WO2022158150A1 - 非水電解質二次電池用負極活物質及び非水電解質二次電池用負極活物質の製造方法 - Google Patents
非水電解質二次電池用負極活物質及び非水電解質二次電池用負極活物質の製造方法 Download PDFInfo
- Publication number
- WO2022158150A1 WO2022158150A1 PCT/JP2021/044846 JP2021044846W WO2022158150A1 WO 2022158150 A1 WO2022158150 A1 WO 2022158150A1 JP 2021044846 W JP2021044846 W JP 2021044846W WO 2022158150 A1 WO2022158150 A1 WO 2022158150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- electrode active
- sio
- particles
- Prior art date
Links
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 215
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000002245 particle Substances 0.000 claims abstract description 172
- 150000003377 silicon compounds Chemical class 0.000 claims abstract description 83
- 238000007599 discharging Methods 0.000 claims abstract description 60
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 claims abstract description 42
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 33
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000001301 oxygen Substances 0.000 claims abstract description 29
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 27
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 76
- 238000007600 charging Methods 0.000 claims description 69
- 229910004283 SiO 4 Inorganic materials 0.000 claims description 55
- 239000013078 crystal Substances 0.000 claims description 23
- 150000001875 compounds Chemical class 0.000 claims description 22
- 239000011149 active material Substances 0.000 claims description 17
- 238000002441 X-ray diffraction Methods 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 12
- 239000003575 carbonaceous material Substances 0.000 claims description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 4
- 230000002441 reversible effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 24
- 229910007562 Li2SiO3 Inorganic materials 0.000 abstract 5
- 239000010410 layer Substances 0.000 description 52
- 230000000052 comparative effect Effects 0.000 description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 29
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 25
- -1 MyO metal oxide Chemical class 0.000 description 25
- 229910001416 lithium ion Inorganic materials 0.000 description 25
- 238000010438 heat treatment Methods 0.000 description 24
- 229910052744 lithium Inorganic materials 0.000 description 23
- 229910052814 silicon oxide Inorganic materials 0.000 description 23
- 239000002904 solvent Substances 0.000 description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 19
- 238000003780 insertion Methods 0.000 description 18
- 230000037431 insertion Effects 0.000 description 18
- 239000010703 silicon Substances 0.000 description 15
- 239000008151 electrolyte solution Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000007774 positive electrode material Substances 0.000 description 14
- 229910052710 silicon Inorganic materials 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 239000002002 slurry Substances 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 11
- 239000002131 composite material Substances 0.000 description 10
- 239000002344 surface layer Substances 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 8
- 238000005481 NMR spectroscopy Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 239000002388 carbon-based active material Substances 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 230000002427 irreversible effect Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000004020 conductor Substances 0.000 description 7
- 229910052736 halogen Inorganic materials 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000004210 ether based solvent Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 150000005676 cyclic carbonates Chemical class 0.000 description 5
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 5
- 239000011883 electrode binding agent Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000002409 silicon-based active material Substances 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 4
- 239000003125 aqueous solvent Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 150000005678 chain carbonates Chemical class 0.000 description 4
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000033116 oxidation-reduction process Effects 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- GBROPGWFBFCKAG-UHFFFAOYSA-N picene Chemical compound C1=CC2=C3C=CC=CC3=CC=C2C2=C1C1=CC=CC=C1C=C2 GBROPGWFBFCKAG-UHFFFAOYSA-N 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 239000002210 silicon-based material Substances 0.000 description 4
- 239000011871 silicon-based negative electrode active material Substances 0.000 description 4
- 239000011863 silicon-based powder Substances 0.000 description 4
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 3
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000005004 MAS NMR spectroscopy Methods 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 229920000265 Polyparaphenylene Polymers 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000007323 disproportionation reaction Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000005001 laminate film Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 238000004400 29Si cross polarisation magic angle spinning Methods 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 2
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 2
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 150000008053 sultones Chemical class 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 2
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 2
- 125000005580 triphenylene group Chemical group 0.000 description 2
- AVPYLKIIPLFMHQ-UHFFFAOYSA-N 1,2,6-oxadithiane 2,2,6,6-tetraoxide Chemical compound O=S1(=O)CCCS(=O)(=O)O1 AVPYLKIIPLFMHQ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- MOVRNJGDXREIBM-UHFFFAOYSA-N aid-1 Chemical compound O=C1NC(=O)C(C)=CN1C1OC(COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=O)OC2C(OC(C2)N2C3=C(C(NC(N)=N3)=O)N=C2)CO)C(O)C1 MOVRNJGDXREIBM-UHFFFAOYSA-N 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- VDGKFLGYHYBDQC-UHFFFAOYSA-N difluoromethyl methyl carbonate Chemical compound COC(=O)OC(F)F VDGKFLGYHYBDQC-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- PIQRQRGUYXRTJJ-UHFFFAOYSA-N fluoromethyl methyl carbonate Chemical compound COC(=O)OCF PIQRQRGUYXRTJJ-UHFFFAOYSA-N 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 238000004008 high resolution magic-angle spinning Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical class [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical class [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/86—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode active material for non-aqueous electrolyte secondary batteries and a method for producing the negative electrode active material for non-aqueous electrolyte secondary batteries.
- lithium-ion secondary batteries are highly expected because they are easy to make small and have high capacity, and they can obtain higher energy density than lead-acid batteries and nickel-cadmium batteries.
- the lithium-ion secondary battery described above includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the negative electrode contains a negative electrode active material involved in charge-discharge reactions.
- the negative electrode active material expands and contracts during charging and discharging, so cracking occurs mainly near the surface layer of the negative electrode active material.
- an ionic substance is generated inside the active material, making the negative electrode active material fragile.
- a new surface is generated thereby increasing the reaction area of the active material.
- a decomposition reaction of the electrolytic solution occurs on the new surface, and a film, which is a decomposition product of the electrolytic solution, is formed on the new surface, so that the electrolytic solution is consumed.
- cycle characteristics tend to deteriorate.
- silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see Patent Document 1, for example).
- a carbon material electroconductive material
- an active material containing silicon and oxygen is produced, and an active material layer with a high oxygen ratio is formed in the vicinity of the current collector (for example, see Patent Document 3).
- oxygen is contained in the silicon active material, and the average oxygen content is 40 at % or less, and the oxygen content is increased near the current collector. (see, for example, Patent Document 4).
- a nanocomposite containing a Si phase, SiO 2 and MyO metal oxide is used to improve the initial charge/discharge efficiency (see Patent Document 5, for example).
- the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios near the interface between the active material and the current collector is 0.4 or less (see Patent Document 7, for example).
- a metal oxide containing lithium is used (see, for example, Patent Document 8).
- a hydrophobic layer such as a silane compound is formed on the surface layer of the silicon material (see, for example, Patent Document 9).
- silicon oxide is used, and conductivity is imparted by forming a graphite film on the surface layer (see, for example, Patent Document 10).
- broad peaks appear at 1330 cm ⁇ 1 and 1580 cm ⁇ 1 with respect to the shift values obtained from the RAMAN spectrum of the graphite film, and their intensity ratio I 1330 /I 1580 is 1.5 ⁇ I 1330 /I 1580 ⁇ 3.
- particles having a silicon microcrystalline phase dispersed in silicon dioxide are used in order to increase battery capacity and improve cycle characteristics (see, for example, Patent Document 11).
- a silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1:y (0 ⁇ y ⁇ 2) is used (see Patent Document 12, for example).
- Non-Patent Document 1 Hitachi Maxell began shipments of prismatic secondary batteries for smartphones that adopted nanosilicon composites in June 2010 (see, for example, Non-Patent Document 1). .
- the silicon oxide proposed by Hohl is a composite of Si 0+ to Si 4+ and has various oxidation states (see Non-Patent Document 2).
- Kapaklis also proposed a disproportionated structure in which silicon oxide is divided into Si and SiO 2 by applying a thermal load (see Non-Patent Document 3).
- Miyachi et al. focused on Si and SiO2 that contribute to charging and discharging (see Non-Patent Document 4), and Yamada et al. (See Non-Patent Document 5).
- the above reaction formula shows that Si and SiO 2 that constitute silicon oxide react with Li and separate into Li silicide, Li silicate, and partly unreacted SiO 2 .
- the Li silicate produced here is irreversible, and is said to be a stable substance that does not release Li once formed.
- the capacity per weight calculated from this reaction formula has a value close to the experimental value, and is recognized as a reaction mechanism of silicon oxide.
- Kim et al. identified Li silicate, an irreversible component associated with charging and discharging of silicon oxide, as Li 4 SiO 4 using 7 Li-MAS-NMR and 29 Si-MAS-NMR (see Non-Patent Document 6). ).
- lithium ion secondary battery comprising a negative electrode using a silicon material as a main material.
- lithium ion secondary batteries using a silicon material are desired to have initial charge/discharge characteristics and cycle characteristics that are close to those of lithium ion secondary batteries using a carbon-based active material. Therefore, the cycle characteristics and the initial charge/discharge characteristics have been improved by using silicon oxides modified by the insertion and partial elimination of Li as the negative electrode active material.
- the present invention has been made in view of the above problems, and provides a negative electrode active material capable of increasing battery capacity with improved initial efficiency, sufficient battery cycle characteristics, and input characteristics, and such a non-aqueous It aims at providing the manufacturing method of the negative electrode active material for electrolyte secondary batteries.
