WO2022142553A1 - 硬质聚氨酯泡沫及其制备方法 - Google Patents

硬质聚氨酯泡沫及其制备方法 Download PDF

Info

Publication number
WO2022142553A1
WO2022142553A1 PCT/CN2021/121619 CN2021121619W WO2022142553A1 WO 2022142553 A1 WO2022142553 A1 WO 2022142553A1 CN 2021121619 W CN2021121619 W CN 2021121619W WO 2022142553 A1 WO2022142553 A1 WO 2022142553A1
Authority
WO
WIPO (PCT)
Prior art keywords
rigid polyurethane
polyurethane foam
mixture
pressure
foam
Prior art date
Application number
PCT/CN2021/121619
Other languages
English (en)
French (fr)
Inventor
曹立军
胡锋
刘莉
Original Assignee
海信容声(广东)冰箱有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信容声(广东)冰箱有限公司 filed Critical 海信容声(广东)冰箱有限公司
Publication of WO2022142553A1 publication Critical patent/WO2022142553A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the present disclosure relates to the technical field of household appliances, in particular to rigid polyurethane foam and a preparation method thereof.
  • Rigid polyurethane foam is widely used in household appliances such as refrigerators, freezers, and water heaters, and plays a role in thermal insulation.
  • foaming agents used in rigid polyurethane foams, namely alkane foaming agents, hydrofluorocarbon foaming agents and fluoroolefin foaming agents.
  • Some embodiments of the present disclosure provide a rigid polyurethane foam, comprising an organic polyisocyanate and a combined polyether, wherein the weight ratio of the polyisocyanate to the combined polyether is 1.15-1.30:1;
  • the combined polyether includes the following components in parts by weight:
  • the fluoroolefin foaming agent comprises 0-100% of trans-1-chloro-3,3,3-trifluoropropene and 100%-0 of cis-1,1,1,4, 4,4-hexafluoro-2-butene.
  • FIG. 1 is a flow chart of a method for preparing rigid polyurethane foam in the present disclosure.
  • the present disclosure provides a refrigerator, which includes an outer shell, an inner tank, and an insulating layer between the outer shell and the inner tank.
  • the thermal insulation layer has good thermal insulation performance, environmental friendliness, low cost and good economy.
  • the present disclosure achieves the performance of the above-mentioned thermal insulation layer by providing a material of the thermal insulation layer and a preparation method thereof.
  • the material of the thermal insulation layer that is, rigid polyurethane foam and the preparation method thereof, will be described in detail below.
  • the rigid polyurethane foam includes an organic polyisocyanate and a combined polyether, and the ratio by weight of the polyisocyanate to the combined polyether is 1.15-1.30:1.
  • the percentage content of NCO in the organic polyisocyanate is 30.5% to 31.5%.
  • the organic polyisocyanate can be at least one of PM2010 from Yantai Wanhua Company, 44V20L from Covestro Company, M20s from BASF Company, 5005 from Huntsman Company, and PAPI27 from DOW Company. Among them, PM2010 of Yantai Wanhua Company is preferable.
  • the combined polyether includes the following components in parts by weight:
  • the fluoroolefin foaming agent includes 0-100% of trans-1-chloro-3,3,3-trifluoropropene and 100%-0 of cis-1,1,1,4,4, 4-hexafluoro-2-butene.
  • the combined polyether includes the following components in parts by weight:
  • the polyol composition includes a plurality of polyol substances, wherein at least one polyol substance has a functionality greater than or equal to 3 and the number of hydroxyl groups is 320-700 mg/KOH/g.
  • the polyol composition includes phthalic anhydride polyester polyol and polyether polyol, both phthalic anhydride polyester polyol and polyether polyol are polyol substances, and phthalic anhydride polyester polyol and polyether Weight percentage of polyol (0.4 ⁇ 0): (0.6 ⁇ 1). That is, the polyol composition may contain only polyether polyol, or may contain both polyether polyol and phthalic anhydride polyester polyol.
  • the benzene ring structure of the phthalic anhydride polyester polyol is stronger, which improves the strength of the rigid polyurethane foam itself. When used together with the polyether polyol, it can improve the strength and releasability of the rigid polyurethane foam.
  • Both phthalic anhydride polyester polyols and polyether polyols contain two or more active hydrogen groups, and the active hydrogen groups are -OH, primary amine or secondary amine.
  • Polyester polyol is obtained by adding phthalic anhydride as starting agent with olefin oxide, its functionality is 2-3, and its hydroxyl value is 300-330mg/KOH/g, which can improve the strength and thermal conductivity of foam.
  • the polyether polyol includes 10-40 parts by weight of the first polyether polyol, 10-30 parts by weight of the second polyether polyol, 15-35 parts by weight of the third polyether polyol and 10-20 parts by weight of the Several of the fourth polyether polyols.
  • the first polyether polyol is obtained by adding sucrose as an initiator through addition reaction with oxyalkylene, its functionality is 6-8, and its hydroxyl value is 340-500 mg/KOH/g. That is, the first polyether polyol is of high functionality and can improve the strength of the rigid polyurethane foam to a certain extent.
  • the first polyether polyol is NL8210 purchased from Shandong Lanxing Dongda Chemical Industry.
  • the second polyether polyol is obtained by adding glycerol as a starting agent with an alkylene oxide, and its functionality is 3. That is, the third polyether polyol is a low-functionality glycerol polyol with low viscosity, which can improve the fluidity of the foaming system.
  • the third polyether polyol is GR-4110G purchased from Nanjing Ningwu Chemical Industry.
  • the third polyether polyol is obtained by adding phenylenediamine as an initiator through addition reaction with olefin oxide, and its functionality is 4. That is, the fourth polyether polyol is an amine polyether polyol, which can improve the solubility of the blend of cyclopentane and n-butane as a physical foaming agent.
  • the fourth polyether polyol is obtained by adding sorbitol as an initiator through addition reaction with oxyalkylene, and its functionality is 6.
  • the fourth polyether polyol is a high-functionality sorbitol polyol, which can improve the solubility of cyclopentane and n-butane in the polyether polyol and improve the strength of rigid polyurethane foam.
  • the second polyether polyol is SA460 purchased from Shandong Lanxing Dongda Chemical Industry.
  • Polyols with high hydroxyl value and high functionality have a wide selection range, and the requirements for process operability are also low.
  • the prepared polyurethane foam has better foam dimensional stability and shrinkage resistance, so as to reduce foam density and reduce Raw material consumption, cost saving.
  • the low hydroxyl value and low functional polyols make the foam have better fluidity during filling.
  • the foam appearance quality is a wide selection range, and the requirements for process operability are also low.
  • the prepared polyurethane foam has better foam dimensional stability and shrinkage resistance, so as to reduce foam density and reduce Raw material consumption, cost saving.
  • the low hydroxyl value and low functional polyols make the foam have better fluidity during filling.
  • Cyclopentane is used as a physical blowing agent in this application, and its ozone depletion potential value ODP is equal to 0, and the greenhouse effect potential value GWP value is low (GWP is less than 15), therefore, the rigidity made by using this physical blowing agent is made.
  • Polyurethane foam is environmentally friendly, green and environmentally friendly, and meets the requirements of domestic and foreign environmental protection regulations.
  • n-Butane is also used in this application as a physical blowing agent, which is used in conjunction with cyclopentane.
  • the boiling point of n-butane is -0.5°C, which ensures a certain vapor pressure and does not require an excessively low raw material temperature.
  • Fluoroolefin foaming agents include 0-100% trans-1-chloro-3,3,3-trifluoropropene and 100%-0 cis-1,1,1,4,4,4- Hexafluoro-2-butene. That is, only trans-1-chloro-3,3,3-trifluoropropene may be used, or only cis-1,1,1,4,4,4-hexafluoro-2-butene may be used, or is a mix of the two.
