WO2015131340A1 - 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用 - Google Patents

一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用 Download PDF

Info

Publication number
WO2015131340A1
WO2015131340A1 PCT/CN2014/072883 CN2014072883W WO2015131340A1 WO 2015131340 A1 WO2015131340 A1 WO 2015131340A1 CN 2014072883 W CN2014072883 W CN 2014072883W WO 2015131340 A1 WO2015131340 A1 WO 2015131340A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
cyclopentane
foam
raw materials
weight
Prior art date
Application number
PCT/CN2014/072883
Other languages
English (en)
French (fr)
Inventor
胡锋
曹立军
胡哲
刘莉
Original Assignee
海信容声(广东)冰箱有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信容声(广东)冰箱有限公司 filed Critical 海信容声(广东)冰箱有限公司
Priority to PCT/CN2014/072883 priority Critical patent/WO2015131340A1/zh
Priority to EP14884546.4A priority patent/EP3115401B8/en
Publication of WO2015131340A1 publication Critical patent/WO2015131340A1/zh
Priority to US15/253,100 priority patent/US20160369077A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0042Use of organic additives containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • F25D23/066Liners
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/16Unsaturated hydrocarbons
    • C08J2203/162Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the present invention relates to the field of polyurethane rigid foam foam, and more particularly to a polyurethane rigid foam foam and a preparation method and application thereof.
  • C-pentane (cyclopentane) is the largest and most popular polyurethane rigid foaming agent in the refrigerator freezer industry at home and abroad. It has the advantages of good environmental performance and simple operation, and C-pentane as a petrochemical product, refining technology. Mature, widely available, and inexpensive, it has become the preferred blowing agent for CFC-11 (-fluorotrichloromethane) and HCFC-141b (monofluorodichloroethane) and is widely used in refrigeration appliances. The foaming sector dominates.
  • C-pentane's defects are also very prominent, mainly with the following defects: flammable characteristics, so ventilation safety facilities must be built during production and application; foam insulation performance is relatively poor, and the energy consumption of the whole product is high. It is difficult to meet the ever-increasing home energy efficiency standards; the boiling point is high, the steam pressure is low, so the foam strength is poor, the packing density is large, and there are many foaming materials that need to be consumed.
  • the disadvantages of high energy consumption and high resource consumption of cyclopentane have always been difficult problems in the PU field, but it is difficult to break through. The root cause is that it is difficult to find a way to fully meet the environmental regulations and make up for the C-pentane defects.
  • HFO-1233zd (1-chloro-3,3,3-trifluoropropene).
  • the physicochemical properties of C-pentane and HFO-1233zd are shown in Table 1: Table 1 Physicochemical properties of C-pentane and HFO-1233zd
  • the above table shows that the greenhouse effect potential (ODP) of C-pentane and HFO-1233zd is equal to 0, and the greenhouse effect potential (GWP) is less than 15, HFO-1233zd. It also has the characteristics of lower boiling point, low thermal conductivity, high vapor pressure, and its molecular structure has a polyfluoro atom structure. Therefore, it is expected to be a nucleating additive to make up for the birth defects of C-pentane.
  • the solid thermal conductivity is relatively fixed, and the convective thermal conductivity is negligible when the hard foam pore size is less than 2 mm.
  • the main gas component in the cell is determined, the main factor affecting the thermal conductivity of the hard foam is radiation conduction. rate. The most effective way to reduce the radiation conductivity is to reduce the cell aperture.
  • the object of the present invention is to overcome the deficiencies of the existing polyurethane rigid foam foam and to provide a polyurethane rigid foam having a low thermal conductivity.
  • the thermal conductivity of the prepared polyurethane rigid foam can be greatly reduced, and the minimum can be reduced to below 0.01800W/m.K.
  • Another object of the present invention is to provide a process for the preparation of the above polyurethane rigid foam.
  • Still another object of the present invention is to provide an application of the above polyurethane rigid foam in the preparation of a refrigerator freezer.
  • a polyurethane rigid foam which is prepared from the following parts by weight of raw materials
  • polyisocyanate is a polymethylpolyphenyl polyisocyanate.