- the present invention provides a negative electrode active material for a non-aqueous electrolyte secondary battery containing negative electrode active material particles
- the negative electrode active material particles contain silicon compound particles containing a silicon compound containing oxygen, At least part of the surface of the silicon compound particles is coated with a carbon layer,
- the silicon compound particles contain Li 2 SiO 3 as Li silicate, At least part of the Li 2 SiO 3 is changed to Li 4 SiO 4 by charging and discharging the negative electrode active material particles one or more times, Before charging and discharging the negative electrode active material particles, the abundance of Li 2 SiO 3 was higher than the abundance of Li 4 SiO 4 , and after 100 charge-discharge cycles, the abundance of Li 4 SiO 4 was Li 2 SiO 3 .
- To provide a negative electrode active material for a non-aqueous electrolyte secondary battery characterized in that the abundance ratio of
- the negative electrode active material for non-aqueous electrolyte secondary batteries of the present invention the effect of improving Li diffusibility in the bulk can be obtained, and the input characteristics (high-speed chargeability) required by the market can be improved. Therefore, according to the negative electrode active material for non-aqueous electrolyte secondary batteries of the present invention, excellent high-speed chargeability can be achieved.
- the negative electrode active material particles contain silicon compound particles containing a silicon compound containing oxygen, the battery capacity can be improved.
- the silicon compound particles contain Li 2 SiO 3 as Li silicate, not only can excellent cycle characteristics and excellent initial charge-discharge characteristics be achieved, but also the slurry can be stabilized before coating, resulting in a good An electrode is obtained and the battery properties can be further improved.
- the Li 4 SiO 4 is preferably a reversible component that contributes to charging and discharging when the negative electrode active material particles are charged and discharged at least 10 times.
- Such a negative electrode active material can further improve high-speed chargeability.
- the negative electrode active material particles have a peak attributed to the Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ rays before charging and discharging the negative electrode active material particles, and the crystal plane has a peak.
- the corresponding crystallite size is 5.0 nm or less, and the ratio of the peak intensity A due to the Si (111) crystal face to the peak intensity B due to the Li 2 SiO 3 (111) crystal face is A/ B is the following formula (1) 0.4 ⁇ A/B ⁇ 1.0 (1) is preferably satisfied.
- the negative electrode active material particles preferably have a median diameter of 5.5 ⁇ m or more and 15 ⁇ m or less.
- the median diameter is within the above range, it is possible to suppress the reaction with the electrolytic solution and the expansion of the active material due to charging and discharging, and prevent deterioration of the battery characteristics.
- the true density of the negative electrode active material particles before charge/discharge is desirably 2.3 g/cm 3 or more and 2.4 g/cm 3 or less.
- the density of the electrode can be increased while suppressing the occurrence of cracks during expansion and contraction.
- the negative electrode active material particles desirably have an oxygen-containing carbon layer present in the state of a compound in which carbon atoms and oxygen atoms are chemically bonded, at least on the outermost surface of the carbon layer.
- a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery containing negative electrode active material particles comprising: a step of producing silicon compound particles containing a silicon compound containing oxygen; a step of coating at least part of the silicon compound particles with a carbon material; A step of inserting Li into the silicon compound particles and causing the silicon compound particles to contain Li 2 SiO 3 as Li silicate, thereby producing the negative electrode active material particles, At least part of the Li 2 SiO 3 is changed to Li 4 SiO 4 by charging and discharging the negative electrode active material particles one or more times from the prepared negative electrode active material particles.
- a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery characterized by producing a negative electrode active material for a non-aqueous electrolyte secondary battery containing the negative electrode active material particles.
- the negative electrode for a non-aqueous electrolyte secondary battery can increase the battery capacity along with the improvement of the initial efficiency, and achieve sufficient battery cycle characteristics and input characteristics. Active materials can be manufactured.
- the negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention has high initial efficiency, high capacity, high cycle characteristics, and high efficiency when used as a negative electrode active material for secondary batteries. Input characteristics (excellent high-speed chargeability) can be obtained.
- a negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention good cycle characteristics can be obtained, and when used as a negative electrode active material for a secondary battery, high capacity and good initial charge/discharge can be achieved. It is possible to produce a negative electrode active material that has properties (initial efficiency) and further exhibits excellent high-speed chargeability.
- FIG. 1 is an exploded view showing a configuration example (laminate film type) of a lithium ion secondary battery containing the negative electrode active material of the present invention.
- FIG. 4 is an XRD chart of negative electrode active materials of Comparative Examples 1 and 2; 4 is an XRD chart of each negative electrode active material of Examples 1 and 5.
- FIG. 4 is an XRD chart of each negative electrode active material of Comparative Examples 3 and 4.
- FIG. 4 is an XRD chart of each negative electrode active material of Examples 2 to 4.
- FIG. 3 is a diagram showing changes in the 29 Si-MAS-NMR spectrum of the negative electrode active material of Example 2 with charge and discharge.
- FIG. 2 shows XPS spectra of the surfaces of negative electrode active materials of Examples 2 and 12 and Comparative Example 1.
- Lithium ion secondary batteries using this silicon oxide are desired to have initial charge/discharge characteristics that are close to those of lithium ion secondary batteries using a carbonaceous active material. Further, in Li-doped SiO capable of improving initial charge-discharge characteristics, cycle characteristics close to those of carbon-based active materials are desired.
- no negative electrode active material has been proposed that exhibits battery characteristics equivalent to those of carbon-based active materials, particularly excellent high-speed chargeability.
- the present inventors have found that when used as a negative electrode active material for a secondary battery, it is possible to improve the initial charge-discharge characteristics while obtaining high cycle characteristics, and as a result, to increase the battery capacity.
- the slurry mainly contains Li 2 SiO 3 as a silicate, but Li 2 At least part of SiO 3 is changed to Li 4 SiO 4 , and after 100 charge/discharge cycles, any negative electrode active material containing silicon compound particles in which the abundance ratio of Li 4 SiO 4 is higher than the abundance ratio of Li 2 SiO 3
- the present inventors have found that an excellent high-speed charging property can be exhibited by using a high-speed charging method, and have arrived at the present invention.
- the present invention provides a negative electrode active material for a non-aqueous electrolyte secondary battery containing negative electrode active material particles
- the negative electrode active material particles contain silicon compound particles containing a silicon compound containing oxygen, At least part of the surface of the silicon compound particles is coated with a carbon layer,
- the silicon compound particles contain Li 2 SiO 3 as Li silicate, At least part of the Li 2 SiO 3 is changed to Li 4 SiO 4 by charging and discharging the negative electrode active material particles one or more times, Before charging and discharging the negative electrode active material particles, the abundance of Li 2 SiO 3 was higher than the abundance of Li 4 SiO 4 , and after 100 charge-discharge cycles, the abundance of Li 4 SiO 4 was Li 2 SiO 3 .
- the present invention also provides a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery containing negative electrode active material particles, a step of producing silicon compound particles containing a silicon compound containing oxygen; a step of coating at least part of the silicon compound particles with a carbon material; A step of inserting Li into the silicon compound particles and causing the silicon compound particles to contain Li 2 SiO 3 as Li silicate, thereby producing the negative electrode active material particles, At least part of the Li 2 SiO 3 is changed to Li 4 SiO 4 by charging and discharging the negative electrode active material particles one or more times from the prepared negative electrode active material particles.
- the negative electrode active material of the present invention (hereinafter also referred to as a silicon-based negative electrode active material) contains negative electrode active material particles containing silicon compound particles (hereinafter also referred to as silicon-based negative electrode active material particles), so the battery capacity is improved. can.
- the silicon compound particles contain Li 2 SiO 3 as a silicate, it is possible to stabilize the slurry before coating, thereby obtaining a good electrode and improving battery characteristics.
- Li 2 SiO 3 is such that at least part of Li 2 SiO 3 is changed to Li 4 SiO 4 by charging and discharging the negative electrode active material particles one or more times,
- the abundance ratio of Li 2 SiO 3 is higher than the abundance ratio of Li 4 SiO 4 before charging and discharging the negative electrode active material particles, and the abundance ratio of Li 4 SiO 4 is higher than that of Li 2 SiO 3 after charging and discharging 100 times. It is more than the existence rate. That is, Li 2 SiO 3 contained in the silicon compound particles is active in charging and discharging, and remains Li 2 SiO 3 in a slurry state, but changes to Li 4 SiO 4 in charging and discharging.
- Li silicate correlates with Li diffusion in the bulk.
- Li 4 SiO 4 is originally desirable, but since it is eluted during slurrying, it is considered unsuitable only during slurrying. Therefore, a phase structure is constructed such that Li 2 SiO 3 is converted to Li 4 SiO 4 in as few charge and discharge cycles as possible. Specifically, it is necessary to reverse the Li silicate that is mainly produced during at least 100 charge/discharge cycles.
- Li 4 SiO 4 exhibits reversibility in charging and discharging the negative electrode active material particles at least 10 times, that is, Li is desorbed to contribute to charging and discharging. is desirable.
- the state of Li silicate can be controlled by controlling the temperature during the process of inserting Li into the silicon compound particles and the subsequent heat treatment temperature. If the temperature at the time of Li insertion is not too low, it is possible to prevent Li from increasing in the vicinity of the particle surface, and a sufficient composition can be obtained by subsequent heat treatment. Also, if the temperature during Li insertion is not too high, the insertion step can be stably performed.
- the state of Li silicate can also be controlled by inserting Li into the silicon compound particles and then applying heat energy, as will be described later.
- Li 4 SiO 4 is said to be an irreversible component, but if the irreversible component is constructed in advance, the rate of improvement in input characteristics (high-speed chargeability) is slightly reduced.
- the abundance ratio of Li 2 SiO 3 and the abundance ratio of Li 4 SiO 4 are reversed during charging and discharging 100 times, and Li 4 SiO 4 is present in at least 10 charging and discharging cycles of the negative electrode active material particles. shows reversibility, even better high-speed chargeability can be exhibited.