  • the above-mentioned fluoroolefin foaming agent contains a plurality of fluorine atomic structures and has a nucleation effect, which can make the pore size of the foam finer and reduce the radiation conduction. Therefore, the thermal conductivity of the foam can be reduced, thereby improving the thermal insulation performance of the product.
  • the catalyst includes a foaming catalyst, a gel catalyst and a trimerization catalyst, and the weight ratio of the three is (0.5-1.5):(1.5-3.5):(0.5-1).
  • the foaming catalyst includes bis-dimethylaminoethyl ether (A-1), pentamethyldiethylenetriamine (PC-5) or tetramethylethylenediamine or tetramethylhexamethylenediamine and mixtures thereof. A sort of.
  • Gel catalysts include dimethylcyclohexylamine (PC-8) or dimethylbenzylamine and mixtures thereof.
  • the trimerization catalyst includes at least one of (2-hydroxypropyl)trimethylammonium formate (TMR-2), ethyl quaternary ammonium salt and octyl quaternary ammonium salt, or hexahydrotriazine (PC-41).
  • TMR-2 (2-hydroxypropyl)trimethylammonium formate
  • PC-41 ethyl quaternary ammonium salt
  • PC-41 hexahydrotriazine
  • the foam stabilizer is silicone oil containing Si-C structure.
  • the foam stabilizer may be at least one of Evonik's B8462, B8510, and B8545, and Momentive's L6863 and L6952.
  • the silicone oil that is optimized in terms of the silicon-hydrogen structure can be used to reduce the surface tension of the gas-liquid two-phase interface, improve the fluidity of the foam and improve the cell structure.
  • the ozone depletion potential ODP of all components in the rigid polyurethane foam is zero, and the global warming potential GWP value is low (GWP is less than 15). Therefore, it is environmentally friendly and environmentally friendly, and meets the requirements of domestic and foreign environmental protection regulations and future development needs.
  • the rigid polyurethane foam is mainly composed of cyclopentane, and an appropriate amount of fluoroolefin foaming agent and n-butane are added.
  • Substituting olefin foaming agents contain multiple fluorine atomic structures, which have a nucleation effect, which can make the foam pores smaller and reduce radiation conduction. Therefore, the thermal conductivity of the foam can be reduced, thereby improving the thermal insulation performance of the product. Under the condition that the thermal insulation performance and mechanical properties of the polyurethane foam are not reduced, the density of the polyurethane foam is reduced, thereby reducing the amount of raw materials, so it has better economy.
  • the prepared polyurethane foam has better foam dimensional stability and shrinkage resistance, so that it can reduce the foam density and reduce the amount of raw materials. save costs.
  • Fig. 1 shows a flow chart of the preparation method of the rigid polyurethane foam of the present disclosure, and the preparation method of the rigid polyurethane foam is as follows:
  • cyclopentane and n-butane are pumped into the pressure tank in proportion through a metering pump at a pressure of 4 to 20 bar, and stirred for 30 minutes to obtain a mixture of cyclopentane and n-butane;
  • the rigid polyurethane foam has a simple process and is easy to mass-produce.
  • the rigid polyurethane foam can achieve good thermal insulation performance and environmental protection by strictly designing the content of each component.
  • rigid polyurethane foam includes the following components:
  • the preparation method of this rigid polyurethane foam comprises the following steps:
  • rigid polyurethane foam includes the following components:
  • the preparation method of this rigid polyurethane foam comprises the following steps:
  • rigid polyurethane foam includes the following components:
  • the preparation method of this rigid polyurethane foam comprises the following steps:
  • rigid polyurethane foam includes the following components:
  • the preparation method of this rigid polyurethane foam comprises the following steps:
  • rigid polyurethane foam includes the following components:
  • the preparation method of this rigid polyurethane foam comprises the following steps:
  • rigid polyurethane foam includes the following components:
  • the preparation method of this rigid polyurethane foam comprises the following steps:
  • rigid polyurethane foam includes the following components:
  • the preparation method of this rigid polyurethane foam comprises the following steps:
  • rigid polyurethane foam includes the following components:
  • the preparation method of this rigid polyurethane foam comprises the following steps:
  • rigid polyurethane foam includes the following components:
  • the preparation method of this rigid polyurethane foam comprises the following steps:
  • the molded core density refers to the core density of the molded foam.
  • the molding density is determined from the average of multiple 50mm x 50mm x 30mm (de-skinned) samples.
  • Density distribution refers to dissecting the foam box, testing the core density of each part, and the difference between the maximum core density and the minimum core density.
  • the rigid polyurethane foams in Examples 1 to 6 and Comparative Examples 1 to 3 were prepared under the same conditions as the insulation layers of refrigerators, that is, the insulation layers except for the raw material rigid polyurethane foams were used in Examples 1 to 6 respectively. Except for the rigid polyurethane foam in Comparative Examples 1 to 3, other preparation conditions are the same.
  • the thermal insulation layer is arranged between the outer shell and the inner liner, and a top-freezing and bottom-refrigerating double-door refrigerator with a volume size of 310L is prepared. The following tests are carried out on the box body, and the performances are compared, as shown in Table 2:
  • the demolding time refers to the time from when the foaming material is injected into the foaming cavity to when the foaming mold is opened.
  • the demolding time used for the rigid polyurethane foams prepared in Examples 1 to 6 is 140s.
  • the deformation of the body side plate is smaller, which is more conducive to the rapid demoulding of the box body, and can significantly improve the foaming production efficiency of the refrigerator box body.
  • test cycle is temperature (-30 ⁇ 2) °C, time 24 hours, then temperature (50 ⁇ 2) °C, time 24 hours, the above is 1 cycle. After the test, it was equilibrated to room temperature, and then the foam samples were taken to measure the thermal conductivity and dimensional stability, and Table 3 was obtained.
  • the box foam of the present disclosure still has good thermal conductivity and dimensional stability, indicating that after the foam is prepared into a product, its foam insulation performance in the product state is more attenuated. It is slow and has good storage stability similar to the existing binary mixed foaming system (Comparative Examples 1-3).
  • All components in the rigid polyurethane foam of the present disclosure have zero ozone depletion potential (ODP) and low global warming potential (GWP) value (GWP is less than 15). Therefore, they are environmentally friendly and have good environmental protection, and are in line with domestic and foreign environmental protection. Regulatory requirements and future development needs.
  • the rigid polyurethane foam is mainly composed of cyclopentane, and an appropriate amount of fluoroolefin foaming agent and n-butane are added.
  • the olefin-based foaming agent has low gas thermal conductivity.
  • due to the structure of multiple fluorine atoms it has a certain nucleation effect, which can make the foam pores smaller and reduce radiation conduction. Therefore, it can reduce the thermal conductivity of the foam. Thereby, the thermal insulation performance of the product is improved. Therefore, the density of the polyurethane foam is reduced while the thermal insulation performance and mechanical properties of the rigid polyurethane foam are not reduced, thereby reducing the amount of raw materials. Therefore, it has better economy.