  • the polyol composition comprises a plurality of polyether polyol monomers and an aromatic polyester polyol monomer group, wherein the polyether polyol comprises a starter agent of sucrose, glycerin, methylphenylenediamine, One or more of sorbitol, ethylenediamine, glycol or ethanolamine are obtained by polymerization addition reaction of alkylene oxide.
  • the polyester polyol is composed of at least one of phthalic acid, isophthalic acid, terephthalic acid, halogenated phthalic acid and anhydride thereof, and ethylene glycol, propylene glycol, diethylene glycol, Synthesis of at least one of neopentyl glycol and bisphenol A having an aromatic ring.
  • HFO-1233zd 1-OD-3,3,3-trifluoropropene
  • ODP value 0
  • a GWP of less than 15 which has the characteristics of lower boiling point, low thermal conductivity and high vapor pressure, thus a certain amount of HFO
  • the mixture of -1233zd and cyclopentane can effectively compensate the weak point of the thermal conductivity of the blowing agent cyclopentane and the weak foam strength, and improve the foam performance.
  • HFO-1233zd molecular polyfluoride atom structure makes it It has the function of nucleating agent, which is applied to the preparation of rigid polyurethane foam, which can make the foam pores smaller and finer and more uniform, thus helping to reduce the thermal conductivity of the foam and improve the cell structure and strength.
  • HFO-1233zd is not flammable. , can improve the safety of cyclopentane foam production.
  • the aromatic polyether polyol monomer and the aromatic polyester polyol monomer are introduced into the polyol composition formulation of the above raw materials, and the application thereof to the preparation of the rigid polyurethane foam can make the cells more fine and uniform, thereby The thermal conductivity of the foam is further reduced to produce a polyurethane rigid foam having a low thermal conductivity.
  • the aromatic polyether polyol obtained by polymerization-addition reaction of toluenediamine as a starting agent and an alkylene oxide accounts for 15 40 parts by weight of the polyol composition.
  • This range includes any specific number
  • the value, without limitation, may be 15 parts, 20 parts, 25 parts, 30 parts, 35 parts or 40 parts.
  • the aromatic polyether polyol obtained by polymerization-addition reaction of toluenediamine as a starting agent with an alkylene oxide accounts for 20 25 parts by weight of the polyol composition.
  • aromatic polyester polyol accounts for 8 to 15 parts by weight of the polyol composition.
  • the scope includes any specific numerical value thereof, and is not limited thereto, for example, 8 parts, 9 parts, 10 parts, 11 parts, 12 parts, 13 parts, 14 parts or 15 parts.
  • the aromatic polyester polyol accounts for 12 15 parts by weight of the polyol composition.
  • the content of 1-chloro-3,3,3-trifluoropropene is from 1 to 3% by weight based on the total weight of the raw materials.
  • the range includes any specific numerical value thereof, and is not limited to 1%, 1.1%, 1.2%, 1.3%,
  • the content of 1-chloro-3,3,3-trifluoropropene is the total weight of the raw materials.
  • the content of 1-chloro-3,3,3-trifluoropropene is 2.5 to 3% by weight based on the total weight of the raw materials.
  • the polyurethane rigid foam is prepared from the following parts by weight of raw materials:
  • the polyurethane rigid foam is prepared from the following parts by weight of raw materials:
  • a method for preparing the above polyurethane rigid foam comprises the following steps:
  • step S2 The mixture in the step S1 is uniformly mixed with the polyisocyanate in proportion, and then foaming is carried out under a pressure of 110 bar to 160 bar.
  • the 1-chloro-3,3,3-trifluoropropene in the step S1 is uniformly cooled to 10 ° C to 19 ° C and then uniformly mixed with the cyclopentane and polyol composition.
  • the temperature of the cyclopentane is from 10 ° C to 30 ° C
  • the temperature of the mixture after the mixing in the step S1 is from 18 ° C to 25 ° C.
  • the present invention has the following beneficial effects:
  • the invention uses cyclopentane as a main component blowing agent, and simultaneously adds a certain amount of HFO-1233zd, fully utilizing the low cost and mature technology of cyclopentane, and HFO-1233zd has both lower boiling point and low thermal conductivity.
  • the component HFO-1233zd in the present invention contains a plurality of fluorine atom structures and has a nucleating agent function, so that the foam pore size is finer and finer and more uniform, and the cell structure and strength are further improved, thereby contributing to reduction Thermal conductivity, improved foam performance, and more energy efficient.
  • the component HFO-1233zd in the present invention is non-combustible, contains no volatile organic matter (VOC), has an ozone depletion potential (ODP) of 0, has a greenhouse effect potential (GWP) of less than 10, and has a foaming agent itself. Function, with the advantages of safety and environmental protection.