- the silicon compound contain as little crystalline Si as possible.
- the silicon compound contain as little crystalline Si as possible.
- the crystallite size corresponding to the Si (111) crystal plane is desirably 5.0 nm or less, and Si is desirably substantially amorphous.
- Li 2 SiO 3 also exhibits crystallinity, but the higher the crystallinity of Li 2 SiO 3 , the more difficult it is to convert to Li 4 SiO 4 .
- there is an optimum range because it tends to be eluted into the slurry.
- the negative electrode active material particles have a peak attributed to the Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ rays before the negative electrode active material particles are charged and discharged.
- the crystallite size corresponding to the crystal face is 5.0 nm or less, and the ratio of the peak intensity A due to the Si (111) crystal face to the peak intensity B due to the Li 2 SiO 3 (111) crystal face A/B is the following formula (1) 0.4 ⁇ A/B ⁇ 1.0 (1) is preferably satisfied.
- the median diameter of the negative electrode active material particles is preferably 5.5 ⁇ m or more and 15 ⁇ m or less.
- the median diameter is within the above range, the reaction between the negative electrode active material particles and the electrolytic solution can be sufficiently suppressed, and deterioration of battery characteristics can be prevented. Moreover, if the median diameter is within the above range, the expansion of the active material due to charging and discharging can be suppressed, and the loss of the electronic contact can be prevented.
- the true density of the negative electrode active material particles before charge/discharge is desirably 2.3 g/cm 3 or more and 2.4 g/cm 3 or less.
- the true density of SiO is 2.2 g/cm 3 , and by increasing the density, the density of the electrode can be increased. Moreover, if it is the said appropriate range, it can prevent cracking from forming at the time of expansion contraction.
- This true density can be controlled by the type and amount of Li silicate, and the state of Li silicate can be controlled by inserting Li into silicon compound particles and then applying thermal energy, as described later.
- the active material particles before charging and discharging must be carbon-coated for the purpose of imparting conductivity.
- an oxygen-containing substance is used as a solvent for Li doping, and a decomposed product is formed on the surface layer of the material. After that, by performing heat treatment, a substance similar to the film structure generated by charging and discharging can be generated. As a result, it becomes possible to improve the characteristics of the battery.
- FIG. 1 shows a cross-sectional view of a negative electrode containing the negative electrode active material of the present invention.
- the negative electrode 10 has a structure in which a negative electrode active material layer 12 is provided on a negative electrode current collector 11 .
- the negative electrode active material layer 12 may be provided on both sides of the negative electrode current collector 11 or only on one side. Furthermore, the negative electrode current collector 11 may be omitted as long as the negative electrode active material of the present invention is used.
- the negative electrode current collector 11 is made of an excellent conductive material and has high mechanical strength.
- Examples of conductive materials that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
- the negative electrode current collector 11 preferably contains carbon (C) and sulfur (S) in addition to the main elements. This is because the physical strength of the negative electrode current collector is improved. This is because, in particular, in the case of having an active material layer that expands during charging, if the current collector contains the above element, it has the effect of suppressing deformation of the electrode including the current collector.
- the content of the above element is not particularly limited, it is preferably 100 ppm or less. This is because a higher deformation suppression effect can be obtained. Cycle characteristics can be further improved by such a deformation suppression effect.
- the surface of the negative electrode current collector 11 may or may not be roughened.
- the roughened negative electrode current collector is, for example, an electrolytically treated, embossed, or chemically etched metal foil.
- the non-roughened negative electrode current collector is, for example, a rolled metal foil.
- the negative electrode active material layer 12 contains the negative electrode active material of the present invention that can occlude (insert) and release (extract) lithium ions. Other materials such as a conductive aid may be included.
- the negative electrode active material includes negative electrode active material particles, and the negative electrode active material particles include silicon compound particles containing a silicon compound containing oxygen.
- the negative electrode active material layer 12 may contain a mixed negative electrode active material containing the negative electrode active material (silicon-based negative electrode active material) of the present invention and a carbon-based active material.
- a mixed negative electrode active material containing the negative electrode active material (silicon-based negative electrode active material) of the present invention and a carbon-based active material As a result, the electrical resistance of the negative electrode active material layer is reduced, and the expansion stress associated with charging can be alleviated.
- Examples of carbon-based active materials that can be used include pyrolytic carbons, cokes, vitreous carbon fibers, baked organic polymer compounds, and carbon blacks.
- the negative electrode active material particles contained in the negative electrode active material of the present invention contain silicon compound particles, and the silicon compound particles are silicon oxide materials containing a silicon compound containing oxygen.
- the ratio of silicon to oxygen constituting this silicon compound is preferably in the range of SiO x : 0.8 ⁇ x ⁇ 1.2. If x is 0.8 or more, the oxygen ratio is higher than that of simple silicon, so the cycle characteristics are good. If x is 1.2 or less, it is preferable because the resistance of the silicon oxide does not become too high. Above all, it is preferable that x is close to 1 in the composition of SiO x . This is because high cycle characteristics can be obtained. Note that the composition of the silicon compound in the present invention does not necessarily mean 100% purity, and may contain trace amounts of impurity elements.
- the silicon compound particles contain a Li compound. More specifically, the silicon compound particles contain Li 2 SiO 3 .
- the SiO 2 component part that becomes unstable when lithium is inserted and detached during charging and discharging of the battery is previously reformed into another lithium silicate, so it can be used during charging.
- the generated irreversible capacity can be reduced. Thereby, it is possible to suppress the decrease in capacity particularly at the beginning of the cycle.
- the irreversible capacity associated with charging and discharging can be further reduced by enlarging the Li silicate within the range in which the crystal growth of Si is suppressed. However, if it becomes too large, it will not contribute to charging and discharging, so there is an optimum range.
- the peak intensity ratio A/B is preferably 0.4 or more and 1.0 or less.
- the existence ratio of each of Li 4 SiO 4 and Li 2 SiO 3 inside the bulk of the silicon compound particles can be quantified by NMR (Nuclear Magnetic Resonance).
- NMR measurement can be performed, for example, under the following conditions. 29 Si-MAS-NMR (magic angle rotating nuclear magnetic resonance) - Apparatus: Bruker 700 NMR spectrometer, ⁇ Probe: 4 mm HR-MAS rotor 50 ⁇ L, ⁇ Sample rotation speed: 10 kHz, - Measurement environmental temperature: 25°C.
- the abundance ratio of Li 4 SiO 4 and Li 2 SiO 3 can be defined by the respective peak intensity ratios (peak height ratios) of the NMR.
- peak intensity ratios peak height ratios
- the degree of enlargement of Li silicate and the degree of crystallization of Si can be confirmed by XRD (X-ray Diffraction).
- XRD measurement can be performed, for example, under the following conditions.
- As an X-ray diffractometer, for example, D8 ADVANCE manufactured by Bruker can be used.
- the X-ray source was Cu K ⁇ rays, using a Ni filter, an output of 40 kV/40 mA, a slit width of 0.3°, a step width of 0.008°, and a counting time of 0.15 seconds per step from 10-40°. Measure up to
- the outermost C, O compound (compound in which carbon atoms and oxygen atoms are chemically bonded) of the carbon layer that covers at least part of the surface of the negative electrode active material particles is obtained by XPS (X-ray photoelectron sectroscopy). ) can be checked.
- XPS X-ray photoelectron sectroscopy
- PHI Quantera II manufactured by ULVAC-Phi, Inc. can be used.
- the X-ray beam diameter is ⁇ 100 ⁇ m, and a neutralization gun can be used.
- the negative electrode binder contained in the negative electrode active material layer 12 for example, one or more of polymer materials, synthetic rubbers, and the like can be used.
- polymeric materials include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, sodium polyacrylate, and carboxymethylcellulose.
- Synthetic rubbers include, for example, styrene-butadiene-based rubber, fluorine-based rubber, and ethylene propylene diene.
- the negative electrode conductive aid for example, one or more of carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotubes, and carbon nanofibers can be used.
- the negative electrode active material layer 12 is formed by, for example, a coating method.
- the coating method is a method in which the silicon-based negative electrode active material and the above-mentioned binder are mixed, and if necessary, a conductive aid and a carbon-based active material are mixed, and then the mixture is dispersed in an organic solvent or water and applied. .
- a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery containing negative electrode active material particles, a step of producing silicon compound particles containing a silicon compound containing oxygen; a step of coating at least part of the silicon compound particles with a carbon material; A step of inserting Li into the silicon compound particles and causing the silicon compound particles to contain Li 2 SiO 3 as Li silicate, thereby producing the negative electrode active material particles, At least part of the Li 2 SiO 3 is changed to Li 4 SiO 4 by charging and discharging the negative electrode active material particles one or more times from the prepared negative electrode active material particles.
- the abundance of Li 2 SiO 3 was higher than the abundance of Li 4 SiO 4 , and after 100 charge-discharge cycles, the abundance of Li 4 SiO 4 was Li 2 SiO 3 . further having a step of selecting those that satisfy the abundance ratio of Thus, a negative electrode active material for a non-aqueous electrolyte secondary battery containing the negative electrode active material particles is produced.
- the above-described negative electrode active material for non-aqueous electrolyte secondary batteries of the present invention can be produced.
- silicon compound particles containing a silicon compound containing oxygen are produced.
- silicon oxide represented by SiO x (0.5 ⁇ x ⁇ 1.6) as the silicon compound containing oxygen
- a raw material that generates silicon oxide gas is heated in the presence of an inert gas under reduced pressure in a temperature range of 900° C. to 1600° C. to generate silicon oxide gas.