Abstract

本公开提供了冰箱及硬质聚氨酯泡沫、硬质聚氨酯泡沫的制备方法。硬质聚氨酯泡沫包括有机多异氰酸酯和组合聚醚,多异氰酸酯与组合聚醚的重量份之比为1.15~1.30:1;组合聚醚包括以重量份计的以下组分:多元醇组合物100份,催化剂1.5~2.5份,泡沫稳定剂1.5~3.0份,水1.5~2.5份,环戊烷10~18份,正丁烷1~3份,氟代烯烃类发泡剂2~10份;其中,氟代烯烃类发泡剂包括0~100%的反式-1-氯-3,3,3-三氟丙烯和100%~0的顺式-1,1,1,4,4,4-六氟-2-丁烯。

Description

硬质聚氨酯泡沫及其制备方法
相关申请的交叉引用
本公开要求在2021年1月04日提交中国专利局、申请号为202110004533.7,发明名称为冰箱及硬质聚氨酯泡沫、硬质聚氨酯泡沫的制备方法的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及家用电器技术领域,特别涉及硬质聚氨酯泡沫及其制备方法。
背景技术
硬质聚氨酯泡沫被广泛应用于冰箱、冷柜、和热水器等家电中,起隔热保温作用。目前,硬质聚氨酯泡沫采用的发泡剂主要有三大类,分别是烷烃类发泡剂、氢氟烃发泡剂和氟代烯烃类发泡剂。
发明内容
本公开一些实施例提供一种硬质聚氨酯泡沫,包括有机多异氰酸酯和组合聚醚,所述多异氰酸酯与所述组合聚醚的重量份之比为1.15~1.30:1;
所述组合聚醚包括以重量份计的以下组分:
Figure PCTCN2021121619-appb-000001
其中,所述氟代烯烃类发泡剂包括0~100%的反式-1-氯-3,3,3-三氟丙烯和100%~0的顺式-1,1,1,4,4,4-六氟-2-丁烯。
附图说明
图1是本公开中硬质聚氨酯泡沫的制备方法的流程图。
具体实施方式
体现本公开特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本公开能够在不同的实施方式上具有各种的变化,其皆不脱离本公开的范围,且其中的说明及图示在本质上是当作说明之用,而非用以限制本公开。
为了进一步说明本公开的原理和结构,现结合附图对本公开的实施例进行详细说明。
本公开提供一种冰箱,包括外壳、内胆及位于外壳和内胆之间的隔热层。该隔热层的隔热性能好,环保友好,成本较低,经济性较好。
本公开通过提供一种隔热层的材质以及其制备方法来实现上述隔热层的性能,以下详细介绍隔热层的材质也就是硬质聚氨酯泡沫及其制备方法。
以重量份计算,硬质聚氨酯泡沫包括有机多异氰酸酯和组合聚醚,且多异氰酸酯与组合聚醚的重量份之比为1.15~1.30:1。
有机多异氰酸酯中NCO的百分含量为30.5%~31.5%。本实施例中,有机多异氰酸酯可为烟台万华公司的PM2010、Covestro公司的44V20L、BASF公司的M20s、Huntsman公司的5005、DOW公司的PAPI27中的至少一种。其中,优选为烟台万华公司的PM2010。
组合聚醚包括以重量份计的以下组分:
Figure PCTCN2021121619-appb-000002
其中,氟代烯烃类发泡剂包括0~100%的反式-1-氯-3,3,3-三氟丙烯和100%~0的顺式-1,1,1,4,4,4-六氟-2-丁烯。
组合聚醚包括以重量份计的以下组分:
Figure PCTCN2021121619-appb-000003
多元醇组合物包括多个多元醇物质,其中至少一多元醇物质的官能度≥3且羟基数为320~700mg/KOH/g。
具体地,多元醇组合物包括苯二甲酸酸酐聚酯多元醇和聚醚多元醇,苯二甲酸酸酐聚酯多元醇和聚醚多元醇均为多元醇物质,且苯二甲酸酸酐聚酯多元醇和聚醚多元醇的重量百分比(0.4~0):(0.6~1)。即多元醇组合物可以是只包含聚醚多元醇,也可以是同时包含聚醚多元醇和苯二甲酸酸酐聚酯多元醇。苯二甲酸酸酐聚酯多元醇的苯环结构刚性较强,提高了硬质聚氨酯泡沫本身的强度,与聚醚多元醇一起使用,可以提高硬质聚氨酯泡沫的强度和脱模性。
苯二甲酸酸酐聚酯多元醇和聚醚多元醇均含有两种以上的活性氢基团,活性氢基团为-OH、伯胺或仲胺。聚酯多元醇是以苯二甲酸酸酐为起始剂通过与氧化烯烃加成反应所得,其官能度2~3,羟值300-330mg/KOH/g,可改善泡沫的强度及导热系数。
聚醚多元醇包括10~40重量份的第一聚醚多元醇、10~30重量份的第二聚醚多元醇、15~35重量份的第三聚醚多元醇及10~20重量份的第四聚醚多元醇的其中几种。
第一聚醚多元醇是以蔗糖为起始剂通过与氧化烯烃加成反应所得,其官能度为6-8,羟值340-500mg/KOH/g。即第一聚醚多元醇为高官能度,能一 定程度上改善硬质聚氨酯泡沫的强度。本实施例中,该第一聚醚多元醇为购自山东蓝星东大化工的NL8210。
第二聚醚多元醇是以甘油为起始剂通过与氧化烯烃加成反应所得,其官能度为3。即第三聚醚多元醇为低官能度的甘油多元醇,粘度低,可改善发泡体系的流动性。本实施例中,该第三聚醚多元醇为购自南京宁武化工的GR-4110G。
第三聚醚多元醇是以苯二胺为起始剂通过与氧化烯烃加成反应所得,其官能度为4。即第四聚醚多元醇为胺类聚醚多元醇,可提高物理发泡剂环戊烷与正丁烷共混物的溶解性。
第四聚醚多元醇是以山梨醇为起始剂通过与氧化烯烃加成反应所得到,其官能度6。第四聚醚多元醇为高官能度的山梨醇多元醇,能够提高环戊烷和正丁烷在聚醚多元醇中的溶解性,并改善硬质聚氨酯泡沫的强度。本实施例中,该第二聚醚多元醇为购自山东蓝星东大化工的SA460。
高羟值、高官能度的多元醇的可选择范围较广,工艺可操作性要求也低,制备的聚氨酯泡沫具备更好的泡沫尺寸稳定性和抗收缩能力,从而可实现降低泡沫密度,减少原材料用量,节约成本。而低羟值、低官能度的多元醇使泡沫在充填时具有较好的流动性。利用高羟值、高官能度的多元醇和低羟值、低官能度的聚醚多元醇的搭配使用,在保证产品泡沫尺寸稳定及刚性的同时,泡料流动性较好,从而最终保证产品良好的发泡外观质量。