  • the method of the present invention is used to manufacture a rigid polyurethane foam, which can improve the foam strength and reduce the amount of foaming raw materials. , save resources.
  • the present invention optimizes the combined polyether formulation: the preferred aromatic polyether monomer and aromatic polyester monomer are used to make the cells more fine and the thermal conductivity is reduced; and the addition of HFO-1233zd can be prepared. Low thermal conductivity polyurethane foam.
  • the rigid polyurethane foam prepared by using the composition of the invention is finer and more uniform, so that the thermal conductivity is greatly reduced (as low as 0.01800 W/mK or less), and the foam strength is improved;
  • the invention has a positive driving effect on the upgrading of the existing refrigerator cyclopentane foaming technology.
  • FIG. 1 is an electron micrograph of a rigid polyurethane foam prepared in Examples and Comparative Examples; wherein the left figure is a foamed foam of a comparative example 3 cyclopentane one-component system, and the middle figure is a cyclopentane of Comparative Example 4 without an aromatic polyester.
  • the alkane + HFO-1233zd system foamed foam, the right figure is the foamed foam prepared in Example 3.
  • Polyether A sucrose as a starter, polymerized with oxidized olefin, functionality 8, hydroxyl value 370 ⁇ 415mg / KOH / g ;
  • Polyether B sucrose, glycerin as initiator, polymerized with oxidized olefin, functionality 5 ⁇ 6, hydroxyl value 360 ⁇ 390mg/KOH/g ;
  • Polyether C sorbitol is used as a starter, polymerized with alkylene oxide, functionality 6, hydroxyl value 480 ⁇ 500mg/KOH/g ;
  • Polyether D methyl phenylenediamine as starting agent, polymerized with oxidized olefin, functionality 4, hydroxyl value 400-420 mg / KOH / g ;
  • Polyether E Ethylenediamine is used as a starter and polymerized with alkylene oxide.
  • the functionality is 4, and the hydroxyl value is 630 ⁇ 700mg/KOH/g.
  • Polyester F Aromatic carboxylic acid or anhydride is condensed with alcohol, functionality 2 ⁇ 3, hydroxyl value 300 ⁇ 330mg/KOH/g, PS3152, produced by Nanjing Jinling Sitai Pan Chemical Co., Ltd.
  • Cyclopentane Produced by Shunde Meilong Cyclopentane Chemical Co., Ltd.
  • HFO-1233zd foaming agent Produced by Honeywell.
  • Silicone oil Surfactant, produced by Evonik Degussa.
  • Polyisocyanate PM2010, produced by Yantai Wanhua.
  • Production equipment High pressure foaming machine, produced by Hennecke.
  • Examples 1 to 2 are rigid polyurethane foams prepared according to the general method of the present invention
  • Examples 3 to 4 are rigid polyurethane foams prepared according to a preferred method of the present invention.
  • HFO-1233zd is the most cost-effective when it accounts for 2.5% ⁇ 3.0% of the total weight of foamed raw materials.
  • Example 3 It can be seen from Example 3 and Comparative Examples 4 to 5 that the proper amount of HFO-1233zd is added to the cyclopentane system, and the combination of the aromatic polyether polyol and the aromatic polyester polyol in the combined polyether formulation can be most effective. Improve the thermal conductivity of the foam.
  • the above examples and comparative examples are foamed in a high-pressure foaming machine in a two-door refrigerator mold with a volume of 300L.
  • the density of the refrigerator foam obtained in Example 3 was 0.8, and the density of the refrigerator foam prepared in Comparative Example 2 was 1.9, indicating that the addition of HFO-1233zd made the foam more excellent. fluidity.
  • Fig. 1 the left figure is a cyclopentane one-component system foaming foam of Comparative Example 3, and the middle figure is a cyclopentane + HFO-1233zd system foaming foam of Comparative Example 4 without an aromatic polyester, and the right figure is an implementation.
  • the foamed foam prepared in Example 3 It can be seen from the electron micrograph of Fig. 1 that the pore diameter from the left to the right is gradually reduced, indicating that the addition of HFO-1233zd and the aromatic polyester polyol makes the cells of the rigid polyurethane foam more porous. Even and fine.
  • the additive HFO-1233zd is applied to the cyclopentane foaming system as a nucleating agent, and combined with an aromatic polyether and aromatic polyester modified formulation, which can better solve the defect of high thermal conductivity when the cyclopentane single system is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及聚氨酯硬泡泡沫技术领域。具体涉及一种聚氨酯硬泡泡沫,其由下列重量份数的原料混合反应制备而成:多异氰酸酯135~165份,多元醇组合物100份,环戊烷10~16份,催化剂1.8~2.3份,硅油1.8~2.5份,水1.6~2.4份,以及占所述原料总重量1%~3%的1-氯-3,3,3-三氟丙烯;本发明还涉及所述聚氨酯硬泡泡沫的制备方法及其在冰箱冰柜行业中的应用。本发明所述硬质聚氨酯硬泡泡孔更微小细密、均匀,导热系数大幅度降低(最低可降至0.01800W/m.K以下),泡沫强度提高;并且降低能耗、环保性好;本发明对现有冰箱环戊烷发泡技术的升级换代具有积极的推动作用。