- an inert gas for example, a mixture of metal silicon powder and silicon dioxide powder can be used.
- the mixing molar ratio is preferably in the range of 0.9 ⁇ metallic silicon powder/silicon dioxide powder ⁇ 1.2.
- the generated silicon oxide gas is solidified and deposited on the adsorption plate.
- the silicon oxide deposit is taken out while the temperature in the reactor is lowered to 100° C. or less, and pulverized by using a ball mill, a jet mill, or the like.
- Silicon compound particles can be produced in the manner described above.
- the Si crystallites in the silicon compound particles can be controlled by changing the vaporization temperature of the raw material that generates the silicon oxide gas or by heat treatment after the silicon compound particles are produced.
- a layer of carbon material (carbon layer) is generated on the surface of the silicon compound particles.
- Pyrolytic CVD is desirable as the method for producing the carbon material layer.
- An example of a method of producing a layer of carbon material by pyrolytic CVD is described below.
- silicon compound particles are set in a furnace.
- a hydrocarbon gas is introduced into the furnace to raise the temperature inside the furnace.
- the decomposition temperature is not particularly limited, it is preferably 950°C or lower, more preferably 850°C or lower. By setting the decomposition temperature to 950° C. or lower, unintended disproportionation of the active material particles can be suppressed.
- a carbon layer is formed on the surfaces of the silicon compound particles.
- the hydrocarbon gas used as the raw material of the carbon material is not particularly limited, but it is desirable that n ⁇ 3 in the C n H m composition. If n ⁇ 3, the production cost can be reduced, and the physical properties of the decomposition products can be improved.
- Li is inserted into the silicon compound particles produced as described above.
- negative electrode active material particles containing silicon compound particles into which lithium is inserted are produced.
- this modifies the silicon compound particles and produces a Li compound inside the silicon compound particles.
- the insertion of Li is preferably performed by an oxidation-reduction method.
- lithium can be inserted by first immersing the silicon active material particles in a solution A in which lithium is dissolved in an ether solvent.
- This solution A may further contain a polycyclic aromatic compound or a linear polyphenylene compound.
- active lithium can be desorbed from the silicon active material particles by immersing the silicon active material particles in a solution B containing a polycyclic aromatic compound or a derivative thereof.
- Solvents for this solution B can be, for example, ether solvents, ketone solvents, ester solvents, alcohol solvents, amine solvents, or mixed solvents thereof.
- the obtained silicon active material particles may be heat-treated under an inert gas. The heat treatment can stabilize the Li compound. After that, it may be washed with alcohol, alkaline water in which lithium carbonate is dissolved, weak acid, pure water, or the like.
- Ether solvents used for solution A include diethyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, or mixed solvents thereof. can be used. Among these, it is particularly preferable to use tetrahydrofuran, dioxane, or 1,2-dimethoxyethane. These solvents are preferably dehydrated and preferably deoxygenated.
- polycyclic aromatic compound contained in the solution A one or more of naphthalene, anthracene, phenanthrene, naphthacene, pentacene, pyrene, picene, triphenylene, coronene, chrysene and derivatives thereof can be used.
- chain polyphenylene compound one or more of biphenyl, terphenyl, and derivatives thereof can be used.
- polycyclic aromatic compound contained in solution B one or more of naphthalene, anthracene, phenanthrene, naphthacene, pentacene, pyrene, picene, triphenylene, coronene, chrysene, and derivatives thereof can be used.
- ether-based solvent for solution B diethyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and the like can be used. .
- Acetone, acetophenone, etc. can be used as the ketone-based solvent.
- ester solvent methyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and the like can be used.
- Methanol, ethanol, propanol, isopropyl alcohol, etc. can be used as alcohol-based solvents.
- amine-based solvent methylamine, ethylamine, ethylenediamine, etc. can be used.
- Li silicate is Li 4 SiO 4 , and if left as it is, it will be eluted when it is slurried, making it difficult to make it into a battery. Therefore, Li 4 SiO 4 is converted to Li 2 SiO 3 by heat treatment, but the degree of crystallization of Li silicate and Si changes depending on the temperature at this time.
- reaction temperature during Li insertion is also relevant.
- the crystallinity of Si is expressed in the heat treatment of the next step, although the crystallinity of Li silicate does not increase that much. becomes important. Therefore, for example, the reaction temperature during Li insertion can be determined according to the boiling point of the solvent used.
- the reactivity is low.
- the temperature at the time of Li insertion is too low, the reactivity is low.
- the temperature at the time of Li insertion is too low, the reactivity is low.
- the C,O compound in the outermost layer of the carbon layer covering part of the surface of the silicon compound particles does not contain oxygen, such as biphenyl, which is a linear polyphenylene compound.
- oxygen such as biphenyl, which is a linear polyphenylene compound.
- This stabilizing layer is called a pseudo SEI (Solid Electrolyte Interface) coating, and the formation of this stabilizing layer enables intelligent transfer of Li when used as a battery.
- SEI Solid Electrolyte Interface
- the Li silicate state can be controlled by subjecting the material to heat treatment at, for example, 500°C or higher and 650°C or lower for 1 to 24 hours after filtration.
- the heat treatment apparatus is not limited here, it is desirable to use a uniform heat treatment such as a rotary kiln.
- Li silicate states can be created by controlling the vacuum state, inert gas flow rate (internal pressure), retort thickness, and rotation speed as factors.
- Li silicate can be changed to another type as described above, and at that time, a more dense state can be formed. Thereby, the state of the Li silicate can be controlled, and the true density of the negative electrode active material particles before charging and discharging can be controlled.
- Li silicate can be controlled by adjusting various parameters as described above, and those skilled in the art can experimentally determine the conditions.
- Li 2 SiO 3 from the produced negative electrode active material particles is charged and discharged one or more times, so that at least part of Li 2 SiO 3 is changed to Li 4 SiO 4 . and the abundance ratio of Li 2 SiO 3 is higher than the abundance ratio of Li 4 SiO 4 before charging and discharging the negative electrode active material particles, and the abundance ratio of Li 4 SiO 4 is higher than that of Li 4 SiO 4 after charging and discharging 100 times. Those that satisfy the abundance ratio of Li 2 SiO 3 are selected. In the selection, for example, a test battery similar to the test coin battery described in the later examples is prepared using the prepared negative electrode active material, and this test coin battery is used for evaluation, and the evaluation results are obtained. can be sorted based on
- the negative electrode active material for non-aqueous electrolyte secondary batteries of the present invention is produced.
- a negative electrode for a secondary battery with a non-aqueous electrolyte can be produced, for example, according to the following procedure.
- the negative electrode active material produced as described above is mixed with other materials such as a negative electrode binder and a conductive aid to form a negative electrode mixture, and then an organic solvent or water is added to form a slurry. Next, the above slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode active material layer. At this time, heat pressing or the like may be performed as necessary.
- a negative electrode can be produced in the manner described above.
- the negative electrode active material of the present invention can be used in the negative electrode of nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries.
- the wound electrode body 31 has a separator between the positive electrode and the negative electrode and is wound. There is also a case where a laminate having a separator between the positive electrode and the negative electrode is housed without being wound.
- a positive electrode lead 32 is attached to the positive electrode and a negative electrode lead 33 is attached to the negative electrode. The outermost periphery of the electrode body is protected by a protective tape.
- the positive electrode lead 32 and the negative electrode lead 33 are, for example, led out in one direction from the inside of the exterior member 35 toward the outside.
- the positive electrode lead 32 is made of a conductive material such as aluminum
- the negative electrode lead 33 is made of a conductive material such as nickel or copper.
- the exterior member 35 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
- the outer peripheral edges of the fusion layer are fused together or adhered to each other with an adhesive or the like.
- the fused portion is, for example, a film such as polyethylene or polypropylene, and the metal portion is aluminum foil or the like.
- the protective layer is, for example, nylon or the like.
- An adhesive film 34 is inserted between the exterior member 35 and each of the positive electrode lead 32 and the negative electrode lead 33 to prevent outside air from entering.
- This material is, for example, polyethylene, polypropylene, polyolefin resin.
- the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, like the negative electrode 10 in FIG.
- the positive electrode current collector is made of a conductive material such as aluminum, for example.
- the positive electrode active material layer contains one or more of positive electrode materials capable of intercalating and deintercalating lithium ions. may contain In this case, the details of the positive electrode binder and the positive electrode conductive aid are the same as those of the negative electrode binder and the negative electrode conductive aid already described, for example.
- a lithium-containing compound is desirable as the positive electrode material.
- the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element.
- these positive electrode materials compounds containing at least one of nickel, iron, manganese and cobalt are preferred.
- These chemical formulas are represented by Li x M 1 O 2 or Li y M 2 PO 4 , for example.
- M 1 and M 2 represent at least one transition metal element.
- the values of x and y vary depending on the state of charge and discharge of the battery, they are generally represented by 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
- Examples of composite oxides containing lithium and a transition metal element include lithium-cobalt composite oxides (Li x CoO 2 ), lithium-nickel composite oxides (Li x NiO 2 ), lithium-nickel-cobalt composite oxides, and the like. .
- Examples of lithium-nickel-cobalt composite oxides include lithium-nickel-cobalt-aluminum composite oxides (NCA) and lithium-nickel-cobalt-manganese composite oxides (NCM).
- Phosphate compounds containing lithium and a transition metal element include, for example, lithium iron phosphate compounds (LiFePO 4 ) and lithium iron manganese phosphate compounds (LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1)). is mentioned.
- LiFePO 4 lithium iron phosphate compounds
- LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1) lithium iron manganese phosphate compounds
- the negative electrode has the same configuration as the negative electrode 10 for a lithium ion secondary battery shown in FIG.