环戊烷在本申请中作为物理发泡剂,其臭氧消耗潜值ODP等于0,温室效应潜值GWP值低(GWP小于15),因此,使得采用该物理发泡剂所制得的硬质聚氨酯泡沫对环境友好,绿色环保,符合国内外环保法规要求。
正丁烷在本申请中也是作为物理发泡剂,其与环戊烷搭配使用。其中,正丁烷的沸点为-0.5℃,保证了一定的蒸汽压,同时不需要过低的原料温度。氟代烯烃类发泡剂包括0~100%的反式-1-氯-3,3,3-三氟丙烯和100%~0的顺式-1,1,1,4,4,4-六氟-2-丁烯。即可以只采用反式-1-氯-3,3,3-三氟丙烯,也可以只采用顺式-1,1,1,4,4,4-六氟-2-丁烯,还可以是两者混合使用。
上述氟代烯烃类发泡剂含多个氟原子结构,具有成核作用,可使泡沫孔径更微细,减少辐射传导,因此,可降低泡沫导热系数,从而提高产品的保温性能。
催化剂包括发泡催化剂、凝胶催化剂和三聚催化剂,三者之间的重量份比为(0.5~1.5):(1.5~3.5):(0.5~1)。
发泡催化剂包括双-二甲基氨基乙基醚(A-1)、五甲基二乙烯三胺(PC-5)或四甲基乙二胺或四甲基己二胺及其混合物中的一种。
凝胶催化剂包括二甲基环已胺(PC-8)或二甲基苄胺及其混合物。
三聚催化剂包括(2-羟基丙基)三甲基甲酸铵(TMR-2)、乙季铵盐和辛季铵盐或六氢化三嗪(PC-41)中的至少一种。
采用上述催化剂有利于制品的快速脱模。
泡沫稳定剂为含Si-C结构的硅油。本实施例中,泡沫稳定剂可为赢创的B8462、B8510、B8545,迈图的L6863、L6952中的至少一种。
可采用在硅氢结构等方面进行平衡优化的硅油,以便降低气液两相界面的表面张力,并改善泡沫的流动性及改善泡孔结构。
该硬质聚氨酯泡沫中的所有组份的臭氧消耗潜值ODP均为零,全球变暖潜势GWP值低(GWP小于15),因此,对环境友好,环保性好,符合国内外环保法规要求及未来发展的需要。
该硬质聚氨酯泡沫以环戊烷为主体,加入适量的氟代烯烃类发泡剂和正丁烷,正丁烷的特性使其保证了一定的蒸汽压,同时不需要过低的原料温度,氟代烯烃类发泡剂含多个氟原子结构,具有成核作用,可使泡沫孔径更微细,减少辐射传导,因此,可降低泡沫导热系数,从而提高产品的保温性能,因此,在保证硬质聚氨酯泡沫保温性能、力学性能不降低的情况下,降低了聚氨酯泡沫的密度,从而减少原材料用量,因此,具有较好的经济性。
且高官能度的多元醇的可选择范围更广,工艺可操作性要求也低,制备的聚氨酯泡沫具备更好的泡沫尺寸稳定性和抗收缩能力,从而可实现降低泡沫密度,减少原材料用量,节约成本。
参阅图1,图1示出了本公开硬质聚氨酯泡沫的制备方法的流程图,该硬质聚氨酯泡沫的制备方法如下:
S1、依据硬质聚氨酯泡沫中各组分的重量份数,称取硬质聚氨酯泡沫中的各组分。
S2、将多元醇组合物、催化剂、水和泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物。
S3、将第一混合物、氟代烯烃类发泡剂通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
S4、将环戊烷、正丁烷在4~20bar压力下通过计量泵按比例泵入压力罐中,并进行搅拌30分钟,得到环戊烷与正丁烷的混合物;
S5、将第二混合物与环戊烷与正丁烷的混合物通过静态混合器,在15~25℃下进行物理混合,得到第三混合物,并在料罐内进行保压,保压压力为4~8bar;
S6、在15~25℃温度条件下,将第三混合物与多异氰酸酯按比例通过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
该硬质聚氨酯泡沫的工艺简单,易于大规模生产。
通过严格设计各组分的含量可以实现硬质聚氨酯泡沫良好的隔热性能良好以及环保,以下通过各实施例介绍各组分的含量。
实施例1
以重量计,硬质聚氨酯泡沫包括以下组分:
Figure PCTCN2021121619-appb-000004
Figure PCTCN2021121619-appb-000005
该硬质聚氨酯泡沫的制备方法包括以下步骤:
S11、依据硬质聚氨酯泡沫中各组分的重量份数,称取硬质聚氨酯泡沫中的各组分。
S12、将多元醇组合物、催化剂、水和泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物。
S13、将第一混合物、氟代烯烃类发泡剂通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
S14、将环戊烷、正丁烷在4~20bar压力下通过计量泵按比例泵入压力罐中,并进行搅拌30分钟,得到环戊烷与正丁烷的混合物;
S15、将第二混合物与环戊烷与正丁烷的混合物通过静态混合器,在15~25℃下进行物理混合,得到第三混合物,并在料罐内进行保压,保压压力为4~8bar;
S16、在15~25℃温度条件下,将第三混合物与多异氰酸酯按比例通过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
实施例2
以重量计,硬质聚氨酯泡沫包括以下组分:
Figure PCTCN2021121619-appb-000006
Figure PCTCN2021121619-appb-000007
该硬质聚氨酯泡沫的制备方法包括以下步骤:
S21、依据硬质聚氨酯泡沫中各组分的重量份数,称取硬质聚氨酯泡沫中的各组分。
S22、将多元醇组合物、催化剂、水和泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物。
S23、将第一混合物、氟代烯烃类发泡剂通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
S24、将环戊烷、正丁烷在4~20bar压力下通过计量泵按比例泵入压力罐中,并进行搅拌30分钟,得到环戊烷与正丁烷的混合物;