Description

一种以环戊垸为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用 技术领域
本发明涉及聚氨酯硬泡泡沫技术领域, 更具体地,涉及一种聚氨酯硬泡泡沫 及其制备方法和应用。
背景技术
C-pentane (环戊烷) 是目前国内外冰箱冰柜行业用量最大、 最为普及的聚 氨酯硬泡发泡剂, 其具有环保性能好、 操作简单的优点, 而且 C-pentane作为石 化产品, 提炼制作技术成熟, 货源广、 价格低廉, 因而成为替代 CFC-11 (—氟 三氯甲烷)、 HCFC-141b (一氟二氯乙烷) 的首选发泡剂而被广泛应用于制冷家 电, 在 PU聚氨酯发泡剂领域占据主导地位。 但 C-pentane的缺陷也十分突出, 主要有如下缺陷:具有易燃的特性,因此在生产和应用过程中须建通风安全设施; 泡沫隔热性能相对较差,产品整机的能耗较高,难以满足日益提高的家电能效标 准; 沸点高, 蒸汽压力低, 因而泡沫强度较差, 充填密度大, 需要消耗的发泡原 料多。 环戊烷的能耗高, 资源消耗大的缺点, 一直都是 PU领域试图攻克的难题, 但难以突破, 根源在于很难找到同时完全满足环保法规又能弥补 C-pentane先天 缺陷的途径, 直到 HFO-1233zd ( 1-氯 -3,3,3-三氟丙烯) 的推出。 C-pentane与 HFO-1233zd的物理化学性质如表 1所示: 表 1 C-pentane与 HFO-1233zd的物理化学性质
OD
P
GW
( 饱和蒸
P (温
消 沸点 汽压力 导热系数 极限 发泡剂 分子结构 室效
耗 ( °C ) KPa (20°C,mW/m.k)
应潜
臭 (20°C ) (%) 值)
值)
Figure imgf000003_0001
美国国家标准与技术研究所 (NIST) 研究认定 由上表可知, C-pentane和 HFO-1233zd的温室效应潜值 (ODP) 都等于 0, 温室效应潜值 (GWP) 都小于 15, HFO-1233zd还兼具较低沸点、 低导热系数、 高蒸汽压的特点, 并且其分子具有多氟原子结构, 因此, 有望作为一种成核添加 剂弥补 C-pentane的先天缺陷。
《塑料工业手册》, 李俊贤, 1999, 第 1版中, 有相关理论研究指出, 泡沫 的热导率由几个因素构成:
Figure imgf000003_0002
式中, λΡ_硬泡导热率;
λο_泡孔内气体导热率;
λ8_固体导热率;
λκ_辐射传导率;
λο_对流热导率。
上述公式中, 固体导热率相对固定, 对流导热率在硬泡孔径尺寸小于 2mm 时可忽略不计, 而泡孔内的主要气体成分已确定的情况下, 影响硬泡导热率的主 要因素是辐射传导率。 降低辐射传导率的最有效途径是减小泡孔孔径。
发明内容
本发明的目的在于克服现有聚氨酯硬泡泡沫导热系数高等不足,提供了一种 具有低导热系数的聚氨酯硬泡泡沫。通过对配方的合理调整可以使制备的聚氨酯 硬泡泡沫的导热系数大幅度降低, 最低可降低到 0.01800W/m.K以下。
本发明的另一个目的是提供上述聚氨酯硬泡泡沫的制备方法。
本发明的再一个目的是提供上述聚氨酯硬泡泡沫在制备冰箱冷柜中的应 用。
为实现上述目的, 本发明采用如下技术方案: -种聚氨酯硬泡泡沫, 所述聚氨酯硬泡泡沫由下列重量份数的原料制备得
135〜165份;
多元醇组合物 100份;
环戊烷 10〜16份;
催化剂 1.8-2.3份;
硅油 1.8-2.5份;
水 1.6-2.4 份;
以及占所述原料总重 1%〜3%的 1-氯 -3,3,3-三氟丙烯。
其中, 所述多异氰酸酯为多次甲基多苯基多异氰酸酯。
其中,所述多元醇组合物由多种聚醚多元醇单体与芳香族聚酯多元醇单体组 其中, 所述聚醚多元醇由起始剂为蔗糖、 甘油、 甲基苯二胺、 山梨醇、 乙二 胺、 二元醇或乙醇胺中的一种或几种与氧化烯烃经聚合加成反应制得。
其中, 所述聚酯多元醇由邻苯二甲酸、 间苯二甲酸、 对苯二甲酸、 卤代苯二 甲酸及其酸酐的至少一种与乙二醇、丙二醇、一缩二乙二醇、新戊二醇及带有芳 环的双酚 A的至少一种合成制得。
1-氯 -3,3,3-三氟丙烯(HFO-1233zd) 的 ODP值等于 0, GWP小于 15, 兼具 较低沸点、 低导热系数、 高蒸汽压的特点, 因而将一定量的 HFO-1233zd与环戊 烷混合, 可以有效弥补发泡剂环戊烷的导热系数高、泡沫强度差的弱点, 改善泡 沫性能; 另外, 发明人意外发现, HFO-1233zd分子多氟原子结构使其还具有成 核剂功能, 将其应用于制备硬质聚氨酯泡沫塑料, 可使泡沫孔径更微小细密、更 均匀, 从而有助于降低泡沫导热系数, 改善泡孔结构与强度; 而且, HFO-1233zd 不燃, 可提高环戊烷发泡生产的安全性。
同时,上述原料的多元醇组合物配方中引入芳香族聚醚多元醇单体和芳香族 聚酯多元醇单体,将其应用于制备硬质聚氨酯泡沫塑料能够使泡孔更加微细、均 匀, 从而进一步降低泡沫的导热系数, 制造出低导热率的聚氨酯硬泡泡沫。