- the negative electrode preferably has a larger negative electrode charge capacity than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material. Thereby, deposition of lithium metal on the negative electrode can be suppressed.
- the positive electrode active material layer is provided on part of both surfaces of the positive electrode current collector, and the negative electrode active material layer is similarly provided on part of both surfaces of the negative electrode current collector.
- the negative electrode active material layer provided on the negative electrode current collector is provided with a region where the facing positive electrode active material layer does not exist. This is for the purpose of stably designing a battery.
- the separator separates the lithium metal or the positive electrode from the negative electrode, and allows lithium ions to pass through while preventing current short circuit due to contact between the two electrodes.
- This separator is formed of a porous film made of synthetic resin or ceramic, for example, and may have a laminated structure in which two or more kinds of porous films are laminated.
- synthetic resins include polytetrafluoroethylene, polypropylene, and polyethylene.
- Electrode At least part of the active material layer or the separator is impregnated with a liquid non-aqueous electrolyte (electrolytic solution).
- electrolytic solution has an electrolytic salt dissolved in a solvent, and may contain other materials such as additives.
- Non-aqueous solvents include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran and the like.
- ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate it is desirable to use at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate. This is because better characteristics are obtained.
- the solvent contains at least one of a halogenated chain carbonate or a halogenated cyclic carbonate.
- a halogenated chain carbonate is a chain carbonate having halogen as a constituent element (at least one hydrogen is substituted with halogen).
- a halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is substituted with halogen).
- halogen is not particularly limited, but fluorine is preferred. This is because it forms a better film than other halogens. Moreover, the larger the number of halogens, the better. This is because the coating obtained is more stable and the decomposition reaction of the electrolyte is reduced.
- halogenated chain carbonates include fluoromethylmethyl carbonate and difluoromethylmethyl carbonate.
- Halogenated cyclic carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
- an unsaturated carbon-bonded cyclic carbonate As a solvent additive, it is preferable to contain an unsaturated carbon-bonded cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed.
- unsaturated carbon-bonded cyclic ester carbonates include vinylene carbonate and vinylethylene carbonate.
- sultone cyclic sulfonate
- solvent additive examples include propane sultone and propene sultone.
- the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
- Acid anhydrides include, for example, propanedisulfonic anhydride.
- the electrolyte salt can include, for example, any one or more of light metal salts such as lithium salts.
- lithium salts include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
- the content of the electrolyte salt is preferably 0.5 mol/kg or more and 2.5 mol/kg or less with respect to the solvent. This is because high ionic conductivity can be obtained.
- the laminated film type secondary battery described above can be manufactured, for example, by the following procedure.
- a positive electrode is produced using the positive electrode material described above.
- a positive electrode active material and, if necessary, a positive electrode binder, a positive electrode conductive aid, and the like are mixed to form a positive electrode mixture, which is then dispersed in an organic solvent to obtain a positive electrode mixture slurry.
- the mixture slurry is applied to the positive electrode current collector with a coating device such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
- the positive electrode active material layer is compression-molded using a roll press machine or the like. At this time, heating may be performed, and compression may be repeated multiple times.
- a negative electrode is manufactured by forming a negative electrode active material layer on the negative electrode current collector according to the same work procedure as that for manufacturing the negative electrode 10 described above.
- each active material layer is formed on both sides of the positive electrode and negative electrode current collectors. At this time, the active material coating lengths on both sides of both electrodes may be displaced (see FIG. 1).
- the positive electrode lead 32 is attached to the positive electrode current collector, and the negative electrode lead 33 is attached to the negative electrode current collector.
- the positive electrode and the negative electrode are laminated with a separator interposed therebetween, and then wound to produce the wound electrode body 31, and a protective tape is adhered to the outermost periphery thereof.
- the wound electrode body 31 is molded so as to have a flat shape.
- the insulating portions of the exterior members are bonded together by a heat-sealing method, and the wound electrode body is formed in a state where only one direction is open.
- the body 31 is encapsulated. Subsequently, an adhesive film is inserted between the positive electrode lead 32 and the negative electrode lead 33 and the exterior member 35 . Subsequently, a predetermined amount of the electrolyte prepared as described above is introduced from the open portion, and vacuum impregnation is performed. After impregnation, the release portion is adhered by a vacuum heat-sealing method. As described above, the laminate film type secondary battery 30 can be manufactured.
- the negative electrode utilization rate during charging and discharging is preferably 93% or more and 99% or less. If the negative electrode utilization rate is in the range of 93% or more, the first charge efficiency does not decrease, and the battery capacity can be greatly improved. In addition, if the negative electrode utilization rate is in the range of 99% or less, the safety can be ensured without precipitation of Li.
- negative electrode active material particles were produced as follows. A raw material was obtained by mixing metal silicon powder and silicon dioxide powder. This raw material was introduced into a reactor, vaporized in a vacuum atmosphere of 10 Pa, deposited on an adsorption plate, and cooled sufficiently. The deposit was then removed and ground in a ball mill. The value of x in SiO x of the silicon compound particles thus obtained was 1.0. Subsequently, the particle size of the silicon compound particles was adjusted by classification.
- thermal decomposition CVD was performed at a temperature range of 700°C to 950°C to coat the surface of the silicon compound particles with a carbon layer.
- lithium was inserted into the silicon compound particles in the range of 50°C to 150°C by an oxidation-reduction method to modify the particles.
- the lithium-inserted silicon compound particles were transferred to a rotary kiln, the interior of the rotary kiln was evacuated, and the lithium-inserted silicon compound particles were heated in the range of 450° C. to 700° C. for 12 hours for modification. .
- a negative electrode active material of each example was obtained.
- Comparative Examples 1 and 2 LiH and SiO/C were mixed and heat-treated at 750° C. (Comparative Example 1) and 680° C. (Comparative Example 2). Thus, negative electrode active materials of Comparative Examples 1 and 2 were obtained. Trials were also made at 650° C. or lower, but they coagulated when made into a slurry as described below, and could not be evaluated.
- Comparative Example 3 (Comparative Example 3)
- an ether-based solvent was used as described above, and Li was intercalated into the carbon layer-coated silicon compound particles.
- the reaction temperature was in the range from the boiling point of the solvent to -5°C. Further, heat treatment was performed at 650° C. or higher after Li insertion.
- Comparative Example 4 Li was inserted in the same manner as in Comparative Example 3, and heat treatment was performed at 680° C. or higher.
- Examples 1 to 5 In Examples 1 to 5, an ether-based solvent was used as described above, and Li was intercalated into the carbon layer-coated silicon compound particles at a temperature lower than the boiling point of the solvent by 10° C. or more. After the Li insertion, the heat treatment temperature was changed in the range of 500° C. or more and 650° C. or less to control the crystallinity of Li silicate and Si. As a result, in the negative electrode active material particles obtained in Examples 1 to 5, the crystallite sizes corresponding to the Si (111) crystal plane were the values shown in Table 1 below.
- Example 6 to 11 In Examples 6 to 11, the procedure was the same as in Example 2, except that the particle size of the silicon compound particles was adjusted by classification so that the median size of the negative electrode active material particles to be produced was the value shown in Table 1 below. , to produce a negative electrode active material.
- Example 12 a negative electrode active material was produced in the same procedure as in Example 2, except that hydrogen gas was introduced during the heat treatment after Li insertion for the purpose of removing O and C compounds in the outermost layer.
- negative electrode active material silicon compound containing oxygen
- graphite graphite
- conductive aid 1 carbon nanotube, CNT
- conductive aid 2 carbon fine particles having a median diameter of about 50 nm
- sodium polyacrylate sodium polyacrylate
- CMC carboxymethylcellulose
- An electrolytic copper foil having a thickness of 15 ⁇ m was used as the negative electrode current collector.
- This electrolytic copper foil contained carbon and sulfur at a concentration of 70 mass ppm each.
- the negative electrode mixture slurry was applied to the negative electrode current collector and dried in a vacuum atmosphere at 100° C. for 1 hour. After drying, the deposition amount of the negative electrode active material layer per unit area (also referred to as area density) on one side of the negative electrode was 7.0 mg/cm 2 . Thus, a negative electrode for each example was obtained.
- ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed to prepare a non-aqueous solvent, and an electrolyte salt (lithium hexafluorophosphate: LiPF 6 ) is dissolved in the non-aqueous solvent to prepare an electrolyte solution.
- an electrolyte salt lithium hexafluorophosphate: LiPF 6
- an electrolyte salt LiPF 6
- As an additive 2.0 wt % of fluoroethylene carbonate (FEC) was added.
- a coin battery for the initial efficiency test was assembled as follows. First, a Li foil with a thickness of 1 mm was punched into a diameter of 16 mm and attached to an aluminum clad. Next, the previously obtained negative electrode was punched out to have a diameter of 15 mm, and this was opposed to a Li foil attached to an aluminum clad with a separator interposed therebetween. After electrolyte injection, a 2032 coin battery was produced.
- the initial efficiency was measured under the following conditions. First, the prepared coin battery for the initial efficiency test was charged (initial charge) in the CCCV mode at a charge rate equivalent to 0.03C. CV was 0 V and final current was 0.04 mA. Next, CC discharge (initial discharge) was performed at a discharge rate of 0.03 C and a discharge final voltage of 1.2 V.
- initial efficiency (initial discharge capacity/initial charge capacity) ⁇ 100.
- the counter-positive electrode was designed so that the utilization rate of the negative electrode was 95%.
- the cycle characteristics were investigated as follows. First, two cycles of charge and discharge were performed at 0.2 C in an atmosphere of 25° C. for battery stabilization, and the discharge capacity of the second cycle was measured. Battery cycle characteristics were calculated from the discharge capacity at the 3rd cycle, and the battery test was stopped at 100 cycles. Charging and discharging were performed at 0.7C for charging and 0.5C for discharging. The charge voltage was 4.3V, the discharge final voltage was 2.5V, and the charge final rate was 0.07C.
- the input characteristics were evaluated by confirming the Li deposition behavior during 2C charging by disassembling the battery.
- the 2C charge was performed after 10 charge/discharge cycles under the same charge/discharge conditions as in the cycle characteristics test.
- a change in silicate in the negative electrode active material particles from before charging and discharging was confirmed by NMR.
- Battery before charging and discharging, and after 1st full charge, 1st discharge to 2.0V, 10th full charge, 1st discharge to 2.0V, 100th full charge and 2.0V Each cell after the 100th discharge was disassembled and analyzed by NMR.
- a battery in which the abundance of Li 4 SiO 4 was lower than that of Li 2 SiO 3 even after 100 cycles was confirmed by disassembling and analyzing every 50 cycles from 100 cycles to 300 cycles.
- the crystallite size corresponding to the Si (111) crystal face was calculated from the peak attributed to the Si (111) crystal face based on Scherrer's formula.
- Si was amorphous.
- Table 1 summarizes the peak intensity ratio A/B and the crystallite size corresponding to the Si (111) crystal plane of each example.
- FIG. 7 shows changes in the 29 Si-MAS-NMR spectrum (changes in Li silicate) of the negative electrode active material of Example 2 during charging and discharging.
- the abundance of Li 2 SiO 3 is higher than the abundance of Li 4 SiO 4 before charging and discharging the particles of the negative electrode active material, and the abundance of Li 4 SiO 4 is 100 times. After charging and discharging, the abundance of Li 4 SiO 4 became higher than the abundance of Li 2 SiO 3 .
- the negative electrode active materials of Examples 1 and 3 to 12 the abundance of Li 2 SiO 3 was higher than the abundance of Li 4 SiO 4 before the negative electrode active material particles were charged and discharged.
- the abundance of Li 4 SiO 4 was higher than that of Li 2 SiO 3 after 100 charge/discharge cycles. .
- the Li silicate produced in Comparative Example 1 did not change in the charge/discharge range up to 300 cycles.
- the Li silicate produced in Comparative Example 2 also did not change in the charging/discharging range up to 200 cycles.
- the crystallinity of Si is preferably substantially amorphous.
- the negative electrode active materials of Examples 1 to 12 had better cycle characteristics than the negative electrode active materials of Comparative Examples 1 to 4, and better initial efficiencies than Comparative Examples 1 and 2. was able to realize
- Example 2 exhibited better cycle characteristics than Example 12.
- Example 12 is an example in which the outermost O and C compounds were removed, as described above.
- Example 12 the peak near 289.5 eV in the spectrum of Example 12 was smaller than that of Example 2.
- a comparison of the cycle characteristics between Example 2 and Example 12 reveals that the presence of a C,O compound having a structure similar to SEI on the outermost surface of the carbon layer can achieve better battery characteristics. Also in the negative electrode active materials of Comparative Examples 1 and 2, no C,O compound was present on the outermost surface of the carbon layer.
- the present invention is not limited to the above embodiments.
- the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effects is the present invention. included in the technical scope of
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
前記負極活物質粒子は、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を含有し、
前記ケイ素化合物粒子は、その表面の少なくとも一部が炭素層で被覆され、
前記ケイ素化合物粒子はLiシリケートとしてLi2SiO3を含有し、
前記Li2SiO3は、前記負極活物質粒子を1回以上充放電することにより、前記Li2SiO3の少なくとも一部がLi4SiO4に変化するものであり、
前記負極活物質粒子を充放電する前にはLi2SiO3の存在率はLi4SiO4の存在率よりも多く、100回の充放電後にはLi4SiO4の存在率がLi2SiO3の存在率よりも多いことを特徴とする非水電解質二次電池用負極活物質を提供する。
0.4≦A/B≦1.0 ・・・(1)
を満たすことが好ましい。
酸素が含まれるケイ素化合物を含有するケイ素化合物粒子を作製する工程と、
前記ケイ素化合物粒子の少なくとも一部を炭素材で被覆する工程と、
前記ケイ素化合物粒子にLiを挿入し、該ケイ素化合物粒子にLiシリケートとしてLi2SiO3を含有させる工程と
を含み、これにより前記負極活物質粒子を作製し、
該作製した負極活物質粒子から、前記Li2SiO3が、前記負極活物質粒子を1回以上充放電することにより、前記Li2SiO3の少なくとも一部がLi4SiO4に変化するものであることを満たし、
前記負極活物質粒子を充放電する前にはLi2SiO3の存在率はLi4SiO4の存在率よりも多く、100回の充放電後にはLi4SiO4の存在率がLi2SiO3の存在率よりも多いものであることを満たすものを選別する工程をさらに有し、
これにより該負極活物質粒子を含む非水電解質二次電池用負極活物質を製造することを特徴とする非水電解質二次電池用負極活物質の製造方法を提供する。
前記負極活物質粒子は、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を含有し、
前記ケイ素化合物粒子は、その表面の少なくとも一部が炭素層で被覆され、
前記ケイ素化合物粒子はLiシリケートとしてLi2SiO3を含有し、
前記Li2SiO3は、前記負極活物質粒子を1回以上充放電することにより、前記Li2SiO3の少なくとも一部がLi4SiO4に変化するものであり、
前記負極活物質粒子を充放電する前にはLi2SiO3の存在率はLi4SiO4の存在率よりも多く、100回の充放電後にはLi4SiO4の存在率がLi2SiO3の存在率よりも多いことを特徴とする非水電解質二次電池用負極活物質である。
酸素が含まれるケイ素化合物を含有するケイ素化合物粒子を作製する工程と、
前記ケイ素化合物粒子の少なくとも一部を炭素材で被覆する工程と、
前記ケイ素化合物粒子にLiを挿入し、該ケイ素化合物粒子にLiシリケートとしてLi2SiO3を含有させる工程と
を含み、これにより前記負極活物質粒子を作製し、
該作製した負極活物質粒子から、前記Li2SiO3が、前記負極活物質粒子を1回以上充放電することにより、前記Li2SiO3の少なくとも一部がLi4SiO4に変化するものであることを満たし、
前記負極活物質粒子を充放電する前にはLi2SiO3の存在率はLi4SiO4の存在率よりも多く、100回の充放電後にはLi4SiO4の存在率がLi2SiO3の存在率よりも多いものであることを満たすものを選別する工程をさらに有し、
これにより該負極活物質粒子を含む非水電解質二次電池用負極活物質を製造することを特徴とする非水電解質二次電池用負極活物質の製造方法である。
本発明の負極活物質(以下、ケイ素系負極活物質とも呼称する)は、ケイ素化合物粒子を含む負極活物質粒子(以下、ケイ素系負極活物質粒子とも呼称する)を含むため、電池容量を向上できる。また、ケイ素化合物粒子がシリケートとしてLi2SiO3を含有することで、塗布前、スラリーの安定化が可能となり、それにより、良好な電極が得られ、電池特性が改善する。
0.4≦A/B≦1.0 ・・・(1)
を満たすことが好ましい。
この結果、電池の特性を改善する事が可能になる。
続いて、このような本発明の非水電解質二次電池用負極活物質(以下、単に、本発明の負極活物質と呼ぶことがある)を含む非水電解質二次電池の負極の構成について説明する。
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
負極活物質層12は、リチウムイオンを吸蔵(挿入)及び放出(脱離)可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は負極活物質粒子を含み、負極活物質粒子は酸素が含まれるケイ素化合物を含有するケイ素化合物粒子を含む。
29Si-MAS-NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
・XRD:Bruker社 D8 ADVANCE
X線回折装置としては、例えばBruker社製のD8 ADVANCEを使用できる。
X線源はCu Kα線、Niフィルターを使用して、出力40kV/40mA、スリット幅0.3°、ステップ幅0.008°、1ステップあたり0.15秒の計数時間にて10-40°まで測定する。
・XPS
装置としては、例えば、アルバックファイ社製, PHI Quantera IIを使用することができる。
X線のビーム径はφ100μm、中和銃を使用することができる。
本発明の非水電解質二次電池用負極活物質の製造方法は、負極活物質粒子を含む非水電解質二次電池用負極活物質を製造する方法であって、
酸素が含まれるケイ素化合物を含有するケイ素化合物粒子を作製する工程と、
前記ケイ素化合物粒子の少なくとも一部を炭素材で被覆する工程と、
前記ケイ素化合物粒子にLiを挿入し、該ケイ素化合物粒子にLiシリケートとしてLi2SiO3を含有させる工程と
を含み、これにより前記負極活物質粒子を作製し、
該作製した負極活物質粒子から、前記Li2SiO3が、前記負極活物質粒子を1回以上充放電することにより、前記Li2SiO3の少なくとも一部がLi4SiO4に変化するものであることを満たし、
前記負極活物質粒子を充放電する前にはLi2SiO3の存在率はLi4SiO4の存在率よりも多く、100回の充放電後にはLi4SiO4の存在率がLi2SiO3の存在率よりも多いものであることを満たすものを選別する工程をさらに有し、
これにより該負極活物質粒子を含む非水電解質二次電池用負極活物質を製造することを特徴とする。
以下では、酸素が含まれるケイ素化合物として、SiOx(0.5≦x≦1.6)で表される酸化ケイ素を使用した場合を説明する。まず、酸化ケイ素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃~1600℃の温度範囲で加熱し、酸化ケイ素ガスを発生させる。このとき、原料としては、例えば金属ケイ素粉末と二酸化ケイ素粉末の混合物を用いることができる。金属ケイ素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.9<金属ケイ素粉末/二酸化ケイ素粉末<1.2の範囲であることが望ましい。
特に使用溶媒の沸点に近い温度でLi挿入すると、次工程の熱処理で、Liシリケートの結晶性がそこまで大きくならないにも関わらず、Siの結晶性が発現するなど、熱処理とLi挿入工程のバランスが重要になる。そのため、例えば、使用溶媒の沸点に応じて、Li挿入時の反応温度を決めることができる。
本発明の負極活物質を用いて、例えば以下の手順で、非水電解質時二次電池用の負極を作製することができる。
本発明の負極活物質は、非水電解質二次電池、例えばリチウムイオン二次電池の負極において使用することができる。
図2に示すラミネートフィルム型のリチウムイオン二次電池30は、主にシート状の外装部材35の内部に巻回電極体31が収納されたものである。この巻回電極体31は正極、負極間にセパレータを有し、巻回されたものである。また、巻回はせずに、正極、負極間にセパレータを有した積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード32が取り付けられ、負極に負極リード33が取り付けられている。電極体の最外周部は保護テープにより保護されている。
正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、負極集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池としての充電容量)に対して、負極充電容量が大きくなることが好ましい。これにより、負極上でのリチウム金属の析出を抑制することができる。
セパレータはリチウムメタル又は正極と負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有してもよい。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
活物質層の少なくとも一部、又は、セパレータには、液状の非水電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
以上に説明したラミネートフィルム型二次電池は、例えば、以下の手順で製造することができる。
(実施例1~5、及び比較例3及び4)
実施例1~5、及び比較例3及び4の各々では、まず、負極活物質(負極活物質粒子)を以下のようにして作製した。金属ケイ素粉末と二酸化ケイ素粉末を混合して、原料を得た。この原料を反応炉に導入し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した。次いで、堆積物を取出しボールミルで粉砕した。このようにして得たケイ素化合物粒子のSiOxのxの値は1.0であった。続いて、ケイ素化合物粒子の粒径を分級により調整した。
LiHとSiO/Cを混ぜ、750℃(比較例1)、680℃(比較例2)で熱処理を行った。これにより、比較例1及び2の負極活物質を得た。なお、650℃以下でも試作したが、以下に示すスラリー化時に凝固し、評価にいたらなかった。
比較例3では、先に説明したようにエーテル系溶媒を用い、炭素層で被覆したケイ素化合物粒子にLiを挿入した。その際、反応温度を溶媒の沸点から-5℃の範囲で行った。また、Li挿入後に熱処理を650℃以上で熱処理を行った。
比較例4では、比較例3と同様にLiを挿入し、680℃以上で熱処理を行った。
実施例1~5では、先に説明したようにエーテル系溶媒を使用し、溶媒沸点から10℃以上低い温度で、炭素層で被覆したケイ素化合物粒子にLiを挿入した。また、Li挿入後、熱処理温度を500℃以上、650℃以下の範囲で変化させLiシリケートとSiの結晶性を制御した。その結果、実施例1~5で得られた負極活物質粒子は、Si(111)結晶面に対応する結晶子サイズが下記表1に示す値になった。
実施例6~11では、製造する負極活物質粒子のメジアン径が以下の表1に示す値になるようにケイ素化合物粒子の粒径を分級により調整したこと以外は実施例2と同様の手順で、負極活物質を製造した。
実施例12では、最表層のO、C化合物を除去する目的で、Li挿入後の熱処理中に水素ガスを入れたこと以外は実施例2と同様の手順で、負極活物質を製造した。
次に、作製した負極活物質(酸素が含まれるケイ素化合物)粒子、グラファイト、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、ポリアクリル酸ナトリウム、及びカルボキシメチルセルロース(以下、CMCと称する)を、9.3:83.7:1:1:4:1の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。
次に、エチレンカーボネート(EC)及びジメチルカーボネート(DMC)を混合して非水溶媒を調製した後、この非水溶媒に電解質塩(六フッ化リン酸リチウム:LiPF6)を溶解させて電解液(非水電解質)を調製した。この場合には、溶媒の組成を体積比でEC:DMC=30:70とし、電解質塩の含有量を溶媒に対して1mol/kgとした。添加剤として、フルオロエチレンカーボネート(FEC)を2.0wt%添加した。
最初に、厚さ1mmのLi箔を直径16mmに打ち抜き、アルミクラッドに張り付けた。
次に、先に得られた負極を直径15mmに打ち抜き、これを、セパレータを介して、アルミクラッドに貼り付けたLi箔と向い合せ、電解液注液後、2032コイン電池を作製した。
初回効率は以下の条件で測定した。
まず、作製した初回効率試験用のコイン電池に対し、充電レートを0.03C相当とし、CCCVモードで充電(初回充電)を行った。CVは0Vで終止電流は0.04mAとした。次に、放電レートを同様に0.03Cとし、放電終止電圧を1.2Vとして、CC放電(初回放電)を行った。
得られた初期データから、負極の利用率が95%となるように対正極を設計した。利用率は、対極Liで得られた正負極の容量から、下記式に基づいて算出した。
利用率=(正極容量-負極ロス)/(負極容量-負極ロス)×100
この設計に基づいて実施例及び比較例の各々のリチウム二次電池を製造した。実施例及び比較例の各々のリチウム二次電池について、電池評価を行った。
各負極活物質粒子のメジアン径及び真密度を測定した。結果を以下の表1にまとめて示す。
各負極活物質粒子をXRDで分析した。その結果を、図3~図6にそれぞれ示す。比較例1~4の負極活物質粒子は、Li2SiO3(111)結晶面に起因するピーク(2θ=17°~21°の範囲に現れる)の強度Bに対するSi(111)結晶面に起因するピーク(2θ=28.4°付近に現れる)の強度Aの比率A/Bが1を超えていた。一方、実施例1~12では、比率A/Bが0.4以上1.0以下であった。
各負極活物質粒子の表面をXPSで分析し、炭素層の最表面に炭素原子及び酸素原子が化学結合した化合物が存在するか否かを確認した。その結果を以下の表1にまとめて示す。
Claims (7)
- 負極活物質粒子を含む非水電解質二次電池用負極活物質であって、
前記負極活物質粒子は、酸素が含まれるケイ素化合物を含むケイ素化合物粒子を含有し、
前記ケイ素化合物粒子は、その表面の少なくとも一部が炭素層で被覆され、
前記ケイ素化合物粒子はLiシリケートとしてLi2SiO3を含有し、
前記Li2SiO3は、前記負極活物質粒子を1回以上充放電することにより、前記Li2SiO3の少なくとも一部がLi4SiO4に変化するものであり、
前記負極活物質粒子を充放電する前にはLi2SiO3の存在率はLi4SiO4の存在率よりも多く、100回の充放電後にはLi4SiO4の存在率がLi2SiO3の存在率よりも多いことを特徴とする非水電解質二次電池用負極活物質。 - 前記Li4SiO4は、前記負極活物質粒子を少なくとも10回充放電する際に、充放電に寄与する可逆成分であることを特徴とする請求項1に記載の非水電解質二次電池用負極活物質。
- 前記負極活物質粒子は、前記負極活物質粒子を充放電する前において、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因するピークを有し、該結晶面に対応する結晶子サイズは5.0nm以下であり、かつ、Li2SiO3(111)結晶面に起因するピークの強度Bに対する前記Si(111)結晶面に起因するピークの強度Aの比率A/Bは、下記の式(1)
0.4≦A/B≦1.0 ・・・(1)
を満たすことを特徴とする請求項1又は請求項2に記載の非水電解質二次電池用負極活物質。 - 前記負極活物質粒子はメジアン径が5.5μm以上15μm以下であることを特徴とする請求項1から請求項3のいずれか1項に記載の非水電解質二次電池用負極活物質。
- 前記負極活物質粒子の充放電前の真密度は、2.3g/cm3以上2.4g/cm3以下であることを特徴とする請求項1から請求項4のいずれか1項に記載の非水電解質二次電池用負極活物質。
- 前記負極活物質粒子は、前記炭素層の少なくとも最表面において、炭素原子と酸素原子が化学結合した化合物の状態で存在する酸素含有炭素層を有することを特徴とする請求項1から請求項5のいずれか1項に記載の非水電解質二次電池用負極活物質。
- 負極活物質粒子を含む非水電解質二次電池用負極活物質を製造する方法であって、
酸素が含まれるケイ素化合物を含有するケイ素化合物粒子を作製する工程と、
前記ケイ素化合物粒子の少なくとも一部を炭素材で被覆する工程と、
前記ケイ素化合物粒子にLiを挿入し、該ケイ素化合物粒子にLiシリケートとしてLi2SiO3を含有させる工程と
を含み、これにより前記負極活物質粒子を作製し、
該作製した負極活物質粒子から、前記Li2SiO3が、前記負極活物質粒子を1回以上充放電することにより、前記Li2SiO3の少なくとも一部がLi4SiO4に変化するものであることを満たし、
前記負極活物質粒子を充放電する前にはLi2SiO3の存在率はLi4SiO4の存在率よりも多く、100回の充放電後にはLi4SiO4の存在率がLi2SiO3の存在率よりも多いものであることを満たすものを選別する工程をさらに有し、
これにより該負極活物質粒子を含む非水電解質二次電池用負極活物質を製造することを特徴とする非水電解質二次電池用負極活物質の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237024455A KR20230137311A (ko) | 2021-01-25 | 2021-12-07 | 비수전해질 이차전지용 음극활물질 및 비수전해질 이차전지용음극활물질의 제조방법 |
US18/259,501 US20240322162A1 (en) | 2021-01-25 | 2021-12-07 | Negative electrode active material for non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery |
CN202180091397.8A CN116711101A (zh) | 2021-01-25 | 2021-12-07 | 非水电解质二次电池用负极活性物质及非水电解质二次电池用负极活性物质的制造方法 |
EP21921252.9A EP4283715A1 (en) | 2021-01-25 | 2021-12-07 | Negative electrode active material for non aqueous electrolyte secondary batteries, and method for producing negative electrode active material for non aqueous electrolyte secondary batteries |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-009869 | 2021-01-25 | ||
JP2021009869A JP7325458B2 (ja) | 2021-01-25 | 2021-01-25 | 非水電解質二次電池用負極活物質及び非水電解質二次電池用負極活物質の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022158150A1 true WO2022158150A1 (ja) | 2022-07-28 |
Family
ID=82548322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/044846 WO2022158150A1 (ja) | 2021-01-25 | 2021-12-07 | 非水電解質二次電池用負極活物質及び非水電解質二次電池用負極活物質の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240322162A1 (ja) |
EP (1) | EP4283715A1 (ja) |
JP (1) | JP7325458B2 (ja) |