S25、将第二混合物与环戊烷与正丁烷的混合物通过静态混合器,在15~25℃下进行物理混合,得到第三混合物,并在料罐内进行保压,保压压力为4~8bar;
S26、在15~25℃温度条件下,将第三混合物与多异氰酸酯按比例通过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
实施例3
以重量计,硬质聚氨酯泡沫包括以下组分:
Figure PCTCN2021121619-appb-000008
Figure PCTCN2021121619-appb-000009
该硬质聚氨酯泡沫的制备方法包括以下步骤:
S31、依据硬质聚氨酯泡沫中各组分的重量份数,称取硬质聚氨酯泡沫中的各组分。
S32、将多元醇组合物、催化剂、水和泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物。
S33、将第一混合物、氟代烯烃类发泡剂通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
S34、将环戊烷、正丁烷在4~20bar压力下通过计量泵按比例泵入压力罐中,并进行搅拌30分钟,得到环戊烷与正丁烷的混合物;
S35、将第二混合物与环戊烷与正丁烷的混合物通过静态混合器,在15~25℃下进行物理混合,得到第三混合物,并在料罐内进行保压,保压压力为4~8bar;
S36、在15~25℃温度条件下,将第三混合物与多异氰酸酯按比例通过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
实施例4
以重量计,硬质聚氨酯泡沫包括以下组分:
Figure PCTCN2021121619-appb-000010
Figure PCTCN2021121619-appb-000011
该硬质聚氨酯泡沫的制备方法包括以下步骤:
S41、依据硬质聚氨酯泡沫中各组分的重量份数,称取硬质聚氨酯泡沫中的各组分。
S42、将多元醇组合物、催化剂、水和泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物。
S43、将第一混合物、氟代烯烃类发泡剂通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
S44、将环戊烷、正丁烷在4~20bar压力下通过计量泵按比例泵入压力罐中,并进行搅拌30分钟,得到环戊烷与正丁烷的混合物;
S45、将第二混合物与环戊烷与正丁烷的混合物通过静态混合器,在15~25℃下进行物理混合,得到第三混合物,并在料罐内进行保压,保压压力为4~8bar;
S46、在15~25℃温度条件下,将第三混合物与多异氰酸酯按比例通过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
实施例5
以重量计,硬质聚氨酯泡沫包括以下组分:
Figure PCTCN2021121619-appb-000012
Figure PCTCN2021121619-appb-000013
该硬质聚氨酯泡沫的制备方法包括以下步骤:
S51、依据硬质聚氨酯泡沫中各组分的重量份数,称取硬质聚氨酯泡沫中的各组分。
S52、将多元醇组合物、催化剂、水和泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物。
S53、将第一混合物、氟代烯烃类发泡剂通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
S54、将环戊烷、正丁烷在4~20bar压力下通过计量泵按比例泵入压力罐中,并进行搅拌30分钟,得到环戊烷与正丁烷的混合物;
S55、将第二混合物与环戊烷与正丁烷的混合物通过静态混合器,在15~25℃下进行物理混合,得到第三混合物,并在料罐内进行保压,保压压力为4~8bar;
S56、在15~25℃温度条件下,将第三混合物与多异氰酸酯按比例通过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
实施例6
以重量计,硬质聚氨酯泡沫包括以下组分:
Figure PCTCN2021121619-appb-000014
Figure PCTCN2021121619-appb-000015
该硬质聚氨酯泡沫的制备方法包括以下步骤:
S61、依据硬质聚氨酯泡沫中各组分的重量份数,称取硬质聚氨酯泡沫中的各组分。
S62、将多元醇组合物、催化剂、水和泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物。
S63、将第一混合物、氟代烯烃类发泡剂通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
S64、将环戊烷、正丁烷在4~20bar压力下通过计量泵按比例泵入压力罐中,并进行搅拌30分钟,得到环戊烷与正丁烷的混合物;
S65、将第二混合物与环戊烷与正丁烷的混合物通过静态混合器,在15~25℃下进行物理混合,得到第三混合物,并在料罐内进行保压,保压压力为4~8bar;
S66、在15~25℃温度条件下,将第三混合物与多异氰酸酯按比例通过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
对比例1
以重量计,硬质聚氨酯泡沫包括以下组分:
Figure PCTCN2021121619-appb-000016
该硬质聚氨酯泡沫的制备方法包括以下步骤:
S71、依据硬质聚氨酯泡沫中各组分的重量份数,称取硬质聚氨酯泡沫中的各组分。
S72、将多元醇组合物、催化剂、水和泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物。