其中,以甲苯二胺为起始剂与氧化烯烃经聚合加成反应所得到的芳香族聚醚 多元醇占多元醇组合物的重量份数为 15 40份。该范围包括了其中的任何具体数 值, 非限定地可例举 15份、 20份、 25份、 30份、 35份或 40份。
其中,以甲苯二胺为起始剂与氧化烯烃经聚合加成反应所得到的芳香族聚醚 多元醇占多元醇组合物的重量份数为 20 25份。
其中, 所述芳香族聚酯多元醇占多元醇组合物的重量份数为 8~15份。 该范 围包括了其中的任何具体数值, 非限定地可例举 8份、 9份、 10份、 11份、 12 份、 13份、 14份或 15份。
其中, 所述芳香族聚酯多元醇占多元醇组合物的重量份数为 12 15份。 所述聚氨酯硬泡泡沫中, 1-氯 -3,3,3-三氟丙烯的含量为占原料总重量 1~3%。 该范围包括了其中的任何具体数值, 非限定地可例举 1%、 1.1%、 1.2%、 1.3%、
1.4%、 1.5%、 1.6%、 1.7%、 1.8%、 1.9%、 2%、 2.1%、 2.2% 2.3%、 2.4% 2.5%、
2.6%、 2.7%、 2.8%、 2.9"¼或 3.00/0
其中, 所述聚氨酯硬泡泡沫中, 1-氯 -3,3,3-三氟丙烯的含量为占原料总重量
2-3%
其中, 所述聚氨酯硬泡泡沫中, 1-氯 -3,3,3-三氟丙烯的含量为占原料总重量 2.5~3%。
作为一种优选方案, 所述聚氨酯硬泡泡沫由下列重量份数的原料制备得到:
140〜160份;
多元醇组合物 100份;
环戊烷 11〜14份;
催化剂 1.8-2.1份;
硅油 1.9~2.4份;
水 I .9~2.2份;
以及占所述原料总重量 2.0%〜3.0%的 1-氯 -3,3,3-三氟丙烯。
作为一种进一步的优选方案,所述聚氨酯硬泡泡沫由下列重量份数的原料制 备得到:
145〜155份;
多元醇组合物 100份;
环戊烷 I I .0—12.5份;
催化剂 1.8~2.0份; 硅油 2.0 2.3份;
水 1.9~2.1份;
以及占所述原料总重量 2.5%〜3.0%的 1-氯 -3,3,3-三氟丙烯。
一种制备上述聚氨酯硬泡泡沫的方法, 包括如下步骤:
S1 : 按比例将所述多元醇组合物、 环戊烷、 1-氯 -3,3,3-三氟丙烯、 催化剂、 硅油及水均匀混合;
S2: 将步骤 S1中的混合物与多异氰酸酯按比例均匀混合, 然后在 110bar〜 160bar压力下进行发泡生产。
作为一种优选方案, 所述步骤 S1 中的 1-氯 -3,3,3-三氟丙烯经低温冷却至 10°C〜19°C后再与环戊烷及多元醇组合物进行均匀混合; 其中,所述环戊烷的温 度为 10°C〜30°C, 所述 S1步骤混合后的混合物温度为 18°C〜25°C。
与现有技术相比, 本发明具有如下有益效果:
( 1 )本发明以环戊烷作为主体组分发泡剂,同时加入一定量的 HFO-1233zd, 充分利用环戊烷低成本、 技术成熟的特点, 而 HFO-1233zd兼具较低沸点、 低导 热系数、较高蒸汽压的特点,两者协同使用降低泡沫的导热系数,提高泡沫强度。
(2) 本发明中的组分 HFO-1233zd, 含多个氟原子结构, 具有成核剂功能, 可使泡沫孔径更微小细密、更均匀, 进一步改善泡孔结构与强度, 从而有助于降 低导热系数, 改善泡沫性能, 更节能。
(3 ) 本发明中的组分 HFO-1233zd, 不燃, 不含挥发性的有机物 (VOC), 臭氧消耗潜值 (ODP) 为 0, 温室效应潜值 (GWP) 小于 10, 本身也有发泡剂 功能, 具有安全环保的优势。
(4) 由于 HFO-1233zd有较低沸点, 可使泡沫具有优异的流动性, 同时有 较高蒸汽压, 因此采用本发明的方法制造硬质聚氨酯泡沫, 可以提高泡沫强度, 减少发泡原料用量, 节约资源。
( 5 ) 本发明对组合聚醚配方进行了优化: 采用优选的芳香族聚醚单体及芳 香族聚酯单体, 使得泡孔更加微细, 导热系数降低; 结合 HFO-1233zd的加入, 可制备低导热系数的聚氨酯泡沫。
利用本发明所述组合物制备得到的硬质聚氨酯泡沫塑料泡孔更细密、 均匀, 从而使导热系数大幅度降低 (最低可达 0.01800W/m.K 以下), 泡沫强度提高; 绝热层的保温性能提高, 降低能耗; 环保性好 (ODP=0, GWP< 15 ), 较环戊烷 单组分发泡具有更安全的特点。本发明对现有冰箱环戊烷发泡技术的升级换代具 有积极的推动作用。
附图说明
图 1为实施例及对比例制备的硬质聚氨酯泡沫电镜图; 其中左图为对照例 3 环戊烷单组分体系发泡泡沫, 中图为对照例 4 未加芳香族聚酯的环戊烷 +HFO-1233zd体系发泡泡沫, 右图为实施例 3制备的发泡泡沫。
具体实施方式
下面结合实施例对本发明做进一步的描述。这些实施例仅是对本发明的典型 描述, 但本发明不限于此。
本发明所使用的原料说明如下:
