a methylene group (-CH 2 -) that connects the carbon atom of the moiety and the oxygen atom that is bonded to it.
  • Comparative Examples 1 to 7 each having a lubricating layer formed using one of Compounds (Y) to (AE), were evaluated in the chemical resistance test and pick-up property test. was ⁇ (acceptable) or ⁇ (unacceptable). This is because in Comparative Examples 1 to 6, the linking group placed between the perfluoropolyether chain and the terminal group and/or the linking group placed between the perfluoropolyether chains is a secondary hydroxyl group. It is presumed that this is because the lubricating layer was formed using the compounds (Y) to (AD) containing
  • a lubricating layer is formed using a compound (AE) that does not contain a secondary hydroxyl group.
  • compound (AE) does not have a linking group containing a side chain moiety that is branched from the chain structure of the fluorine-containing ether compound and is bonded to an ether between the perfluoropolyether chain and the terminal group. More specifically, the two hydroxymethyl groups (-CH 2 OH) located at both ends of the compound (AE) form an ether bond with the tertiary carbon forming the chain structure of the fluorine-containing ether compound. It is not flexible enough.
  • Examples 1 to 25 lubricating layers formed using compounds (A) to (C), (G) to (X), and (XX) that do not contain secondary hydroxyl groups.
  • Examples 1 to 3 and 7 to 25 having the following properties were all evaluated as ⁇ (excellent) in the chemical substance resistance test, and were very good results. From this, by using a compound that does not contain any secondary hydroxyl groups, a lubricating layer with better chemical resistance can be created compared to using a compound that contains secondary hydroxyl groups in R 1 and R 6 . I was able to confirm that it was obtained.
  • both Examples 1 and 3 were evaluated as ⁇ (excellent) in the pickup characteristic test, which was a very good result.
  • the evaluation of the pickup characteristic test was 0 (good).
  • both Examples 4 and 5 were evaluated as ⁇ (excellent) in the pickup characteristic test, which was a very good result.
  • the present invention provides a fluorine-containing ether compound that has excellent chemical resistance and can form a lubricating layer that can suppress pick-up.
  • a fluorine-containing ether compound that has excellent chemical resistance and can form a lubricating layer that can suppress pick-up.
  • SYMBOLS 10 Magnetic recording medium, 11... Substrate, 12... Adhesion layer, 13... Soft magnetic layer, 14... First underlayer, 15... Second underlayer, 16... - Magnetic layer, 17... protective layer, 18... lubricating layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

下記式で表される含フッ素エーテル化合物。 R1-R2-CH2-R3[-CH2-R4-CH2-R3]x-CH2-R5-R6(R1、R6は炭素原子数1~50の有機基;R2は式(2-1)または(2-2);R5は式(2-3)または(2-4);R3はパーフルオロポリエーテル鎖;R4は式(3-1)または(3-2);xは0~2。)

Description

含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
 本発明は、含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体に関する。
 本願は、2022年5月20日に、日本に出願された特願2022-083154号に基づき優先権を主張し、その内容をここに援用する。
 磁気記録再生装置の記録密度を向上させるために、高記録密度に適した磁気記録媒体の開発が進められている。
 従来、磁気記録媒体として、基板上に記録層を形成し、記録層上にカーボン等の保護層を形成したものがある。保護層は、記録層に記録された情報を保護するとともに、磁気ヘッドの摺動性を高める。しかし、記録層上に保護層を設けただけでは、磁気記録媒体の耐久性は十分に得られない。このため、一般に、保護層の表面に潤滑剤を塗布して潤滑層を形成している。
 磁気記録媒体の潤滑層を形成する際に用いられる潤滑剤としては、例えば、-CF-を含む繰り返し構造を有するフッ素系のポリマーの末端に、水酸基、アミノ基などの極性基を有する化合物を含有するものが提案されている。
 例えば、特許文献1には、パーフルオロポリエーテル鎖の両末端に、メチレン基(-CH-)を介して2級水酸基を含む2価の連結基と末端基とがこの順に結合している含フッ素エーテル化合物が開示されている。
 また、特許文献2には、鎖状構造の中央にグリセリン構造(-O-CH-CH(OH)-CH-O-)を配置し、その両側にメチレン基(-CH-)を介してパーフルオロポリエーテル鎖と、2級水酸基を含む2価の連結基と、極性基を有する末端基とがこの順にそれぞれ結合された含フッ素エーテル化合物が開示されている。
 また、特許文献3には、1級水酸基と2級水酸基とを含む2価の連結基の両側に、メチレン基(-CH-)を介してパーフルオロポリエーテル鎖と、末端基とがこの順に結合している含フッ素エーテル化合物が開示されている。
 また、特許文献4には、3つのパーフルオロポリエーテル鎖が2級水酸基を有する連結基を介して結合した骨格を有し、その両側に、メチレン基(-CH-)を介して2級水酸基を含む2価の連結基と、極性基を有する末端基とがこの順にそれぞれ結合している含フッ素エーテル化合物が開示されている。
 さらに、特許文献5には、磁気媒体用の潤滑剤として有用なポリオール(ペル)フルオロポリエーテル誘導体を製造する方法が開示されている。特許文献5には、2個の保護ヒドロキシル官能基および1個の遊離ヒドロキシル基を有する保護トリオールを、活性化剤と反応させて活性化保護トリオールを生成させ、官能性(ペル)フルオロポリエーテル誘導体の末端に配置された水酸基と求核置換反応させて、保護ポリオール(ペル)フルオロポリエーテル誘導体を生成させることが記載されている。
国際公開第2017/154403号 国際公開第2021/251335号 国際公開第2021/019998号 米国特許出願公開第2016/0260452号明細書 特許第5334064号公報
 磁気記録再生装置においては、より一層、磁気ヘッドの浮上量を小さくすることが要求されている。このため、磁気記録媒体における潤滑層の厚みを、より薄くすることが求められている。
 しかし、一般的に潤滑層の厚みを薄くすると、磁気記録媒体の化学物質耐性が低下する傾向がある。また、磁気ヘッドの浮上量を小さくすると、潤滑層中の含フッ素エーテル化合物が磁気ヘッドに付着するピックアップが発生する場合がある。
 本発明は、上記事情を鑑みてなされたものであり、優れた化学物質耐性を有し、かつピックアップを抑制できる潤滑層を形成でき、磁気記録媒体用潤滑剤の材料として好適に用いることができる含フッ素エーテル化合物を提供することを目的とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含み、化学物質耐性が良好で、かつピックアップ抑制効果の高い潤滑層を形成できる磁気記録媒体用潤滑剤を提供することを課題とする。
 また、本発明は、本発明の含フッ素エーテル化合物を含む潤滑層を有する、化学物質耐性が良好でピックアップ抑制効果の高い磁気記録媒体を提供することを目的とする。
 本発明は以下の態様を含む。
 本発明の第一の態様は、以下の含フッ素エーテル化合物を提供する。
[1] 下記式(1)で表されることを特徴とする、含フッ素エーテル化合物。
-R-CH-R[-CH-R-CH-R-CH-R-R  (1)
(式(1)中、RおよびRはそれぞれ独立に、炭素原子数1~50の有機基である;Rは、下記式(2-1)または(2-2)で表される2価の連結基である;Rは、下記式(2-3)または(2-4)で表される2価の連結基である;xは、0~2の整数を表す;Rは、パーフルオロポリエーテル鎖である;xが1または2である場合、2つまたは3つのRは一部または全部が同じであってもよいし、それぞれ異なっていてもよい;Rは、下記式(3-1)または(3-2)で表される2価の連結基である;xが2である場合、2つのRは同じであってもよいし、それぞれ異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000002