S73、将第一混合物、环戊烷、反式-1-氯-3,3,3-三氟丙烯通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
S74、在15~25℃温度条件下,将第二混合物与多异氰酸酯按比例通过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
对比例2
以重量计,硬质聚氨酯泡沫包括以下组分:
Figure PCTCN2021121619-appb-000017
Figure PCTCN2021121619-appb-000018
该硬质聚氨酯泡沫的制备方法包括以下步骤:
S81、依据硬质聚氨酯泡沫中各组分的重量份数,称取硬质聚氨酯泡沫中的各组分。
S82、将多元醇组合物、催化剂、水和泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物。
S83、将第一混合物、环戊烷、顺式-1,1,1,4,4,4-六氟-2-丁烯通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
S84、在15~25℃温度条件下,将第二混合物与多异氰酸酯按比例通过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
对比例3
以重量计,硬质聚氨酯泡沫包括以下组分:
Figure PCTCN2021121619-appb-000019
Figure PCTCN2021121619-appb-000020
该硬质聚氨酯泡沫的制备方法包括以下步骤:
S81、依据硬质聚氨酯泡沫中各组分的重量份数,称取硬质聚氨酯泡沫中的各组分。
S82、将多元醇组合物、催化剂、水和泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物。
S83、将第一混合物、氟代烯烃类发泡剂通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
S84、将环戊烷、正丁烷在4~20bar压力下通过计量泵按比例泵入压力罐中,并进行搅拌30分钟,得到环戊烷与正丁烷的混合物;
S85、将第二混合物与环戊烷与正丁烷的混合物通过静态混合器,在15~25℃下进行物理混合,得到第三混合物,并在料罐内进行保压,保压压力为4~8bar;
S86、在15~25℃温度条件下,将第三混合物与多异氰酸酯按比例通过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
对实施例1-6及对比例1-3的硬质聚氨酯泡沫按照国家标准进行测试,并对各性能进行对比,如表1所示:
表1硬质聚氨酯泡沫的性能
Figure PCTCN2021121619-appb-000021
其中,模塑芯密度是指模塑泡沫的芯部密度。通常说来,模制密度由多个50mm×50mm×30mm(去除表皮)样品的平均值确定。
密度分布是指解剖发泡箱体,测试各部位的芯密度,最大芯密度与最小 芯密度之间的差值。
由上表可知,相较于对比例1~2,实施例1~6中由于加入了适量的正丁烷,使得密度分布较小,因此泡料流动性更好。实施例1~6中所制备的硬质聚氨酯泡沫具备更低的泡沫密度,且其泡沫压缩强度、泡沫导热系数和尺寸稳定性维持相当,因此,在保持力学性能和保温性能不降低的情况下,可以节省原材料用量,经济性好。此外,由对比例3可看出,正丁烷加入过多,对导热系数、表面气泡均有不利的影响。
实施例1~6和对比例1~3中的硬质聚氨酯泡沫是在同样的条件下制备冰箱的隔热层,也即,各隔热层除了原材料硬质聚氨酯泡沫分别采用实施例1~6和对比例1~3中硬质聚氨酯泡沫之外,其余制备条件均一致。并将隔热层设置于外壳和内胆之间,制备得到容积大小为310L的上冷冻下冷藏双门冰箱,对箱体进行下述测试,并对各性能进行对比,如表2所示:
表2不同硬质聚氨酯泡沫所制备的箱体的性能
Figure PCTCN2021121619-appb-000022
其中,脱模时间是指发泡料注入发泡腔至打开发泡模具的时间。
由表2的数据可知,实施例1~6中所制备的硬质聚氨酯泡沫所用脱模时 间为140s,在缩短脱模时间后,箱体侧面变形量没有变大,说明本公开制得的箱体侧板变形更小,更有利于箱体的快速脱模,可显著提高冰箱箱体发泡生产效率。
并对箱体进行高低温冲击老化试验,试验周期为温度(-30±2)℃、时间24小时,然后温度(50±2)℃,时间24小时,以上为1个周期。试验结束后平衡至室温,然后取泡沫样品测导热系数和尺寸稳定性,得到表3。
表3泡沫老化后的导热系数变化情况
Figure PCTCN2021121619-appb-000023
由表3可知,经过12个周期高低温冲击老化试验,本公开的箱体泡沫仍然具备良好的导热系数和尺寸稳定性,说明泡沫在制备成产品后,在产品状态下其泡沫保温性能衰减较慢,同现有二元混合发泡体系(对比例1-3)类似具有很好的存放稳定性。
由上述技术方案可知,本公开的优点和积极效果在于:
本公开的硬质聚氨酯泡沫中的所有组份的臭氧消耗潜值ODP均为零,全球变暖潜势GWP值低(GWP小于15),因此,对环境友好,环保性好,符合国内外环保法规要求及未来发展的需要。
该硬质聚氨酯泡沫以环戊烷为主体,加入适量的氟代烯烃类发泡剂和正丁烷,正丁烷的特性使其保证了一定的蒸汽压,同时不需要过低的原料温度,氟代烯烃类发泡剂一方面气体导热低,另一方面由于含多个氟原子结构,因此具有一定的成核作用,可使泡沫孔径更微细,减少辐射传导,因此,可降低泡沫导热系数,从而提高产品的保温性能,因此,在保证硬质聚氨酯泡沫保温性能、力学性能不降低的情况下,降低了聚氨酯泡沫的密度,从而减少原材料用量,此外,生产时无需对设备进行大的改造,因此,具有较好的经济性。
虽然已参照几个典型实施方式描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (9)