聚醚 A: 蔗糖为起始剂, 与氧化烯烃聚合而成, 官能度 8, 羟值 370〜 415mg/KOH/g;
聚醚 B:蔗糖、甘油为起始剂,与氧化烯烃聚合而成,官能度 5~6,羟值 360〜 390mg/KOH/g;
聚醚 C: 山梨醇为起始剂, 与氧化烯烃聚合而成, 官能度 6, 羟值 480〜 500mg/KOH/g;
聚醚 D: 甲基苯二胺为起始剂, 与氧化烯烃聚合而成, 官能度 4, 羟值 400-420mg/KOH/g;
聚醚 E: 乙二胺为起始剂, 与氧化烯烃聚合而成, 官能度 4, 羟值 630〜 700mg/KOH/g。
聚酯 F: 芳香族羧酸或酸酐与醇类缩合而成, 官能度 2〜3, 羟值 300〜 330mg/KOH/g, PS3152, 由南京金陵斯泰潘化学有限公司生产。
环戊烷: 由顺德市美龙环戊烷化工有限公司生产。
HFO-1233zd发泡剂: 由霍尼韦尔公司生产。
催化剂: TMR-2, PC-5, PC-8, 由气体公司(Air Products and Chemicals, Inc. ) 生产。
硅油: 表面活性剂, 由赢创德固赛公司生产。
多异氰酸酯: PM2010 , 由烟台万华生产。 生产设备: 高压发泡机, 由亨内基公司生产。
本发明提供的实施例中的其它原材料均可从市面采购获得。
实施例 1~2为按照本发明的一般方法所制备的硬质聚氨酯泡沫, 实施例 3~4 是按照本发明优选的方法制备的硬质聚氨酯泡沫。
表 2
Figure imgf000008_0001
由实施例 1〜4 可知, 在环戊烷体系中加入适量的具有成核剂作用的 HFO-1233zd添加剂, 同时优化组合聚醚配方, 在组合聚醚中加入一定量优选的 芳香族聚醚单体、芳香族聚酯单体等组分,所形成的发泡体系制得聚氨酯硬质泡 沫塑料, 泡沫的导热系数水平有明显的降低, 隔热保温性能提高, 要明显好于对 照例 3以环戊烷单组分的发泡体系。
由实施例 1~4和比较例 3可以看出, 虽然密度相差 3kg/m3左右, 但压缩强 度却接近, 说明 HFO-1233zd、 芳香族聚醚多元醇及芳香族聚酯多元醇的加入也 能提高泡沫的强度。
由实施例 1~4及比较例 1、 2可知, 当 HFO-1233zd占发泡原料总重量达到 或超过 2.5%左右时, 泡沫的导热系数最低可达到低于 0.01800 mW/m.K; 此时, 如果继续增加 HFO- 1233zd的用量, 在一定范围内, 导热系数改善与降低的幅度 并不明显,因为此时泡孔内发泡剂的主要成分仍是环戊烷和兼具成核剂作用的适 量的 HFO- 1233zd, 此时继续增加一定量的 HFO- 1233zd对成核的帮助已经不明 显, 而作为发泡剂, 其占比太少, 其改善导热系数的作用效果也不明显。 结合成 本及泡沫性能分析, 当 HFO- 1233zd占发泡原料总重量的 2.5%~3.0%时的性价比 最高。
表 3
Figure imgf000009_0001
由实施例 3和比较例 4〜5可知, 在环戊烷体系中加入适量 HFO- 1233zd, 结 合在组合聚醚配方中芳香族聚醚多元醇、芳香族聚酯多元醇的应用可以最为有效 的改善泡沫的导热系数。
表 4
实施例 3制得的冰箱 对照例 3制得的冰箱 灌注量 (g ) 7450 8200 1 (kg/m3 ) 31.17 36.54
2 (kg/m3 ) 31.75 35.44
3 (kg/m3 ) 31.97 34.92
4 (kg/m3 ) 31.52 35.66
5 (kg/m3 ) 31.65 34.64 平均密度 (kg/m3 ) 31.66 35.51 极差 (max-min) 0.8 1.9
注: 上述实施例与对照例均在海信容声冰箱容积为 300L的两门冰箱模具中高压发泡机 发泡。
由表 4可知, 实施例 3所制得的冰箱泡沫的密度极差为 0.8, 而比较例 2所 制得的冰箱泡沫的密度极差为 1.9, 说明 HFO-1233zd的加入使泡沫具有更加优 异的流动性。
图 1中,左图为对照例 3环戊烷单组分体系发泡泡沫, 中图为对照例 4未加 芳香族聚酯的环戊烷 +HFO-1233zd体系发泡泡沫,右图为实施例 3制备的发泡泡 沫; 由图 1的电镜图片可以看出,从左至右泡孔孔径逐渐减少,说明 HFO-1233zd 及芳香族聚酯多元醇的加入使硬质聚氨酯泡沫的泡孔更均匀、 细密。
将添加剂 HFO-1233zd应用于环戊烷发泡体系中, 作为成核剂, 同时结合芳 香族聚醚、芳香族聚酯改进配方, 能较好解决环戊烷单独体系使用时导热系数高 的缺陷, 同时由于 HFO-1233zd 不易燃烧, 可改善环戊烷发泡安全性能, 且其 VOC=0、 ODP=0、 GWP< 10, 利用本发明所述的组合物制备硬质聚氨酯泡沫的 方法能较好实现冰箱产品的节能、 经济、 安全、 环保。
以上仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围 之内。