(式(2-1)中、n1は2~4の整数を表す;式(2-1)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
(式(2-2)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
(式(2-3)中、n2は2~4の整数を表す;式(2-3)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
(式(2-4)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
(式(3-1)中、n3は2~4の整数を表す;y1は1~3の整数を表す;y2は1~3の整数を表す;y1、y2のうち少なくとも一方は1である;左側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示し、右側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示す。)
(式(3-2)中、y3は1~3の整数を表す;y4は1~3の整数を表す;y3、y4のうち少なくとも一方は1である;左側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示し、右側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示す。)
 本発明の第一の態様の前記含フッ素エーテル化合物は、以下の[2]~[10]に記載される特徴を有することが好ましい。以下の[2]~[10]に記載される特徴は、2つ以上を任意に組み合わせることも好ましい。
[2] 前記式(1)におけるRが前記式(2-1)であり、Rが前記式(2-3)であり、x個のRが全て前記式(3-1)であり、前記式(3-1)におけるy1が1であり、かつy2が1である、[1]に記載の含フッ素エーテル化合物。
[3] 前記式(2-1)におけるn1、前記式(2-3)におけるn2、および前記式(3-1)におけるn3の値が全て同じである、[2]に記載の含フッ素エーテル化合物。
[4] 前記式(1)におけるRが前記式(2-2)であり、Rが前記式(2-4)であり、x個のRが全て前記式(3-2)であり、前記式(3-2)におけるy3が1であり、かつy4が1である、[1]に記載の含フッ素エーテル化合物。
[5] 前記式(1)におけるRおよびRはそれぞれ独立に、極性基を有する有機基、炭素-炭素不飽和結合を有する有機基、極性基と炭素-炭素不飽和結合の両方を有する有機基のいずれかであり、
 前記極性基が、水酸基、アミノ基、カルボキシ基、ホルミル基、カルボニル基、スルホ基、シアノ基、およびアミド結合を有する基からなる群から選ばれる少なくとも1種であり、
 前記炭素-炭素不飽和結合が、置換基を有してもよい芳香族炭化水素基、不飽和複素環基、アルケニル基、およびアルキニル基からなる群から選ばれる少なくとも1種である、[1]~[4]のいずれかに記載の含フッ素エーテル化合物。
[6] 前記式(1)におけるRとRに含まれる極性基の合計数が1~4である、[1]~[5]のいずれかに記載の含フッ素エーテル化合物。
[7] 前記式(1)におけるR-R-とR-R-が同じである、[1]~[6]のいずれかに記載の含フッ素エーテル化合物。
[8] 前記式(1)における(x+1)個のRがそれぞれ独立に、下記式(4)で表されるパーフルオロポリエーテル鎖である、[1]~[7]のいずれかに記載の含フッ素エーテル化合物。
 -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (4)
(式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(4)における繰り返し単位である(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)の配列順序には、特に制限はない。)
[9] 前記式(1)における(x+1)個のRがそれぞれ独立に、下記式(4-1)~(4-4)で表されるパーフルオロポリエーテル鎖から選ばれるいずれか1種である、[1]~[7]のいずれかに記載の含フッ素エーテル化合物。
 -CF-(OCFCF-(OCF-OCF-  (4-1)
(式(4-1)中、hおよびiは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
 -CFCF-(OCFCFCF-OCFCF-  (4-2)
(式(4-2)中、jは平均重合度を示し、1~15を表す。)
 -CFCFCF-(OCFCFCFCF-OCFCFCF-  (4-3)
(式(4-3)中、kは平均重合度を示し、1~10を表す。)
 -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-  (4-4)
(式(4-4)中、w8、w9は平均重合度を示し、それぞれ独立に1~20を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
[10] 数平均分子量が500~10000の範囲内である、[1]~[9]のいずれかに記載の含フッ素エーテル化合物。
 本発明の第二の態様は、以下の磁気記録媒体用潤滑剤を提供する。
[11] [1]~[10]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
 本発明の第三の態様は、以下の磁気記録媒体を提供する。
[12] 基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
 前記潤滑層が、[1]~[10]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
 本発明の第三の態様の磁気記録媒体は、以下の[13]に記載される特徴を有することが好ましい。
[13] 前記潤滑層の平均膜厚が、0.5nm~2.0nmである、[12]に記載の磁気記録媒体。
 本発明の含フッ素エーテル化合物は、上記式(1)で表される化合物であり、磁気記録媒体用潤滑剤の材料として好適である。
 本発明の磁気記録媒体用潤滑剤は、本発明の含フッ素エーテル化合物を含むため、化学物質耐性が良好で、ピックアップ抑制効果の高い潤滑層を形成できる。
 本発明の磁気記録媒体は、本発明の含フッ素エーテル化合物を含む潤滑層を有する。このため、本発明の磁気記録媒体は、化学物質耐性が良好で、ピックアップ抑制効果が高く、信頼性および耐久性に優れる。また、本発明の磁気記録媒体の有する潤滑層は、化学物質耐性が良好で、ピックアップを抑制できるため、厚みを薄くでき、磁気ヘッドの浮上量を小さくできる。
本発明の磁気記録媒体の一実施形態を示した概略断面図である。
 本発明者は、上記課題を解決するために、以下に示すように、鋭意研究を重ねた。
 従来、保護層の表面に塗布される磁気記録媒体用潤滑剤(以下、「潤滑剤」と略記する場合がある。)の材料として、水酸基などの極性基を有する含フッ素エーテル化合物が、好ましく用いられている。含フッ素エーテル化合物に含まれる極性基は、保護層上の活性点と結合して、潤滑層の保護層に対する密着性を向上させる。従来の含フッ素エーテル化合物では、鎖状構造における末端に極性基が配置されている。また、含フッ素エーテル化合物が、複数のパーフルオロポリエーテル鎖を有するものである場合、隣接するパーフルオロポリエーテル鎖間に極性基が配置されている。
 しかしながら、従来の潤滑剤を用いて保護層上に厚みの薄い潤滑層を形成した場合、化学物質耐性が良好で、かつピックアップ抑制効果の高い潤滑層を実現することは困難であった。
 その原因としては、潤滑層に含まれる含フッ素エーテル化合物中に、保護層上に多数存在する活性点に吸着していない極性基が存在することが挙げられる。
 潤滑層に含まれる含フッ素エーテル化合物中に、保護層上の活性点に吸着していない極性基が存在していると、この極性基付近に汚染物質が取り込まれやすくなり、潤滑層の化学物質耐性が低下する。また、保護層上の活性点に吸着していない含フッ素エーテル化合物中の極性基が磁気ヘッドに吸着し、これを起点として含フッ素エーテル化合物が磁気ヘッドにピックアップされる場合がある。これらのことから、潤滑層に含まれる含フッ素エーテル化合物中に、保護層上の活性点に吸着していない極性基が存在する場合、潤滑層の化学物質耐性およびピックアップ抑制効果が不十分となりやすい。
 そこで、本発明者は、含フッ素エーテル化合物に含まれる極性基と、保護層上の活性点との結合の挙動に着目し、保護層上の活性点との結合に関与しない極性基が生じにくい含フッ素エーテル化合物を実現すべく、鋭意検討を重ねた。
 その結果、本発明者は、含フッ素エーテル化合物に含まれる極性基のうち、隣接するパーフルオロポリエーテル鎖間、およびパーフルオロポリエーテル鎖と末端基との間に配置された2価の連結基に含まれる2級水酸基が、保護層上の活性点との結合に関与しにくいという知見を得た。
 このため、本発明者は、含フッ素エーテル化合物の有する隣接するパーフルオロポリエーテル鎖間、およびパーフルオロポリエーテル鎖と末端基との間に配置された2価の連結基に含まれる2級水酸基を、化学修飾して1級水酸基に変換した。そして、変換した含フッ素エーテル化合物を用いて潤滑層を形成した。その結果、化学物質耐性およびピックアップ抑制効果が向上することが分かった。これは、保護層上に存在する活性点と結合しない水酸基が生じにくい含フッ素エーテル化合物になったためであると推定される。
 さらに、本発明者は、鋭意検討を重ね、パーフルオロポリエーテル鎖と末端基との間にそれぞれ、1級水酸基を1つのみ有する特定の2価の末端連結基が配置され、さらにパーフルオロポリエーテル鎖を2つまたは3つ有する場合には、隣接するパーフルオロポリエーテル鎖間に、1級水酸基を1つのみ有する特定の2価の中間連結基が配置されている含フッ素エーテル化合物とすればよいことを見出した。2つの末端連結基(パーフルオロポリエーテル鎖を複数有する場合には、2つの末端連結基および1つまたは2つの中間連結基)はそれぞれ、含フッ素エーテル化合物の鎖状構造から分岐してエーテル結合している側鎖部分を有する。側鎖部分は、先端に1級水酸基が配置され、1級水酸基の結合している炭素原子と、鎖状構造の炭素原子と結合している酸素原子とを結合するメチレン基(-CH-)を含む連結基を有する。
 このような含フッ素エーテル化合物では、以下に示す理由により、保護層上に存在する官能基(活性点)と結合しない極性基が生じにくい。このため、優れた化学物質耐性を有し、かつピックアップ抑制効果の高い潤滑層を形成できる含フッ素エーテル化合物となるものと推定される。
 すなわち、上記の2つの末端連結基(パーフルオロポリエーテル鎖を複数有する場合には、上記の2つの末端連結基および1つまたは2つの中間連結基)はそれぞれ、1級水酸基を1つのみ有するものであり、1級水酸基に代えて2級水酸基を有する場合と比較して、立体的に空いている。このため、上記の2つの末端連結基(または、上記の2つの末端連結基および1つまたは2つの中間連結基)の有する1級水酸基は、近接するパーフルオロポリエーテル鎖、各末端連結基(または、上記の2つの末端連結基および1つまたは2つの中間連結基)の側鎖部分が結合している3級炭素など、含フッ素エーテル化合物中の嵩高い部分によって、保護層上の活性点との結合が阻害されにくい。しかも、1級水酸基は、一般に2級水酸基と比較して自由に運動できる。よって、上記の2つの末端連結基(または、上記の2つの末端連結基および1つまたは2つの中間連結基)の有する1級水酸基は、保護層上の活性点に対して、それぞれ自発的に移動できる。これらのことから、上記の2つの末端連結基(または、上記の2つの末端連結基および1つまたは2つの中間連結基)の有する1級水酸基は、保護層上の活性点との結合を容易に形成できる。
 さらに、上記の含フッ素エーテル化合物では、両方の末端基とパーフルオロポリエーテル鎖との間に、それぞれ末端連結基が配置されている。このため、鎖状構造の一端側に配置されている末端連結基の有する1級水酸基と、鎖状構造の他端側に配置されている末端連結基の有する1級水酸基との距離が近くなりすぎることがない。また、上記の含フッ素エーテル化合物がパーフルオロポリエーテル鎖を複数有する場合には、上記の各末端連結基と1つまたは2つの中間連結基との間に、それぞれパーフルオロポリエーテル鎖が配置されているものとなる。このため、各末端連結基の有する1級水酸基と1つまたは2つの中間連結基の有する1級水酸基との距離が近くなりすぎることがない。さらに、上記の含フッ素エーテル化合物がパーフルオロポリエーテル鎖を3つ有する場合には、中間連結基が2つ存在する。この場合、隣接する中間連結基間にパーフルオロポリエーテル鎖が配置されているものとなるため、隣接する中間連結基がそれぞれ有する1級水酸基同士の距離が近くなりすぎることがない。
 したがって、上記の含フッ素エーテル化合物では、上記の2つの末端連結基(パーフルオロポリエーテル鎖を複数有する場合には、上記の2つの末端連結基および1つまたは2つの中間連結基)の有する1級水酸基は、含フッ素エーテル化合物に含まれる他の末端連結基(または、他の末端連結基および中間連結基)の有する1級水酸基によって、保護層上の活性点との結合が阻害されにくい。また、上記の含フッ素エーテル化合物では、2つの末端連結基の有する1級水酸基同士の距離(または、各末端連結基の有する1級水酸基同士の距離、各末端連結基の有する1級水酸基と1つまたは2つの中間連結基の有する1級水酸基との距離、隣接する中間連結基がそれぞれ有する1級水酸基同士の距離)が、いずれも近くなりすぎることがない。このため、上記の2つの末端連結基(または、上記の末端連結基および1つまたは2つの中間連結基)の有する1級水酸基同士が凝集しにくい。
 さらに、上記の含フッ素エーテル化合物では、上記の2つの末端連結基(または、上記の2つの末端連結基および1つまたは2つの中間連結基)が、1級水酸基を1つのみ有し、含フッ素エーテル化合物の鎖状構造から分岐してエーテル結合している側鎖部分を有する。上記の含フッ素エーテル化合物では、2つの末端連結基(または、上記の2つの末端連結基および1つまたは2つの中間連結基)の側鎖部分が、鎖状構造から分岐してエーテル結合しているため、側鎖部分が鎖状構造に直接結合している(炭素-炭素結合により結合している)場合と比較して、側鎖部分の柔軟性が良好である。このため、上記の2つの末端連結基(または、上記の2つの末端連結基および1つまたは2つの中間連結基)の側鎖部分の有する1級水酸基は、保護層上の活性点との結合を容易に形成できる。
 さらに、上記の含フッ素エーテル化合物では、上記の2つの末端連結基(または、上記の2つの末端連結基および1つまたは2つの中間連結基)の有する側鎖部分において、先端に配置された1級水酸基の結合している炭素原子と、鎖状構造の炭素原子と結合している酸素原子とが、メチレン基(-CH-)を含む連結基によって結合している。このため、末端基が極性基を含む場合であっても、末端基の有する極性基と、末端基に隣接する末端連結基の有する1級水酸基との距離が適正となる。その結果、末端連結基の有する1級水酸基は、末端基の有する極性基によって、保護層上の活性点との結合を阻害されにくい。また、末端連結基の有する1級水酸基と、末端基の有する極性基との距離が適正であるため、末端基が極性基を含む場合であっても、末端基に隣接する末端連結基の有する1級水酸基と末端基の有する極性基とが凝集しにくい。
 以上説明したように、上記の含フッ素エーテル化合物においては、上記の2つの末端連結基(または、上記の2つの末端連結基および1つまたは2つの中間連結基)の有する側鎖部分の柔軟性が良好であり、側鎖部分の有する1級水酸基が、それぞれ自発的に移動でき、凝集しにくく、他の末端連結基(または、他の末端連結基および中間連結基)の有する1級水酸基、末端基の有する極性基、含フッ素エーテル化合物中の嵩高い部分によって、保護層上の活性点との結合が阻害されにくい。これらのことから、上記の含フッ素エーテル化合物では、保護層上に存在する官能基(活性点)と結合しない極性基が生じにくい。その結果、上記の含フッ素エーテル化合物は、汚染物質を取り込みにくく、化学物質耐性が良好であり、かつ磁気ヘッドにピックアップされにくく、ピックアップ抑制効果の高い潤滑層を形成できるものと推定される。
 さらに、本発明者は、上記の含フッ素エーテル化合物を含む潤滑剤を用いることにより、化学物質耐性が良好で、ピックアップ抑制効果の高い潤滑層を形成できることを確認し、本発明を想到した。
 以下、本発明の含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体の好ましい例について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。本発明は、本発明の趣旨を逸脱しない範囲で、数、量、位置、比率、材料、構成等について、付加、省略、置換、変更が可能である。
[含フッ素エーテル化合物]
 本実施形態の含フッ素エーテル化合物は、下記式(1)で表される。
-R-CH-R[-CH-R-CH-R-CH-R-R  (1)
(式(1)中、RおよびRはそれぞれ独立に、炭素原子数1~50の有機基である;Rは、下記式(2-1)または(2-2)で表される2価の連結基である;Rは、下記式(2-3)または(2-4)で表される2価の連結基である;xは、0~2の整数を表す;Rは、パーフルオロポリエーテル鎖である;xが1または2である場合、2つまたは3つのRは一部または全部が同じであってもよいし、それぞれ異なっていてもよい;Rは、下記式(3-1)または(3-2)で表される2価の連結基である;xが2である場合、2つのRは同じであってもよいし、それぞれ異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000003
(式(2-1)中、n1は2~4の整数を表す;式(2-1)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
(式(2-2)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
Figure JPOXMLDOC01-appb-C000004
(式(2-3)中、n2は2~4の整数を表す;式(2-3)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
(式(2-4)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
Figure JPOXMLDOC01-appb-C000005
(式(3-1)中、n3は2~4の整数を表す;y1は1~3の整数を表す;y2は1~3の整数を表す;y1、y2のうち少なくとも一方は1である;左側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示し、右側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示す。)
(式(3-2)中、y3は1~3の整数を表す;y4は1~3の整数を表す;y3、y4のうち少なくとも一方は1である;左側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示し、右側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示す。)
 本実施形態の含フッ素エーテル化合物は、式(1)で示されるように、1級水酸基を1つのみ有するRで示される2価の末端連結基と、Rで示される1~3つのパーフルオロポリエーテル鎖(以下、PFPE鎖と呼ぶことがある。)と、1級水酸基を1つのみ有する0~2つのRで示される2価の中間連結基と、1級水酸基を1つのみ有するRで示される2価の末端連結基とが、メチレン基を介して連結された鎖状構造の骨格を有する。骨格の両端には、RおよびRで示される炭素原子数1~50の有機基からなる末端基が、それぞれ結合されている。
 式(1)で表される含フッ素エーテル化合物において、xは0~2の整数を表す。式(1)で表される含フッ素エーテル化合物は、xが2以下であるため、分子が大きくなりすぎることがない。このため、保護層上を自由に運動でき、保護層上に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすい含フッ素エーテル化合物となる。また、化学物質耐性がより一層良好であり、かつピックアップ抑制効果のより高い潤滑層を形成できる含フッ素エーテル化合物となるため、xは1または2であることが好ましい。
(RおよびRで示される1級水酸基を1つのみ有する2価の末端連結基)
 式(1)で表される含フッ素エーテル化合物において、RおよびRは、1級水酸基を1つのみ有する2価の末端連結基である。式(1)で表される含フッ素エーテル化合物では、RおよびRがそれぞれ2級水酸基を有さず、1級水酸基を1つのみ有する。このため、RおよびRがそれぞれ2級水酸基を有する場合と比較して、RおよびRに含まれる水酸基は、保護層上の活性点と相互作用しやすい。このことから、式(1)で表される含フッ素エーテル化合物を含む潤滑剤を用いて保護層上に潤滑層を形成した場合、潤滑層と保護層との間に好適な相互作用が発生する。よって、式(1)で表される含フッ素エーテル化合物は、優れた化学物質耐性を有し、かつピックアップ抑制効果の高い潤滑層を形成できる。
 Rは、式(2-1)または(2-2)で表される2価の連結基である。Rは、R側の末端が酸素原子である。RのR側の末端は、エーテル結合により、Rと結合しているメチレン基と結合する。Rは、R側の末端が炭素原子である。RのR側の末端は、Rと結合している。
 Rは、含フッ素エーテル化合物の鎖状構造を形成している主鎖部分と、RのR側の末端に配置された炭素原子において主鎖部分から分岐してエーテル結合している側鎖部分とを有する。側鎖部分は、先端に1級水酸基が配置され、1級水酸基の結合している炭素原子と、主鎖部分の炭素原子と結合している酸素原子(エーテル性酸素原子)とを結合する、メチレン基(-CH-)を含む連結基を有する。
 RのR側の末端に配置された炭素原子には、側鎖部分として、Rに含まれるエーテル結合により、式(2-1)中の-(CHn1OHまたは式(2-2)中の-CHCHOCHCHOHが結合している。本実施形態では、RのR側の末端に配置された炭素原子に、Rの側鎖部分がエーテル結合していることにより、RのR側の末端に配置された炭素原子に、Rの側鎖部分が直接結合している(炭素-炭素結合により結合している)場合と比較して、Rの側鎖部分の柔軟性が良好である。しかも、本実施形態では、Rの側鎖部分が連結基を含む適正な長さの鎖状構造を有する。このため、Rの側鎖部分は、保護層上の活性点と相互作用しやすい。
 式(2-1)において、n1は2~4の整数である。n1が2以上であると、Rに含まれる1級水酸基と、含フッ素エーテル化合物中のPFPE鎖、RのR側の末端に配置された3級炭素などの嵩高い部位との距離が十分に遠くなり、Rに含まれる1級水酸基が自由に運動することが容易となる。また、n1が4以下であると、式(2-1)における-(CHn1OHの柔軟性が保たれる。n1は、-(CHn1OHが柔軟に運動できるため、2~3であることが好ましく、2であることが最も好ましい。
 式(2-2)において、-CHCHOCHCHOHはエーテル結合(-O-)を含む。このため、式(2-2)における-CHCHOCHCHOHは、運動の柔軟性が保たれる。
 Rは、式(2-3)または(2-4)で表される2価の連結基である。Rは、R側の末端が酸素原子である。RのR側の末端は、エーテル結合により、Rと結合しているメチレン基と結合する。Rは、R側の末端が炭素原子である。RのR側の末端は、Rと結合している。
 Rは、含フッ素エーテル化合物の鎖状構造を形成している主鎖部分と、RのR側の末端に配置された炭素原子において主鎖部分から分岐してエーテル結合している側鎖部分とを有する。Rと同様に、側鎖部分は、先端に1級水酸基が配置され、1級水酸基の結合している炭素原子と、主鎖部分の炭素原子と結合している酸素原子(エーテル性酸素原子)とを結合する、メチレン基(-CH-)を含む連結基を有する。
 RのR側の末端に配置された炭素原子には、側鎖部分として、Rに含まれるエーテル結合により、式(2-3)中の-(CHn2OHまたは式(2-4)中の-CHCHOCHCHOHが結合している。本実施形態では、RのR側の末端に配置された炭素原子に、Rの側鎖部分がエーテル結合していることにより、RのR側の末端に配置された炭素原子に、Rの側鎖部分が直接結合している(炭素-炭素結合により結合している)場合と比較して、Rの側鎖部分の柔軟性が良好である。しかも、本実施形態では、Rの側鎖部分が連結基を含む適正な長さの鎖状構造を有する。このため、Rの側鎖部分は、保護層上の活性点と相互作用しやすい。
 式(2-3)において、n2は2~4の整数である。n2が2以上であると、Rに含まれる1級水酸基と、含フッ素エーテル化合物中のPFPE鎖、RのR側の末端に配置された3級炭素などの嵩高い部位との距離が十分に遠くなり、Rに含まれる1級水酸基が自由に運動することが容易になる。また、n2が4以下であると、式(2-3)における-(CHn1OHの柔軟性が保たれる。n2は、-(CHn2OHが柔軟に運動できるため、2~3であることが好ましく、2であることが最も好ましい。
 式(2-4)において、-CHCHOCHCHOHはエーテル結合(-O-)を含む。このため、式(2-4)における-CHCHOCHCHOHは、運動の柔軟性が保たれる。
 RおよびRは、同じであってもよいし、異なっていても良い。RとRが同じであると、製造が容易な含フッ素エーテル化合物となり、好ましい。
 本明細書において、「RとRが同じである」とは、式(1)で表される含フッ素エーテル化合物の中央に配置された-CH-R[-CH-R-CH-R-CH-で示される構造に対して、Rに含まれる原子とRに含まれる原子とが、対称配置されていることを意味する。
 すなわち、式(1)で表される含フッ素エーテル化合物は、Rが式(2-1)であってRが式(2-3)であり、かつ式(2-1)中のn1と式(2-3)中のn2とが同じである含フッ素エーテル化合物、または、Rが式(2-2)であり、Rが式(2-4)である含フッ素エーテル化合物であることが好ましい。
(Rで示される1級水酸基を1つのみ有する2価の中間連結基)
 式(1)で表される含フッ素エーテル化合物において、xが1または2である場合、Rで表される各PFPE鎖は、-CH-R-CH-を介して互いに結合する。xが1または2である場合、x個のRは、1級水酸基を1つのみ有する2価の中間連結基である。式(1)で表される含フッ素エーテル化合物では、x個のRがそれぞれ2級水酸基を有さず、1級水酸基を1つのみ有する。このため、x個のRがそれぞれ2級水酸基を有する場合と比較して、Rに含まれる水酸基は、保護層上の活性点と相互作用しやすい。このことから、式(1)で表される含フッ素エーテル化合物を含む潤滑剤を用いて保護層上に潤滑層を形成した場合、潤滑層と保護層との間に好適な相互作用が発生する。よって、式(1)で表される含フッ素エーテル化合物は、優れた化学物質耐性を有し、かつピックアップ抑制効果の高い潤滑層を形成できる。
 Rは、式(3-1)または(3-2)で表される2価の連結基である。Rは、両側の末端が酸素原子である。Rの両側の末端は、エーテル結合により、Rと結合しているメチレン基と結合する。
 Rは、含フッ素エーテル化合物の鎖状構造を形成している主鎖部分と、Rの両側の末端に配置された酸素原子とそれぞれ1~3のメチレン基を介して結合された炭素原子において、主鎖部分から分岐してエーテル結合している側鎖部分とを有する。側鎖部分は、先端に1級水酸基が配置され、1級水酸基の結合している炭素原子と、主鎖部分の炭素原子と結合している酸素原子(エーテル性酸素原子)とを結合する、メチレン基(-CH-)を含む連結基を有する。
 Rの両側の末端に配置された2つの酸素原子それぞれと、1~3のメチレン基を介して結合された炭素原子には、側鎖部分として、エーテル結合により、式(3-1)中の-(CHn3OHまたは式(3-2)中の-CHCHOCHCHOHが結合している。本実施形態では、Rの主鎖部分を形成している炭素原子に、Rの側鎖部分がエーテル結合していることにより、Rの主鎖部分を形成している炭素原子に、Rの側鎖部分が直接結合している(炭素-炭素結合により結合している)場合と比較して、Rの側鎖部分の柔軟性が良好である。しかも、本実施形態では、Rの側鎖部分が連結基を含む適正な長さの鎖状構造を有する。このため、Rの側鎖部分は、保護層上の活性点と相互作用しやすい。
 式(3-1)において、n3は2~4の整数である。n3が2以上であると、Rに含まれる1級水酸基と、含フッ素エーテル化合物中のPFPE鎖、Rの主鎖部分を形成している炭素原子であってRの側鎖部分がエーテル結合している3級炭素などの嵩高い部位との距離が十分に遠くなり、Rに含まれる1級水酸基が自由に運動することが容易になる。また、n3が4以下であると、式(3-1)における-(CHn3OHの柔軟性が保たれる。n3は、-(CHn3OHが柔軟に運動できるため、2~3であることが好ましく、2であることが最も好ましい。