  1. 一种硬质聚氨酯泡沫,包括有机多异氰酸酯和组合聚醚,所述多异氰酸酯与所述组合聚醚的重量份之比为1.15~1.30:1;
    所述组合聚醚包括以重量份计的以下组分:
    Figure PCTCN2021121619-appb-100001
    其中,所述氟代烯烃类发泡剂包括0~100%的反式-1-氯-3,3,3-三氟丙烯和100%~0的顺式-1,1,1,4,4,4-六氟-2-丁烯。
  2. 根据权利要求1所述的硬质聚氨酯泡沫,所述组合聚醚包括以重量份计的以下组分:
    Figure PCTCN2021121619-appb-100002
  3. 根据权利要求1所述的硬质聚氨酯泡沫,所述多元醇组合物包括聚醚多元醇和苯二甲酸酸酐聚酯多元醇其中的至少一种。
  4. 根据权利要求3所述的硬质聚氨酯泡沫,以百分含量计,所述多元醇组合物中包括0.6~1的所述聚醚多元醇和0.4~0的所述聚酯多元醇。
  5. 根据权利要求3所述的硬质聚氨酯泡沫,所述苯二甲酸酸酐聚酯多元 醇由含8~12个碳原子结构的邻苯二甲酸、间苯二甲酸、芳族酸酐和多元醇通过缩聚反应制得,所述多元醇包括乙二醇、丙二醇、丁二醇、一缩二乙二醇、新戊二醇及带有芳环的双酚A中的至少一种。
  6. 根据权利要求1所述的硬质聚氨酯泡沫,所述有机多异氰酸酯中NCO的百分含量为30.5%~31.5%。
  7. 根据权利要求1所述的硬质聚氨酯泡沫,所述泡沫稳定剂为含Si-C结构的硅油。
  8. 根据权利要求1所述的硬质聚氨酯泡沫,所述催化剂包括发泡催化剂、凝胶催化剂和三聚催化剂,三者之间的重量份比为(0.5~1.5):(1.5~3.5):(0.5~1);
    所述发泡催化剂包括双-二甲基氨基乙基醚(A-1)、五甲基二乙烯三胺(PC-5)或四甲基乙二胺或四甲基己二胺及其混合物中的一种,所述凝胶催化剂包括二甲基环已胺(PC-8)或二甲基苄胺及其混合物,所述三聚催化剂包括(2-羟基丙基)三甲基甲酸铵(TMR-2)、乙季铵盐和辛季铵盐或六氢化三嗪(PC-41)中的至少一种。
  9. 一种硬质聚氨酯泡沫的制备方法,所述制备方法包括以下步骤:
    依据权利要求1~8任意一项所述的硬质聚氨酯泡沫,称取所述硬质聚氨酯泡沫中的各组分;
    将所述多元醇组合物、所述催化剂、水和所述泡沫稳定剂,在15~25℃下进行物理混合,得到第一混物;
    将所述第一混合物、所述氟代烯烃类发泡剂通过静态混合设备,在15~25℃下进行物理混合,得到第二混合物;
    将所述环戊烷、所述正丁烷在4~20bar压力下通过计量泵按比例泵入压力罐中,并进行搅拌30分钟,得到环戊烷与正丁烷的混合物;
    将所述第二混合物与所述环戊烷与正丁烷的混合物通过静态混合器,在15~25℃下进行物理混合,得到第三混合物,并在料罐内进行保压,保压压力为4~8bar;
    在15~25℃温度条件下,将所述第三混合物与所述多异氰酸酯按比例通 过高压枪头进行混合发泡,枪头压力为11-15Mpa,制得硬质聚氨酯泡沫。
PCT/CN2021/121619 2021-01-04 2021-09-29 硬质聚氨酯泡沫及其制备方法 WO2022142553A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110004533.7 2021-01-04
CN202110004533.7A CN114716722A (zh) 2021-01-04 2021-01-04 冰箱及硬质聚氨酯泡沫、硬质聚氨酯泡沫的制备方法

Publications (1)

Publication Number Publication Date
WO2022142553A1 true WO2022142553A1 (zh) 2022-07-07

Family

ID=82233471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121619 WO2022142553A1 (zh) 2021-01-04 2021-09-29 硬质聚氨酯泡沫及其制备方法

Country Status (2)

Country Link
CN (1) CN114716722A (zh)
WO (1) WO2022142553A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116693936A (zh) * 2023-06-02 2023-09-05 天长市伯士的环保新材料有限公司 一种聚氨酯硬泡添加剂及其制备方法、聚氨酯硬泡和应用
CN116835147A (zh) * 2023-07-06 2023-10-03 广东丙辛新材料有限公司 一种长时效冷链运输保温箱及其制备方法
CN117447666A (zh) * 2023-09-20 2024-01-26 青岛凯州专用车有限公司 用于冷链运输的保温材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073694B (zh) * 2022-07-21 2023-09-22 海信冰箱有限公司 低密度超低导热系数的硬质聚氨酯泡沫、制备方法及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012267A1 (ja) * 2013-07-24 2015-01-29 花王株式会社 硬質ポリウレタンフォーム製造用ポリオール混合物
CN104497254A (zh) * 2014-12-25 2015-04-08 合肥华凌股份有限公司 组合物、硬质聚氨酯泡沫材料及制冷设备
CN104628978A (zh) * 2014-07-10 2015-05-20 合肥华凌股份有限公司 组合物、硬质聚氨酯泡沫材料及制冷设备
WO2015131340A1 (zh) * 2014-03-05 2015-09-11 海信容声(广东)冰箱有限公司 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用
CN105273218A (zh) * 2010-10-28 2016-01-27 霍尼韦尔国际公司 包含1,1,1,4,4,4,-六氟丁烯和1-氯-3,3,3-三氟丙烯的混合物
CN105601978A (zh) * 2015-11-10 2016-05-25 南京红宝丽聚氨酯有限公司 一种硬质聚氨酯泡沫
CN107266699A (zh) * 2017-07-03 2017-10-20 海信容声(广东)冰箱有限公司 一种发泡剂组合物、聚氨酯反应组合物以及聚氨酯泡沫及其应用
CN108129631A (zh) * 2017-12-28 2018-06-08 青岛海尔股份有限公司 聚氨酯硬质泡沫塑料及其制备方法
CN110172173A (zh) * 2019-06-04 2019-08-27 红宝丽集团股份有限公司 一种用于与异氰酸酯反应的组合物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273218A (zh) * 2010-10-28 2016-01-27 霍尼韦尔国际公司 包含1,1,1,4,4,4,-六氟丁烯和1-氯-3,3,3-三氟丙烯的混合物
WO2015012267A1 (ja) * 2013-07-24 2015-01-29 花王株式会社 硬質ポリウレタンフォーム製造用ポリオール混合物
WO2015131340A1 (zh) * 2014-03-05 2015-09-11 海信容声(广东)冰箱有限公司 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用
CN104628978A (zh) * 2014-07-10 2015-05-20 合肥华凌股份有限公司 组合物、硬质聚氨酯泡沫材料及制冷设备
CN104497254A (zh) * 2014-12-25 2015-04-08 合肥华凌股份有限公司 组合物、硬质聚氨酯泡沫材料及制冷设备
CN105601978A (zh) * 2015-11-10 2016-05-25 南京红宝丽聚氨酯有限公司 一种硬质聚氨酯泡沫
CN107266699A (zh) * 2017-07-03 2017-10-20 海信容声(广东)冰箱有限公司 一种发泡剂组合物、聚氨酯反应组合物以及聚氨酯泡沫及其应用
CN108129631A (zh) * 2017-12-28 2018-06-08 青岛海尔股份有限公司 聚氨酯硬质泡沫塑料及其制备方法
CN110172173A (zh) * 2019-06-04 2019-08-27 红宝丽集团股份有限公司 一种用于与异氰酸酯反应的组合物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116693936A (zh) * 2023-06-02 2023-09-05 天长市伯士的环保新材料有限公司 一种聚氨酯硬泡添加剂及其制备方法、聚氨酯硬泡和应用
CN116693936B (zh) * 2023-06-02 2024-02-09 天长市伯士的环保新材料有限公司 一种聚氨酯硬泡添加剂及其制备方法、聚氨酯硬泡和应用
CN116835147A (zh) * 2023-07-06 2023-10-03 广东丙辛新材料有限公司 一种长时效冷链运输保温箱及其制备方法
CN116835147B (zh) * 2023-07-06 2024-02-02 广东丙辛新材料有限公司 一种长时效冷链运输保温箱及其制备方法
CN117447666A (zh) * 2023-09-20 2024-01-26 青岛凯州专用车有限公司 用于冷链运输的保温材料及其制备方法
CN117447666B (zh) * 2023-09-20 2024-04-19 青岛凯州专用车有限公司 用于冷链运输的保温材料及其制备方法

Also Published As

Publication number Publication date
CN114716722A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2022142553A1 (zh) 硬质聚氨酯泡沫及其制备方法
US11739189B2 (en) Composition kit for preparing polyurethane foam and preparation method and application thereof
CN106496494B (zh) 一种低密度、低导热率的聚氨酯泡沫及其制备方法
CN111647191B (zh) 一种低导发泡剂组合物,聚氨酯硬质泡沫及其制备方法
CN100519616C (zh) 使用第三代发泡剂生产聚氨酯硬质泡沫的组成物
WO2018227884A1 (zh) 组合聚醚、聚氨酯泡沫及其制备方法和应用
CN110628073A (zh) 一种聚氨酯硬泡配方及其制备方法
CN109762136B (zh) 一种聚氨酯发泡组合物、聚氨酯泡沫及其制备方法和应用
CN107266699A (zh) 一种发泡剂组合物、聚氨酯反应组合物以及聚氨酯泡沫及其应用
WO2020244371A1 (zh) 一种用于与异氰酸酯反应的组合物
CN112175158B (zh) 冰箱及硬质聚氨酯泡沫、硬质聚氨酯泡沫的制备方法
CN111471210A (zh) 戊烷共发泡体系的聚氨酯组合物和聚氨酯硬泡的制备方法
JPH11201628A (ja) 冷蔵庫の断熱箱体
CN113754850A (zh) 一种聚氨酯泡沫及制备方法和应用
CN104530361A (zh) 组合物、硬质聚氨酯泡沫材料及制冷设备
JP2001133135A (ja) 冷蔵庫
JP2001122941A (ja) 硬質ポリウレタンフォームおよびそれを用いた冷蔵庫
JPH072971A (ja) インテグラルスキン付ポリウレタンフォームの製造法
US6617368B2 (en) Isotropic rigid foams
CA2486667A1 (en) Rigid polyurethane foams for insulation and process for producing same
WO2023221694A9 (zh) 聚氨酯泡沫材料及其制备方法、冰箱和冰柜
JP3374324B2 (ja) 硬質ポリウレタンフォ−ムの製造方法
CA2490242C (en) Polyol compositions useful for preparing dimensionally stable, low density water-blown rigid foams and the processes related thereto
CN111454419B (zh) 一种全水发泡半硬质pu泡沫
JPH11201630A (ja) 冷蔵庫および冷凍庫の断熱扉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913298

Country of ref document: EP

Kind code of ref document: A1