Claims

1. 一种聚氨酯硬泡泡沫, 其特征在于, 所述聚氨酯硬泡泡沫由下列重量份数的原料 混合反应制备得到:
135〜165份;
多元醇组合物 100份;
环戊烷 10〜16份;
催化剂 1.8-2.3份;
硅油 1.8-2.5份;
水 1.6-2.4 份;
以及占所述原料总重量 1%〜3%的 1-氯 -3,3,3-三氟丙烯。
2. 根据权利要求 1 所述聚氨酯硬泡泡沫, 其特征在于, 所述聚氨酯硬泡泡 沫由下列重量份数的原料混合反应制备得到:
140〜160份;
多元醇组合物 100份;
环戊烷 11〜14份;
催化剂 1.8- 2.1份;
硅油 1.9~2.4份;
水 I.9~2.2份;
以及占所述原料总重量 2.0%〜3.0%的 1-氯 -3,3,3-三氟丙烯。
3. 根据权利要求 1 所述聚氨酯硬泡泡沫, 其特征在于, 所述聚氨酯硬泡泡 沫由下列重量份数的原料混合反应制备得到:
145〜155份;
多元醇组合物 100份;
环戊烷 II.5— 12.5份;
催化剂 1.8~2.0份;
硅油 2.0-2.3份;
水 1.9- 2.1份;
以及占所述原料总重量 2.5%〜3.0%的 1-氯 -3,3,3-三氟丙烯。
4. 根据权利要求 1 所述的聚氨酯硬泡泡沫, 其特征在于, 所述多异氰酸酯 为多次甲基多苯基多异氰酸酯。
5. 根据权利要求 1 所述聚氨酯硬泡泡沫, 其特征在于, 所述多元醇组合物 由聚醚多元醇与芳香族聚酯多元醇单体组成。
6. 根据权利要求 5所述的方法, 其特征在于, 所述聚醚多元醇由起始剂为 蔗糖、 甘油、 甲基苯二胺、 山梨醇、 乙二胺、 二元醇或乙醇胺中的一种或几种与 氧化烯烃经聚合加成反应制得,其中, 以甲苯二胺为起始剂与氧化烯烃经聚合加 成反应所得到的芳香族聚醚多元醇占多元醇组合物的重量份数为 15 40份。
7. 根据权利要求 5所述的方法, 其特征在于, 所述芳香族聚酯多元醇由邻 苯二甲酸、 间苯二甲酸、对苯二甲酸、 卤代苯二甲酸及其酸酐的至少一种与乙二 醇、 丙二醇、 一缩二乙二醇、 新戊二醇及带有芳环的双酚 A的至少一种合成制 得, 其中芳香族聚酯多元醇占多元醇组合物的重量份数为 8~15份。
8. 权利要求 1至 5中任意一项权利要求所述聚氨酯硬泡泡沫的制备方法, 其特征在于, 包括如下步骤:
S1 : 按比例将所述多元醇组合物、 环戊烷、 1-氯 -3,3,3-三氟丙烯、 催化剂、 硅油及水均匀混合;
S2: 将步骤 S1中的混合物与多异氰酸酯按比例均匀混合, 然后在 110bar〜 160bar压力下进行发泡生产。
9. 根据权利要求 8所述聚氨酯硬泡泡沫的制备方法, 其特征在于, 所述步 骤 S1中的 1-氯 -3,3,3-三氟丙烯经冷却至 10°C〜19°C后再与环戊烷及多元醇组合 物进行均匀混合; 其中, 所述环戊烷的温度为 10°C〜30°C, 所述步骤 SI混合后 的混合物的温度为 18 V〜25 V。
10. 权利要求 1至 9中任意一项权利要求所述聚氨酯硬泡泡沫在制备冰箱冰 柜中的应用。
PCT/CN2014/072883 2014-03-05 2014-03-05 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用 WO2015131340A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/072883 WO2015131340A1 (zh) 2014-03-05 2014-03-05 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用
EP14884546.4A EP3115401B8 (en) 2014-03-05 2014-03-05 Low-thermal conductivity rigid polyurethane foam with c-pentane as main foaming agent and manufacturing method and applications thereof
US15/253,100 US20160369077A1 (en) 2014-03-05 2016-08-31 Rigid polyurethane foam and manufacturing method and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072883 WO2015131340A1 (zh) 2014-03-05 2014-03-05 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/253,100 Continuation US20160369077A1 (en) 2014-03-05 2016-08-31 Rigid polyurethane foam and manufacturing method and applications thereof

Publications (1)

Publication Number Publication Date
WO2015131340A1 true WO2015131340A1 (zh) 2015-09-11

Family

ID=54054351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072883 WO2015131340A1 (zh) 2014-03-05 2014-03-05 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用

Country Status (3)