KR (1) | KR20230137311A (ja) |
CN (1) | CN116711101A (ja) |
TW (1) | TW202234733A (ja) |
WO (1) | WO2022158150A1 (ja) |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06325765A (ja) | 1992-07-29 | 1994-11-25 | Seiko Instr Inc | 非水電解質二次電池及びその製造方法 |
JP2001185127A (ja) | 1999-12-24 | 2001-07-06 | Fdk Corp | リチウム2次電池 |
JP2002042806A (ja) | 2000-07-19 | 2002-02-08 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2006114454A (ja) | 2004-10-18 | 2006-04-27 | Sony Corp | 電池 |
JP2006164954A (ja) | 2004-11-11 | 2006-06-22 | Matsushita Electric Ind Co Ltd | リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池 |
JP2007234255A (ja) | 2006-02-27 | 2007-09-13 | Sanyo Electric Co Ltd | リチウム二次電池用負極及びその製造方法並びにリチウム二次電池 |
JP2008177346A (ja) | 2007-01-18 | 2008-07-31 | Sanyo Electric Co Ltd | エネルギー貯蔵デバイス |
JP2008251369A (ja) | 2007-03-30 | 2008-10-16 | Matsushita Electric Ind Co Ltd | リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法 |
JP2008282819A (ja) | 2008-07-10 | 2008-11-20 | Toshiba Corp | 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質 |
JP2009070825A (ja) | 2007-09-17 | 2009-04-02 | Samsung Sdi Co Ltd | リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池 |
JP2009205950A (ja) | 2008-02-28 | 2009-09-10 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池 |
JP2009212074A (ja) | 2008-02-07 | 2009-09-17 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ |
JP2013251097A (ja) * | 2012-05-31 | 2013-12-12 | Toyota Industries Corp | 非水電解質二次電池 |
JP2015156355A (ja) | 2013-08-21 | 2015-08-27 | 信越化学工業株式会社 | 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法 |
WO2016103113A1 (ja) * | 2014-12-26 | 2016-06-30 | 株式会社半導体エネルギー研究所 | 負極活物質、二次電池、負極の作製方法、および負極の処理装置 |
WO2017208625A1 (ja) * | 2016-05-30 | 2017-12-07 | 信越化学工業株式会社 | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 |
WO2017217077A1 (ja) * | 2016-06-13 | 2017-12-21 | 信越化学工業株式会社 | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 |
WO2019189747A1 (ja) * | 2018-03-30 | 2019-10-03 | 株式会社大阪チタニウムテクノロジーズ | 酸化珪素粉末の製造方法及び負極材 |
-
2021
- 2021-01-25 JP JP2021009869A patent/JP7325458B2/ja active Active
- 2021-12-07 CN CN202180091397.8A patent/CN116711101A/zh active Pending
- 2021-12-07 US US18/259,501 patent/US20240322162A1/en active Pending
- 2021-12-07 EP EP21921252.9A patent/EP4283715A1/en active Pending
- 2021-12-07 KR KR1020237024455A patent/KR20230137311A/ko unknown
- 2021-12-07 WO PCT/JP2021/044846 patent/WO2022158150A1/ja active Application Filing
- 2021-12-10 TW TW110146276A patent/TW202234733A/zh unknown
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06325765A (ja) | 1992-07-29 | 1994-11-25 | Seiko Instr Inc | 非水電解質二次電池及びその製造方法 |
JP2001185127A (ja) | 1999-12-24 | 2001-07-06 | Fdk Corp | リチウム2次電池 |
JP2002042806A (ja) | 2000-07-19 | 2002-02-08 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2006114454A (ja) | 2004-10-18 | 2006-04-27 | Sony Corp | 電池 |
JP2006164954A (ja) | 2004-11-11 | 2006-06-22 | Matsushita Electric Ind Co Ltd | リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池 |
JP2007234255A (ja) | 2006-02-27 | 2007-09-13 | Sanyo Electric Co Ltd | リチウム二次電池用負極及びその製造方法並びにリチウム二次電池 |
JP2008177346A (ja) | 2007-01-18 | 2008-07-31 | Sanyo Electric Co Ltd | エネルギー貯蔵デバイス |
JP2008251369A (ja) | 2007-03-30 | 2008-10-16 | Matsushita Electric Ind Co Ltd | リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法 |
JP2009070825A (ja) | 2007-09-17 | 2009-04-02 | Samsung Sdi Co Ltd | リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池 |
JP2009212074A (ja) | 2008-02-07 | 2009-09-17 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ |
JP2009205950A (ja) | 2008-02-28 | 2009-09-10 | Shin Etsu Chem Co Ltd | 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池 |
JP2008282819A (ja) | 2008-07-10 | 2008-11-20 | Toshiba Corp | 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質 |
JP2013251097A (ja) * | 2012-05-31 | 2013-12-12 | Toyota Industries Corp | 非水電解質二次電池 |
JP2015156355A (ja) | 2013-08-21 | 2015-08-27 | 信越化学工業株式会社 | 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法 |
WO2016103113A1 (ja) * | 2014-12-26 | 2016-06-30 | 株式会社半導体エネルギー研究所 | 負極活物質、二次電池、負極の作製方法、および負極の処理装置 |
WO2017208625A1 (ja) * | 2016-05-30 | 2017-12-07 | 信越化学工業株式会社 | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 |
WO2017217077A1 (ja) * | 2016-06-13 | 2017-12-21 | 信越化学工業株式会社 | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 |
WO2019189747A1 (ja) * | 2018-03-30 | 2019-10-03 | 株式会社大阪チタニウムテクノロジーズ | 酸化珪素粉末の製造方法及び負極材 |
Non-Patent Citations (6)
Title |
---|
"Denchi (battery", BATTERY ASSOCIATION OF JAPAN, NEWSLETTER, 1 May 2010 (2010-05-01), pages 10 |
A. HOHLT. WIEDERP. A. VAN AKENT. E. WEIRICHG. DENNINGERM. VIDALS. OSWALDC. DENEKEJ. MAYERH. FUESS, J. NON-CRYST. SOLIDS, vol. 320, 2003, pages 255 |
HYE JIN KIMSUNGHUN CHOISEUNG JONG LEEMYUNG WON SEOJAE GOO LEEERHAN DENIZYONG JU LEEEUN KYUNG KIMJANG WOOK CHOI, NANO LETT, vol. 6, 2016, pages 282 - 288 |
M. YAMADAM. INABAA. UEDAK. MATSUMOTOT. IWASAKIT. OHZUKU, J. ELECTROCHEM. SOC, vol. 159, 2012, pages A1630 |
MARIKO MIYACHIHIRONORI YAMAMOTOHIDEMASA KAWAI, J. ELECTROCHEM. SOC, vol. 154, no. 4, 2007, pages A1112 - A1117 |
V. KAPAKLIS, J. NON-CRYSTALLINE SOLIDS, vol. 354, 2008, pages 612 |
Also Published As
Publication number | Publication date |
---|---|
US20240322162A1 (en) | 2024-09-26 |
TW202234733A (zh) | 2022-09-01 |
JP2022113555A (ja) | 2022-08-04 |
JP7325458B2 (ja) | 2023-08-14 |
CN116711101A (zh) | 2023-09-05 |
KR20230137311A (ko) | 2023-10-04 |
EP4283715A1 (en) | 2023-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109155407B (zh) | 负极活性物质、混合负极活性物质材料、及负极活性物质的制备方法 | |
JP7368577B2 (ja) | 負極及びその製造方法 | |
WO2020095558A1 (ja) | 負極活物質、混合負極活物質、水系負極スラリー組成物、及び、負極活物質の製造方法 | |
JP7410259B2 (ja) | 非水電解質二次電池 | |
TW202310474A (zh) | 負極及負極的製造方法 | |
WO2023008093A1 (ja) | 負極活物質及びその製造方法 | |
WO2022239676A1 (ja) | 負極活物質及びその製造方法 | |
WO2022168474A1 (ja) | 負極及び負極の製造方法 | |
JP7325458B2 (ja) | 非水電解質二次電池用負極活物質及び非水電解質二次電池用負極活物質の製造方法 | |
WO2023135970A1 (ja) | 負極活物質及び負極 | |
WO2023188918A1 (ja) | 負極活物質及び負極活物質の製造方法 | |
WO2023008094A1 (ja) | 負極及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21921252 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18259501 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180091397.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021921252 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021921252 Country of ref document: EP Effective date: 20230825 |