 式(3-1)において、y1は1~3の整数であり、y2は1~3の整数である。y1、y2のうち少なくとも一方は1である。y1、y2のうち少なくとも一方が1であるため、製造が容易な含フッ素エーテル化合物となる。y1、y2のうちy1のみが1である場合のy2は(またはy2のみが1である場合のy1は)、式(3-1)で表される2価の連結基全体の柔軟性を保つため、3以下であり、2以下であることが好ましい。y1、y2は、式(3-1)で表される2価の連結基全体の柔軟性を保つため、y1が1であり、かつy2が1であることがより好ましい。
 式(3-2)において、-CHCHOCHCHOHはエーテル結合(-O-)を含む。このため、式(3-2)における-CHCHOCHCHOHは、運動の柔軟性が保たれる。
 式(3-2)において、y3は1~3の整数であり、y4は1~3の整数である。y3、y4のうち少なくとも一方は1である。y3、y4のうち少なくとも一方が1であるため、製造が容易な含フッ素エーテル化合物となる。y3、y4のうちy3のみが1である場合のy4は(またはy4のみが1である場合のy3は)、式(3-2)で表される2価の連結基全体の柔軟性を保つため、3以下であり、2以下であることが好ましい。y3、y4は、式(3-2)で表される2価の連結基全体の柔軟性を保つため、y3が1であり、かつy4が1であることがより好ましい。
 式(1)においてxが2である場合、2つのRは、同じであってもよいし、それぞれ異なっていてもよい。2つのRが同じである場合、製造の容易な含フッ素エーテル化合物となり、好ましい。「2つのRが同じである」とは、2つのRに含まれる原子が、分子の鎖状構造中央に配置されたRに対して、対称配置されていることを意味する。すなわち、xが2である場合、式(1)で表される含フッ素エーテル化合物は、2つのRが式(3-1)であり、2つのRにおける式(3-1)中のn3が同じであり、かつ2つのRにおける式(3-1)中のy1、y2が、鎖状構造中央に配置されたRに対して対称となる値である含フッ素エーテル化合物、または、2つのRが式(3-2)であり、かつ2つのRにおける式(3-2)中のy3、y4が、鎖状構造中央に配置されたRに対して対称となる値である含フッ素エーテル化合物であることが好ましい。例えば、R側のRが式(3-1)で表され、式(3-1)中のy1が1、y2が2であり、R側のRが式(3-1)で表され、式(3-1)中のy1が2、y2が1であり、いずれも式(3-1)中のn3の値が同じである場合、2つのRは同じである。また、例えば、R側のRが式(3-2)で表され、式(3-2)中のy3が1、y4が2であり、R側のRが式(3-2)で表され、式(3-2)中のy3が2、y4が1である場合、2つのRは同じである。
 式(1)で表される含フッ素エーテル化合物においては、Rが式(2-1)であり、Rが式(2-3)であり、x個のRがすべて式(3-1)であることが好ましい。この場合、式(3-1)におけるy1が1であり、かつy2が1であることがより好ましい。さらに、式(2-1)におけるn1、式(2-3)におけるn2、および式(3-1)におけるn3の値が、すべて同じであることがより好ましい。容易に効率よく製造できる含フッ素エーテル化合物となるためである。
 式(1)で表される含フッ素エーテル化合物においては、Rが式(2-2)であり、Rが式(2-4)であり、x個のRがすべて式(3-2)であることも好ましい。容易に効率よく製造できる含フッ素エーテル化合物となるためである。Rが式(2-2)であり、Rが式(2-4)であり、x個のRがすべて式(3-2)である場合、式(3-2)におけるy3が1であり、かつy4が1であることがより好ましい。
(Rで示されるPFPE鎖)
 式(1)で表される含フッ素エーテル化合物において、(x+1)個含まれるRは、それぞれ独立にパーフルオロポリエーテル鎖である。Rで示されるPFPE鎖は、本実施形態の含フッ素エーテル化合物を含む潤滑剤を保護層上に塗布して潤滑層を形成した場合に、保護層の表面を被覆するとともに、潤滑層に潤滑性を付与して磁気ヘッドと保護層との摩擦力を低減させる。Rで示されるPFPE鎖は、含フッ素エーテル化合物を含む潤滑剤に求められる性能等に応じて適宜選択される。
 式(1)で表される含フッ素エーテル化合物において、xが1または2である場合、2つまたは3つのRは、一部または全部が同じであってもよいし、それぞれ異なっていても良い。(x+1)個のRは全て同じであることが好ましい。これは、含フッ素エーテル化合物の保護層に対する被覆状態が均一となることにより、より良好な密着性を有する潤滑層となるためである。(x+1)個のRのうち2つ以上のRが同じであるとは、(x+1)個のRのうち、PFPE鎖の繰り返し単位の構造が同じRが2つ以上含まれていることを意味する。同じRには、繰り返し単位の構造が同じであって平均重合度が異なるものも含まれる。
 Rで示されるPFPE鎖としては、パーフルオロアルキレンオキシドの重合体または共重合体からなるものなどが挙げられる。パーフルオロアルキレンオキシドとしては、例えば、パーフルオロメチレンオキシド、パーフルオロエチレンオキシド、パーフルオロ-n-プロピレンオキシド、パーフルオロイソプロピレンオキシド、パーフルオロブチレンオキシドなどが挙げられる。
 式(1)における(x+1)個のRは、それぞれ独立に、パーフルオロアルキレンオキシドの重合体または共重合体に由来する下記式(4)で表されるPFPE鎖であることが好ましい。
 -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (4)
(式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(4)における繰り返し単位である(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)の配列順序には、特に制限はない。)
 式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表し、0~15であることが好ましく、0~10であることがより好ましい。1~8や、2~6や、3~5などであってもよい。
 式(4)中、w1、w6はCFの数を示す平均値であり、それぞれ独立に1~3を表す。w1、w6は、式(4)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
 式(4)における(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)は、繰り返し単位である。式(4)における繰り返し単位の配列順序には、特に制限はない。また、式(4)における繰り返し単位の種類の数にも、特に制限はない。
  式(1)における(x+1)個のRは、それぞれ独立に、下記式(4-1)~(4-4)で表されるPFPE鎖から選ばれるいずれか1種であることが好ましい。
 (x+1)個のRが、それぞれ独立に式(4-1)~(4-4)で表されるPFPE鎖から選ばれるいずれか1種であると、良好な潤滑性を有する潤滑層が得られる含フッ素エーテル化合物となる。また、(x+1)個のRが、それぞれ独立に式(4-1)~(4-4)で表されるPFPE鎖から選ばれるいずれか1種である場合、PFPE鎖中の炭素原子数に対する酸素原子数(エーテル結合(-O-)数)の割合が適正である。このため、適度な硬さを有する含フッ素エーテル化合物となる。よって、保護層上に塗布された含フッ素エーテル化合物が、保護層上で凝集しにくく、より一層厚みの薄い潤滑層を十分な被覆率で形成できる。また、含フッ素エーテル化合物が適度な柔軟性を有することにより、化学物質耐性のより良好な潤滑層を形成できる。
 -CF-(OCFCF-(OCF-OCF-  (4-1)
(式(4-1)中、hおよびiは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
 -CFCF-(OCFCFCF-OCFCF-  (4-2)
(式(4-2)中、jは平均重合度を示し、1~15を表す。)
 -CFCFCF-(OCFCFCFCF-OCFCFCF-  (4-3)
(式(4-3)中、kは平均重合度を示し、1~10を表す。)
 -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-  (4-4)
(式(4-4)中、w8、w9は平均重合度を示し、それぞれ独立に1~20を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
 式(4-1)において、繰り返し単位である(OCFCF)と(OCF)との配列順序に、特に制限はない。式(4-1)において、(OCFCF)の数hと(OCF)の数iは同じであってもよいし、異なっていてもよい。式(4-1)で表されるPFPE鎖は、(OCFCF)の重合体であってもよい。また、式(4-1)で表されるPFPE鎖は、(OCFCF)と(OCF)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれかであってもよい。
 式(4-1)~(4-3)においては、平均重合度を示すhが1~20、iが0~20、jが1~15、kが1~10であるので、良好な潤滑性を有する潤滑層が得られる含フッ素エーテル化合物となる。また、式(4-1)~(4-3)においては、平均重合度を示すh、iが20以下、jが15以下、kが10以下であるので、含フッ素エーテル化合物の粘度が高くなりすぎず、これを含む潤滑剤が塗布しやすいものとなり、好ましい。平均重合度を示すh、i、j、kは、保護層上に濡れ広がりやすく、均一な膜厚を有する潤滑層が得られやすい含フッ素エーテル化合物となるため、1~10であることが好ましく、1.5~8であることがより好ましく、2~7であることがさらに好ましい。
 式(4-4)において、繰り返し単位である(CFCFCFO)と(CFCFO)との配列順序には、特に制限はない。式(4-4)において、平均重合度を示す(CFCFCFO)の数w8と(CFCFO)の数w9は同じであってもよいし、異なっていてもよい。式(4-4)は、モノマー単位(CFCFCFO)と(CFCFO)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれかを含むものであってもよい。
 式(4-4)において、平均重合度を示すw8およびw9は、それぞれ独立に1~20であり、1~15であることが好ましく、さらに1~10であることが好ましい。
 式(4-4)におけるw7およびw10は、CFの数を示す平均値であり、それぞれ独立に1~2を表す。w7およびw10は、式(4-4)で表されるPFPE鎖において、鎖状構造の端部に配置されている繰り返し単位の構造などに応じて決定される。
(RおよびRで示される末端基)
 式(1)で表される含フッ素エーテル化合物において、RおよびRで示される末端基はそれぞれ独立に、炭素原子数1~50の有機基である。RおよびRで示される末端基は、それぞれ独立に、炭素原子数1~20の有機基であることが好ましく、炭素原子数2~10の有機基であることがより好ましい。
 Rで示される末端基は、Rと結合する端部が炭素原子であることが好ましい。Rで示される末端基は、Rと結合する端部が炭素原子であることが好ましい。このことにより、R(またはR)で示される末端基が極性基を有する場合、R(またはR)の有する1級水酸基と、R(またはR)の有する極性基との距離がより一層適正となる。その結果、R(またはR)に隣接するR(またはR)の有する1級水酸基が、R(またはR)の有する極性基によって、保護層上の活性点との結合をより一層阻害されにくいものとなる。
 RおよびRで示される末端基は、化学物質耐性をより一層向上させるために、2級水酸基を含まない(すなわち、式(1)で表される含フッ素エーテル化合物が2級水酸基を含まない)ことが好ましい。
 RおよびRはそれぞれ独立に、極性基を有する有機基、炭素-炭素不飽和結合を有する有機基、極性基と炭素-炭素不飽和結合の両方を有する有機基のいずれかであることが好ましい。
 末端基が極性基を有する場合、極性基は、水酸基(-OH)、アミノ基(-NR;RおよびRは、それぞれ独立に水素原子または有機基である。)、カルボキシ基(-COOH)、ホルミル基(-(C=O)H)、カルボニル基(-CO-)、スルホ基(-SOH)、シアノ基(-CN)、およびアミド結合を有する基(-NRCOR10または-CONR1112;R、R10、R11およびR12は、それぞれ独立に水素原子または有機基である。)からなる群から選ばれる少なくとも1種であることが好ましい。なお、「アミド結合を有する基」は、上記式に示されるように、アミド結合を構成する炭素原子において有機基に結合する基(例えば、カルボキサミド基(-C(=O)NH))と、アミド結合を構成する窒素原子において有機基に結合する基(例えば、アセトアミド基(-NHC(=O)CH))の両方を含む。アミド結合を有する基において、前記RとR10が互いに結合して環を形成してもよく、前記R11とR12が互いに結合して環を形成してもよい。アミド結合を有する基における前記R、R10、R11およびR12は、それぞれ独立に水素原子、メチル基、エチル基、プロピル基、ブチル基からなる群から選択されることが好ましい。
 これらの極性基の中でも、水酸基、シアノ基、およびアミド結合を有する基からなる群から選ばれる少なくとも1種の極性基であることがより好ましい。化学物質耐性がより良好で、かつピックアップ抑制効果のより高い潤滑層を形成できる含フッ素エーテル化合物となるためである。
 末端基が極性基を有する場合、極性基の数は、1~3であることが好ましく、1~2であることがより好ましい。極性基の数が2以上である場合、極性基の一部または全部が同じであってもよいし、それぞれ異なっていてもよい。
 極性基を有する有機基は、-CH-Y、-CHCH-Y、-CH-O-CHCH-Y、-CH-O-CHCHCH-Y、-CH-O-CHCH(OH)CH-O-CHCH-Y、または、-CH-O-CHCH(OH)CH-O-CHCHCH-Y(上記各式中におけるYは極性基である。)で表されることが好ましい。
 末端基が炭素-炭素不飽和結合を有する場合、末端基は、置換基を有してもよい芳香族炭化水素基、不飽和複素環基、アルケニル基、およびアルキニル基からなる群から選ばれる少なくとも1種の炭素-炭素不飽和結合を有する有機基であることが好ましい。
 具体的には、置換基を有してもよい芳香族炭化水素基として、フェニル基、メトキシフェニル基、フッ化フェニル基、ナフチル基、メトキシナフチル基などが挙げられる。
 不飽和複素環基として、ピロリル基、ピラゾリル基、イミダゾリル基、フリル基、フルフリル基、オキサゾリル基、イソオキサゾリル基、チエニル基、チアゾリル基、イソチアゾリル基、ピリジル基、ピリミジニル基、ピリダジニル基、ピラジニル基、インドリニル基、ベンゾフラニル基、ベンゾチエニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾピラゾリル基、ベンゾイソオキサゾリル基、ベンゾイソチアゾリル基、キノリル基、イソキノリル基、キナゾリニル基、キノキサリニル基、フタラジニル基、シンノリニル基などが挙げられる。
 アルケニル基として、アリル基、ブテニル基などが挙げられる。
 アルキニル基として、プロパルギル基などが挙げられる。
 末端基が炭素-炭素不飽和結合を有する場合、末端基は、フェニル基、メトキシフェニル基、ナフチル基、チエニル基、アリル基からなる群から選ばれるいずれか1種の炭素-炭素不飽和結合を有する有機基であることが好ましい。化学物質耐性がより良好で、かつピックアップ抑制効果のより高い潤滑層を形成できる含フッ素エーテル化合物となるためである。
 炭素-炭素不飽和結合を有する有機基は、-CH-O-Z、または、-CHCH-O-Z(式中のZは、置換基を有してもよい芳香族炭化水素基、不飽和複素環基、アルケニル基、およびアルキニル基からなる群から選ばれるいずれか1種である。)で表されるものであることが好ましい。
 極性基と炭素-炭素不飽和結合の両方を有する有機基は、-CH-O-CHCH(OH)CH-O-Z、または、-CHCH-O-CHCH(OH)CH-O-Z(式中のZは、置換基を有してもよい芳香族炭化水素基、不飽和複素環基、アルケニル基、およびアルキニル基からなる群から選ばれるいずれか1種である。)で表されるものであることが好ましい。
 式(1)で表される含フッ素エーテル化合物において、RおよびRはそれぞれ独立に、下記式(5-1)~(5-8)のいずれかで示される末端基であることが好ましい。下記式(5-1)~(5-3)は、いずれも極性基である1級水酸基を1つのみ有する有機基である。下記式(5-4)は、極性基として1級水酸基を1つと2級水酸基を1つ有する有機基である。下記式(5-5)は、極性基として2級水酸基を1つ有し、さらに炭素-炭素不飽和結合を有する基であるアリル基を1つ有する有機基である。下記式(5-6)は、極性基として2級水酸基を1つ有し、さらに炭素-炭素不飽和結合を有する基であるフェニル基を1つ有する有機基である。下記式(5-7)は、極性基であるシアノ基を1つ有する有機基である。下記式(5-8)は、極性基であるアミド結合を有する基(-NHCOCH3)を1つ有する有機基である。
Figure JPOXMLDOC01-appb-C000006
(式(5-1)~(5-8)中の点線は、RまたはRの有する炭素原子と結合している結合手を示す。)
 Rおよび/またはRで示される末端基が極性基を有する場合、含フッ素エーテル化合物を含む潤滑層は、より一層、保護層との密着性に優れ、厚みを薄くできるため好ましい。その理由を以下に説明する。
 RおよびRの有する側鎖部分においては、先端に配置された1級水酸基の結合している炭素原子と、主鎖部分の炭素原子と結合している酸素原子とが、メチレン基(-CH-)を含む連結基によって結合している。このため、R(またはR)が極性基を含む場合であっても、R(またはR)の有する極性基と、R(またはR)の有する1級水酸基との距離が適正となる。その結果、R(またはR)の有する1級水酸基、およびR(またはR)の有する極性基は、他の極性基によって、保護層上の活性点との結合を阻害されにくいし、R(またはR)の有する1級水酸基とR(またはR)の有する極性基とが凝集しにくい。
 このため、R(またはR)の有する1級水酸基、およびR(またはR)の有する極性基は、それぞれ独立に保護層上の活性点に吸着できる。その結果、Rおよび/またはRで示される末端基が極性基を有する含フッ素エーテル化合物を含む潤滑層は、より一層、保護層との密着性に優れ、厚みが薄くても、良好な化学物質耐性を示し、ピックアップ抑制効果の高いものとなる。
 式(1)で表される含フッ素エーテル化合物において、RとRに含まれる極性基の合計数は、保護層との密着性を高め、潤滑層の薄膜化を実現するため、1以上であることが好ましく、2以上であることがより好ましい。式(1)で表される含フッ素エーテル化合物において、RとRに含まれる極性基の合計数は、極性基が多くなりすぎて保護層との結合に関与しない極性基が生じることを防止するため、4以下であることが好ましく、3以下であることがより好ましく、2以下であることが最も好ましい。
 また、Rおよび/またはRで示される末端基が炭素-炭素不飽和結合を有する場合、含フッ素エーテル化合物を含む潤滑層は、より一層、保護層との密着性に優れ、厚みを薄くできるため好ましい。その理由を以下に説明する。
 保護層上に多数存在する官能基(活性点)には、局所的に帯電した部位と、電荷の分布が広がっている部位とが存在する。式(1)におけるR、RおよびR中に含まれる水酸基と、Rおよび/またはRで示される末端基に含まれる炭素-炭素不飽和結合は、互いに保護層上の別の部位に吸着する。具体的には、式(1)におけるR、RおよびR中に含まれる水酸基は、水素原子が水素結合を介して保護層上の局所的に帯電した部位と相互作用をすることにより吸着能を示す。一方、Rおよび/またはRで示される末端基に含まれる炭素-炭素不飽和結合は、非局在的な電荷を有するため、保護層上の電荷の分布が広がっている部位と相互作用をすることにより吸着能を示す。
 したがって、式(1)におけるR、RおよびR中に含まれる水酸基と、Rおよび/またはRで示される末端基に含まれる炭素-炭素不飽和結合は、保護層上の官能基(活性点)にそれぞれ独立に相互作用できる。その結果、Rおよび/またはRで示される末端基が炭素-炭素不飽和結合を有する含フッ素エーテル化合物を含む潤滑層は、より一層、保護層との密着性に優れ、厚みが薄くても良好な化学物質耐性を示し、ピックアップ抑制効果の高いものとなる。
 式(1)で表される含フッ素エーテル化合物において、RおよびRで示される末端基の種類は、含フッ素エーテル化合物を含む潤滑剤に求められる性能等に応じて適宜選択できる。
 式(1)で表される含フッ素エーテル化合物において、RとRとは、同じであってもよいし、異なっていても良い。RとRが同じであると、含フッ素エーテル化合物の保護層に対する被覆状態がより均一となり、より良好な密着性を有する潤滑層を形成できる。
 式(1)で表される含フッ素エーテル化合物においては、式(1)におけるR-R-とR-R-とが同じであることが好ましい。これは、容易に効率よく製造できる含フッ素エーテル化合物となるためである。
 式(1)で表される含フッ素エーテル化合物においては、式(1)における(x+1)個のRが全て同じであり、x個のRが全て同じであり、R-R-とR-R-とが同じであることがより好ましい。これは、より容易に効率よく製造できる含フッ素エーテル化合物となるためである。
 式(1)で表される含フッ素エーテル化合物は、具体的には、下記式(A)~(X)、(XX)で表されるいずれかの化合物であることが好ましい。
 式(1)で表される化合物が下記式(A)~(X)、(XX)で表されるいずれかの化合物である場合、原料が入手しやすく、しかも、化学物質耐性が良好で、ピックアップ抑制効果の高い潤滑層を形成できる。
 下記式(A)~(X)、(XX)で表される化合物において、PFPE鎖を表すRf、Rf、Rfは、それぞれ下記の構造である。すなわち、下記式(A)~(K)、(N)~(R)、(T)~(W)、(XX)で表される化合物において、Rfは、上記式(4-1)で表されるPFPE鎖である。下記式(L)、(S)、(X)で表される化合物において、Rfは、上記式(4-2)で表されるPFPE鎖である。下記式(M)で表される化合物において、Rfは、上記式(4-3)で表されるPFPE鎖である。なお、式(A)~(X)、(XX)中のPFPE鎖を表すRfにおけるhおよびi、Rfにおけるj、Rfにおけるkは、平均重合度を示す値であるため、必ずしも整数になるとは限らない。
Figure JPOXMLDOC01-appb-C000007
 下記式(A)~(X)、(XX)で表される化合物は、いずれもRが上記式(2-1)または(2-2)で表される連結基であり、いずれもRが上記式(2-3)または(2-4)で表される連結基である。
 下記式(A)~(M)で表される化合物は、いずれも式(1)におけるxが0であり、Rを構造中に含まない。下記式(N)~(X)、(XX)で表される化合物は、いずれも式(1)におけるxが1または2であり、1つまたは2つのRを構造中に含む。下記式(N)~(X)、(XX)で表される化合物は、いずれもRが上記式(3-1)または(3-2)で表される連結基である。
 下記式(A)~(H)で表される化合物は、式(1)におけるxが0である。RおよびRが上記式(5-1)~(5-8)で表されるいずれかの末端基である。Rがいずれも上記式(2-1)で表される連結基でn1が2である。Rがいずれも上記式(2-3)で表される連結基でn2が2である。Rがいずれも上記式(4-1)で表されるPFPE鎖である。
 下記式(I)、(J)で表される化合物は、式(1)におけるxが0である。下記式(I)、(J)で表される化合物は、RおよびRがいずれも上記式(5-1)で表される末端基であり、Rが上記式(4-1)で表されるPFPE鎖である。
 下記式(I)で表される化合物は、Rが上記式(2-1)で表される連結基であり、n1が3である。Rが上記式(2-3)で表される連結基であり、n2が3である。
 下記式(J)で表される化合物は、Rが上記式(2-1)で表される連結基であり、n1が4である。Rが上記式(2-3)で表される連結基であり、n2が4である。
 下記式(K)で表される化合物は、式(1)におけるxが0である。RおよびRが上記式(5-1)で表される末端基である。Rが上記式(2-2)で表される連結基である。Rが上記式(2-4)で表される連結基である。Rが上記式(4-1)で表されるPFPE鎖である。
 下記式(L)、(M)で表される化合物は、式(1)におけるxが0である。下記式(L)、(M)で表される化合物は、いずれもRおよびRが上記式(5-1)で表される末端基である。Rがいずれも上記式(2-1)で表される連結基でn1が2である。Rがいずれも上記式(2-3)で表される連結基でn2が2である。
 下記式(L)で表される化合物は、Rが上記式(4-2)で表されるPFPE鎖である。下記式(M)で表される化合物は、Rが上記式(4-3)で表されるPFPE鎖である。
 下記式(N)~(P)で表される化合物は、いずれも式(1)におけるxが1である。Rが上記式(2-1)で表される連結基であり、n1が2である。Rが上記式(2-3)で表される連結基であり、n2が2である。Rが上記式(3-1)で表される連結基であり、n3が2であり、y1が1、y2が1である。下記式(N)~(P)で表される化合物は、2つのRがいずれも上記式(4-1)で表されるPFPE鎖である。
 下記式(N)で表される化合物は、RおよびRが上記式(5-1)で表される末端基である。下記式(O)で表される化合物は、RおよびRが上記式(5-3)で表される末端基である。下記式(P)で表される化合物は、RおよびRが上記式(5-7)で表される末端基である。
 下記式(Q)で表される化合物は、式(1)におけるxが1である。RおよびRが上記式(5-1)で表される末端基である。Rが上記式(2-1)で表される連結基であり、n1が3である。Rが上記式(2-3)で表される連結基であり、n2が3である。Rが上記式(3-1)で表される連結基であり、n3が3であり、y1が1、y2が1である。2つのRがいずれも上記式(4-1)で表されるPFPE鎖である。
 下記式(R)で表される化合物は、式(1)におけるxが1である。RおよびRが上記式(5-1)で表される末端基である。Rが上記式(2-2)で表される連結基である。Rが上記式(2-4)で表される連結基である。Rが上記式(3-2)で表される連結基であり、y3が1、y4が1である。2つのRがいずれも上記式(4-1)で表されるPFPE鎖である。
 下記式(S)で表される化合物は、式(1)におけるxが1である。RおよびRが上記式(5-1)で表される末端基である。Rが上記式(2-1)で表される連結基であり、n1が2である。Rが上記式(2-3)で表される連結基であり、n2が2である。Rが上記式(3-1)で表される連結基であり、n3が2あり、y1が1、y2が1である。2つのRがいずれも上記式(4-2)で表されるPFPE鎖である。
 下記式(T)~(V)で表される化合物は、いずれも式(1)におけるxが2である。Rが上記式(2-1)で表される連結基であり、n1が2である。Rが上記式(2-3)で表される連結基であり、n2が2である。2つのRがいずれも上記式(3-1)で表される連結基であり、n3が2であり、y1が1、y2が1である。3つのRがいずれも上記式(4-1)で表されるPFPE鎖である。
 下記式(T)で表される化合物は、RおよびRが上記式(5-1)で表される末端基である。下記式(U)で表される化合物は、RおよびRが上記式(5-3)で表される末端基である。下記式(V)で表される化合物は、RおよびRが上記式(5-7)で表される末端基である。
 下記式(W)で表される化合物は、式(1)におけるxが2である。RおよびRが上記式(5-1)で表される末端基である。Rが上記式(2-2)で表される連結基である。Rが上記式(2-4)で表される連結基である。2つのRがいずれも上記式(3-2)で表される連結基であり、y3が1、y4が1である。3つのRがいずれも上記式(4-1)で表されるPFPE鎖である。
 下記式(X)で表される化合物は、式(1)におけるxが2である。RおよびRが上記式(5-1)で表される末端基である。Rが上記式(2-1)で表される連結基であり、n1が2である。Rが上記式(2-3)で表される連結基であり、n2が2である。2つのRがいずれも上記式(3-1)で表される連結基であり、n3が2であり、y1が1、y2が1である。3つのRがいずれも上記式(4-2)で表されるPFPE鎖である。
 下記式(XX)で表される化合物は、式(1)におけるxが1である。RおよびRが上記式(5-2)で表される末端基である。Rが上記式(2-1)で表される連結基であり、n1が2である。Rが上記式(2-3)で表される連結基であり、n2が2である。Rが上記式(3-1)で表される連結基であり、n3が2であり、y1が1、y2が1である。2つのRがいずれも上記式(4-1)で表されるPFPE鎖である。
Figure JPOXMLDOC01-appb-C000008