Country Link
US (1) US20160369077A1 (zh)
EP (1) EP3115401B8 (zh)
WO (1) WO2015131340A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155863A1 (en) * 2016-03-07 2017-09-14 Basf Se Rigid polyurethane foam
CN107286315A (zh) * 2016-04-13 2017-10-24 南京红宝丽新材料有限公司 一种高压缩强度的硬质聚氨酯泡沫塑料及其制备方法
WO2018093709A1 (en) * 2016-11-17 2018-05-24 Covestro Llc Polyurethane foams co-blown with a mixture of a hydrocarbon and a halogenated olefin
US20190389996A1 (en) * 2017-01-31 2019-12-26 Basf Se Hfo containing pu formulation
WO2022142553A1 (zh) * 2021-01-04 2022-07-07 海信容声(广东)冰箱有限公司 硬质聚氨酯泡沫及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119034A (ja) * 2017-01-24 2018-08-02 東ソー株式会社 硬質ポリウレタンフォーム用組成物及び硬質ポリウレタンフォームの製造方法
CN108727551A (zh) * 2017-04-19 2018-11-02 科思创德国股份有限公司 一种硬质聚氨酯泡沫及其制备方法与应用
JP6909074B2 (ja) * 2017-06-28 2021-07-28 サンスター技研株式会社 ポリウレタン組成物
CN111971320B (zh) * 2018-04-03 2022-08-12 陶氏环球技术有限责任公司 泡沫调配物
US10640600B2 (en) * 2018-04-24 2020-05-05 Covestro Llc Rigid polyurethane foams suitable for use as panel insulation
CN110372838B (zh) * 2019-07-15 2022-03-01 上海东大聚氨酯有限公司 一种组合聚醚多元醇、聚氨酯泡沫及其制备方法
CN110628073A (zh) * 2019-08-15 2019-12-31 长虹美菱股份有限公司 一种聚氨酯硬泡配方及其制备方法
CN111303364A (zh) * 2020-04-15 2020-06-19 长虹美菱股份有限公司 一种高保温聚氨酯发泡配方及基于其的冰柜
CN115702184A (zh) * 2020-06-25 2023-02-14 巴斯夫欧洲公司 具有高压缩强度、低热导率和高表面质量的聚异氰脲酸酯树脂泡沫
CN112708094A (zh) * 2020-12-28 2021-04-27 上海东大聚氨酯有限公司 环境友好型超低温保温箱用组合聚醚、聚氨酯泡沫及其制备方法
CN117447666B (zh) * 2023-09-20 2024-04-19 青岛凯州专用车有限公司 用于冷链运输的保温材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952336A (zh) * 2007-10-12 2011-01-19 霍尼韦尔国际公司 用于聚氨酯泡沫的胺催化剂
CN102124043A (zh) * 2008-08-13 2011-07-13 纳幕尔杜邦公司 包含2-氯-3,3,3-三氟丙烯与烃的混合物的泡沫形成组合物以及它们在基于多异氰酸酯的泡沫制备中的用途
CN102264861A (zh) * 2008-10-28 2011-11-30 霍尼韦尔国际公司 包含1-氯-3,3,3-三氟丙烯的类共沸组合物
WO2013082963A1 (en) * 2011-12-09 2013-06-13 Honeywell International Inc. Foams and articles made from foams containing hcfo or hfo blowing agents
CN103804711A (zh) * 2014-02-20 2014-05-21 海信容声(广东)冰箱有限公司 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005016A (en) * 1998-10-06 1999-12-21 Bayer Corporation Rigid polyurethane foam based on polyethers of TDA
CA2840235C (en) * 2011-07-13 2017-11-14 Oxane Materials, Inc. Low surface friction proppants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952336A (zh) * 2007-10-12 2011-01-19 霍尼韦尔国际公司 用于聚氨酯泡沫的胺催化剂
CN102124043A (zh) * 2008-08-13 2011-07-13 纳幕尔杜邦公司 包含2-氯-3,3,3-三氟丙烯与烃的混合物的泡沫形成组合物以及它们在基于多异氰酸酯的泡沫制备中的用途
CN102264861A (zh) * 2008-10-28 2011-11-30 霍尼韦尔国际公司 包含1-氯-3,3,3-三氟丙烯的类共沸组合物
WO2013082963A1 (en) * 2011-12-09 2013-06-13 Honeywell International Inc. Foams and articles made from foams containing hcfo or hfo blowing agents
CN103804711A (zh) * 2014-02-20 2014-05-21 海信容声(广东)冰箱有限公司 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155863A1 (en) * 2016-03-07 2017-09-14 Basf Se Rigid polyurethane foam
CN109071752A (zh) * 2016-03-07 2018-12-21 巴斯夫欧洲公司 硬质聚氨酯泡沫
US11053341B2 (en) 2016-03-07 2021-07-06 Basf Se Rigid polyurethane foam
CN107286315A (zh) * 2016-04-13 2017-10-24 南京红宝丽新材料有限公司 一种高压缩强度的硬质聚氨酯泡沫塑料及其制备方法
WO2018093709A1 (en) * 2016-11-17 2018-05-24 Covestro Llc Polyurethane foams co-blown with a mixture of a hydrocarbon and a halogenated olefin
US20190389996A1 (en) * 2017-01-31 2019-12-26 Basf Se Hfo containing pu formulation
WO2022142553A1 (zh) * 2021-01-04 2022-07-07 海信容声(广东)冰箱有限公司 硬质聚氨酯泡沫及其制备方法

Also Published As

Publication number Publication date
EP3115401B8 (en) 2021-03-31
US20160369077A1 (en) 2016-12-22
EP3115401A1 (en) 2017-01-11
EP3115401A4 (en) 2017-10-18
EP3115401B1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
WO2015131340A1 (zh) 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用
CN103804711B (zh) 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用
CN102443134B (zh) 一种聚氨酯硬质泡沫及其制备方法
CN103665296B (zh) 低温低导聚氨酯泡沫、原料组合物、组合聚醚及制备方法
CN111647191B (zh) 一种低导发泡剂组合物,聚氨酯硬质泡沫及其制备方法
JPH08509512A (ja) 硬質ポリウレタンフォームの製造方法
CN113999362B (zh) 一种高强度低导型聚氨酯硬泡及其制备方法
CN106750093A (zh) 一种用于冰箱的聚氨酯发泡体系及基于其的冰箱
CN102079803A (zh) 一种全水型组合聚醚及使用方法,聚氨酯硬质泡沫组合物
CA2769337A1 (en) Composition of hcfo-1233zd and polyol blends for use in polyurethane foam
CN103319676B (zh) 一种开孔聚氨酯泡沫及其制备方法
CN106700119B (zh) 发泡剂组合物和聚氨酯硬质泡沫
WO2018218102A1 (en) Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene and cyclopentane
JPH11140216A (ja) フェノール樹脂フォーム
CN112063004A (zh) 一种环保型高保温聚氨酯保温层及发泡方法
CN101016367A (zh) 一种硬质聚氨酯泡沫塑料
US20170355893A1 (en) Compositions and uses of cis-1,1,1,4,4,4-hexafluoro-2-butene and cyclopentane
CN106750489A (zh) 发泡剂组合物和聚氨酯硬质泡沫
JP2007131803A (ja) フェノール樹脂発泡体の製造方法
CN113637136A (zh) 一种混合发泡剂组合聚醚及聚氨酯硬泡
JP3681307B2 (ja) フェノール樹脂発泡体の製造方法
CN112778567A (zh) 一种环保高效的多元发泡体系及其制备的硬质聚氨酯泡沫
CN103772636A (zh) 聚氨酯硬质泡沫组合物
WO2023221694A1 (zh) 聚氨酯泡沫材料及其制备方法、冰箱和冰柜
CN117024696B (zh) 一种低导热系数的聚氨酯硬泡及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884546

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014884546

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884546

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE