CN106496494B - 一种低密度、低导热率的聚氨酯泡沫及其制备方法 - Google Patents

一种低密度、低导热率的聚氨酯泡沫及其制备方法 Download PDF

Info

Publication number
CN106496494B
CN106496494B CN201610966798.4A CN201610966798A CN106496494B CN 106496494 B CN106496494 B CN 106496494B CN 201610966798 A CN201610966798 A CN 201610966798A CN 106496494 B CN106496494 B CN 106496494B
Authority
CN
China
Prior art keywords
polyurethane foam
parts
low
foam
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610966798.4A
Other languages
English (en)
Other versions
CN106496494A (zh
Inventor
赵士虎
袁海霞
张可可
汪磊
王彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Midea Biomedical Co ltd
Hefei Hualing Co Ltd
Midea Group Co Ltd
Hefei Midea Refrigerator Co Ltd
Original Assignee
Hefei Hualing Co Ltd
Midea Group Co Ltd
Hefei Midea Refrigerator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Hualing Co Ltd, Midea Group Co Ltd, Hefei Midea Refrigerator Co Ltd filed Critical Hefei Hualing Co Ltd
Priority to CN201610966798.4A priority Critical patent/CN106496494B/zh
Publication of CN106496494A publication Critical patent/CN106496494A/zh
Application granted granted Critical
Publication of CN106496494B publication Critical patent/CN106496494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • C08G18/5027Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups directly linked to carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/487Polyethers containing cyclic groups
    • C08G18/4883Polyethers containing cyclic groups containing cyclic groups having at least one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/149Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/10Water or water-releasing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • C08J2203/142Halogenated saturated hydrocarbons, e.g. H3C-CF3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及一种低密度、低导热率的聚氨酯泡沫及其制备方法,本聚氨酯泡沫由以下重量份的原料制备而成:多元醇组合物100份,低气相导热系数发泡剂1~30份,HFC‑134a 0.5~6份,戊烷5~20份,水0.5~3.0份,催化剂1.0~3.5份,泡沫稳定剂1.0~4.0份,有机多异氰酸酯的用量与上述原料总质量的比为1.15~1.35。本发明制备得到的聚氨酯泡沫的GWP值低,使用时不会释放破坏臭氧层的气体,泡沫的模塑密度低,比普通环戊烷体系降低19%以上,尺寸稳定性好、导热系数低,能够减轻产品的总重量,综合成本低,在高端产品的保温行业有极大的经济效益。

Description

一种低密度、低导热率的聚氨酯泡沫及其制备方法
技术领域
本发明涉及一种低密度、低导热率的聚氨酯泡沫及其制备方法,属于材料技术领域。
背景技术
硬质聚氨酯泡沫具有良好的绝热性能,因此用于不同的保温保冷领域。众所周知,聚氨酯硬泡的保温性是影响产品能耗的一个重要因素,而泡沫的低导热率是保温性好的重要表征。聚氨酯硬质泡沫塑料的热导率在很大程度上取决于所使用的发泡剂的种类。发泡剂在泡沫中受热量影响形成发泡气体并包封或截留在泡沫的闭孔结构中,并通常是硬质聚氨酯泡沫的热导率性质的主要成因。在泡沫形成后,与制成的泡沫相关联的导热系数衡量该泡沫抵抗透过该泡沫材料传热能力。导热系数越低,表明该材料更抗传热。
随着国家对家电能耗提出更高的要求,2016年中国政府将推出家用冰箱新能效标准,较08年能效标准提高20%,仅采用环戊烷作发泡剂越来越受到极大挑战。目前改进的办法是采用纯245fa、纯365mfc、环戊烷和245fa混合、环戊烷和245fa以及365mfc三组分混合物等作发泡剂来降低泡沫的导热系数,但245fa、365mfc原料成本较高,制备的产品GWP值高。
近年来,对气候变化的关心和新一代家电能源新标准驱使开发符合臭氧消耗和能效新标准要求的新一代氟烃化合物。如Honeywell开发的商品名为Solstice LBA(反式-1-氯-3,3,3-三氟丙烯)和杜邦公司开发的Formacel FEA-1100(1,1,1,4,4,4-六氟丁烯),此类发泡剂的气相导热系数低,具有零臭氧消耗潜势(ODP)以及可接受的低全球变暖潜值(GWP<5)。
因此,亟需开发一种既符合臭氧消耗和气候变化规章新要求,又满足2016年国家家电行业能效新标准的环保型低导热率的聚氨酯泡沫。
发明内容
本发明为了克服现有技术中采用氢氯氟烃发泡剂制备的聚氨酯泡沫不环保、GWP值高的问题,并满足2016年国家家电行业能效新标准的环保型低导热率的聚氨酯泡沫,提供了一种低密度、低导热率的聚氨酯泡沫及其制备方法。本发明制备的聚氨酯泡沫零ODP(Ozone depletion potential,简称ODP,臭氧消耗潜能值),无破坏臭氧层气体,GWP(Global Warming Potential,简称GWP,全球变暖潜能值)值小;本发明的另一个目的是大幅降低泡沫的密度(模塑密度≤28.5kg/m3),减少泡沫的脱模时间并使泡沫热导率最小化,节约制造成本;导热系数低(17.9至18.4mw/m·k),抗压强度好,尺寸稳定性好,具有明显的经济优势。
本发明解决上述技术问题的技术方案如下:一种低密度、低导热率的聚氨酯泡沫,由以下重量份的原料制备而成:
1)至少包括一种官能度≥3且羟基数为300~800的多元醇的多元醇组合物100份,
2)发泡剂组合物:低气相导热系数发泡剂1~30份,
HFC-134a 0.5~6份,
戊烷 5~20份,
3)水0.5~3.0份,
4)催化剂1.0~3.5份,
5)泡沫稳定剂1.0~4.0份,
6)有机多异氰酸酯,其质量与1)至5)原料总质量的比为1.15~1.35。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述多元醇组合物包括苯酐聚酯多元醇和聚醚多元醇,所述苯酐聚酯多元醇和聚醚多元醇分别含有两种以上的活性氢基团,所述活性氢基团为-OH、伯胺或仲胺,所述苯酐聚酯多元醇和聚醚多元醇的官能度分别为2~8,羟基数分别为300~800。
进一步,所述苯酐聚酯多元醇的用量为5~15重量份,其是由含8至12个碳原子结构的邻苯二甲酸、芳族酸酐和多元醇通过缩聚反应制得,优选为PS-3152,购自金陵斯泰潘。
进一步,所述聚醚多元醇包括以下成分:由以邻甲苯二胺为起始剂通过与氧化烯烃加成反应所得到的聚醚20~60重量份,优选为SD7100,购自上海东大化学;以蔗糖为起始剂通过与氧化烯烃加成反应所得到的聚醚20~50重量份,优选为GR-4110G,购自上海高桥;以山梨醇为起始剂通过与氧化烯烃加成反应所得到的聚醚5~50重量份,优选为SA460,购自山东蓝星东大化工;以蔗糖和甘油为混合起始剂通过与氧化烯烃加成反应所得到的聚醚10~20重量份,优选为NL8210,购自山东蓝星东大化工。
进一步,所述发泡剂组合物由如下重量份的原料组成:低气相导热系数发泡剂3~25份,HFC-134a 0.5~4份,戊烷8~15份;优选为低气相导热系数发泡剂5~20份,HFC-134a1~3份,戊烷9~12份。
进一步,所述低气相导热系数发泡剂为反式-1-氯-3,3,3-三氟丙烯或1,1,1,4,4,4-六氟丁烯中的一种,其中,反式-1-氯-3,3,3-三氟丙烯可选用Honeywell市售商品LBA,1,1,1,4,4,4-六氟丁烯可选用杜邦公司市售商品FEA-1100。
采用此步骤的有益效果是LBA和FEA-1100与HCF-245fa、HCF-365mfc相比,气相导热更低、GWP更小,并且LBA和FEA-1100分子结构中含有双键,其在大气中寿命短,对环境友好。
所述HFC-134a(四氟乙烷)的沸点为-26.1℃,为低沸点发泡剂,适量的组分能够制备低密度的聚氨酯泡沫,并且HFC-134a有促进泡孔成核的作用,不会影响泡沫的强度。
进一步,所述戊烷为环戊烷(CP)和异戊烷(IP)中的一种或环戊烷和异戊烷按质量比(7~9):(3~1)组成的混合物,优选为环戊烷。
进一步,所述催化剂选自五甲基二乙烯三胺(PC-5)、双-二甲基氨基乙基醚、N-甲基二环己基胺(PC-12)、四甲基己二胺、二甲基环已胺(PC-8)、1,2-二甲基咪唑、二甲基苄胺、(2-羟基丙基)三甲基甲酸铵(TMR-2)、乙季铵盐和辛季铵盐中的一种或几种的混合物,优选为,五甲基二乙烯三胺、二甲基环已胺和(2-羟基丙基)三甲基甲酸铵按质量比1:4:1组成的混合催化剂。
进一步,所述有机多异氰酸酯中NCO的百分含量为30.5%~31.5%,选自Bayer公司的44V-20L、Bayer公司的44V-10L、Bayer公司的44V-40L、BASF公司的M20S、烟台万华公司的PM2010和烟台万华公司的PM200中的一种或几种的混合物,优选为PM-200。
进一步,所述泡沫稳定剂为含Si-C结构的硅油,优选为,迈图的L-6863、迈图的L-6988、迈图的L-6952、美思德的AK8812和美思德的AK8809中的一种或几种的混合物,更优选为,迈图的L-6952。
本发明还提供一种如上所述的聚氨酯泡沫的制备方法,包括:
1)取多元醇组合物、催化剂、水和泡沫稳定剂,在25±5℃下加压至0.5~1.5MPa进行物理混合,搅拌0.5~1.5小时,得初混物;
2)将低气相导热系数发泡剂和HFC-134a通过静态预混设备在0.7~2.0MPa压力下与初混物一级混合0.5~1.5小时,再加入戊烷在2.0~4.0MPa压力下进行二级混合,得预混合物;
3)将有机多异氰酸酯与预混合物以1.1~1.5的填充因子通过高压发泡机设备注入模腔中,制得聚氨酯泡沫。
本发明的有益效果是:
1、本发明所用多元发泡剂中的主要组分LBA和FEA-1100为第四代新型环保型发泡剂,零臭氧层消耗物质(ODP=0),对臭氧无损害,GWP值小于5(HFC-245fa约1030),不燃,气相导热系数低,能够降低产品的能耗。
2、聚氨酯硬质泡沫塑料的密度与产品的成本密切相关,本发明多元发泡剂中将LBA/FEA-1100与低沸点发泡剂HFC-134a相匹配使用,能够在降低导热率、增加泡沫尺寸稳定性的同时,大幅降低了泡沫的模塑密度(比现有环戊烷密度降低19%以上),从而降低了制造成本,同时减小了保温产品的总重量,在高端产品的保温行业具有较大的经济优势。
3、本发明制备的聚氨酯泡沫具有较好的压缩强度和尺寸稳定性,密度分布均匀,流动性好等优点。
具体实施方式
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
(一)在本发明中,除非特别说明,本发明中的各种术语定义如下:
预混合物:多元醇组合物加上添加剂,如催化剂、泡沫稳定剂、水和所有物理发泡剂所组成的混合物;
最小填充重量(MFW):完全充模所需的最小重量,单位克;
模制密度:由在模具中注入的重量和该模具的体积确定的密度,即泡沫的整体密度;
填充因子:模制密度/自由泡密度;
脱模时间:泡沫注入至开模的时间;
(二)在实施例中所用原材料的描述如下:
聚醚多元醇A:邻甲苯二胺聚醚,SD7100,20~60重量份,购自上海东大化学;
聚醚多元醇B:蔗糖聚醚,GR-4110G,20~50重量份,购自上海高桥;
聚醚多元醇C:山梨醇聚醚,SA460,5~50重量份,购自山东蓝星东大化工;
聚醚多元醇D:蔗糖和甘油混合起始剂聚醚,NL8210,10~20重量份,购自山东蓝星东大化工;
聚酯多元醇:苯酐聚酯,PS-3152,5~15重量份,购自金陵斯泰潘;
复合催化剂:由PC-5、PC-8和TMR-2按质量比1:4:1组成,购自空气化工产品公司;
硅油:硬质泡沫表面活性剂,L-6952,购自迈图;
有机多异氰酸酯:PM-200,购自烟台万华聚氨酯股份有限公司;
LBA:反式-1-氯-3,3,3-三氟丙烯,购自Honeywell;
FEA-1100:1,1,1,4,4,4-六氟丁烯,购自杜邦公司。
(三)具体实施例
实施例1-3中,改变CP/LBA/HFC-134a混合发泡剂的组分,可制备得到低密度、低导热率的聚氨酯泡沫,详见表1,其中,所述聚氨酯泡沫的制备方法包括以下步骤:
表1实施1-3和对比例1-2的原料组分和含量
1)将称量好的多元醇组合物加入混合釜中,加入称量好的复合催化剂、泡沫稳定剂和水,在25±5℃下加压至0.5~1.5MPa物理混合,搅拌0.5~1.5小时,得初混物;
2)使用多级静态预混设备,将LBA和HFC-134a在0.7~2.0MPa压力下与上述初混物一级混合0.5~1.5小时,再加入环戊烷在2.0~4.0MPa压力下进行二级混合,得预混合物;
3)将有机多异氰酸酯与上述预混合物混合,将预混合物和有机异氰酸酯在130±10bar的压力下注入模腔。I-Mould模具由铝制成,尺寸为1100×300×50mm(长×宽×高),顶部有排气孔,能够在发泡过程中将模具内产生的气体及时排出。发泡时,采用配有模具注入孔相连接的混合头的Cannon高压发泡机,通过高压发泡机枪头,制得低密度、低导热率的聚氨酯硬泡。
制取的聚氨酯硬质泡沫在常温下熟化一段时间后测试相关性能,测试相关方法和标准如下,测试得到的性能参数如表2:
(I)I-Mould(尺寸为1100×300×50mm)模具内制得得泡沫可用于测量导热系数、压缩强度、模塑密度以及密度分布;
(II)采用相同的方法将泡液注入尺寸为700×500×100的H-Mould中,获得的泡沫用于测试不同脱模时间泡沫的脱模性,其目的是测定膨胀率,由此测定泡沫的固化率,模具温度为40~45℃;
(III)根据ISO 12939-01/DIN 52612,在10℃(平均温度)下测定泡沫导热系数,在泡沫常温熟化24小时后,制备尺寸为200×200×25mm的泡沫进行测定;
(IV)根据ASTM1622-88,制备尺寸为50×50×30mm的泡沫,测定模塑密度;
(V)根据DIN53421-06-84,制备尺寸为30×30×30mm的泡沫,测定泡沫的压缩强度,以千帕计。
表2实施1-3和对比例1-2的泡沫性能对比表
测试项目 单位 实施例1 实施例2 实施例3 对比例1 对比例2
纤维时间 S 38 41 40 48 48
自由发泡密度 Kg/m<sup>3</sup> 20.06 20.13 20.28 25.1 22.13
最小填充重量 g 430 436 442 540 482
超灌料 15 15 15 15 15
模塑芯密度 Kg/m<sup>3</sup> 27.07 27.64 27.89 34.50 30.56
模制密度 Kg/m<sup>3</sup> 29.79 30.40 30.62 37.80 33.86
填充因子 / 1.49 1.51 1.51 1.51 1.51
λ(10℃) mW/m·K 18.26 18.14 18.21 19.80 18.02
泡沫压缩强度 KPa 158 165 173 160 161
膨胀率,3min 3.6 3.0 3.1 6.0 3.3
对比例1为目前较普通的纯环戊烷发泡体系,对比例2为目前高性价比的LBA低导热复合发泡体系。
实施例1-3中,不同CP/LBA/HFC-134a的复配比例,均可制备得到低密度、低导热率的聚氨酯泡沫,泡沫的综合性能较佳。
实施例2与对比例1泡沫相比,可以看出前者泡沫流动性较好,模塑芯密度降低19.9%,导热率降低了8.4%,最小填充重量减少了19.2%,膨胀性减小,脱模性能得到改善。
实施例2与对比例2相比,导热率和膨胀率相接近,模塑芯密度比对比例2下降了9.6%,最小填充重量减小了9.5%,应用此泡沫制备的产品的发泡料用量减少,成本降低,并且实施例2比对比例2的发泡剂用量少,成本低,进一步降低了生产成本。
实施例4-8中,通过改变发泡剂环戊烷、LBA、HFC-134a的比例和选择环异戊烷、FEA-1100为复配发泡剂验证发泡剂对泡沫性能的影响。原料用量与所制泡沫性能详见表3。
表3实施例4-8原料组成和泡沫性能对比数据
如表3所示,由实施例4-6可以看出,改变发泡剂环戊烷、LBA、HFC-134a的比例,可以任意调节泡沫的密度,对泡沫的导热系数、膨胀率、压缩强度的影响较小。
如表2、3所示,实施例2和实施例7相比,可以看出环戊烷和异戊烷配合使用能够进一步降低泡沫的整体模塑芯密度,但导热性能较环戊烷体系(实施例2)差,产品的能耗系数上升。
如表2所示,由实施例8可以看出,低气相导热系数的发泡剂FEA-1100能够制备得到密度低、导热性能优异、强度高的聚氨酯泡沫。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

1.一种低密度、低导热率的聚氨酯泡沫,其特征在于,由以下重量份的原料制备而成:
1)至少包括一种官能度≥3且羟基数为300~800的多元醇的多元醇组合物100份,
2)发泡剂组合物:低气相导热系数发泡剂1~30份,
HFC-134a 0.5~6份,
戊烷 5~20份,
其中,所述低气相导热系数发泡剂为反式-1-氯-3,3,3-三氟丙烯或1,1,1,4,4,4-六氟丁烯中的一种,
3)水0.5~3.0份,
4)催化剂1.0~3.5份,
5)泡沫稳定剂1.0~4.0份,
6)有机多异氰酸酯,其质量与1)至5)原料总质量的比为1.15~1.35。
2.根据权利要求1所述的聚氨酯泡沫,其特征在于,所述多元醇组合物包括苯酐聚酯多元醇和聚醚多元醇,所述苯酐聚酯多元醇和聚醚多元醇分别含有两种以上的活性氢基团,所述活性氢基团为-OH、伯胺或仲胺,所述苯酐聚酯多元醇和聚醚多元醇的官能度分别为2~8,羟基数分别为300~800。
3.根据权利要求2所述的聚氨酯泡沫,其特征在于,所述苯酐聚酯多元醇的用量为5~15重量份,其是由含8至12个碳原子结构的邻苯二甲酸、芳族酸酐和多元醇通过缩聚反应制得。
4.根据权利要求2所述的聚氨酯泡沫,其特征在于,所述聚醚多元醇包括以下成分:由以邻甲苯二胺为起始剂通过与氧化烯烃加成反应所得到的聚醚20~60重量份,以蔗糖为起始剂通过与氧化烯烃加成反应所得到的聚醚20~50重量份,以山梨醇为起始剂通过与氧化烯烃加成反应所得到的聚醚5~50重量份,以蔗糖和甘油为混合起始剂通过与氧化烯烃加成反应所得到的聚醚10~20重量份。
5.根据权利要求1所述的聚氨酯泡沫,其特征在于,所述戊烷为环戊烷和异戊烷中的一种或环戊烷和异戊烷按质量比(7~9):(3~1)组成的混合物。
6.根据权利要求1所述的聚氨酯泡沫,其特征在于,所述催化剂选自五甲基二乙烯三胺、双-二甲基氨基乙基醚、N-甲基二环己基胺、四甲基己二胺、二甲基环己胺、1,2-二甲基咪唑、二甲基苄胺、(2-羟基丙基)三甲基甲酸铵、乙季铵盐和辛季铵盐中的一种或几种的混合物。
7.根据权利要求1所述的聚氨酯泡沫,其特征在于,所述催化剂为五甲基二乙烯三胺、二甲基环己胺和(2-羟基丙基)三甲基甲酸铵按质量比1:4:1组成的混合催化剂。
8.根据权利要求1所述的聚氨酯泡沫,其特征在于,所述有机多异氰酸酯中NCO的百分含量为30.5%~31.5%。
9.根据权利要求1所述的聚氨酯泡沫,其特征在于,所述泡沫稳定剂为含Si-C结构的硅油。
10.根据权利要求9所述的聚氨酯泡沫,其特征在于:所述含Si-C结构的硅油选自迈图的L-6863、迈图的L-6988、迈图的L-6952、美思德的AK8812和美思德的AK8809中的一种或几种的混合物。
11.一种如权利要求1~10任一所述的聚氨酯泡沫的制备方法,其特征在于,包括:
1)取多元醇组合物、催化剂、水和泡沫稳定剂,在25±5℃下加压至0.5~1.5MPa进行物理混合,搅拌0.5~1.5小时,得初混物;
2)将低气相导热系数发泡剂和HFC-134a通过静态预混设备在0.7~2.0MPa压力下与初混物一级混合0.5~1.5小时,再加入戊烷在2.0~4.0MPa压力下进行二级混合,得预混合物;
3)将有机多异氰酸酯与预混合物以1.1~1.5的填充因子通过高压发泡机设备注入模腔中,制得聚氨酯泡沫。
CN201610966798.4A 2016-10-28 2016-10-28 一种低密度、低导热率的聚氨酯泡沫及其制备方法 Active CN106496494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610966798.4A CN106496494B (zh) 2016-10-28 2016-10-28 一种低密度、低导热率的聚氨酯泡沫及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610966798.4A CN106496494B (zh) 2016-10-28 2016-10-28 一种低密度、低导热率的聚氨酯泡沫及其制备方法

Publications (2)

Publication Number Publication Date
CN106496494A CN106496494A (zh) 2017-03-15
CN106496494B true CN106496494B (zh) 2019-01-04

Family

ID=58322735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610966798.4A Active CN106496494B (zh) 2016-10-28 2016-10-28 一种低密度、低导热率的聚氨酯泡沫及其制备方法

Country Status (1)

Country Link
CN (1) CN106496494B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107501517A (zh) * 2017-09-11 2017-12-22 合肥华凌股份有限公司 聚氨酯泡沫及其制备方法和用途

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505670B2 (en) * 2016-11-17 2022-11-22 Covestro Llc Polyurethane foams co-blown with a mixture of a hydrocarbon and a halogenated olefin
CN107245137A (zh) * 2017-04-14 2017-10-13 合肥华凌股份有限公司 冰箱用组合聚醚及其制备方法和用途
CN107177028B (zh) * 2017-06-13 2020-08-04 合肥华凌股份有限公司 组合聚醚、聚氨酯泡沫及其制备方法和应用
CN107200827B (zh) * 2017-07-24 2020-12-11 长虹美菱股份有限公司 一种用于冰箱门体翻转梁的发泡聚氨酯及其应用
CN108409956B (zh) * 2018-03-02 2020-04-10 万华化学(宁波)容威聚氨酯有限公司 3,4-二氨基呋扎聚醚多元醇及制备方法和由其制备的聚氨酯硬泡及制备方法
CN110628073A (zh) * 2019-08-15 2019-12-31 长虹美菱股份有限公司 一种聚氨酯硬泡配方及其制备方法
CN110885418A (zh) * 2019-12-16 2020-03-17 山东一诺威新材料有限公司 联机管集热器用聚氨酯硬质泡沫及其制备方法
CN111647191B (zh) * 2020-05-14 2022-11-08 万华化学(宁波)容威聚氨酯有限公司 一种低导发泡剂组合物,聚氨酯硬质泡沫及其制备方法
CN112430300B (zh) * 2020-11-11 2022-10-04 上海东大聚氨酯有限公司 家电用聚氨酯原料组合物、聚氨酯泡沫及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102498237A (zh) * 2009-09-09 2012-06-13 阿科玛股份有限公司 使用卤化烯烃发泡剂的改进的聚氨酯发泡工艺以及泡沫特性
CN104530361A (zh) * 2014-12-25 2015-04-22 合肥华凌股份有限公司 组合物、硬质聚氨酯泡沫材料及制冷设备
CN104628978A (zh) * 2014-07-10 2015-05-20 合肥华凌股份有限公司 组合物、硬质聚氨酯泡沫材料及制冷设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000061B2 (en) * 2006-03-21 2015-04-07 Honeywell International Inc. Foams and articles made from foams containing 1-chloro-3,3,3-trifluoropropene (HFCO-1233zd)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102498237A (zh) * 2009-09-09 2012-06-13 阿科玛股份有限公司 使用卤化烯烃发泡剂的改进的聚氨酯发泡工艺以及泡沫特性
CN104628978A (zh) * 2014-07-10 2015-05-20 合肥华凌股份有限公司 组合物、硬质聚氨酯泡沫材料及制冷设备
CN104530361A (zh) * 2014-12-25 2015-04-22 合肥华凌股份有限公司 组合物、硬质聚氨酯泡沫材料及制冷设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107501517A (zh) * 2017-09-11 2017-12-22 合肥华凌股份有限公司 聚氨酯泡沫及其制备方法和用途
CN107501517B (zh) * 2017-09-11 2020-08-04 合肥华凌股份有限公司 聚氨酯泡沫及其制备方法和用途

Also Published As

Publication number Publication date
CN106496494A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
CN106496494B (zh) 一种低密度、低导热率的聚氨酯泡沫及其制备方法
CN104628978B (zh) 组合物、硬质聚氨酯泡沫材料及制冷设备
CN111647191B (zh) 一种低导发泡剂组合物,聚氨酯硬质泡沫及其制备方法
CN100519616C (zh) 使用第三代发泡剂生产聚氨酯硬质泡沫的组成物
CN110628073A (zh) 一种聚氨酯硬泡配方及其制备方法
CN102443134A (zh) 一种聚氨酯硬质泡沫及其制备方法
CN103804711A (zh) 一种以环戊烷为主体的低导热率聚氨酯硬泡泡沫及其制造方法和应用
CN101787203B (zh) 采用五氟丁烷为发泡剂的太阳能热水器用组合料及其制备方法
CN103228701B (zh) 高官能度芳族聚酯、包含它们的多元醇共混物和源自它们的所得产品
CN107177028A (zh) 组合聚醚、聚氨酯泡沫及其制备方法和应用
CN101555312B (zh) 一种性能改进的硬质泡沫塑料及其制备方法
CN110105520B (zh) 一种保温硬质聚氨酯泡沫及其制备方法
WO2022142553A1 (zh) 硬质聚氨酯泡沫及其制备方法
CN115286759A (zh) 含hfo-1336mzzm(z)的聚酯多元醇组合物
CN107245137A (zh) 冰箱用组合聚醚及其制备方法和用途
CN101550241B (zh) 用于pu硬泡的环保型高效多元混合发泡剂
CN109438649A (zh) 一种阻燃组合聚醚、聚异氰脲酸酯板材用保温材料及其制备方法
CN104262670A (zh) 发泡剂组合物、聚氨酯泡沫及其制造方法
CN104829812A (zh) 一种阻燃型硬质聚氨酯绝热泡沫材料及其制备方法
CN112175158B (zh) 冰箱及硬质聚氨酯泡沫、硬质聚氨酯泡沫的制备方法
CN106750489A (zh) 发泡剂组合物和聚氨酯硬质泡沫
CN104530360A (zh) 组合物、硬质聚氨酯泡沫材料及制冷设备
CN110483828A (zh) 一种发泡剂组合物、聚氨酯发泡组合物、聚氨酯泡沫及其制备方法和应用
CN109467665B (zh) 一种环保型组合聚醚、家用电器保温泡沫及其制备方法
CN113980223A (zh) 超低密度、超低导、超快脱模型冰箱用组合聚醚、保温材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210819

Address after: 230601 No. 176 Jinxiu Avenue, Hefei economic and Technological Development Zone, Anhui, China

Patentee after: HEFEI HUALING Co.,Ltd.

Patentee after: HEFEI MIDEA REFRIGERATOR Co.,Ltd.

Patentee after: MIDEA GROUP Co.,Ltd.

Patentee after: Hefei Midea biomedical Co.,Ltd.

Address before: 230601 Jinxiu Road, Hefei economic and Technological Development Zone, Anhui

Patentee before: HEFEI HUALING Co.,Ltd.

Patentee before: HEFEI MIDEA REFRIGERATOR Co.,Ltd.

Patentee before: MIDEA GROUP Co.,Ltd.

TR01 Transfer of patent right