(式(A)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
(式(B)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
(式(C)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
(式(D)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
(式(E)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
(式(F)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
Figure JPOXMLDOC01-appb-C000009

(式(G)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
(式(H)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
(式(I)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
(式(J)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
(式(K)中のRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
(式(L)中のRfにおいて、jは平均重合度を示し、1~15を表す。)
(式(M)中のRfにおいて、kは平均重合度を示し、1~10を表す。)
Figure JPOXMLDOC01-appb-C000010
(式(N)中の2つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;2つのRfにおいて、平均重合度は同じであってもよく、異なっていてもよい。)
(式(O)中の2つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;2つのRfにおいて、平均重合度は同じであってもよく、異なっていてもよい。)
(式(P)中の2つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;2つのRfにおいて、平均重合度は同じであってもよく、異なっていてもよい。)
(式(Q)中の2つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;2つのRfにおいて、平均重合度は同じであってもよく、異なっていてもよい。)
(式(R)中の2つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;2つのRfにおいて、平均重合度は同じであってもよく、異なっていてもよい。)
(式(S)中の2つのRfにおいて、jは平均重合度を示し、1~15を表す;2つのRfにおいて、平均重合度は同じであってもよく、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000011
(式(T)中の3つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;3つのRfにおいて、平均重合度はそれぞれ異なっていてもよいし、2つまたは3つのRf中の平均重合度が同じであってもよい。)
(式(U)中の3つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;3つのRfにおいて、平均重合度はそれぞれ異なっていてもよいし、2つまたは3つのRf中の平均重合度が同じであってもよい。)
(式(V)中の3つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;3つのRfにおいて、平均重合度はそれぞれ異なっていてもよいし、2つまたは3つのRf中の平均重合度が同じであってもよい。)
Figure JPOXMLDOC01-appb-C000012


(式(W)中の3つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;3つのRfにおいて、平均重合度はそれぞれ異なっていてもよいし、2つまたは3つのRf中の平均重合度が同じであってもよい。)
(式(X)中の3つのRfにおいて、jは平均重合度を示し、1~15を表す;3つのRfにおいて、平均重合度はそれぞれ異なっていてもよいし、2つまたは3つのRf中の平均重合度が同じであってもよい。)
(式(XX)中の2つのRfにおいて、h、iは平均重合度を示し、hは1~20を表し、iは0~20を表す;2つのRfにおいて、平均重合度は同じであってもよく、異なっていてもよい。)
 本実施形態の含フッ素エーテル化合物は、数平均分子量(Mn)が500~10000の範囲内であることが好ましく、1000~5000の範囲内であることが特に好ましい。数平均分子量が500以上であると、本実施形態の含フッ素エーテル化合物を含む潤滑剤からなる潤滑層が優れた耐熱性を有するものとなる。含フッ素エーテル化合物の数平均分子量は、1000以上であることがより好ましい。また、数平均分子量が10000以下であると、含フッ素エーテル化合物の粘度が適正なものとなり、これを含む潤滑剤を塗布することによって、容易に膜厚の薄い潤滑層を形成できる。含フッ素エーテル化合物の数平均分子量は、潤滑剤に適用した場合に扱いやすい粘度となるため、5000以下であることが好ましい。
 含フッ素エーテル化合物の数平均分子量(Mn)は、ブルカー・バイオスピン社製AVANCEIII400によるH-NMRおよび19F-NMRによって測定された値である。具体的には、19F-NMRによって測定された積分値よりPFPE鎖の繰り返し単位数を算出し、数平均分子量を求める。NMR(核磁気共鳴)の測定においては、試料をヘキサフルオロベンゼン/d-アセトン(4/1v/v)溶媒へ希釈して測定する。19F-NMRケミカルシフトの基準は、ヘキサフルオロベンゼンのピークを-164.7ppmとし、H-NMRケミカルシフトの基準は、アセトンのピークを2.2ppmとする。
 本実施形態の含フッ素エーテル化合物は、適当な方法で分子量分画することにより、分子量分散度(重量平均分子量(Mw)/数平均分子量(Mn)比)を1.3以下とすることが好ましい。
 本実施形態において、分子量分画する方法としては、特に制限されないが、例えば、シリカゲルカラムクロマトグラフィー法、ゲルパーミエーションクロマトグラフィー(GPC)法などによる分子量分画、超臨界抽出法による分子量分画等を用いることができる。
「製造方法」
 本実施形態の含フッ素エーテル化合物の製造方法は、特に限定されるものではなく、従来公知の製造方法を用いて製造できる。本実施形態の含フッ素エーテル化合物は、例えば、以下に示すように、含フッ素エーテル化合物の鎖状構造となる主鎖部分を形成する第一反応工程と、主鎖部分から分岐している側鎖部分を形成する第二反応工程とを有する製造方法を用いて製造できる。
 第一反応工程は、式(1)における含フッ素エーテル化合物の鎖状構造のR、R(xが1または2である場合、R、R、R)となる主鎖部分に、それぞれ2級水酸基が配置されている構造を有する化合物である第1中間体化合物を合成する工程であることが好ましい。
 第二反応工程は、第1中間体化合物の式(1)におけるR、R(xが1または2である場合、R、R、R)となる主鎖部分にそれぞれ配置されている2級水酸基を、化学修飾して1級水酸基を有する側鎖部分を形成する工程であることが好ましい。
[第1製造方法]
 式(1)におけるxが0である含フッ素エーテル化合物を製造する場合、例えば、以下に示す第1製造方法を用いることができる。
 まず、式(1)におけるRに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。
(第一反応工程)
<RとRが同じである場合>
 式(1)におけるxが0であって、RとRが同じ含フッ素エーテル化合物を製造する場合には、第一反応工程において、上記のフッ素系化合物の両方の末端に配置されているヒドロキシメチル基の水酸基と、式(1)におけるRに対応する基とRの主鎖部分に対応する基とが結合した基(=Rに対応する基とRの主鎖部分に対応する基とが結合した基)に相当するエポキシ化合物とを反応させる。
 上記反応により、Rに対応するパーフルオロポリエーテル鎖の両方の末端に、Rに対応する基とRの主鎖部分に対応する基とが結合した基(=Rに対応する基とRの主鎖部分に対応する基とが結合した基)を有する第1中間体化合物1aが得られる。第1中間体化合物1aにおいて、Rの主鎖部分に対応する基およびRの主鎖部分に対応する基には、それぞれ第一反応工程においてヒドロキシメチル基の水酸基とエポキシ化合物のエポキシ基とが反応して生成した1つの2級水酸基が配置されている。
<RとRが異なる場合>
 式(1)におけるxが0であって、RとRとが異なる化合物を製造する場合には、第一反応工程において、上記のフッ素系化合物の一方の末端に配置されているヒドロキシメチル基の水酸基と、式(1)におけるRに対応する基とRの主鎖部分に対応する基とが結合した基に相当するエポキシ化合物とを反応させる。その後、上記のフッ素系化合物のもう一方の末端に配置されているヒドロキシメチル基の水酸基と、式(1)におけるRに対応する基とRの主鎖部分に対応する基とが結合した基に相当するエポキシ化合物とを反応させる。
 この場合の第一反応工程は、上記のフッ素系化合物の一方の末端に配置されているヒドロキシメチル基の水酸基と、式(1)におけるRに対応する基とRの主鎖部分に対応する基とが結合した基に相当するエポキシ化合物とを反応させた後、上記のフッ素系化合物のもう一方の末端に配置されているヒドロキシメチル基の水酸基と、式(1)におけるRに対応する基とRの主鎖部分に対応する基とが結合した基に相当するエポキシ化合物とを反応させる工程であってもよい。
 上記反応により、Rに対応するパーフルオロポリエーテル鎖の一方の末端に、Rに対応する基とRの主鎖部分に対応する基とが結合した基を有し、もう一方の末端に、Rに対応する基とRの主鎖部分に対応する基とが結合した基を有する第1中間体化合物1bが得られる。第1中間体化合物1bにおいて、Rの主鎖部分に対応する基およびRの主鎖部分に対応する基には、それぞれ第一反応工程においてヒドロキシメチル基の水酸基とエポキシ化合物のエポキシ基とが反応して生成した1つの2級水酸基が配置されている。
 第一反応工程において使用する式(1)におけるRに対応する基とRの主鎖部分に対応する基とが結合した基(または、Rに対応する基とRの主鎖部分に対応する基とが結合した基)に相当するエポキシ化合物としては、例えば、下記式(7-1)~(7-8)で表される化合物などを用いることができる。
Figure JPOXMLDOC01-appb-C000013

(式(7-1)~(7-4)中、THPはテトラヒドロピラニル基を表す。)
(式(7-4)~(7-6)中、MOMはメトキシメチル基を表す。)
 第一反応工程において使用するエポキシ化合物は、例えば、製造する含フッ素エーテル化合物のR(またはR)に対応する構造を有するアルコールと、エピクロロヒドリン、またはエピブロモヒドリンとを反応させる方法により合成できる。第一反応工程において使用するエポキシ化合物は、炭素-炭素二重結合を有する化合物を酸化する方法により合成してもよいし、市販品を購入して使用してもよい。
(第二反応工程)
<Rの側鎖部分とRの側鎖部分とが同じである場合>
 式(1)におけるxが0であって、Rの側鎖部分とRの側鎖部分とが同じである含フッ素エーテル化合物を製造する場合には、第二反応工程において、第一反応工程により生成した第1中間体化合物1aまたは第1中間体化合物1bの有する2級水酸基に対して、式(1)におけるRの側鎖部分(=Rの側鎖部分)に対応する保護された水酸基を有する1種類のハロゲン化物を反応させて、第2中間体化合物2aを生成させる。
<Rの側鎖部分とRの側鎖部分とが異なる場合>
 式(1)におけるxが0であって、Rの側鎖部分とRの側鎖部分とが異なる含フッ素エーテル化合物を製造する場合には、第二反応工程において、第一反応工程により生成した第1中間体化合物1aまたは第1中間体化合物1bの有する2級水酸基に対して、式(1)におけるRの側鎖部分に対応する保護された水酸基を有するハロゲン化物と、Rの側鎖部分に対応する保護された水酸基を有するハロゲン化物とを、公知の方法を用いて順次反応させて、第2中間体化合物2bを生成させる。反応後、必要に応じてカラムクロマトグラフィーなどの公知の方法で精製することにより、Rの側鎖部分とRの側鎖部分とを有する第2中間体化合物2bが得られる。第1中間体化合物1aまたは第1中間体化合物1bと反応させる順番は、Rの側鎖部分に対応する保護された水酸基を有するハロゲン化物と、Rの側鎖部分に対応する保護された水酸基を有するハロゲン化物のどちらが先であってもよい。
 第二反応工程において使用する式(1)におけるRの側鎖部分(またはRの側鎖部分)に対応する保護された水酸基を有するハロゲン化物としては、例えば、下記式(8-1)~(8-4)で表される化合物などを用いることができる。
Figure JPOXMLDOC01-appb-C000014

