WO2022142406A1 - 一种高强型热稳定性涤纶工业丝及其制备方法 - Google Patents

一种高强型热稳定性涤纶工业丝及其制备方法 Download PDF

Info

Publication number
WO2022142406A1
WO2022142406A1 PCT/CN2021/114425 CN2021114425W WO2022142406A1 WO 2022142406 A1 WO2022142406 A1 WO 2022142406A1 CN 2021114425 W CN2021114425 W CN 2021114425W WO 2022142406 A1 WO2022142406 A1 WO 2022142406A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
industrial yarn
reaction
strength
polyester industrial
Prior art date
Application number
PCT/CN2021/114425
Other languages
English (en)
French (fr)
Inventor
王山水
汤方明
王丽丽
邵义伟
赵艳丽
王小雨
杨超明
Original Assignee
江苏恒力化纤股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒力化纤股份有限公司 filed Critical 江苏恒力化纤股份有限公司
Priority to US18/269,968 priority Critical patent/US20240052529A1/en
Priority to JP2023539786A priority patent/JP2023553509A/ja
Publication of WO2022142406A1 publication Critical patent/WO2022142406A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6854Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6856Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • C08G63/866Antimony or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/916Dicarboxylic acids and dihydroxy compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/04Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers
    • D01F11/08Chemical after-treatment of artificial filaments or the like during manufacture of synthetic polymers of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/28Halides of elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/55Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
    • D06M11/56Sulfates or thiosulfates other than of elements of Groups 3 or 13 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/64Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with nitrogen oxides; with oxyacids of nitrogen or their salts
    • D06M11/65Salts of oxyacids of nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Definitions

  • the invention belongs to the technical field of polyester fibers, and relates to a high-strength thermally stable polyester industrial yarn and a preparation method thereof.
  • the high symmetry of the molecular chain structure of polyester and the rigidity of the benzene ring make the product have good mechanical processing performance, chemical corrosion resistance and microbial erosion resistance. It is used in various fields such as fibers, films, and plastic products.
  • the thermal stability of polyester is mainly manifested in two aspects, high temperature decomposition resistance and high environmental temperature resistance during application.
  • the glass transition temperature is 70-76°C
  • the melting point is 250-260°C
  • the heat distortion temperature is 80-85°C.
  • polyester industrial yarn products require continuous innovation and research.
  • the polyester fiber is higher than the glass transition temperature, the segment of the macromolecular chain starts to move. At this time, if there is a certain external force, the movement of the macromolecular chain from vibration to sliding will decrease its mechanical properties. .
  • the methods for improving the thermal stability of polyester in the prior art include: (1) by increasing the setting time or increasing the setting temperature to achieve the purpose of improving fiber crystallinity and heat resistance, but the adjustment of the process is limited to improving the thermal stability of the polyester; (2) ) Introduce heat-resistant groups, such as naphthalene dicarboxylic acid, but because the rigidity of the naphthalene ring is very large, it brings great difficulties to processing, especially its melt viscosity is too high; (3) Using high-viscosity slices, the increase in viscosity means With the increase of molecular weight, that is, the difficulty of molecular chain movement increases, and the resistance to movement increases, the purpose of improving the heat resistance of polyester fibers can be achieved, but the increase in viscosity reduces the uniformity of plasticization, processing difficulties, and uniformity and stability of product performance.
  • Blending and filling with other materials is mainly to prevent the movement of molecular chains to increase the glass transition temperature, thereby improving heat resistance, but while improving heat resistance, its mechanical properties are affected. influences. These methods all have certain limitations to varying degrees. Improving the thermal stability of polyester industrial yarn in post-processing and use will be more widely used for industrial yarn.
  • polyester structure determines its glass transition temperature
  • the only way to improve the heat resistance is to increase the crystallinity of the fibers and further improve the crystal morphology.
  • the range is limited.
  • the present invention provides a high-strength heat-stable polyester industrial yarn and a preparation method thereof.
  • the invention solves the technical problem of poor thermal stability of the polyester industrial yarn in the prior art, which is manifested in that the mechanical properties of the polyester industrial yarn are greatly reduced when the service temperature is higher than the glass transition temperature.
  • the invention adopts the coordination technology to increase the glass transition temperature of the polyester industrial yarn, so as to adapt and broaden the application of the polyester industrial yarn.
  • a high-strength heat-stable polyester industrial yarn the polyester segment of the high-strength heat-stable polyester industrial yarn includes a terephthalic acid segment, an ethylene glycol segment and a 2,6-pyridinedicarboxylic acid segment, and different polymer segments.
  • the 2,6-pyridinedicarboxylic acid segments of the ester segment are coordinated by Fe 3+ ;
  • the molar ratio of the terephthalic acid segment and the 2,6-pyridinedicarboxylic acid segment is 1:0.03-0.05;
  • the 2,6-pyridinedicarboxylic acid segment is involved in the coordination of two carbonyl groups O atoms and pyridine N atoms.
  • Iron is located in the VIII group in the periodic table, and its electron arrangement is [Ar]3d 6 4s 2 , which is easy to lose two electrons on the 4s orbital and one electron on the 3d orbital to become ferrous iron and semi-filled stable structure.
  • Ferric ions due to the good variable oxidation state of iron, are easy to coordinate with elements such as nitrogen and oxygen to form stable complexes.
  • the coordination number of Fe +3 is 6, forming an octahedral configuration, and forming a chelate complex with four five-membered ring structures with 2,6-pyridinedicarboxylic acid
  • a chelate complex is a complex with a cyclic structure, which is formed by two It is obtained by the chelation of one or more ligands and the same metal ion to form a chelate ring.
  • the stability of the chelate is closely related to cyclization, and the cyclization increases the stability of the chelate, among which five One-membered and six-membered rings are the most stable).
  • carboxylic acid ligands For ligands, most of the commonly used ligands are carboxylic acid ligands: the carboxyl group in carboxylic acid ligands has strong coordination and chelation ability with metal ions, and can be coordinated in various ways. Coordinate with metal ions.
  • N and O atoms on the ligand can be used as coordination sites at the same time; (2) When the ligand contains multiple carboxyl groups, it can form different topological types of coordination thing.
  • 2,6-Pyridinedicarboxylic acid is a nitrogen heterocyclic aromatic carboxylic acid ligand, which combines the advantages of aromatic carboxylic acid ligands and nitrogen-containing heterocyclic ligands, and has a conjugation effect.
  • the conjugation effect increases the complex.
  • Stability it has a closed large ⁇ bond, there is a pair of lone pair electrons on the sp 2 orbital of the N atom, it belongs to a non-centrosymmetric structure, the conjugated electron donating and withdrawing groups, the charge transfer can occur in the molecule, and it has strong Coordination ability, can form stable complexes with main group metal ions, transition metal ions, rare earth metal ions in various ways, and it has a variety of coordination modes, easy to self-assemble with metal ions to form complexes of various dimensions , in particular, it can form monodentate complexes, bidentate complexes and tridentate complexes with metal ions.
  • the coordination structure formed by Fe 3+ coordination between the 2,6-pyridinedicarboxylic acid segments of different polyester segments is:
  • the glass transition temperature of the high-strength thermally stable polyester industrial yarn is 88-92°C, which is more than 10°C higher than the prior art.
  • a high-strength thermally stable polyester industrial yarn as mentioned above, the performance indicators of the high-strength thermally stable polyester industrial yarn are: breaking strength ⁇ 8.7cN/dtex, breaking strength CV value ⁇ 3.0%; elongation at break 11.0 ⁇ 13.0%, elongation at break CV value ⁇ 7.0%; the center value of elongation under 4.0cN/dtex load is 2.5 ⁇ 3.0%, and the deviation rate of elongation under 4.0cN/dtex load is ⁇ 0.7%; The dry heat shrinkage under the conditions of °C, 10min and 0.05cN/dtex is 2.5 ⁇ 0.6%.
  • the invention also provides a preparation method of high-strength thermally stable polyester industrial yarn, which comprises the steps of spinning, winding and coordinating treatment of modified polyester after solid-phase polycondensation and tackifying to obtain high-strength thermally stable polyester industrial yarn;
  • the preparation method of the modified polyester is as follows: after terephthalic acid, ethylene glycol and 2,6-pyridinedicarboxylic acid are mixed uniformly, esterification reaction and polycondensation reaction are carried out successively to obtain the modified polyester;
  • the method of complexation treatment is as follows: soak the wound fibers in a complexing agent aqueous solution, and the concentration of the complexing agent aqueous solution is 0.1-0.2 mol/L;
  • Conditions for coordination treatment 48 to 72 hours at 80 to 100°C;
  • the complexing agent is FeCl 3 , Fe(NO 3 ) 3 or Fe 2 (SO 4 ) 3 .
  • the diffusion of complexing agents into polyester fibers can be described by the so-called channel and free volume model. Above the glass transition temperature of polyester fiber, the free volume inside the fiber is large, and contains many "holes" enough to accommodate the entry of the complexing agent. The molecules of the complexing agent diffuse through the "holes", and the polyester fiber has multiple movements. Units, including side groups, segments and the entire polymer chain, etc., when the complexing agent molecules diffuse into the fiber, the complexing agent molecules gradually combine with the ligands of the fiber to form a relatively stable complex structure within a certain period of time. unit.
  • Coordination treatment after winding is a method of coordination, which has the least impact on fiber processing, but requires a long time; The method has the best effect on improving the amorphous area. After Fe(III) is coordinated with pyridine, the anion can participate in the coordination or neutralize the charge in the complex.
  • the terephthalic acid, ethylene glycol and 2,6-pyridinedicarboxylic acid are prepared into a slurry.
  • the esterification reaction is carried out under pressure in a nitrogen atmosphere.
  • the pressure is normal pressure to 0.3MPa.
  • the temperature of the reaction is 250-260°C, and the termination conditions of the esterification reaction are: the water distillate in the esterification reaction reaches more than 90% of the theoretical value; 2,6-pyridinedicarboxylic acid and ethylene glycol are under the action of acid catalysis.
  • Carrying out the esterification reaction, due to the conjugation effect, its carboxylic acid activity is slightly larger than that of terephthalic acid, but it does not affect the progress of the esterification reaction, and no special adjustment is required in the process;
  • the polycondensation reaction in the low vacuum stage is started under negative pressure conditions.
  • the pressure in this stage is smoothly pumped from normal pressure to below absolute pressure of 500Pa within 30 ⁇ 50min, the reaction temperature is 250 ⁇ 260°C, and the reaction time is 30 ⁇ 50min, and then continue to vacuumize, carry out the polycondensation reaction in the high vacuum stage, so that the reaction pressure is further reduced to below the absolute pressure of 100Pa, the reaction temperature is 270 ⁇ 282 °C, and the reaction time is 50 ⁇ 90min, and the modified polyester is obtained.
  • the molar ratio of terephthalic acid, ethylene glycol and 2,6-pyridinedicarboxylic acid is 1:1.2-2.0:0.03-0.05;
  • the added amount of the catalyst is 0.01-0.05wt% of the added amount of terephthalic acid; the catalyst is antimony trioxide, antimony ethylene glycol or antimony acetate.
  • the intrinsic viscosity of the modified polyester after solid-phase polycondensation and tackification is 1.0-1.2 dL/g.
  • the mechanism of the present invention is as follows:
  • the cross-linking point can be a chemical cross-linking node or a physical cross-linking node, in which the chemical cross-linking structure forms a stable intramolecular chemical bond, and the physical cross-linking structure includes hydrogen bonds, ionic bonds and coordination bonds.
  • the temperature is Tg; when the hydrogen bonds between the polyester macromolecules are stretched above Tg, the hydrogen bonds dissociate rapidly, thus showing a significant decrease in breaking strength and elongation at break.
  • the Fe 3+ of the present invention forms a coordination bond with pyridine, and the physical cross-linking point and intermolecular interaction in the polyester fiber are enhanced, which restricts the movement of the chain segment, and the mutual slippage between chains is difficult, and the chain segment changes through motion.
  • the conformation of the chain requires more energy, which increases the Tg of the polyester fiber to a certain extent, and the Tg increases from 75 to 79 ° C to 88 to 92 ° C, so that the polyester fiber in the present invention is higher than the conventional polyester. Stretching under the condition of Tg can better maintain the mechanical properties of the fiber, and the thermal stability is greatly improved.
  • the glass transition temperature becomes higher and the polymer segment is more easily frozen, and the breaking strength of the FeCl 3 -coordinated polyester fiber is enhanced to a certain extent.
  • Fe(III)-pyridine coordination plays a key role in the enhanced physical mesh point, which increases the glass transition temperature of the polyester fiber;
  • a high-strength thermally stable polyester industrial yarn of the present invention has a Tg of 88 to 92° C., and is stretched at a temperature of 85° C.
  • the breaking strength is greater than or equal to 7.60 cN/dtex, and the breaking elongation is 10.2 to 13.5 %, excellent mechanical properties and thermal stability.
  • a preparation method of high-strength thermally stable polyester industrial yarn the steps are as follows:
  • the molar ratio of terephthalic acid, ethylene glycol and 2,6-pyridinedicarboxylic acid is made into a slurry, and the catalyst (antimony trioxide) is added and mixed evenly.
  • the amount of the catalyst added is terephthalic acid. 0.03wt% of formic acid added, then pressurized in a nitrogen atmosphere to carry out the esterification reaction, the pressurized pressure was 0.2MPa, the temperature of the esterification reaction was 254°C, and the termination conditions of the esterification reaction were: water in the esterification reaction The distillate amount reaches 97% of the theoretical value;
  • the polycondensation reaction in the low vacuum stage is started under the negative pressure condition.
  • the pressure in this stage is stably pumped from normal pressure to absolute pressure 460Pa within 40min, the reaction temperature is 256°C, and the reaction time is 35min, and then continue to vacuumize , carry out the polycondensation reaction in the high vacuum stage, so that the reaction pressure is further reduced to the absolute pressure of 30Pa, the reaction temperature is 280 °C, and the reaction time is 55min to obtain the modified polyester;
  • the intrinsic viscosity of the modified polyester after solid phase polycondensation thickening is 1.2dL/g;
  • the polyester segment of the prepared high-strength heat-stabilized polyester industrial yarn includes a terephthalic acid segment, an ethylene glycol segment and a 2,6-pyridinedicarboxylic acid segment; a terephthalic acid segment and a 2,6-
  • the molar ratio of the pyridinedicarboxylic acid segment is 1:0.03; the 2,6-pyridinedicarboxylic acid segments of different polyester segments are coordinated by Fe 3+ , and the 2,6-pyridinedicarboxylic acid segment participates in the coordination
  • the coordination structure formed by coordination is:
  • the glass transition temperature of high-strength thermally stable polyester industrial yarn is 88°C;
  • the breaking strength is 8.7cN/dtex, the breaking strength CV value is 3%;
  • the breaking elongation is 13%, and the breaking elongation CV value is 7%;
  • the center value of elongation under load of cN/dtex is 2.8%, the deviation
  • a preparation method of high-strength thermally stable polyester industrial yarn the steps are as follows:
  • the molar ratio of terephthalic acid, ethylene glycol and 2,6-pyridinedicarboxylic acid is made into a slurry, and the catalyst (antimony trioxide) is added and mixed evenly, wherein the catalyst is added in an amount of terephthalic acid. 0.01wt% of the formic acid added, and then pressurized in a nitrogen atmosphere to carry out the esterification reaction, the pressurization pressure is 0.2MPa, the temperature of the esterification reaction is 256 °C, and the termination conditions of the esterification reaction are: water in the esterification reaction The distillate amount reaches 96% of the theoretical value;
  • the polycondensation reaction in the low vacuum stage is started under negative pressure conditions.
  • the pressure in this stage is stably pumped from normal pressure to an absolute pressure of 490Pa within 49min, the reaction temperature is 252°C, and the reaction time is 50min, and then continue to vacuumize , carry out the polycondensation reaction in the high vacuum stage, so that the reaction pressure is further reduced to the absolute pressure of 30Pa, the reaction temperature is 275 °C, and the reaction time is 80min, and the modified polyester is obtained;
  • the intrinsic viscosity of the modified polyester after solid phase polycondensation thickening is 1dL/g;
  • the polyester segment of the prepared high-strength heat-stabilized polyester industrial yarn includes a terephthalic acid segment, an ethylene glycol segment and a 2,6-pyridinedicarboxylic acid segment; a terephthalic acid segment and a 2,6-
  • the molar ratio of the pyridinedicarboxylic acid segment is 1:0.04; the 2,6-pyridinedicarboxylic acid segments of different polyester segments are coordinated by Fe 3+ , and the 2,6-pyridinedicarboxylic acid segment participates in the coordination
  • the coordination structure formed by coordination is:
  • the glass transition temperature of high-strength thermally stable polyester industrial yarn is 88°C; the breaking strength is 8.8cN/dtex, the breaking strength CV value is 2.87%; the breaking elongation is 12.8%, and the breaking elongation CV value is 6.4%; 4.0
  • the central value of elongation under load of cN/dtex is 2.9%, the
  • a preparation method of high-strength thermally stable polyester industrial yarn the steps are as follows:
  • the molar ratio of terephthalic acid, ethylene glycol and 2,6-pyridinedicarboxylic acid is made into a slurry, and the catalyst (ethylene glycol antimony) is added to mix evenly, wherein the catalyst is added in an amount of terephthalic acid.
  • 0.03wt% of formic acid was added, and then pressurized in a nitrogen atmosphere to carry out the esterification reaction, the pressurization pressure was 0.1MPa, the temperature of the esterification reaction was 250°C, and the termination conditions of the esterification reaction were: water in the esterification reaction The amount of distillation reaches 95% of the theoretical value;
  • the polycondensation reaction in the low vacuum stage is started under negative pressure conditions.
  • the pressure in this stage is stably pumped from normal pressure to an absolute pressure of 480Pa within 46min, the reaction temperature is 254°C, and the reaction time is 45min, and then continue to vacuumize , carry out the polycondensation reaction in the high vacuum stage, so that the reaction pressure is further reduced to an absolute pressure of 25Pa, the reaction temperature is 275°C, and the reaction time is 70min to obtain the modified polyester;
  • the intrinsic viscosity of the modified polyester after solid phase polycondensation thickening is 1dL/g;
  • the polyester segment of the prepared high-strength heat-stabilized polyester industrial yarn includes a terephthalic acid segment, an ethylene glycol segment and a 2,6-pyridinedicarboxylic acid segment; a terephthalic acid segment and a 2,6-
  • the molar ratio of the pyridinedicarboxylic acid segment is 1:0.05; the 2,6-pyridinedicarboxylic acid segments of different polyester segments are coordinated by Fe 3+ , and the 2,6-pyridinedicarboxylic acid segment participates in the coordination
  • the coordination structure formed by coordination is:
  • the glass transition temperature of the high-strength thermally stable polyester industrial yarn is 91°C; the breaking strength is 8.9cN/dtex, the breaking strength CV value is 2.8%; the breaking elongation is 12.5%, and the breaking elongation CV value is 6.3%; 4.0
  • the center value of elongation under load of cN/dtex is 2.5%, the deviation
  • a preparation method of high-strength thermally stable polyester industrial yarn the steps are as follows:
  • the molar ratio of terephthalic acid, ethylene glycol and 2,6-pyridinedicarboxylic acid is made into a slurry, and the catalyst (ethylene glycol antimony) is added to mix evenly, wherein the catalyst is added in an amount of terephthalic acid.
  • the amount of formic acid added is 0.035wt%, and then pressurized in a nitrogen atmosphere to carry out the esterification reaction, the pressurization pressure is 0.1MPa, the temperature of the esterification reaction is 252 °C, and the termination conditions of the esterification reaction are: water in the esterification reaction The distillate amount reaches 90% of the theoretical value;
  • the polycondensation reaction in the low vacuum stage is started under negative pressure conditions.
  • the pressure in this stage is steadily pumped from normal pressure to an absolute pressure of 470Pa within 30min, the reaction temperature is 255°C, and the reaction time is 40min, and then continue to vacuumize , carry out the polycondensation reaction in the high vacuum stage, the reaction pressure is further reduced to the absolute pressure of 10Pa, the reaction temperature is 277°C, and the reaction time is 60min to obtain the modified polyester;
  • the intrinsic viscosity of the modified polyester after solid phase polycondensation thickening is 1.1dL/g;
  • the polyester segment of the prepared high-strength heat-stabilized polyester industrial yarn includes a terephthalic acid segment, an ethylene glycol segment and a 2,6-pyridinedicarboxylic acid segment; a terephthalic acid segment and a 2,6-
  • the molar ratio of the pyridinedicarboxylic acid segment is 1:0.03; the 2,6-pyridinedicarboxylic acid segments of different polyester segments are coordinated by Fe 3+ , and the 2,6-pyridinedicarboxylic acid segment participates in the coordination
  • the coordination structure formed by coordination is:
  • the glass transition temperature of high-strength thermally stable polyester industrial yarn is 89°C; the breaking strength is 8.75cN/dtex, the breaking strength CV value is 2.95%; the breaking elongation is 12.7%, and the breaking elongation CV value is 6.6%; 4.0
  • the central value of elongation under load of cN/dtex is 2.7%, the
  • a preparation method of high-strength thermally stable polyester industrial yarn the steps are as follows:
  • the molar ratio of terephthalic acid, ethylene glycol and 2,6-pyridinedicarboxylic acid is made into a slurry, and the catalyst (antimony acetate) is added to mix evenly, wherein the catalyst is added in the amount of terephthalic acid 0.04wt% of the amount, and then pressurized in a nitrogen atmosphere to carry out the esterification reaction, the pressurized pressure is 0.3MPa, the temperature of the esterification reaction is 258 °C, and the termination conditions of the esterification reaction are: the water in the esterification reaction is distilled out. The amount reaches 96% of the theoretical value;
  • the polycondensation reaction in the low vacuum stage is started under the negative pressure condition.
  • the pressure of this stage is stably pumped from normal pressure to absolute pressure of 500Pa within 45min, the reaction temperature is 250°C, and the reaction time is 50min, and then continue to vacuumize , carry out the polycondensation reaction in the high vacuum stage, so that the reaction pressure is further reduced to an absolute pressure of 25Pa, the reaction temperature is 278°C, and the reaction time is 55min to obtain the modified polyester;
  • the intrinsic viscosity of the modified polyester after solid phase polycondensation thickening is 1.1dL/g;
  • the polyester segment of the prepared high-strength heat-stabilized polyester industrial yarn includes a terephthalic acid segment, an ethylene glycol segment and a 2,6-pyridinedicarboxylic acid segment; a terephthalic acid segment and a 2,6-
  • the molar ratio of the pyridinedicarboxylic acid segment is 1:0.05; the 2,6-pyridinedicarboxylic acid segments of different polyester segments are coordinated by Fe 3+ , and the 2,6-pyridinedicarboxylic acid segment participates in the coordination
  • the coordination structure formed by coordination is:
  • the glass transition temperature of the high-strength thermally stable polyester industrial yarn is 91°C; the breaking strength is 9cN/dtex, the breaking strength CV value is 2.9%; the breaking elongation is 11.8%, and the breaking elongation CV value is 6.4%; 4.0cN
  • the center value of elongation under load /dtex is 2.5%, the deviation rate of
  • a preparation method of high-strength thermally stable polyester industrial yarn the steps are as follows:
  • the molar ratio of terephthalic acid, ethylene glycol and 2,6-pyridinedicarboxylic acid is made into a slurry, and the catalyst (antimony acetate) is added to mix evenly.
  • the amount of the catalyst added is terephthalic acid. 0.04wt% of the amount, and then pressurized in a nitrogen atmosphere to carry out the esterification reaction, the pressurized pressure is 0.3MPa, the temperature of the esterification reaction is 259 ° C, and the termination conditions of the esterification reaction are: the water in the esterification reaction is distilled out. The amount reaches 97% of the theoretical value;
  • the polycondensation reaction in the low vacuum stage is started under negative pressure conditions, and the pressure in this stage is stably pumped from normal pressure to an absolute pressure of 450Pa within 50min, the reaction temperature is 258 °C, and the reaction time is 35min, and then continue to vacuumize , carry out the polycondensation reaction in the high vacuum stage, so that the reaction pressure is further reduced to an absolute pressure of 15Pa, the reaction temperature is 270 ° C, and the reaction time is 90 min to obtain the modified polyester;
  • the intrinsic viscosity of the modified polyester after solid phase polycondensation thickening is 1.2dL/g;
  • the polyester segment of the prepared high-strength heat-stabilized polyester industrial yarn includes a terephthalic acid segment, an ethylene glycol segment and a 2,6-pyridinedicarboxylic acid segment; a terephthalic acid segment and a 2,6-
  • the molar ratio of the pyridinedicarboxylic acid segment is 1:0.03; the 2,6-pyridinedicarboxylic acid segments of different polyester segments are coordinated by Fe 3+ , and the 2,6-pyridinedicarboxylic acid segment participates in the coordination
  • the coordination structure formed by coordination is:
  • the glass transition temperature of the high-strength thermally stable polyester industrial yarn is 90°C; the breaking strength is 8.8cN/dtex, the breaking strength CV value is 2.76%; the breaking elongation is 12%, and the breaking elongation CV value is 6.8%; 4.0
  • the central value of elongation under load of cN/dtex is 2.6%, the
  • a preparation method of high-strength thermally stable polyester industrial yarn the steps are as follows:
  • the molar ratio of terephthalic acid, ethylene glycol and 2,6-pyridinedicarboxylic acid is made into a slurry, and the catalyst (antimony acetate) is added to mix evenly, wherein the catalyst is added in an amount of terephthalic acid. 0.05wt% of the amount, and then pressurized in a nitrogen atmosphere to carry out the esterification reaction, the pressurization pressure is 0.3MPa, the temperature of the esterification reaction is 260 ° C, and the termination conditions of the esterification reaction are: the water in the esterification reaction is distilled out. The amount reaches 98% of the theoretical value;
  • the polycondensation reaction in the low vacuum stage is started under the negative pressure condition.
  • the pressure in this stage is smoothly pumped from normal pressure to absolute pressure of 440Pa within 50min, the reaction temperature is 260°C, and the reaction time is 30min, and then continue to vacuumize , carry out the polycondensation reaction in the high vacuum stage, the reaction pressure is further reduced to the absolute pressure of 10Pa, the reaction temperature is 282°C, and the reaction time is 50min to obtain the modified polyester;
  • the intrinsic viscosity of the modified polyester after solid phase polycondensation thickening is 1dL/g;
  • the polyester segment of the prepared high-strength heat-stabilized polyester industrial yarn includes a terephthalic acid segment, an ethylene glycol segment and a 2,6-pyridinedicarboxylic acid segment; a terephthalic acid segment and a 2,6-
  • the molar ratio of the pyridinedicarboxylic acid segment is 1:0.05; the 2,6-pyridinedicarboxylic acid segments of different polyester segments are coordinated by Fe 3+ , and the 2,6-pyridinedicarboxylic acid segment participates in the coordination
  • the coordination structure formed by coordination is:
  • the glass transition temperature of high-strength thermally stable polyester industrial yarn is 92°C; the breaking strength is 9.1cN/dtex, the breaking strength CV value is 2.7%; the breaking elongation is 11%, and the breaking elongation CV value is 6.9%; 4.0
  • the center value of elongation under load of cN/dtex is 3%, the deviation rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明涉及一种高强型热稳定性涤纶工业丝及其制备方法,将改性聚酯固相缩聚增粘后纺丝卷绕和配位处理制得高强型热稳定性涤纶工业丝;配位处理的方法为:将卷绕后的纤维浸泡在配位剂水溶液中,配位剂水溶液的浓度为0.1~0.2mol/L;配位处理的条件:80~100℃条件48~72小时,配位剂水溶液浓度0.1~0.2mol/L;制得的高强型热稳定涤纶工业丝的聚酯链段包括对苯二甲酸链段、乙二醇链段和2,6-吡啶二甲酸链段,且不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位,对苯二甲酸链段和2,6-吡啶二甲酸链段的摩尔比为1:0.03~0.05,2,6-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子。本发明采用配位技术,Fe 3+与吡啶形成配位键后提高了聚酯纤维的玻璃化温度,热稳定性大大增强。

Description

一种高强型热稳定性涤纶工业丝及其制备方法 技术领域
本发明属于聚酯纤维技术领域,涉及一种高强型热稳定性涤纶工业丝及其制备方法。
背景技术
聚酯其分子链结构的高度对称性及苯环的刚性,使制品具有良好的机械加工性能、耐化学腐蚀性能和抗微生物侵蚀性能等,而且由于价格相对低廉和容易回收等优点,被广泛的应用于纤维、薄膜、塑料制品等各个领域。
聚酯的热稳定性主要表现为两个方面,耐高温分解能力和应用时能耐较高的环境使用温度。玻璃化转变温度为70~76℃,熔点250~260℃,热变形温度为80~85℃。为了满足特定情况的需求,对工业丝性能的要求也越来越高,因此聚酯工业丝产品需要不断创新和研究。当聚酯纤维在处于高于玻璃化转变温度时,大分子链的链段开始运动,这时如果存在一定的外力时,大分子链的运动从振动到滑动,其力学性能将较幅度的下降。
现有技术中提高聚酯热稳定方法有:(1)通过增加定型时间或提高定型温度以达到提高纤维结晶度及耐热性的目的,但工艺的调整对提高聚酯热稳定有限;(2)引入耐热基团,如萘二甲酸,但由于萘环的刚性很大,给加工带来较大困难,特别是其熔体粘度过高;(3)采用高粘度切片,粘度的提高意味着分子量的提高,即分子链运动的难度增加,运动受阻性增加,可以达到提高聚酯纤维耐热性的目的,但粘度提高使得塑化均匀度下降,加工困难,制品性能均匀性及稳定性下降,后加工相对困难;(4)与其它材料进行共混填充,主要是阻止分子链运动以提高玻璃化转变温度,进而提高耐热性,但在提高耐热性的同时,其力学性能受到影响。这些方法均不同程度的存在一定的局限性。提高聚酯工业丝在后加工以及使用的热稳定性对工业丝的应用将更加广泛。
由于聚酯结构决定了其玻璃化温度的大小,现有技术中,如果要提高聚酯纤维的耐热性往往只能通过提高纤维的结晶度和进一步完善结晶的形态,对耐热性的提高幅度有限。
因此,研究一种涤纶工业丝的高强型热稳定性涤纶工业丝具有十分重要的意义。
发明内容
为了解决现有技术中提高聚酯耐热性存在一定的局限性的问题,本发明提供一种高强型热稳定性涤纶工业丝及其制备方法。
本发明解决了现有技术的涤纶工业丝热稳定性不佳,表现为涤纶工业丝在使用温度高于玻璃化温度的场合力学性能下降幅度较大的技术问题。
本发明采用配位技术提高涤纶工业丝的玻璃化温度,以适应和拓宽涤纶工业丝的应用。
为达到上述目的,本发明采用的方案如下:
一种高强型热稳定性涤纶工业丝,高强型热稳定涤纶工业丝的聚酯链段包括对苯二甲酸链段、乙二醇链段和2,6-吡啶二甲酸链段,且不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位;
对苯二甲酸链段和2,6-吡啶二甲酸链段的摩尔比为1:0.03~0.05;
2,6-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子。
铁在元素周期表中位于第VIII族,其电子排布是[Ar]3d 64s 2,易失去4s轨道上的两个电子和3d轨道上的一个电子成为二价铁和半充满稳定结构的三价铁离子,由于铁具有良好的可变氧化态,易于与氮、氧等元素配位形成稳定的配合物。Fe +3的配位数为6,形成八面体构型,与2,6-吡啶二甲酸形成四个五元环结构的螯合物(螯合物是具有环状结构的配合物,通过两个或多个配位体与同一金属离子形成螯合环的螯合作用而得到。螯合物的稳定性与成环有密切关系,成环作用使螯合物的稳定性增加,其中以五元环和六元环最为稳定)。
对于配体而言,通常使用的配体大多为羧酸类配体:羧酸类配体中的羧基基团能与金属离子具有较强的配位及螯合能力,可以以多种方式配位方式与金属离子配位。
而含氮羧酸类配体的优点在于:(1)配体上的N、O原子可同时作为配位点;(2)当配体上含有多个羧基时,能够形成不同拓扑类型的配合物。
2,6-吡啶二甲酸属于氮杂环芳香羧酸配体,这类集合了芳香羧酸类配体和含氮杂环配体的优点,具有共轭效应,共轭效应增加了配合物的稳定性,它具有一个闭合的大π键,N原子sp 2轨道上有一对孤对电子,属于非中心对称结构,共轭的供、吸电子基团,分子内能发生电荷转移,具有较强配位能力,能以多种方式和主族金属离子、过渡金属离子、稀土金属离子形成稳定的配合物,而且其具有多种配位模式,易于和金属离子自组装形成多种维度的配合物,具体可与金属离子形成单齿配合物、二齿配合物以及三齿配合物。
作为优选的技术方案:
如上所述的一种高强型热稳定性涤纶工业丝,不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位形成的配位结构为:
Figure PCTCN2021114425-appb-000001
如上所述的一种高强型热稳定性涤纶工业丝,所述高强型热稳定性涤纶工业丝的玻璃化温度为88~92℃,相较于现有技术提高了10℃以上。
如上所述的一种高强型热稳定性涤纶工业丝,高强型热稳定性涤纶工业丝的性能指标为:断裂强度≥8.7cN/dtex,断裂强度CV值≤3.0%;断裂伸长率为11.0~13.0%,断裂伸长CV值≤7.0%;4.0cN/dtex负荷的伸长率的中心值为2.5~3.0%,4.0cN/dtex负荷的伸长率的偏差率为±0.7%;在177℃、10min和0.05cN/dtex条件下的干热收缩率为2.5±0.6%。
本发明还提供一种高强型热稳定性涤纶工业丝的制备方法,将改性聚酯固相缩聚增粘后纺丝卷绕和配位处理制得高强型热稳定性涤纶工业丝;
改性聚酯的制备方法为:将对苯二甲酸、乙二醇和2,6-吡啶二甲酸混合均匀后先后进行酯化反应和缩聚反应得到改性聚酯;
配位处理的方法为:将卷绕后的纤维浸泡在配位剂水溶液中,配位剂水溶液的浓度为0.1~0.2mol/L;
配位处理的条件:80~100℃条件48~72小时;
配位剂为FeCl 3、Fe(NO 3) 3或Fe 2(SO 4) 3
配位剂扩散入涤纶纤维可用所谓的孔道和自由体积模型描述。在聚酯纤维玻璃化温度以上,纤维内部的自由体积较大,含有许多足以容纳配位剂进入的“空穴”,配位剂分子通过“空穴”扩散,同时聚酯纤维具有多重的运动单元,包括侧基、链段和整个高分子链等,当配位剂分子扩散到纤维内部时,在一定的时间内配位剂分子逐渐与纤维的配体结合形成较为稳定的配位物结构单元。在卷绕之后进行配位处理是配位的一种方法,该方法对纤维加工影响最小,但需要较长的时间;另一方面,纤维的薄弱点往往在无定型区,而配位处理的方法对改善无定型区的效果最佳。Fe(Ⅲ)与吡啶配位后,阴离子可以参与配位或在配合物中起到中和电荷的作用。
作为优选的技术方案:
如上所述的一种高强型热稳定性涤纶工业丝的制备方法,改性聚酯的制备步骤如下:
(1)酯化反应;
将对苯二甲酸、乙二醇和2,6-吡啶二甲酸配成浆料,加入催化剂混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为常压~0.3MPa,酯化反应的温度为250~260℃,酯化反应的终止条件为:酯化反应中的水馏出量达到理论值的90%以上;2,6-吡啶二甲酸与乙二醇在酸催化作用下进行酯化反应,由于共轭效应,其羧酸活性较对苯二甲酸的活性略大,但不影响酯化反应的进行,工艺上无需进行特别调整;
(2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在30~50min内由常压平稳抽至绝对压力500Pa以下,反应温度为250~260℃,反应时间为30~50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力100Pa以下,反应温度为270~282℃,反应时间为50~90min,制得改性聚酯。
如上所述的一种高强型热稳定性涤纶工业丝的制备方法,对苯二甲酸、乙二醇和2,6-吡啶二甲酸的摩尔比为1:1.2~2.0:0.03~0.05;
催化剂的加入量为对苯二甲酸加入量的0.01~0.05wt%;催化剂为三氧化二锑、乙二醇锑或醋酸锑。
如上所述的一种高强型热稳定性涤纶工业丝的制备方法,固相缩聚增粘后改性聚酯的特性粘度为1.0~1.2dL/g。
如上所述的一种高强型热稳定性涤纶工业丝的制备方法,高强型热稳定性涤纶工业丝的纺丝工艺参数如下:
Figure PCTCN2021114425-appb-000002
本发明的机理如下:
聚酯在实际应用中,由于分子链呈线性排列,因其链段没有比较牢固的交联节点作为支撑,常常在受热时,机械性能受到不可避免影响。而交联点可以是化学交联节点或物理交联 节点,其中化学交联结构即是形成了稳固的分子内化学键,而物理交联结构包括氢键、离子键和配位键等。
从分子运动角度来看,聚酯类结晶性高聚物随温度变化出现的三种力学状态与内部分子在不同温度下处于不同运动状态密切相关。这是高聚物的特点,即一种高聚物,结构不变,只是由于分子运动的情况不同,就可以表现出非常不同的性质。在玻璃态下,由于温度较低,分子运动的能量很低,不足以克服主链内旋转的位垒,因此链段的运动不能被激发,链段处于被冻结的状态,只有那些活化能较低的较小单元能运动。当温度升高到已足以克服内旋转的位垒,几十个相邻单键内旋转的协同运动被激发,链段开始可以运动来改变链的构象,高聚物因此进入高弹态,此时的温度就是Tg;聚酯大分子间的氢键在高于Tg下拉伸时,氢键快速解离,从而表现出断裂强度和断裂伸长率大幅度的降低。本发明的Fe 3+与吡啶形成配位键,聚酯纤维中物理交联点和分子间作用的增强,制约了链段运动,链与链之间相互滑移困难,链段通过运动来改变链的构象时需要更多的能量,从而在一定程度上提高了聚酯纤维的Tg,Tg从75~79℃增加到88~92℃,使得本发明中的聚酯纤维在高于常规聚酯Tg的条件下进行拉伸,能较好地保持纤维的力学性能,热稳定性大大提高。
此外,Fe 3+与吡啶形成配位键后,玻璃化转变温度变高的同时也使得聚合物链段更容易被冻结,经FeCl 3配位的聚酯纤维断裂强度得到了一定程度的增强。
有益效果
(1)本发明的一种高强型热稳定性涤纶工业丝的制备方法,Fe(Ⅲ)-吡啶配位在增强的物理网点中起关键作用,提高了聚酯纤维的玻璃化温度;
(2)本发明的一种高强型热稳定性涤纶工业丝的制备方法,Fe 3+与吡啶形成配位键后,玻璃化转变温度变高的同时也使得聚合物链段更容易被冻结,经FeCl 3配位的聚酯纤维断裂强度得到了一定程度的增强;
(3)本发明的一种高强型热稳定性涤纶工业丝,Tg为88~92℃,在85℃温度条件下进行拉伸,断裂强度≥7.60cN/dtex,断裂伸长率为10.2~13.5%,力学性能和热稳定性优异。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种高强型热稳定性涤纶工业丝的制备方法,步骤具体如下:
(1)改性聚酯的制备;
(1.1)酯化反应;
将摩尔比为1:1.2:0.03的对苯二甲酸、乙二醇和2,6-吡啶二甲酸配成浆料,加入催化剂(三氧化二锑)混合均匀,其中催化剂的加入量为对苯二甲酸加入量的0.03wt%,然后在氮气氛围中加压进行酯化反应,加压压力为0.2MPa,酯化反应的温度为254℃,酯化反应的终止条件为:酯化反应中的水馏出量达到理论值的97%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在40min内由常压平稳抽至绝对压力460Pa,反应温度为256℃,反应时间为35min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力30Pa,反应温度为280℃,反应时间为55min,制得改性聚酯;
(2)将制得的改性聚酯固相缩聚增粘后纺丝卷绕;
固相缩聚增粘后改性聚酯的特性粘度为1.2dL/g;
纺丝工艺参数如下:
Figure PCTCN2021114425-appb-000003
(3)配位处理;在88℃条件下,将卷绕后的纤维浸泡在配位剂水溶液中63小时,制得高强型热稳定涤纶工业丝;其中配位剂为FeCl 3,配位剂水溶液的浓度为0.1mol/L。
制得的高强型热稳定涤纶工业丝的聚酯链段包括对苯二甲酸链段、乙二醇链段和2,6-吡啶二甲酸链段;对苯二甲酸链段和2,6-吡啶二甲酸链段的摩尔比为1:0.03;不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位,且2,6-吡啶二甲酸链段参与配位的有两个羰基上的O原 子和吡啶上的N原子;配位形成的配位结构为:
Figure PCTCN2021114425-appb-000004
高强型热稳定性涤纶工业丝的玻璃化温度为88℃;断裂强度为8.7cN/dtex,断裂强度CV值为3%;断裂伸长率为13%,断裂伸长CV值为7%;4.0cN/dtex负荷的伸长率的中心值为2.8%,4.0cN/dtex负荷的伸长率的偏差率为+0.7%;在177℃、10min和0.05cN/dtex条件下的干热收缩率为3.1%。
实施例2
一种高强型热稳定性涤纶工业丝的制备方法,步骤具体如下:
(1)改性聚酯的制备;
(1.1)酯化反应;
将摩尔比为1:1.2:0.04的对苯二甲酸、乙二醇和2,6-吡啶二甲酸配成浆料,加入催化剂(三氧化二锑)混合均匀,其中催化剂的加入量为对苯二甲酸加入量的0.01wt%,然后在氮气氛围中加压进行酯化反应,加压压力为0.2MPa,酯化反应的温度为256℃,酯化反应的终止条件为:酯化反应中的水馏出量达到理论值的96%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在49min内由常压平稳抽至绝对压力490Pa,反应温度为252℃,反应时间为50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力30Pa,反应温度为275℃,反应时间为80min,制得改性聚酯;
(2)将制得的改性聚酯固相缩聚增粘后纺丝卷绕;
固相缩聚增粘后改性聚酯的特性粘度为1dL/g;
纺丝工艺参数如下:
Figure PCTCN2021114425-appb-000005
Figure PCTCN2021114425-appb-000006
(3)配位处理;在92℃条件下,将卷绕后的纤维浸泡在配位剂水溶液中60小时,制得高强型热稳定涤纶工业丝;其中配位剂为FeCl 3,配位剂水溶液的浓度为0.1mol/L。
制得的高强型热稳定涤纶工业丝的聚酯链段包括对苯二甲酸链段、乙二醇链段和2,6-吡啶二甲酸链段;对苯二甲酸链段和2,6-吡啶二甲酸链段的摩尔比为1:0.04;不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位,且2,6-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子;配位形成的配位结构为:
Figure PCTCN2021114425-appb-000007
高强型热稳定性涤纶工业丝的玻璃化温度为88℃;断裂强度为8.8cN/dtex,断裂强度CV值为2.87%;断裂伸长率为12.8%,断裂伸长CV值为6.4%;4.0cN/dtex负荷的伸长率的中心值为2.9%,4.0cN/dtex负荷的伸长率的偏差率为+0.5%;在177℃、10min和0.05cN/dtex条件下的干热收缩率为2.8%。
实施例3
一种高强型热稳定性涤纶工业丝的制备方法,步骤具体如下:
(1)改性聚酯的制备;
(1.1)酯化反应;
将摩尔比为1:1.2:0.05的对苯二甲酸、乙二醇和2,6-吡啶二甲酸配成浆料,加入催化剂(乙二醇锑)混合均匀,其中催化剂的加入量为对苯二甲酸加入量的0.03wt%,然后在氮气氛围中加压进行酯化反应,加压压力为0.1MPa,酯化反应的温度为250℃,酯化反应的终止条件为:酯化反应中的水馏出量达到理论值的95%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在46min内由常压平稳抽至绝对压力480Pa,反应温度为254℃,反应时间为45min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力25Pa,反应温度为275℃,反应时间为70min,制得改性聚酯;
(2)将制得的改性聚酯固相缩聚增粘后纺丝卷绕;
固相缩聚增粘后改性聚酯的特性粘度为1dL/g;
纺丝工艺参数如下:
Figure PCTCN2021114425-appb-000008
(3)配位处理;在84℃条件下,将卷绕后的纤维浸泡在配位剂水溶液中66小时,制得高强型热稳定涤纶工业丝;其中配位剂为FeCl 3,配位剂水溶液的浓度为0.1mol/L。
制得的高强型热稳定涤纶工业丝的聚酯链段包括对苯二甲酸链段、乙二醇链段和2,6-吡啶二甲酸链段;对苯二甲酸链段和2,6-吡啶二甲酸链段的摩尔比为1:0.05;不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位,且2,6-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子;配位形成的配位结构为:
Figure PCTCN2021114425-appb-000009
高强型热稳定性涤纶工业丝的玻璃化温度为91℃;断裂强度为8.9cN/dtex,断裂强度CV值为2.8%;断裂伸长率为12.5%,断裂伸长CV值为6.3%;4.0cN/dtex负荷的伸长率的中心值为2.5%,4.0cN/dtex负荷的伸长率的偏差率为+0.2%;在177℃、10min和0.05cN/dtex条件下的干热收缩率为2.7%。
实施例4
一种高强型热稳定性涤纶工业丝的制备方法,步骤具体如下:
(1)改性聚酯的制备;
(1.1)酯化反应;
将摩尔比为1:1.5:0.03的对苯二甲酸、乙二醇和2,6-吡啶二甲酸配成浆料,加入催化剂(乙二醇锑)混合均匀,其中催化剂的加入量为对苯二甲酸加入量的0.035wt%,然后在氮气氛围中加压进行酯化反应,加压压力为0.1MPa,酯化反应的温度为252℃,酯化反应的终止条件为:酯化反应中的水馏出量达到理论值的90%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在30min内由常压平稳抽至绝对压力470Pa,反应温度为255℃,反应时间为40min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力10Pa,反应温度为277℃,反应时间为60min,制得改性聚酯;
(2)将制得的改性聚酯固相缩聚增粘后纺丝卷绕;
固相缩聚增粘后改性聚酯的特性粘度为1.1dL/g;
纺丝工艺参数如下:
Figure PCTCN2021114425-appb-000010
(3)配位处理;在80℃条件下,将卷绕后的纤维浸泡在配位剂水溶液中72小时,制得高强型热稳定涤纶工业丝;其中配位剂为Fe(NO 3) 3,配位剂水溶液的浓度为0.15mol/L。
制得的高强型热稳定涤纶工业丝的聚酯链段包括对苯二甲酸链段、乙二醇链段和2,6-吡啶二甲酸链段;对苯二甲酸链段和2,6-吡啶二甲酸链段的摩尔比为1:0.03;不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位,且2,6-吡啶二甲酸链段参与配位的有两个羰基上的O原 子和吡啶上的N原子;配位形成的配位结构为:
Figure PCTCN2021114425-appb-000011
高强型热稳定性涤纶工业丝的玻璃化温度为89℃;断裂强度为8.75cN/dtex,断裂强度CV值为2.95%;断裂伸长率为12.7%,断裂伸长CV值为6.6%;4.0cN/dtex负荷的伸长率的中心值为2.7%,4.0cN/dtex负荷的伸长率的偏差率为-0.7%;在177℃、10min和0.05cN/dtex条件下的干热收缩率为2.9%。
实施例5
一种高强型热稳定性涤纶工业丝的制备方法,步骤具体如下:
(1)改性聚酯的制备;
(1.1)酯化反应;
将摩尔比为1:1.5:0.05的对苯二甲酸、乙二醇和2,6-吡啶二甲酸配成浆料,加入催化剂(醋酸锑)混合均匀,其中催化剂的加入量为对苯二甲酸加入量的0.04wt%,然后在氮气氛围中加压进行酯化反应,加压压力为0.3MPa,酯化反应的温度为258℃,酯化反应的终止条件为:酯化反应中的水馏出量达到理论值的96%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在45min内由常压平稳抽至绝对压力500Pa,反应温度为250℃,反应时间为50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力25Pa,反应温度为278℃,反应时间为55min,制得改性聚酯;
(2)将制得的改性聚酯固相缩聚增粘后纺丝卷绕;
固相缩聚增粘后改性聚酯的特性粘度为1.1dL/g;
纺丝工艺参数如下:
Figure PCTCN2021114425-appb-000012
Figure PCTCN2021114425-appb-000013
(3)配位处理;在82℃条件下,将卷绕后的纤维浸泡在配位剂水溶液中68小时,制得高强型热稳定涤纶工业丝;其中配位剂为Fe(NO 3) 3,配位剂水溶液的浓度为0.15mol/L。
制得的高强型热稳定涤纶工业丝的聚酯链段包括对苯二甲酸链段、乙二醇链段和2,6-吡啶二甲酸链段;对苯二甲酸链段和2,6-吡啶二甲酸链段的摩尔比为1:0.05;不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位,且2,6-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子;配位形成的配位结构为:
Figure PCTCN2021114425-appb-000014
高强型热稳定性涤纶工业丝的玻璃化温度为91℃;断裂强度为9cN/dtex,断裂强度CV值为2.9%;断裂伸长率为11.8%,断裂伸长CV值为6.4%;4.0cN/dtex负荷的伸长率的中心值为2.5%,4.0cN/dtex负荷的伸长率的偏差率为-0.5%;在177℃、10min和0.05cN/dtex条件下的干热收缩率为2.2%。
实施例6
一种高强型热稳定性涤纶工业丝的制备方法,步骤具体如下:
(1)改性聚酯的制备;
(1.1)酯化反应;
将摩尔比为1:2:0.03的对苯二甲酸、乙二醇和2,6-吡啶二甲酸配成浆料,加入催化剂(醋酸锑)混合均匀,其中催化剂的加入量为对苯二甲酸加入量的0.04wt%,然后在氮气氛围中加压进行酯化反应,加压压力为0.3MPa,酯化反应的温度为259℃,酯化反应的终止条件为:酯化反应中的水馏出量达到理论值的97%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在50min内由常压平稳抽至绝对压力450Pa,反应温度为258℃,反应时间为35min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力15Pa,反应温度为270℃,反应时间为90min,制得改性聚酯;
(2)将制得的改性聚酯固相缩聚增粘后纺丝卷绕;
固相缩聚增粘后改性聚酯的特性粘度为1.2dL/g;
纺丝工艺参数如下:
Figure PCTCN2021114425-appb-000015
(3)配位处理;在96℃条件下,将卷绕后的纤维浸泡在配位剂水溶液中55小时,制得高强型热稳定涤纶工业丝;其中配位剂为Fe 2(SO 4) 3,配位剂水溶液的浓度为0.2mol/L。
制得的高强型热稳定涤纶工业丝的聚酯链段包括对苯二甲酸链段、乙二醇链段和2,6-吡啶二甲酸链段;对苯二甲酸链段和2,6-吡啶二甲酸链段的摩尔比为1:0.03;不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位,且2,6-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子;配位形成的配位结构为:
Figure PCTCN2021114425-appb-000016
高强型热稳定性涤纶工业丝的玻璃化温度为90℃;断裂强度为8.8cN/dtex,断裂强度CV值为2.76%;断裂伸长率为12%,断裂伸长CV值为6.8%;4.0cN/dtex负荷的伸长率的中心值为2.6%,4.0cN/dtex负荷的伸长率的偏差率为-0.7%;在177℃、10min和0.05cN/dtex条件下的干热收缩率为2.4%。
实施例7
一种高强型热稳定性涤纶工业丝的制备方法,步骤具体如下:
(1)改性聚酯的制备;
(1.1)酯化反应;
将摩尔比为1:2:0.05的对苯二甲酸、乙二醇和2,6-吡啶二甲酸配成浆料,加入催化剂(醋酸锑)混合均匀,其中催化剂的加入量为对苯二甲酸加入量的0.05wt%,然后在氮气氛围中加压进行酯化反应,加压压力为0.3MPa,酯化反应的温度为260℃,酯化反应的终止条件为:酯化反应中的水馏出量达到理论值的98%;
(1.2)缩聚反应;
酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在50min内由常压平稳抽至绝对压力440Pa,反应温度为260℃,反应时间为30min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力10Pa,反应温度为282℃,反应时间为50min,制得改性聚酯;
(2)将制得的改性聚酯固相缩聚增粘后纺丝卷绕;
固相缩聚增粘后改性聚酯的特性粘度为1dL/g;
纺丝工艺参数如下:
Figure PCTCN2021114425-appb-000017
(3)配位处理;在100℃条件下,将卷绕后的纤维浸泡在配位剂水溶液中48小时,制得高强型热稳定涤纶工业丝;其中配位剂为Fe 2(SO 4) 3,配位剂水溶液的浓度为0.2mol/L。
制得的高强型热稳定涤纶工业丝的聚酯链段包括对苯二甲酸链段、乙二醇链段和2,6-吡啶二甲酸链段;对苯二甲酸链段和2,6-吡啶二甲酸链段的摩尔比为1:0.05;不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位,且2,6-吡啶二甲酸链段参与配位的有两个羰基上的O原 子和吡啶上的N原子;配位形成的配位结构为:
Figure PCTCN2021114425-appb-000018
高强型热稳定性涤纶工业丝的玻璃化温度为92℃;断裂强度为9.1cN/dtex,断裂强度CV值为2.7%;断裂伸长率为11%,断裂伸长CV值为6.9%;4.0cN/dtex负荷的伸长率的中心值为3%,4.0cN/dtex负荷的伸长率的偏差率为-0.4%;在177℃、10min和0.05cN/dtex条件下的干热收缩率为1.9%。

Claims (9)

  1. 一种高强型热稳定性涤纶工业丝,其特征是:高强型热稳定涤纶工业丝的聚酯链段包括对苯二甲酸链段、乙二醇链段和2,6-吡啶二甲酸链段,且不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位;
    对苯二甲酸链段和2,6-吡啶二甲酸链段的摩尔比为1:0.03~0.05;
    2,6-吡啶二甲酸链段参与配位的有两个羰基上的O原子和吡啶上的N原子。
  2. 根据权利要求1所述的一种高强型热稳定性涤纶工业丝,其特征在于,不同聚酯链段的2,6-吡啶二甲酸链段之间经Fe 3+配位形成的配位结构为:
    Figure PCTCN2021114425-appb-100001
  3. 根据权利要求1所述的一种高强型热稳定性涤纶工业丝,其特征在于,所述高强型热稳定性涤纶工业丝的玻璃化温度为88~92℃。
  4. 根据权利要求1所述的一种高强型热稳定性涤纶工业丝,其特征在于,高强型热稳定性涤纶工业丝的性能指标为:断裂强度≥8.7cN/dtex,断裂强度CV值≤3.0%;断裂伸长率为11.0~13.0%,断裂伸长CV值≤7.0%;4.0cN/dtex负荷的伸长率的中心值为2.5~3.0%,4.0cN/dtex负荷的伸长率的偏差率为±0.7%;在177℃、10min和0.05cN/dtex条件下的干热收缩率为2.5±0.6%。
  5. 一种高强型热稳定性涤纶工业丝的制备方法,其特征是:将改性聚酯固相缩聚增粘后纺丝卷绕和配位处理制得高强型热稳定性涤纶工业丝;
    改性聚酯的制备方法为:将对苯二甲酸、乙二醇和2,6-吡啶二甲酸混合均匀后先后进行酯化反应和缩聚反应得到改性聚酯;
    配位处理的方法为:将卷绕后的纤维浸泡在配位剂水溶液中,配位剂水溶液的浓度为0.1~0.2mol/L;
    配位处理的条件:80~100℃条件48~72小时;
    配位剂为FeCl 3、Fe(NO 3) 3或Fe 2(SO 4) 3
  6. 根据权利要求5所述的一种高强型热稳定性涤纶工业丝的制备方法,其特征在于,改性聚酯的制备步骤如下:
    (1)酯化反应;
    将对苯二甲酸、乙二醇和2,6-吡啶二甲酸配成浆料,加入催化剂混合均匀后,在氮气氛围中加压进行酯化反应,加压压力为常压~0.3MPa,酯化反应的温度为250~260℃,酯化反应的终止条件为:酯化反应中的水馏出量达到理论值的90%以上;
    (2)缩聚反应;
    酯化反应结束后,在负压条件下开始低真空阶段的缩聚反应,该阶段压力在30~50min内由常压平稳抽至绝对压力500Pa以下,反应温度为250~260℃,反应时间为30~50min,然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力进一步降至绝对压力100Pa以下,反应温度为270~282℃,反应时间为50~90min,制得改性聚酯。
  7. 根据权利要求6所述的一种高强型热稳定性涤纶工业丝的制备方法,其特征在于,对苯二甲酸、乙二醇和2,6-吡啶二甲酸的摩尔比为1:1.2~2.0:0.03~0.05;
    催化剂的加入量为对苯二甲酸加入量的0.01~0.05wt%;催化剂为三氧化二锑、乙二醇锑或醋酸锑。
  8. 根据权利要求5所述的一种高强型热稳定性涤纶工业丝的制备方法,其特征在于,固相缩聚增粘后改性聚酯的特性粘度为1.0~1.2dL/g。
  9. 根据权利要求5所述的一种高强型热稳定性涤纶工业丝的制备方法,其特征在于,高强型热稳定性涤纶工业丝的纺丝工艺参数如下:
    Figure PCTCN2021114425-appb-100002
PCT/CN2021/114425 2020-12-29 2021-08-25 一种高强型热稳定性涤纶工业丝及其制备方法 WO2022142406A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/269,968 US20240052529A1 (en) 2020-12-29 2021-08-25 High-strength thermal-stability polyester industrial yarn and preparation method thereof
JP2023539786A JP2023553509A (ja) 2020-12-29 2021-08-25 高強度・熱安定性ポリエステル工業糸およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011602597.9 2020-12-29
CN202011602597.9A CN112725920B (zh) 2020-12-29 2020-12-29 一种高强型热稳定性涤纶工业丝及其制备方法

Publications (1)

Publication Number Publication Date
WO2022142406A1 true WO2022142406A1 (zh) 2022-07-07

Family

ID=75610609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114425 WO2022142406A1 (zh) 2020-12-29 2021-08-25 一种高强型热稳定性涤纶工业丝及其制备方法

Country Status (4)

Country Link
US (1) US20240052529A1 (zh)
JP (1) JP2023553509A (zh)
CN (1) CN112725920B (zh)
WO (1) WO2022142406A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725920B (zh) * 2020-12-29 2022-03-18 江苏恒力化纤股份有限公司 一种高强型热稳定性涤纶工业丝及其制备方法
CN112725921B (zh) * 2020-12-29 2022-03-18 江苏恒力化纤股份有限公司 一种高强低伸涤纶工业丝及其制备方法
CN112760738B (zh) * 2020-12-29 2021-12-17 江苏恒力化纤股份有限公司 一种服用阻燃聚酯纤维及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079045A (en) * 1976-06-30 1978-03-14 Allied Chemical Corporation Esterification of terephthalic acid with an alkylene glycol in the presence of a pyridine dicarboxylic acid compound
US4931532A (en) * 1988-09-08 1990-06-05 The United States Of America As Represented By The Secretary Of The Air Force Method of synthesis of thermoplastic aromatic benzoxazole polymers
CN108130611A (zh) * 2017-12-14 2018-06-08 江苏恒力化纤股份有限公司 一种高伸低缩型聚酯工业丝及其制备方法
CN108130609A (zh) * 2017-12-14 2018-06-08 江苏恒力化纤股份有限公司 一种低收缩型聚酯工业丝及其制备方法
CN108976401A (zh) * 2018-08-09 2018-12-11 山东东特环保科技有限公司 一种改性共聚酯的制备方法
CN111100266A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 一种环保型抗紫外聚酯及其制备方法
CN112725920A (zh) * 2020-12-29 2021-04-30 江苏恒力化纤股份有限公司 一种高强型热稳定性涤纶工业丝及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287287A (ja) * 1993-03-30 1994-10-11 Toray Ind Inc ポリエステル組成物
JPH0753688A (ja) * 1993-08-11 1995-02-28 Toray Ind Inc 改質ポリエステルおよびフィルム
JP2005232250A (ja) * 2004-02-18 2005-09-02 Toray Ind Inc ポリエステル組成物、フィルム、粒子およびその製造方法
CN106350886B (zh) * 2016-08-31 2018-09-14 江苏恒力化纤股份有限公司 一种高均匀性高强型聚酯工业丝及其制备方法
CN106400162B (zh) * 2016-08-31 2018-09-14 江苏恒力化纤股份有限公司 一种高均匀性高强低缩型聚酯工业丝及其制备方法
CN108130610B (zh) * 2017-12-14 2020-01-14 江苏恒力化纤股份有限公司 一种超高强型聚酯工业丝及其制备方法
WO2021045088A1 (ja) * 2019-09-06 2021-03-11 国立大学法人九州大学 ポリエステル共重合体の製造方法、表面改質方法、および接合体
CN112724387A (zh) * 2020-12-29 2021-04-30 江苏恒力化纤股份有限公司 一种耐磨聚酯树脂及其制备方法
CN112725922B (zh) * 2020-12-29 2022-01-28 江苏恒力化纤股份有限公司 一种低热收缩涤纶工业丝及其制备方法
CN112724382B (zh) * 2020-12-29 2022-08-19 江苏恒力化纤股份有限公司 一种聚酯发泡材料及其制备方法
CN112760738B (zh) * 2020-12-29 2021-12-17 江苏恒力化纤股份有限公司 一种服用阻燃聚酯纤维及其制备方法
CN112760794B (zh) * 2020-12-29 2022-08-19 江苏恒力化纤股份有限公司 一种抗菌针织面料的制备方法
CN112724383B (zh) * 2020-12-29 2022-03-18 江苏恒力化纤股份有限公司 一种高阻隔水蒸汽聚酯薄膜及其制备方法
CN112725921B (zh) * 2020-12-29 2022-03-18 江苏恒力化纤股份有限公司 一种高强低伸涤纶工业丝及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079045A (en) * 1976-06-30 1978-03-14 Allied Chemical Corporation Esterification of terephthalic acid with an alkylene glycol in the presence of a pyridine dicarboxylic acid compound
US4931532A (en) * 1988-09-08 1990-06-05 The United States Of America As Represented By The Secretary Of The Air Force Method of synthesis of thermoplastic aromatic benzoxazole polymers
CN108130611A (zh) * 2017-12-14 2018-06-08 江苏恒力化纤股份有限公司 一种高伸低缩型聚酯工业丝及其制备方法
CN108130609A (zh) * 2017-12-14 2018-06-08 江苏恒力化纤股份有限公司 一种低收缩型聚酯工业丝及其制备方法
CN108976401A (zh) * 2018-08-09 2018-12-11 山东东特环保科技有限公司 一种改性共聚酯的制备方法
CN111100266A (zh) * 2018-10-25 2020-05-05 中国石油化工股份有限公司 一种环保型抗紫外聚酯及其制备方法
CN112725920A (zh) * 2020-12-29 2021-04-30 江苏恒力化纤股份有限公司 一种高强型热稳定性涤纶工业丝及其制备方法

Also Published As

Publication number Publication date
CN112725920B (zh) 2022-03-18
CN112725920A (zh) 2021-04-30
US20240052529A1 (en) 2024-02-15
JP2023553509A (ja) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2022142406A1 (zh) 一种高强型热稳定性涤纶工业丝及其制备方法
WO2022142408A1 (zh) 一种低热收缩涤纶工业丝及其制备方法
WO2022142400A1 (zh) 一种高强低伸涤纶工业丝及其制备方法
Cao et al. Influence of chemical polymerization conditions on the properties of polyaniline
WO2022143009A1 (zh) 一种高阻隔水蒸汽聚酯薄膜及其制备方法
CN112760738B (zh) 一种服用阻燃聚酯纤维及其制备方法
CN112724382B (zh) 一种聚酯发泡材料及其制备方法
WO2022143005A1 (zh) 一种缆绳用涤纶工业丝及其制备方法
CN108559077B (zh) 杂环芳纶溶液及其制备方法以及杂环芳纶成品丝的制备方法和杂环芳纶制品
CN113388137B (zh) 一种高强度耐高温聚芳醚腈薄膜的制备方法
JPH0632845A (ja) 導電性高分子複合物の製造方法
CN112301464B (zh) 一种明胶基碳纳米纤维及其制备方法
WO2022142399A1 (zh) 高强型抗蠕变性涤纶工业丝及其制备方法
CN106992294B (zh) 高电压镍锰酸锂正极复合材料及其制备方法、锂离子电池
CN112708117B (zh) 一种高阻隔瓶级聚酯及其制备方法
JPH0757802B2 (ja) ポリアニリン誘導体の製造方法
CN115448310B (zh) 一种含氮多孔碳材料及其制备方法和应用
KR101629083B1 (ko) 탄소-질소-산소 결합 구조를 포함하는 촉매 및 그 제조방법
CN115634708B (zh) 氮掺杂多孔碳镍负载催化剂的合成方法及其应用
TWI306461B (en) Oxidizing agent useful for oxidative polymerization of high conductive polymers
Liu et al. One-Step Synthesis of Ultra-Long Bulky Polypyrrole Nanofiber Assemblies: The Effects of Charge-Transfer Additives on Morphology and Electronic Properties
CN115974067A (zh) 一种吡啶环改性聚酰亚胺的高导热石墨膜及其制备方法
MacDiarmid et al. The Polyanilines: Recent Advances in Chemistry and Processing
CN117904669A (zh) 一种电还原co2催化剂及其制备方法
JPH04366122A (ja) ポリアニリン誘導体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539786

Country of ref document: JP

Ref document number: 18269968

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913153

Country of ref document: EP

Kind code of ref document: A1