(式(8-1)~(8-4)中、THPはテトラヒドロピラニル基を表す。)
 次に、第2中間体化合物2aまたは第2中間体化合物2bの有している、保護された水酸基を有するハロゲン化物に由来する保護基を、保護基の種類に応じた公知の方法により除去する脱保護反応を行う。このことにより、式(1)におけるRの側鎖部分およびRの側鎖部分の先端に、それぞれ1つの1級水酸基が配置される。
 以上の工程を行うことにより、式(1)におけるxが0である含フッ素エーテル化合物が得られる。
[第2製造方法]
 式(1)におけるxが1である含フッ素エーテル化合物を製造する場合、例えば、以下に示す第2製造方法を用いることができる。
(第一反応工程)
<2つのRが同じで、RとRが同じである場合>
 式(1)におけるxが1であり、2つのRが同じであって、RとRが同じである化合物を製造する場合には、まず、第1製造方法と同様に、式(1)におけるRに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。
 次に、上記のフッ素系化合物の両方の末端に配置されているヒドロキシメチル基のうち、一方のヒドロキシメチル基の水酸基と、式(1)におけるRに対応する基とRの主鎖部分に対応する基とが結合した基(=Rに対応する基とRの主鎖部分に対応する基とが結合した基)に相当するエポキシ化合物とを反応させる。反応後、必要に応じてカラムクロマトグラフィーなどの公知の方法で精製することにより、上記のフッ素系化合物の両方の末端に配置されているヒドロキシメチル基のうち、一方の末端に配置されているヒドロキシメチル基と、エポキシ化合物とが反応した化合物が得られる。
 上記反応により、Rに対応するパーフルオロポリエーテル鎖の一方の末端に、Rに対応する基とRの主鎖部分に対応する基とが結合した基(=Rに対応する基とRの主鎖部分に対応する基とが結合した基)を有する前駆体化合物11aが得られる。前駆体化合物11aにおいて、Rの主鎖部分に対応する基(=Rの主鎖部分に対応する基)には、ヒドロキシメチル基の水酸基とエポキシ化合物のエポキシ基とが反応して生成した1つの2級水酸基が配置されている。
 次に、前駆体化合物11aの一方の末端に配置されているヒドロキシメチル基の水酸基と、式(1)におけるRの主鎖部分に対応するエポキシ基を有するハロゲン化合物とを反応させる。
 この反応により、Rの主鎖部分に対応する構造の両端に、それぞれRに対応するパーフルオロポリエーテル鎖を有し、さらにその両端にRに対応する基とRの主鎖部分に対応する基とが結合した基(=Rに対応する基とRの主鎖部分に対応する基とが結合した基)を有している第1中間体化合物1cが得られる。第1中間体化合物1cにおいて、Rの主鎖部分に対応する基には、ヒドロキシメチル基の水酸基とエポキシ化合物のエポキシ基とが反応して生成した1つの2級水酸基が配置されている。
<2つのRが異なる、および/またはRとRが異なる場合>
 式(1)におけるxが1であって、2つのRが異なる化合物、および/またはRとRとが異なる化合物を製造する場合には、まず、式(1)におけるR側のRに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。そして、このフッ素系化合物を用いること以外は、前駆体化合物11aを製造する場合と同様にして、前駆体化合物11bを製造する。
 前駆体化合物11bは、R側のRに対応するパーフルオロポリエーテル鎖の一方の末端に、Rに対応する基とRの主鎖部分に対応する基とが結合した基を有する。前駆体化合物11bにおいて、Rの主鎖部分に対応する基には、ヒドロキシメチル基の水酸基とエポキシ化合物のエポキシ基とが反応して生成した1つの2級水酸基が配置されている。
 次に、式(1)におけるR側のRに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。そして、このフッ素系化合物の両方の末端に配置されているヒドロキシメチル基のうち、一方のヒドロキシメチル基の水酸基と、式(1)におけるRに対応する基とRの主鎖部分に対応する基とが結合した基に相当するエポキシ化合物とを反応させる。反応後、必要に応じてカラムクロマトグラフィーなどの公知の方法で精製することにより、上記のフッ素系化合物の両方の末端に配置されているヒドロキシメチル基のうち、一方の末端に配置されているヒドロキシメチル基と、エポキシ化合物とが反応した化合物が得られる。
 上記反応により、R側のRに対応するパーフルオロポリエーテル鎖の一方の末端に、Rに対応する基とRの主鎖部分に対応する基とが結合した基を有する前駆体化合物11cが得られる。前駆体化合物11cにおいて、Rの主鎖部分に対応する基には、ヒドロキシメチル基の水酸基とエポキシ化合物のエポキシ基とが反応して生成した1つの2級水酸基が配置されている。
 次に、前駆体化合物11bの一方の末端に配置されているヒドロキシメチル基の水酸基と、式(1)におけるRの主鎖部分に対応するエポキシ基を有するハロゲン化合物とを反応させる。そして、得られた反応生成物と、前駆体化合物11cの一方の末端に配置されているヒドロキシメチル基の水酸基とを反応させる。なお、式(1)におけるRの主鎖部分に対応するエポキシ基を有するハロゲン化合物と、前駆体化合物11cとを反応させた後、得られた反応生成物と、前駆体化合物11bとを反応させてもよい。
 これらの反応により、Rの主鎖部分に対応する構造のR側の端部に、R側のRに対応するパーフルオロポリエーテル鎖を有し、さらにその端部にRに対応する基とRの主鎖部分に対応する基とが結合した基を有しており、Rの主鎖部分に対応する構造のR側の端部に、R側のRに対応するパーフルオロポリエーテル鎖を有し、さらにその端部にRに対応する基とRの主鎖部分に対応する基とが結合した基を有している第1中間体化合物1dが得られる。第1中間体化合物1dにおいて、Rの主鎖部分に対応する基には、ヒドロキシメチル基の水酸基とエポキシ基とが反応して生成した1つの2級水酸基が配置されている。
 第2製造方法の第一反応工程において使用する、Rの主鎖部分に対応するエポキシ基を有するハロゲン化合物としては、例えば、エピブロモヒドリン、エピクロロヒドリン、2-ブロモエチルオキシラン、3-ブロモプロピルオキシラン、2-クロロエチルオキシラン、3-クロロプロピルオキシランなどを用いることができ、式(1)におけるRが式(3-1)で表され、式(3-1)中のy1、y2がともに1である場合、または、Rが式(3-2)で表され、式(3-2)中のy3、y4がともに1である場合、例えば、エピブロモヒドリン、エピクロロヒドリンを用いることができる。
 第2製造方法の第一反応工程において使用する、式(1)におけるRに対応する基とRの主鎖部分に対応する基とが結合した基(または、Rに対応する基とRの主鎖部分に対応する基とが結合した基)に相当するエポキシ化合物としては、第1製造方法と同様のものを用いることができる。
(第二反応工程)
<Rの側鎖部分とRの側鎖部分とRの側鎖部分とが同じである場合>
 式(1)におけるxが1であって、Rの側鎖部分とRの側鎖部分とRの側鎖部分とが同じである含フッ素エーテル化合物を製造する場合には、第二反応工程において、第一反応工程により生成した第1中間体化合物1cまたは第1中間体化合物1dの有する2級水酸基に対して、式(1)におけるRの側鎖部分(=Rの側鎖部分およびRの側鎖部分)に対応する保護された水酸基を有する1種類のハロゲン化物を反応させて、第2中間体化合物2cを生成させる。
<Rの側鎖部分とRの側鎖部分とRの側鎖部分のうち一部または全部が異なる場合>
 式(1)におけるxが1であって、Rの側鎖部分とRの側鎖部分とRの側鎖部分のうち一部または全部が異なる含フッ素エーテル化合物を製造する場合には、第二反応工程において、第一反応工程により生成した第1中間体化合物1cまたは第1中間体化合物1dの有する2級水酸基に対して、式(1)におけるRとRとRの各側鎖部分に対応する保護された水酸基を有するハロゲン化物を、それぞれ公知の方法を用いて順次反応させて、第2中間体化合物2dを生成させる。反応後、必要に応じてカラムクロマトグラフィーなどの公知の方法で精製することにより、Rの側鎖部分とRの側鎖部分とRの側鎖部分とを有する第2中間体化合物2dが得られる。RとRとRの各側鎖部分に対応する保護された水酸基を有するハロゲン化物を、第1中間体化合物1cまたは第1中間体化合物1dと反応させる順番は、特に限定されない。
 第2製造方法の第二反応工程において使用する、式(1)におけるRとRとRの各側鎖部分に対応する保護された水酸基を有するハロゲン化物としては、例えば、第1製造方法において使用できる、式(1)におけるRとRの各側鎖部分に対応する保護された水酸基を有するハロゲン化物と同様のものを用いることができる。
 次に、第2中間体化合物2cまたは第2中間体化合物2dの有している、保護された水酸基を有するハロゲン化物に由来する保護基を、保護基の種類に応じた公知の方法により除去する脱保護反応を行う。このことにより、式(1)におけるRの側鎖部分、Rの側鎖部分およびRの側鎖部分の先端に、それぞれ1つの1級水酸基が配置される。
 以上の工程を行うことにより、式(1)におけるxが1である含フッ素エーテル化合物が得られる。
[第3製造方法]
 式(1)におけるxが2である含フッ素エーテル化合物を製造する場合、例えば、以下に示す第3製造方法を用いることができる。
(第一反応工程)
<3つのRが同じで、2つのRが同じで、RとRが同じである場合>
 式(1)におけるxが2であって、3つのRが同じで、2つのRが同じで、RとRが同じである化合物を製造する場合には、まず、第2製造方法と同様にして前駆体化合物11aを製造する。
 次に、式(1)におけるRに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。次いで、上記のフッ素系化合物の両末端に配置されているヒドロキシメチル基の水酸基と、式(1)におけるRの主鎖部分に対応するエポキシ基を有するハロゲン化合物とを反応させる。このことにより、式(1)におけるRに対応するパーフルオロポリエーテル鎖の両末端に、Rの主鎖部分に対応するエポキシ基を有する前駆体化合物11dが得られる。
 その後、前駆体化合物11aの一方の末端に配置されたヒドロキシメチル基の水酸基と、前駆体化合物11dの両末端に配置されたRの主鎖部分に対応するエポキシ基とを反応させて、第1中間体化合物1eを製造する。第1中間体化合物1eにおいて、2つのRの主鎖部分に対応する基には、ヒドロキシメチル基の水酸基とエポキシ基とが反応して生成した1つの2級水酸基がそれぞれ配置されている。
<2つのRが同じで、3つのRのうち一部または全部が異なる、および/またはRとRが異なる場合>
 式(1)におけるxが2であって、2つのRが同じで、3つのRのうち一部または全部が異なる、および/またはRとRとが異なる化合物を製造する場合には、以下に示す方法を用いることができる。
 すなわち、フッ素系化合物として、3つのRのうち主鎖の中央に配置されるRに対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基が配置されたフッ素系化合物を用いること以外は、前駆体化合物11dと同様にして前駆体化合物11eを製造する。前駆体化合物11eは、3つのRのうち主鎖の中央に配置されるRに対応するパーフルオロポリエーテル鎖の両末端に、Rの主鎖部分に対応するエポキシ基を有する。
 また、第2製造方法と同様にして、前駆体化合物11bおよび前駆体化合物11cを製造する。そして、前駆体化合物11bの一方の末端に配置されているヒドロキシメチル基の水酸基と、前駆体化合物11eの一方の末端に配置されたRの主鎖部分に対応するエポキシ基とを反応させる。得られた反応生成物と、前駆体化合物11cの一方の末端に配置されているヒドロキシメチル基の水酸基とを反応させて第1中間体化合物1fを製造する。なお、前駆体化合物11eと、前駆体化合物11cとを反応させた後、得られた反応生成物と、前駆体化合物11bとを反応させてもよい。第1中間体化合物1fにおいて、2つのRの主鎖部分に対応する基には、ヒドロキシメチル基の水酸基とエポキシ基とが反応して生成した1つの2級水酸基がそれぞれ配置されている。
<2つのRが異なる場合>
 式(1)におけるxが2であって、3つのRが同じで、RとRが同じで、2つのRが異なる化合物を製造する場合には、Rに対応するパーフルオロポリエーテル鎖の両末端に、Rの主鎖部分に対応するエポキシ基を有する前駆体化合物11dに代えて、以下に示す前駆体化合物11fを用いて、第1中間体化合物1eを製造する。
る。
 また、式(1)におけるxが2であって、3つのRのうち一部または全部が異なる、および/またはRとRが異なり、2つのRが異なる化合物を製造する場合には、3つのRのうち主鎖の中央に配置されるRに対応するパーフルオロポリエーテル鎖の両末端に、Rの主鎖部分に対応するエポキシ基を有する前駆体化合物11eに代えて、以下に示す前駆体化合物11fを用いて、第1中間体化合物1fを製造する。
 前駆体化合物11fは、以下に示す方法により製造できる。すなわち、R(3つのRのうち一部または全部が異なる場合には、3つのRのうち主鎖の中央に配置されるR)に対応するパーフルオロポリエーテル鎖の両末端に、それぞれヒドロキシメチル基が配置されているフッ素系化合物を用意する。そのフッ素系化合物の一方の末端に配置されているヒドロキシメチル基の水酸基と、R側のRの主鎖部分に対応するエポキシ基を有するハロゲン化合物とを反応させる。その後、上記のフッ素系化合物のもう一方の末端に配置されているヒドロキシメチル基の水酸基と、R側のRの主鎖部分に対応するエポキシ基を有するハロゲン化合物とを反応させる。
 このことにより、R(3つのRのうち一部または全部が異なる場合には、3つのRのうち主鎖の中央に配置されるR)に対応するパーフルオロポリエーテル鎖の両末端に、それぞれ異なるRの主鎖部分に対応するエポキシ基を有する前駆体化合物11fが得られる。フッ素系化合物と反応させる順番は、R側のRの主鎖部分に対応するエポキシ基を有するハロゲン化合物と、R側のRの主鎖部分に対応するエポキシ基を有するハロゲン化合物のどちらが先であってもよい。
 第3製造方法の第一反応工程において使用する、R側のRおよびR側のRの主鎖部分に対応するエポキシ基を有するハロゲン化合物としては、第2製造方法の第一反応工程において使用する、Rの主鎖部分に対応するエポキシ基を有するハロゲン化合物と同様のものを用いることができる。
 上記R側のRの主鎖部分に対応するエポキシ基を有するハロゲン化合物としては、例えば、R側のRが式(3-1)で表され、式(3-1)中のy1が1、y2が2である場合、または、R側のRが式(3-2)で表され、式(3-2)中のy3が1、y4が2である場合、2-クロロエチルオキシラン、2-ブロモエチルオキシランを用いることができる。また、R側のRが式(3-1)で表され、式(3-1)中のy1が1、y2が3である場合、または、R側のRが式(3-2)で表され、式(3-2)中のy3が1、y4が3である場合、3-クロロプロピルオキシラン、3-ブロモプロピルオキシランを用いることができる。
 上記R側のRの主鎖部分に対応するエポキシ基を有するハロゲン化合物としては、例えば、R側のRが式(3-1)で表され、式(3-1)中のy1が2、y2が1である場合、または、R側のRが式(3-2)で表され、式(3-2)中のy3が2、y4が1である場合、2-クロロエチルオキシラン、2-ブロモエチルオキシランを用いることができる。また、R側のRが式(3-1)で表され、式(3-1)中のy1が3、y2が1である場合、または、R側のRが式(3-2)で表され、式(3-2)中のy3が3、y4が1である場合、3-クロロプロピルオキシラン、3-ブロモプロピルオキシランを用いることができる。
(第二反応工程)
<Rの側鎖部分と2つのRの側鎖部分とRの側鎖部分とが同じである場合>
 式(1)におけるxが2であって、Rの側鎖部分と2つのRの側鎖部分とRの側鎖部分とが同じである含フッ素エーテル化合物を製造する場合には、第二反応工程において、第一反応工程により生成した第1中間体化合物1eまたは第1中間体化合物1fの有する2級水酸基に対して、式(1)におけるRの側鎖部分(=2つのRの側鎖部分およびRの側鎖部分)に対応する保護された水酸基を有する1種類のハロゲン化物を反応させて、第2中間体化合物2eを生成させる。
<Rの側鎖部分と2つのRの側鎖部分とRの側鎖部分のうち一部または全部が異なる場合>
 式(1)におけるxが2であって、Rの側鎖部分と2つのRの側鎖部分とRの側鎖部分のうち一部または全部が異なる含フッ素エーテル化合物を製造する場合には、第二反応工程において、第一反応工程により生成した第1中間体化合物1eまたは第1中間体化合物1fの有する2級水酸基に対して、式(1)におけるRと2つのRとRの各側鎖部分に対応する保護された水酸基を有するハロゲン化物を、それぞれ公知の方法を用いて順次反応させて、第2中間体化合物2fを生成させる。反応後、必要に応じてカラムクロマトグラフィーなどの公知の方法で精製することにより、Rの側鎖部分と2つのRの側鎖部分とRの側鎖部分とを有する第2中間体化合物2fが得られる。Rと2つのRとRの各側鎖部分に対応する保護された水酸基を有するハロゲン化物を、第1中間体化合物1eまたは第1中間体化合物1fと反応させる順番は、特に限定されない。
 第3製造方法の第二反応工程において使用する、式(1)におけるRと2つのRとRの各側鎖部分に対応する保護された水酸基を有するハロゲン化物としては、例えば、第2製造方法において使用できる、式(1)におけるRとRとRの各側鎖部分に対応する保護された水酸基を有するハロゲン化物と同様のものを用いることができる。
 次に、第2中間体化合物2eまたは第2中間体化合物2fの有している、保護された水酸基を有するハロゲン化物に由来する保護基を、保護基の種類に応じた公知の方法により除去する脱保護反応を行う。このことにより、式(1)におけるRの側鎖部分、2つのRの側鎖部分およびRの側鎖部分の先端に、それぞれ1つの1級水酸基が配置される。
 以上の工程を行うことにより、式(1)におけるxが2である含フッ素エーテル化合物が得られる。
[磁気記録媒体用潤滑剤]
 本実施形態の磁気記録媒体用潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含む。
 本実施形態の潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含むことによる特性を損なわない範囲内であれば、潤滑剤の材料として使用されている公知の材料を、必要に応じて混合して用いることができる。
 公知の材料の具体例としては、例えば、FOMBLIN(登録商標) ZDIAC、FOMBLIN ZDEAL、FOMBLIN AM-2001(以上Solvay Solexis社製)、Moresco A20H(Moresco社製)等が挙げられる。 本実施形態の潤滑剤と混合して用いる公知の材料は、数平均分子量が1000~10000であることが好ましい。
 本実施形態の潤滑剤が、上記式(1)で表される含フッ素エーテル化合物の他の材料を含む場合、本実施形態の潤滑剤中の上記式(1)で表される含フッ素エーテル化合物の含有量が50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
 本実施形態の潤滑剤は、上記式(1)で表される含フッ素エーテル化合物を含むため、化学物質耐性が良好で、ピックアップ抑制効果の高い潤滑層を形成できる。
[磁気記録媒体]
 本実施形態の磁気記録媒体は、基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられたものである。
 本実施形態の磁気記録媒体では、基板と磁性層との間に、必要に応じて1層または2層以上の下地層を設けることができる。また、下地層と基板との間に、付着層および軟磁性層の少なくとも一方を設けることもできる。
 図1は、本発明の磁気記録媒体の一実施形態を示す概略断面図である。
 本実施形態の磁気記録媒体10は、基板11上に、付着層12と、軟磁性層13と、第1下地層14と、第2下地層15と、磁性層16と、保護層17と、潤滑層18とが順次設けられた構造をなしている。
「基板」
 基板11としては、例えば、AlもしくはAl合金などの金属または合金材料からなる基体上に、NiPまたはNiP合金からなる膜が形成された非磁性基板等を用いることができる。
 また、基板11としては、ガラス、セラミックス、シリコン、シリコンカーバイド、カーボン、樹脂などの非金属材料からなる非磁性基板を用いてもよいし、これらの非金属材料からなる基体上にNiPまたはNiP合金の膜を形成した非磁性基板を用いてもよい。
「付着層」
 付着層12は、基板11と、付着層12上に設けられる軟磁性層13とを接して配置した場合に生じる、基板11の腐食の進行を防止する。
 付着層12の材料は、例えば、Cr、Cr合金、Ti、Ti合金、CrTi、NiAl、AlRu合金等から適宜選択できる。付着層12は、例えば、スパッタリング法により形成できる。
「軟磁性層」
 軟磁性層13は、第1軟磁性膜と、Ru膜からなる中間層と、第2軟磁性膜とが順に積層された構造を有していることが好ましい。すなわち、軟磁性層13は、2層の軟磁性膜の間にRu膜からなる中間層を挟み込むことによって、中間層の上下の軟磁性膜がアンチ・フェロ・カップリング(AFC)結合した構造を有していることが好ましい。
 第1軟磁性膜および第2軟磁性膜の材料としては、CoZrTa合金、CoFe合金などが挙げられる。
 第1軟磁性膜および第2軟磁性膜に使用されるCoFe合金には、Zr、Ta、Nbの何れかを添加することが好ましい。これにより、第1軟磁性膜および第2軟磁性膜の非晶質化が促進される。その結果、第1下地層(シード層)の配向性を向上させることが可能になるとともに、磁気ヘッドの浮上量を低減することが可能となる。
 軟磁性層13は、例えば、スパッタリング法により形成できる。
「第1下地層」
 第1下地層14は、その上に設けられる第2下地層15および磁性層16の配向および結晶サイズを制御する層である。
 第1下地層14としては、例えば、Cr層、Ta層、Ru層、あるいはCrMo合金層、CoW合金層、CrW合金層、CrV合金層、CrTi合金層などからなるものが挙げられる。
 第1下地層14は、例えば、スパッタリング法により形成できる。
「第2下地層」
 第2下地層15は、磁性層16の配向が良好になるように制御する層である。第2下地層15は、RuまたはRu合金からなる層であることが好ましい。
 第2下地層15は、1層からなる層であってもよいし、複数層から構成されていてもよい。第2下地層15が複数層からなる場合、全ての層が同じ材料から構成されていてもよいし、少なくとも一層が異なる材料から構成されていてもよい。
 第2下地層15は、例えば、スパッタリング法により形成できる。
「磁性層」
 磁性層16は、磁化容易軸が基板面に対して垂直または水平方向を向いた磁性膜からなる。磁性層16は、CoとPtとを含む層である。磁性層16は、SNR特性を改善するために、酸化物、Cr、B、Cu、Ta、Zr等を含む層であってもよい。
 磁性層16に含有される酸化物としては、SiO、SiO、Cr、CoO、Ta、TiO等が挙げられる。
 磁性層16は、1層から構成されていてもよいし、組成の異なる材料からなる複数の磁性層から構成されていてもよい。
 例えば、磁性層16が、下から順に積層された第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層は、Co、Cr、Ptを含み、さらに酸化物を含んだ材料からなるグラニュラー構造であることが好ましい。第1磁性層に含有される酸化物としては、例えば、Cr、Si、Ta、Al、Ti、Mg、Co等の酸化物を用いることが好ましい。その中でも、特に、TiO、Cr、SiO等を好適に用いることができる。また、第1磁性層は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも、特に、Cr-SiO、Cr-TiO、SiO-TiO等を好適に用いることができる。
 第1磁性層は、Co、Cr、Pt、酸化物の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。 第2磁性層には、第1磁性層と同様の材料を用いることができる。第2磁性層は、グラニュラー構造であることが好ましい。
 第3磁性層は、Co、Cr、Ptを含み、酸化物を含まない材料からなる非グラニュラー構造であることが好ましい。第3磁性層は、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を含むことができる。
 磁性層16が複数の磁性層で形成されている場合、隣接する磁性層の間には、非磁性層を設けることが好ましい。磁性層16が、第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層と第2磁性層との間と、第2磁性層と第3磁性層との間に、非磁性層を設けることが好ましい。
 磁性層16の隣接する磁性層間に設けられる非磁性層は、例えば、Ru、Ru合金、CoCr合金、CoCrX1合金(X1は、Pt、Ta、Zr、Re、Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Bの中から選ばれる1種または2種以上の元素を表す。)等を好適に用いることができる。
 磁性層16の隣接する磁性層間に設けられる非磁性層には、酸化物、金属窒化物、または金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiO等を用いることができる。金属窒化物として、例えば、AlN、Si、TaN、CrN等を用いることができる。金属炭化物として、例えば、TaC、BC、SiC等を用いることができる。
 非磁性層は、例えば、スパッタリング法により形成できる。
 磁性層16は、より高い記録密度を実現するために、磁化容易軸が基板面に対して垂直方向を向いた垂直磁気記録の磁性層であることが好ましい。磁性層16は、面内磁気記録の磁性層であってもよい。
 磁性層16は、蒸着法、イオンビームスパッタ法、マグネトロンスパッタ法等、従来公知のいかなる方法によって形成してもよい。磁性層16は、通常、スパッタリング法により形成される。
「保護層」
 保護層17は、磁性層16を保護する。保護層17は、1層から構成されていてもよいし、複数層から構成されていてもよい。保護層17としては、炭素系保護層を好ましく用いることができ、特にアモルファス炭素保護層が好ましい。保護層17が炭素系保護層であると、潤滑層18中の含フッ素エーテル化合物に含まれる極性基(特に水酸基)との相互作用が一層高まるため、好ましい。
 炭素系保護層と潤滑層18との付着力は、炭素系保護層を水素化炭素および/または窒素化炭素とし、炭素系保護層中の水素含有量および/または窒素含有量を調節することにより制御可能である。炭素系保護層中の水素含有量は、水素前方散乱法(HFS)で測定したときに3原子%~20原子%であることが好ましい。また、炭素系保護層中の窒素含有量は、X線光電子分光分析法(XPS)で測定したときに、4原子%~15原子%であることが好ましい。
 炭素系保護層に含まれる水素および/または窒素は、炭素系保護層全体に均一に含有される必要はない。炭素系保護層は、例えば、保護層17の潤滑層18側に窒素を含有させ、保護層17の磁性層16側に水素を含有させた組成傾斜層とすることが好適である。この場合、磁性層16および潤滑層18と、炭素系保護層との付着力が、より一層向上する。
 保護層17の膜厚は、1nm~7nmであることが好ましい。保護層17の膜厚が1nm以上であると、保護層17としての性能が充分に得られる。保護層17の膜厚が7nm以下であると、保護層17の薄膜化の観点から好ましい。
 保護層17の成膜方法としては、炭素を含むターゲット材を用いるスパッタ法、エチレンやトルエン等の炭化水素原料を用いるCVD(化学蒸着法)法、IBD(イオンビーム蒸着)法等を用いることができる。
 保護層17として炭素系保護層を形成する場合、例えば、DCマグネトロンスパッタリング法により成膜することができる。特に、保護層17として炭素系保護層を形成する場合、プラズマCVD法により、アモルファス炭素保護層を成膜することが好ましい。プラズマCVD法により成膜したアモルファス炭素保護層は、表面が均一で、粗さが小さいものとなる。
「潤滑層」
 潤滑層18は、磁気記録媒体10の汚染を防止する。また、潤滑層18は、磁気記録媒体10上を摺動する磁気記録再生装置の磁気ヘッドの摩擦力を低減させて、磁気記録媒体10の耐久性を向上させる。
 潤滑層18は、図1に示すように、保護層17上に接して形成されている。潤滑層18は、保護層17上に上述した実施形態の磁気記録媒体用潤滑剤を塗布することにより形成されたものである。したがって、潤滑層18は、上述の含フッ素エーテル化合物を含む。
 潤滑層18は、潤滑層18の下に配置されている保護層17が、炭素系保護層である場合、特に、保護層17と高い結合力で結合される。その結果、潤滑層18の厚みが薄くても、高い被覆率で保護層17の表面が被覆された磁気記録媒体10が得られやすくなり、磁気記録媒体10の表面の汚染を効果的に防止できる。
 潤滑層18の平均膜厚は、0.5nm(5Å)~2.0nm(20Å)であることが好ましく、0.5nm(5Å)~1.2nm(12Å)であることがより好ましい。潤滑層18の平均膜厚が0.5nm以上であると、潤滑層18がアイランド状または網目状とならずに均一の膜厚で形成される。そのため、潤滑層18によって、保護層17の表面を高い被覆率で被覆できる。また、潤滑層18の平均膜厚を2.0nm以下にすることで、潤滑層18を充分に薄膜化でき、磁気ヘッドの浮上量を充分に小さくできる。
「潤滑層の形成方法」
 潤滑層18を形成するには、例えば、基板11上に保護層17までの各層が形成された製造途中の磁気記録媒体を用意し、保護層17上に潤滑層形成用溶液を塗布する方法が挙げられる。
 潤滑層形成用溶液は、上述の実施形態の磁気記録媒体用潤滑剤を必要に応じて、溶媒に分散溶解させ、塗布方法に適した粘度および濃度とすることにより得られる。
 潤滑層形成用溶液に用いられる溶媒としては、例えば、バートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)等のフッ素系溶媒等が挙げられる。
 潤滑層形成用溶液の塗布方法は、特に限定されないが、例えば、スピンコート法、スプレイ法、ペーパーコート法、ディップ法等が挙げられる。
 ディップ法を用いる場合、例えば、以下に示す方法を用いることができる。まず、ディップコート装置の浸漬槽に入れられた潤滑層形成用溶液中に、保護層17までの各層が形成された基板11を浸漬する。次いで、浸漬槽から基板11を所定の速度で引き上げる。このことにより、潤滑層形成用溶液を基板11の保護層17上の表面に塗布する。
 ディップ法を用いることで、潤滑層形成用溶液を保護層17の表面に均一に塗布することができ、保護層17上に均一な膜厚で潤滑層18を形成できる。
 本実施形態においては、潤滑層18を形成した基板11に熱処理を施すことが好ましい。熱処理を施すことにより、潤滑層18と保護層17との密着性が向上し、潤滑層18と保護層17との付着力が向上する。
 熱処理温度は100℃~180℃とすることが好ましく、100℃~160℃とすることがより好ましい。熱処理温度が100℃以上であると、潤滑層18と保護層17との密着性を向上させる効果が充分に得られる。また、熱処理温度を180℃以下にすることで、熱処理による潤滑層18の熱分解を防止できる。熱処理時間は、熱処理温度に応じて適宜調整でき、10分~120分とすることが好ましい。
 本実施形態においては、潤滑層18の保護層17に対する付着力をより一層向上させるために、熱処理前もしくは熱処理後の潤滑層18に、紫外線(UV)を照射する処理を行ってもよい。
 本実施形態の磁気記録媒体10は、基板11上に、少なくとも磁性層16と、保護層17と、潤滑層18とが順次設けられたものである。本実施形態の磁気記録媒体10では、保護層17上に接して上述の含フッ素エーテル化合物を含む潤滑層18が形成されている。この潤滑層18は、化学物質耐性が良好で、ピックアップ抑制効果が高い。よって、本実施形態の磁気記録媒体10は、信頼性、特にシリコンコンタミネーションの抑制、耐久性に優れる。このことから、本実施形態の磁気記録媒体10は、磁気ヘッド浮上量を低く(例えば、10nm以下)することができ、用途の多様化に伴う厳しい環境下であっても、長期に亘って安定して動作する。したがって、本実施形態の磁気記録媒体10は、特にLUL(Load Unload)方式の磁気ディスク装置に搭載される磁気ディスクとして好適である。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例のみに限定されない。
[実施例1]
 以下に示す方法により、上記式(A)で表される化合物を得た。
(第一反応工程)
 窒素ガス雰囲気下で100mLナスフラスコにHOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)10gと、上記式(7-1)で表される化合物4.75gと、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌し、混合物とした。この混合物にカリウムtert-ブトキシド0.90g加え、70℃で16時間撹拌して反応させた。
 式(7-1)で表される化合物は、3-ブテン-1-オールの水酸基を、ジヒドロピランを用いて保護した後、m-クロロ過安息香酸で酸化する方法により合成した。
 反応後に得られた反応生成物を25℃に冷却し、水100mLを入れた分液漏斗に移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、第1中間体化合物として下記式(9)で示される化合物11.31gを得た。
Figure JPOXMLDOC01-appb-C000015
(式(9)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す;THPはテトラヒドロピラニル基を表す。)
(第二反応工程)
 続いて、窒素ガス雰囲気下で100mLナスフラスコに、上記で得られた第1中間体化合物である式(9)で示される化合物11.31gと、式(8-1)で表される化合物(2-(2-ブロモエトキシ)テトラヒドロ-2H-ピラン)4.09gと、ジメチルホルムアミド20mLとを仕込み、室温で均一になるまで撹拌した。この均一の液に水素化ナトリウムを0.78g加え、40℃で16時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、10%塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)5gを加え、室温で4時間撹拌した。その後、反応液を飽和重曹水100mLが入った分液漏斗に少しずつ移し、酢酸エチル200mLで2回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、化合物(A)(式(A)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.15g得た。
 得られた化合物(A)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、3.40-3.85(22H)、3.85-4.10(4H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例2]
 以下に示す方法により、上記式(B)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-2)で表される化合物を用いたこと以外は、実施例1と同様な操作を行い、化合物(B)(式(B)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.02g得た。
 式(7-2)で表される化合物は、アリルアルコールの水酸基を、ジヒドロピランを用いて保護した後、m-クロロ過安息香酸で酸化する方法により合成した。
 得られた化合物(B)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.40-3.85(22H)、3.85-4.10(4H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例3]
 以下に示す方法により、上記式(C)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-3)で表される化合物を用いたこと以外は、実施例1と同様な操作を行い、化合物(C)(式(C)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.81g得た。
 式(7-3)で表される化合物は、エチレングリコールモノアリルエーテルの水酸基を、ジヒドロピランを用いて保護した後、m-クロロ過安息香酸で酸化する方法により合成した。
 得られた化合物(C)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.40-3.85(34H)、3.85-4.10(4H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例4]
 以下に示す方法により、上記式(D)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-4)で表される化合物を用いたこと以外は、実施例1と同様な操作を行い、化合物(D)(式(D)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を5.21g得た。
 式(7-4)で表される化合物は、以下に示す方法により合成した。エチレングリコールの片方の水酸基を、ジヒドロピランを用いて保護した後、アリルグリシジルエーテルと反応させた。反応後に生じた2級水酸基を、メトキシメチルクロリドを用いて保護した後、m-クロロ過安息香酸で酸化することにより合成した。
 得られた化合物(D)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.40-3.85(34H)、3.85-4.10(4H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例5]
 以下に示す方法により、上記式(E)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-5)で表される化合物を用いたこと以外は、実施例1と同様な操作を行い、化合物(E)(式(E)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を5.41g得た。
 式(7-5)で表される化合物は、以下に示す方法により合成した。エピクロロヒドリンとその2倍モル量のアリルアルコールとを反応させた。反応後に生じた2級水酸基を、メトキシメチルクロリドを用いて保護した後、片方の炭素-炭素二重結合をm-クロロ過安息香酸で酸化することにより合成した。
 得られた化合物(E)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.40-3.85(36H)、3.85-4.10(4H)、5.2-6.1(6H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例6]
 以下に示す方法により、上記式(F)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-6)で表される化合物を用いたこと以外は、実施例1と同様な操作を行い、化合物(F)(式(F)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を5.82g得た。
 式(7-6)で表される化合物は、以下に示す方法により合成した。フェノールとアリルグリシジルエーテルとを反応させた。反応後に生じた2級水酸基を、メトキシメチルクロリドを用いて保護し、m-クロロ過安息香酸で酸化することにより合成した。
 得られた化合物(F)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.40-3.85(32H)、3.85-4.10(4H)、6.8-7.6ppm(10H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例7]
 以下に示す方法により、上記式(G)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-7)で表される化合物を用いたこと以外は、実施例1と同様な操作を行い、化合物(G)(式(G)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.61g得た。
 式(7-7)で表される化合物は、3-シアノプロパノールとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(G)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、2.00-2.10(4H)、3.40-3.85(24H)、3.85-4.10(4H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例8]
 以下に示す方法により、上記式(H)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-8)で表される化合物を用いたこと以外は、実施例1と同様な操作を行い、化合物(H)(式(H)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.33g得た。
 式(7-8)で表される化合物は、アセトアミノエタノールとエピブロモヒドリンとを反応させることにより合成した。
 得られた化合物(H)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.90-2.00(6H)、3.40-3.85(24H)、3.85-4.10(4H)、6.30-6.40(2H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例9]
 以下に示す方法により、上記式(I)で表される化合物を得た。
 式(8-1)で表される化合物の代わりに、式(8-2)で表される化合物を用いたこと以外は、実施例1と同様な操作を行い、化合物(I)(式(I)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.18g得た。
 式(8-2)で表される化合物は、3-ブロモプロパノールの水酸基を、ジヒドロピランを用いて保護することにより合成した。
 得られた化合物(I)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(8H)、3.45-3.85(22H)、3.85-4.10(4H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例10]
 以下に示す方法により、上記式(J)で表される化合物を得た。
 式(8-1)で表される化合物の代わりに、式(8-3)で表される化合物を用いたこと以外は、実施例1と同様な操作を行い、化合物(J)(式(J)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.36g得た。
 式(8-3)で表される化合物は、4-ブロモブタノールの水酸基を、ジヒドロピランを用いて保護することにより合成した。
 得られた化合物(J)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(12H)、3.45-3.85(22H)、3.85-4.10(4H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例11]
 以下に示す方法により、上記式(K)で表される化合物を得た。
 式(8-1)で表される化合物の代わりに、式(8-4)で表される化合物を用いたこと以外は、実施例1と同様な操作を行い、化合物(K)(式(K)中のRfは、上記式(4-1)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を4.54g得た。
 式(8-4)で表される化合物は、ジエチレングリコールの一方の水酸基を、三臭化リンを用いて臭素化した後、もう一方の水酸基を、ジヒドロピランを用いて保護することにより合成した。
 得られた化合物(K)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、3.45-3.85(30H)、3.85-4.10(4H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(9F)、-78.5(2F)、-80.5(2F)、-91.0~-88.5(18F)
[実施例12]
 以下に示す方法により、上記式(L)で表される化合物を得た。
 HOCHCFO(CFCFO)(CFO)CFCHOHで表される化合物の代わりに、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すjは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたこと以外は、実施例1と同様な操作を行い、化合物(L)(式(L)中のRfは、上記式(4-2)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すjは4.5を表す。)を4.26g得た。
 得られた化合物(L)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、3.45-3.85(30H)、3.85-4.10(4H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(18F)、-86.4(4F)、-124.3(4F)、-130.0~-129.0(9F)
[実施例13]
 以下に示す方法により、上記式(M)で表される化合物を得た。
 HOCHCFO(CFCFO)(CFO)CFCHOHで表される化合物の代わりに、HOCHCFCFCFO(CFCFCFCFO)CFCFCFCHOH(式中の平均重合度を示すkは3.0である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたこと以外は、実施例1と同様な操作を行い、化合物(M)(式(M)中のRfは、上記式(4-3)で表されるPFPE鎖である。Rfにおいて、平均重合度を示すkは3.0を表す。)を4.10g得た。
 得られた化合物(M)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、3.45-3.85(30H)、3.85-4.10(4H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(16F)、-122.5(4F)、-126.0(12F)、-129.0~-128.0(4F)
[実施例14]
 以下に示す方法により、上記式(N)で表される化合物を得た。
(第一反応工程)
 窒素ガス雰囲気下で100mLナスフラスコにHOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)20gと、上記式(7-1)で表される化合物2.06gと、t-ブタノール20mLとを仕込み、室温で均一になるまで撹拌し、混合物とした。この混合物にカリウムtert-ブトキシド0.90g加え、70℃で16時間撹拌して反応させた。
 反応後に得られた反応生成物を25℃に冷却し、水100mLを入れた分液漏斗に移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、前駆体化合物として下記式(10)で示される化合物8.41gを得た。
Figure JPOXMLDOC01-appb-C000016

(式(10)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す;THPはテトラヒドロピラニル基を表す。)
 窒素ガス雰囲気下で100mLナスフラスコに、上記で得られた前駆体化合物である式(10)で示される化合物8.41gと、エピブロモヒドリン0.88gと、t-ブタノール10mLとを仕込み、室温で均一になるまで撹拌した。この均一の液にカリウムtert-ブトキシドを0.96g加え、70℃で23時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、水100mLを入れた分液漏斗に移し、酢酸エチル100mLで3回抽出した。有機層を水洗し、無水硫酸ナトリウムによって脱水した。乾燥剤を濾別した後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製し、第1中間体化合物として下記式(11)で示される化合物5.61gを得た。
Figure JPOXMLDOC01-appb-C000017
(式(11)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す;THPはテトラヒドロピラニル基を表す。)
(第二反応工程)
 窒素ガス雰囲気下で100mLナスフラスコに、上記で得られた第1中間体化合物である式(11)で示される化合物5.61gと、式(8-1)で表される化合物4.18gと、ジメチルホルムアミド20mLとを仕込み、室温で均一になるまで撹拌した。この均一の液に水素化ナトリウムを0.85g加え、40℃で16時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、10%塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)5gを加え、室温で4時間撹拌した。その後、反応液を飽和重曹水100mLが入った分液漏斗に少しずつ移し、酢酸エチル200mLで2回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、化合物(N)(式(N)中のRfは、上記式(4-1)で表されるPFPE鎖である。2つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.45g得た。
 得られた化合物(N)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、3.40-3.85(32H)、3.85-4.10(8H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(18F)、-78.5(4F)、-80.5(4F)、-91.0~-88.5(36F)
[実施例15]
 以下に示す方法により、上記式(O)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-3)で表される化合物を用いたこと以外は、実施例14と同様な操作を行い、化合物(O)(式(O)中のRfは、上記式(4-1)で表されるPFPE鎖である。2つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.68g得た。
 得られた化合物(O)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.40-3.85(44H)、3.85-4.10(8H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(18F)、-78.5(4F)、-80.5(4F)、-91.0~-88.5(36F)
[実施例16]
 以下に示す方法により、上記式(P)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-7)で表される化合物を用いたこと以外は、実施例14と同様な操作を行い、化合物(P)(式(P)中のRfは、上記式(4-1)で表されるPFPE鎖である。2つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.64g得た。
 得られた化合物(P)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、2.00-2.10(4H)、3.40-3.85(34H)、3.85-4.10(8H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(18F)、-78.5(4F)、-80.5(4F)、-91.0~-88.5(36F)
[実施例17]
 以下に示す方法により、上記式(Q)で表される化合物を得た。
 式(8-1)で表される化合物の代わりに、式(8-2)で表される化合物を用いたこと以外は、実施例14と同様な操作を行い、化合物(Q)(式(Q)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.52g得た。
 得られた化合物(Q)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(10H)、3.40-3.85(32H)、3.85-4.10(8H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(18F)、-78.5(4F)、-80.5(4F)、-91.0~-88.5(36F)
[実施例18]
 以下に示す方法により、上記式(R)で表される化合物を得た。
 式(8-1)で表される化合物の代わりに、式(8-4)で表される化合物を用いたこと以外は、実施例14と同様な操作を行い、化合物(R)(式(R)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.52g得た。
 得られた化合物(R)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、3.40-3.85(44H)、3.85-4.10(8H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(18F)、-78.5(4F)、-80.5(4F)、-91.0~-88.5(36F)
[実施例19]
 以下に示す方法により、上記式(S)で表される化合物を得た。
 HOCHCFO(CFCFO)(CFO)CFCHOHで表される化合物の代わりに、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すjは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたこと以外は、実施例14と同様な操作を行い、化合物(S)(式(S)中のRfは、上記式(4-2)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すjは4.5を表す。)を2.18g得た。
 得られた化合物(S)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、3.40-3.85(32H)、3.85-4.10(8H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(36F)、-86.4(8F)、-124.3(8F)、-130.0~-129.0(18F)
[実施例20]
 以下に示す方法により、上記式(T)で表される化合物を得た。
(第一反応工程)
 実施例14と同様にして、前駆体化合物として式(10)で示される化合物を得た。
 そして、実施例14における第1中間体化合物を得るための反応において、エピブロモヒドリンの代わりに、式(12)で表される化合物を用いたこと以外は、実施例14と同様な操作を行い、第1中間体化合物として下記式(13)で示される化合物7.81gを得た。
 式(12)で表される化合物は、HOCHCFO(CFCFO)(CFO)CFCHOH(式中の平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)と、エピブロモヒドリンとを反応させる方法により合成した。
Figure JPOXMLDOC01-appb-C000018
(式(12)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
Figure JPOXMLDOC01-appb-C000019

(式(13)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す;THPはテトラヒドロピラニル基を表す。)
(第二反応工程)
 窒素ガス雰囲気下で100mLナスフラスコに、上記で得られた第1中間体化合物である式(13)で示される化合物7.81gと、式(8-1)で表される化合物6.32gと、ジメチルホルムアミド20mLとを仕込み、室温で均一になるまで撹拌した。この均一の液に水素化ナトリウムを1.08g加え、40℃で16時間撹拌して反応させた。
 反応後に得られた反応液を室温に戻し、10%塩化水素・メタノール溶液(塩化水素-メタノール試薬(5-10%)東京化成工業株式会社製)5gを加え、室温で4時間撹拌した。その後、反応液を飽和重曹水100mLが入った分液漏斗に少しずつ移し、酢酸エチル200mLで2回抽出した。有機層を食塩水100mL、飽和重曹水100mL、食塩水100mLの順で洗浄し、無水硫酸ナトリウムによる脱水を行った。乾燥剤を濾別後、濾液を濃縮し、残渣をシリカゲルカラムクロマトグラフィーにて精製して、化合物(T)(式(T)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.71g得た。
 得られた化合物(T)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、3.40-3.85(42H)、3.85-4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例21]
 以下に示す方法により、上記式(U)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-3)で表される化合物を用いたこと以外は、実施例20と同様な操作を行い、化合物(U)(式(U)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.68g得た。
 得られた化合物(U)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.40-3.85(54H)、3.85-4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例22]
 以下に示す方法により、上記式(V)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-7)で表される化合物を用いたこと以外は、実施例20と同様な操作を行い、化合物(V)(式(V)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.92g得た。
 得られた化合物(V)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、2.00-2.10(4H)、3.40-3.85(44H)、3.85-4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例23]
 以下に示す方法により、上記式(W)で表される化合物を得た。
 式(8-1)で表される化合物の代わりに、式(8-4)で表される化合物を用いたこと以外は、実施例20と同様な操作を行い、化合物(W)(式(W)中のRfは、上記式(4-1)で表されるPFPE鎖である。3つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.74g得た。
 得られた化合物(W)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、3.40-3.85(54H)、3.85-4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(27F)、-78.5(6F)、-80.5(6F)、-91.0~-88.5(54F)
[実施例24]
 以下に示す方法により、上記式(X)で表される化合物を得た。
 HOCHCFO(CFCFO)(CFO)CFCHOHで表される化合物の代わりに、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中の平均重合度を示すjは4.5である。)で表される化合物(数平均分子量1000、分子量分布1.1)を用いたこと以外は、実施例20と同様な操作を行い、化合物(X)(式(X)中のRfは、上記式(4-2)で表されるPFPE鎖である;3つのRfにおいて、平均重合度を示すjは4.5を表す。)を2.58g得た。
 得られた化合物(X)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=1.60-1.80(4H)、3.40-3.85(42H)、3.85-4.10(12H)
19F-NMR(acetone-D):δ[ppm]=-84.0~-83.0(54F)、-86.4(12F)、-124.3(12F)、-130.0~-129.0(27F)
[実施例25]
 以下に示す方法により、上記式(XX)で表される化合物を得た。
 式(7-1)で表される化合物の代わりに、式(7-2)で表される化合物を用いたこと以外は、実施例14と同様な操作を行い、化合物(XX)(式(XX)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)を2.45g得た。
 得られた化合物(XX)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-D):δ[ppm]=3.40-3.85(32H)、3.85-4.10(8H)
19F-NMR(acetone-D):δ[ppm]=-55.5~-51.5(18F)、-78.5(4F)、-80.5(4F)、-91.0~-88.5(36F) 
 このようにして得られた実施例1~25の化合物(A)~(X)、(XX)を、それぞれ式(1)に当てはめたときのxの値、R、R、R、R、R、Rの構造を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
[比較例1]
 下記式(Y)で表される化合物を、特許文献1に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000022
(式(Y)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
[比較例2]
 下記式(Z)で表される化合物を、特許文献2に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000023
(式(Z)中のRfは、上記式(4-1)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
[比較例3]
 下記式(AA)で表される化合物を、特許文献3に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000024
(式(AA)中のRfは、上記式(4-2)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すjは4.5である。)
[比較例4]
 下記式(AB)で表される化合物を、特許文献3に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000025
(式(AB)中のRfは、上記式(4-2)で表されるPFPE鎖である;2つのRfにおいて、平均重合度を示すjは4.5である。)
[比較例5]
 下記式(AC)で表される化合物を、特許文献4に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000026
(式(AC)中のRfは、上記式(4-1)で表されるPFPE鎖である;3つのRfにおいて、平均重合度を示すhは7.0を表し、平均重合度を示すiは0を表す。)
[比較例6]
 下記式(AD)で表される化合物を、特許文献5に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000027
(式(AD)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
[比較例7]
 下記式(AE)で表される化合物を、特許文献5に記載の方法で合成した。
Figure JPOXMLDOC01-appb-C000028
(式(AE)中のRfは、上記式(4-1)で表されるPFPE鎖である;Rfにおいて、平均重合度を示すhは4.5を表し、平均重合度を示すiは4.5を表す。)
 このようにして得られた実施例1~25および比較例1~7の化合物の数平均分子量(Mn)を、上記の方法により測定した。その結果を表3および表4に示す。
 次に、以下に示す方法により、実施例1~25および比較例1~7で得られた化合物を用いて潤滑層形成用溶液を調製した。そして、得られた潤滑層形成用溶液を用いて、以下に示す方法により、磁気記録媒体の潤滑層を形成し、実施例1~25および比較例1~7の磁気記録媒体を得た。
「潤滑層形成用溶液」
 実施例1~25および比較例1~7で得られた化合物を、それぞれフッ素系溶媒であるバートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)に溶解し、保護層上に塗布した時の膜厚が9.0Å~9.5ÅになるようにバートレルXFで希釈し、潤滑層形成用溶液とした。
「磁気記録媒体」
 直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けた磁気記録媒体を用意した。保護層は、炭素からなるものとした。
 保護層までの各層の形成された磁気記録媒体の保護層上に、実施例1~25および比較例1~7の潤滑層形成用溶液を、ディップ法により塗布した。なお、ディップ法は、浸漬速度10mm/sec、浸漬時間30sec、引き上げ速度1.2mm/secの条件で行った。
 その後、潤滑層形成用溶液を塗布した磁気記録媒体を恒温槽に入れ、潤滑層形成用溶液中の溶媒を除去して保護層と潤滑層との密着性を向上させる熱処理を、120℃で10分間行うことにより保護層上に潤滑層を形成し、磁気記録媒体を得た。
(膜厚測定)
 このようにして得られた実施例1~25および比較例1~7の磁気記録媒体の有する潤滑層の膜厚を、FT-IR(商品名:Nicolet iS50、Thermo Fisher Scientific社製)を用いて測定した。その結果を表3および表4に示す。
 次に、実施例1~25および比較例1~7の磁気記録媒体に対して、以下に示す化学物質耐性試験およびピックアップ特性試験を行なった。
[化学物質耐性試験]
 以下に示す方法により、高温環境下で汚染物質を生成させる環境物質による磁気記録媒体の汚染を調べた。環境物質としてSiイオンを用い、環境物質によって生成された磁気記録媒体を汚染する汚染物質の量としてSi吸着量を測定した。
 具体的には、評価対象である磁気記録媒体を、温度85℃、湿度0%の高温環境下で、シロキサン系Siゴムの存在下に240時間保持した。次に、磁気記録媒体の表面に存在するSi吸着量を、二次イオン質量分析法(SIMS)を用いて分析測定し、Siイオンによる汚染の程度をSi吸着量として評価した。Si吸着量の評価は、比較例1の結果を1.00としたときの数値を用いて、以下の評価基準に基づいて評価した。その結果を表3および表4に示す。
「評価基準」
◎(優):Si吸着量が0.70未満(Si吸着量が非常に少ない)
〇(良):Si吸着量が0.70以上0.90未満(Si吸着量が少ない)
△(可):Si吸着量が0.90以上1.10未満(Si吸着量が多い)
×(不可):Si吸着量が1.10以上(Si吸着量が非常に多い)
[ピックアップ特性試験]
 スピンスタンドに磁気記録媒体および磁気ヘッドを装着し、常温減圧下(約250torr)で回転を行い、10分間磁気ヘッドを定点浮上させた。その後、磁気ヘッドの磁気記録媒体と相対する面を、ESCA(Electron Spectroscopy for Chemical Analysis)分析装置を用いて分析した。ESCA分析装置を用いた分析により得られたフッ素由来ピークの強度(信号強度(a.u.))は、磁気ヘッドへの潤滑剤の付着量を示す。得られた信号強度を用いて、以下に示す評価基準により、ピックアップ特性を評価した。その結果を表3および表4に示す。
「評価基準」
◎(優):信号強度160以下(付着量が非常に少ない)
〇(良):信号強度161~300(付着量が少ない)
△(可):信号強度301~1000(付着量が多い)
×(不可):信号強度1001以上(付着量が非常に多い)
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 表3に示すように、化合物(A)~(X)、(XX)のいずれかを用いて形成した潤滑層を有する実施例1~25の磁気記録媒体は、いずれも化学物質耐性試験およびピックアップ特性試験の評価が◎(優)または〇(良)であった。このことから、実施例1~25の磁気記録媒体の潤滑層は、化学物質耐性が良好であり、ピックアップ抑制効果が高いことが確認できた。
 これは、化合物(A)~(X)、(XX)が、いずれも式(1)で表される含フッ素エーテル化合物であることによるものであると推定される。より詳細には、化合物(A)~(X)、(XX)は、いずれもパーフルオロポリエーテル鎖(R)と末端基(R)との間に配置されたR、Rと末端基(R)との間に配置されたR、Rを2~3つ有する場合にR同士の間に配置されるRが、いずれも2級水酸基を含まず、含フッ素エーテル化合物の鎖状構造から分岐してエーテル結合している側鎖部分を有し、側鎖部分が、先端に1級水酸基が配置され、1級水酸基の結合している炭素原子と、主鎖部分の炭素原子と結合している酸素原子とを結合する、メチレン基(-CH-)を含む連結基を有することによるものであると推定される。
 これに対し、表4に示すように、化合物(Y)~(AE)のいずれかを用いて形成した潤滑層を有する比較例1~7は、いずれも化学物質耐性試験およびピックアップ特性試験の評価が△(可)または×(不可)であった。
 これは、比較例1~6では、パーフルオロポリエーテル鎖と末端基との間に配置された連結基、および/またはパーフルオロポリエーテル鎖同士の間に配置された連結基が、2級水酸基を含む化合物(Y)~(AD)を用いて、潤滑層を形成したためであると推定される。
 また、比較例7では、2級水酸基を含まない化合物(AE)を用いて潤滑層を形成している。しかし、化合物(AE)は、パーフルオロポリエーテル鎖と末端基との間に、含フッ素エーテル化合物の鎖状構造から分岐してエーテル結合している側鎖部分を含む連結基がない。より詳細には、化合物(AE)の両端部にそれぞれ配置されている2つのヒドロキシメチル基(-CHOH)は、含フッ素エーテル化合物の鎖状構造を形成している3級炭素とエーテル結合しているものではないため、柔軟性が不十分である。また、化合物(AE)では、両端部にそれぞれ配置されている2つの1級水酸基が、含フッ素エーテル化合物の鎖状構造を形成している3級炭素と1つのメチレン基を介して結合している。このため、化合物(AE)では、両端部にそれぞれ配置されている3級炭素と2つの1級水酸基との距離が近く、2つの1級水酸基の運動がいずれも、嵩高い3級炭素に阻害されやすい。これらのことから、化合物(AE)を用いて形成した潤滑層を有する比較例7では、化合物(AE)中の1級水酸基周辺の流動性が不十分となり、1級水酸基と保護層上の活性点との相互作用に起因する吸着能が不足して、化学物質耐性試験およびピックアップ特性試験の評価が劣る結果になったものと推定される。
 また、表3に示すように、実施例1~25の中でも、2級水酸基を含まない化合物(A)~(C)、(G)~(X)、(XX)を用いて形成した潤滑層を有する実施例1~3、7~25は、いずれも化学物質耐性試験の評価が◎(優)であり、非常に良好な結果であった。このことから、2級水酸基を全く含まない化合物を用いることにより、RおよびRに2級水酸基が含まれる化合物を用いる場合と比較して、より一層、化学物質耐性の良好な潤滑層が得られることが確認できた。
 また、表3に示すように、実施例1、3は、いずれもピックアップ特性試験の評価が◎(優)であり、非常に良好な結果であった。これに対し、実施例2は、ピックアップ特性試験の評価が〇(良)であった。
 これは、実施例1、3では、R(=R)に含まれる水酸基とR(=R)に含まれる3級炭素との間に介在する炭素原子数が2以上である化合物(A)、(C)を用いているのに対し、実施例2では、R(=R)に含まれる水酸基とR(=R)に含まれる3級炭素との間に介在する炭素原子数が1である化合物(B)を用いているためである。この差異により、化合物(A)、(C)では、化合物(B)と比較して、R(=R)に含まれる水酸基と、R(=R)との距離がより適正とされている。その結果、化合物(A)、(C)では、化合物(B)と比較して、R(=R)に含まれる1級水酸基の運動が、R(=R)の有する1級水酸基、およびR(=R)に含まれる嵩高い3級炭素に阻害されにくいものと推定される。
 また、表3に示すように、実施例4、5は、いずれもピックアップ特性試験の評価が◎(優)であり、非常に良好な結果であった。これに対し、実施例6は、ピックアップ特性試験の評価が〇(良)であった。
 これは、実施例4、5では、RおよびRが剛直な構造を含まない化合物(D)、(E)を用いているのに対し、実施例6では、RおよびRが比較的剛直なフェニル基を含む化合物(F)を用いているためである。この差異により、化合物(D)、(E)では、化合物(F)と比較して、R(=R)に含まれる水酸基の運動が阻害されにくく、RおよびR中の水酸基が自由に運動できるためであると推定される。
 本発明は、優れた化学物質耐性を有しピックアップを抑制できる潤滑層を形成できる含フッ素エーテル化合物を提供する。
 本発明の含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を用いることにより、厚みが薄くても、化学物質耐性が良好で、ピックアップ抑制効果の高い潤滑層を形成できる。
 10・・・磁気記録媒体、11・・・基板、12・・・付着層、13・・・軟磁性層、14・・・第1下地層、15・・・第2下地層、16・・・磁性層、17・・・保護層、18・・・潤滑層。

Claims (13)

  1.  下記式(1)で表されることを特徴とする、含フッ素エーテル化合物。
    -R-CH-R[-CH-R-CH-R-CH-R-R  (1)
    (式(1)中、RおよびRはそれぞれ独立に、炭素原子数1~50の有機基である;Rは、下記式(2-1)または(2-2)で表される2価の連結基である;Rは、下記式(2-3)または(2-4)で表される2価の連結基である;xは、0~2の整数を表す;Rは、パーフルオロポリエーテル鎖である;xが1または2である場合、2つまたは3つのRは一部または全部が同じであってもよいし、それぞれ異なっていてもよい;Rは、下記式(3-1)または(3-2)で表される2価の連結基である;xが2である場合、2つのRは同じであってもよいし、それぞれ異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000001
    (式(2-1)中、n1は2~4の整数を表す;式(2-1)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
    (式(2-2)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
    (式(2-3)中、n2は2~4の整数を表す;式(2-3)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
    (式(2-4)中、炭素原子に結合している点線はRと結合している結合手を示し、酸素原子に結合している点線はメチレン基と結合している結合手を示す。)
    (式(3-1)中、n3は2~4の整数を表す;y1は1~3の整数を表す;y2は1~3の整数を表す;y1、y2のうち少なくとも一方は1である;左側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示し、右側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示す。)
    (式(3-2)中、y3は1~3の整数を表す;y4は1~3の整数を表す;y3、y4のうち少なくとも一方は1である;左側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示し、右側の酸素原子に結合している点線はR側のメチレン基と結合している結合手を示す。)
  2.  前記式(1)におけるRが前記式(2-1)であり、Rが前記式(2-3)であり、x個のRが全て前記式(3-1)であり、前記式(3-1)におけるy1が1であり、かつy2が1である、請求項1に記載の含フッ素エーテル化合物。
  3.  前記式(2-1)におけるn1、前記式(2-3)におけるn2、および前記式(3-1)におけるn3の値が全て同じである、請求項2に記載の含フッ素エーテル化合物。
  4.  前記式(1)におけるRが前記式(2-2)であり、Rが前記式(2-4)であり、x個のRが全て前記式(3-2)であり、前記式(3-2)におけるy3が1であり、かつy4が1である、請求項1に記載の含フッ素エーテル化合物。
  5.  前記式(1)におけるRおよびRはそれぞれ独立に、極性基を有する有機基、炭素-炭素不飽和結合を有する有機基、極性基と炭素-炭素不飽和結合の両方を有する有機基のいずれかであり、
     前記極性基が、水酸基、アミノ基、カルボキシ基、ホルミル基、カルボニル基、スルホ基、シアノ基、およびアミド結合を有する基からなる群から選ばれる少なくとも1種であり、
     前記炭素-炭素不飽和結合が、置換基を有してもよい芳香族炭化水素基、不飽和複素環基、アルケニル基、およびアルキニル基からなる群から選ばれる少なくとも1種である、請求項1に記載の含フッ素エーテル化合物。
  6.  前記式(1)におけるRとRに含まれる極性基の合計数が1~4である、請求項1または請求項5に記載の含フッ素エーテル化合物。
  7.  前記式(1)におけるR-R-とR-R-が同じである、請求項1または請求項5に記載の含フッ素エーテル化合物。
  8.  前記式(1)における(x+1)個のRがそれぞれ独立に、下記式(4)で表されるパーフルオロポリエーテル鎖である、請求項1または請求項5に記載の含フッ素エーテル化合物。
     -(CFw1-O-(CFO)w2-(CFCFO)w3-(CFCFCFO)w4-(CFCFCFCFO)w5-(CFw6-   (4)
    (式(4)中、w2、w3、w4、w5は平均重合度を示し、それぞれ独立に0~20を表す;ただし、w2、w3、w4、w5の全てが同時に0になることはない;w1、w6は、CFの数を表す平均値であり、それぞれ独立に1~3を表す;式(4)における繰り返し単位である(CFO)、(CFCFO)、(CFCFCFO)、(CFCFCFCFO)の配列順序には、特に制限はない。)
  9.  前記式(1)における(x+1)個のRがそれぞれ独立に、下記式(4-1)~(4-4)で表されるパーフルオロポリエーテル鎖から選ばれるいずれか1種である、請求項1または請求項5に記載の含フッ素エーテル化合物。
     -CF-(OCFCF-(OCF-OCF-  (4-1)
    (式(4-1)中、hおよびiは平均重合度を示し、hは1~20を表し、iは0~20を表す。)
     -CFCF-(OCFCFCF-OCFCF-  (4-2)
    (式(4-2)中、jは平均重合度を示し、1~15を表す。)
     -CFCFCF-(OCFCFCFCF-OCFCFCF-  (4-3)
    (式(4-3)中、kは平均重合度を示し、1~10を表す。)
     -(CFw7-O-(CFCFCFO)w8-(CFCFO)w9-(CFw10-  (4-4)
    (式(4-4)中、w8、w9は平均重合度を示し、それぞれ独立に1~20を表す;w7、w10は、CFの数を表す平均値であり、それぞれ独立に1~2を表す。)
  10.  数平均分子量が500~10000の範囲内である、請求項1または請求項5に記載の含フッ素エーテル化合物。
  11.  請求項1または請求項5に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
  12.  基板上に、少なくとも磁性層と、保護層と、潤滑層とが順次設けられた磁気記録媒体であって、
     前記潤滑層が、請求項1または請求項5に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
  13.  前記潤滑層の平均膜厚が、0.5nm~2.0nmである、請求項12に記載の磁気記録媒体。
PCT/JP2023/018608 2022-05-20 2023-05-18 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 WO2023224095A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022083154 2022-05-20
JP2022-083154 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023224095A1 true WO2023224095A1 (ja) 2023-11-23

Family

ID=88835287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018608 WO2023224095A1 (ja) 2022-05-20 2023-05-18 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Country Status (1)

Country Link
WO (1) WO2023224095A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013785A1 (ja) * 2007-07-23 2009-01-29 Fujitsu Limited 潤滑剤、磁気記録媒体およびヘッドスライダ
WO2017154403A1 (ja) * 2016-03-10 2017-09-14 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131993A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021157563A1 (ja) * 2020-02-07 2021-08-12 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP2021123575A (ja) * 2020-02-08 2021-08-30 Jnc株式会社 エーテル化合物およびその誘導体、並びに潤滑油基油
WO2021251335A1 (ja) * 2020-06-11 2021-12-16 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013785A1 (ja) * 2007-07-23 2009-01-29 Fujitsu Limited 潤滑剤、磁気記録媒体およびヘッドスライダ
WO2017154403A1 (ja) * 2016-03-10 2017-09-14 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131993A1 (ja) * 2019-12-23 2021-07-01 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021157563A1 (ja) * 2020-02-07 2021-08-12 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP2021123575A (ja) * 2020-02-08 2021-08-30 Jnc株式会社 エーテル化合物およびその誘導体、並びに潤滑油基油
WO2021251335A1 (ja) * 2020-06-11 2021-12-16 昭和電工株式会社 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Similar Documents

Publication Publication Date Title
JP7213813B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7149947B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP6967015B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021020066A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
CN114845984B (zh) 含氟醚化合物、磁记录介质用润滑剂及磁记录介质
JP7435589B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
CN114341094B (zh) 含氟醚化合物、磁记录介质用润滑剂及磁记录介质
WO2019087548A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2019049585A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021131993A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7138644B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021132252A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2021090940A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023286626A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
JP7447903B2 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022039079A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224095A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024048569A1 (ja) 含フッ素エーテル化合物およびその製造方法、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024071392A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024024781A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023224093A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023112813A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2024071399A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2023033055A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
WO2022163708A1 (ja) 含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024521980

Country of ref document: JP