WO2022134932A1 - 一种高度稳定和具有抗反极性能的高 Pt 含量高性能催化剂及其制备方法 - Google Patents

一种高度稳定和具有抗反极性能的高 Pt 含量高性能催化剂及其制备方法 Download PDF

Info

Publication number
WO2022134932A1
WO2022134932A1 PCT/CN2021/130556 CN2021130556W WO2022134932A1 WO 2022134932 A1 WO2022134932 A1 WO 2022134932A1 CN 2021130556 W CN2021130556 W CN 2021130556W WO 2022134932 A1 WO2022134932 A1 WO 2022134932A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carrier
solution
content
titanium
Prior art date
Application number
PCT/CN2021/130556
Other languages
English (en)
French (fr)
Inventor
廖世军
周洁
Original Assignee
华南理工大学
广州现代产业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 广州现代产业技术研究院 filed Critical 华南理工大学
Publication of WO2022134932A1 publication Critical patent/WO2022134932A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9058Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of noble metals or noble-metal based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of new energy fuel cells, and in particular relates to a high-performance carbon-supported platinum-based catalyst with high stability, anti-reverse performance and high Pt loading and a preparation method thereof.
  • a fuel cell is an electrochemical power generation device that directly converts the chemical energy of fuel into electrical energy. It has the advantages of fast startup, long life, high efficiency, low noise, and low pollution. It is considered to be the most promising power generation technology in the 21st century. .
  • catalysts are a huge bottleneck restricting the development of fuel cells. At present, the best catalysts are still platinum and platinum-based catalysts, but long-term use will cause corrosion of the carbon support, dissolution, agglomeration and sintering of platinum particles, resulting in a significant decrease in activity, improving the stability of the catalyst, and preparing high-durability catalysts. critical.
  • Membrane electrodes are one of the core components of fuel cells.
  • the stack is the place where the electrochemical reaction takes place and is the core part of the fuel cell power system.
  • the fuel cell stack starts up, shuts down or the load changes greatly, it is easy to cause unreasonable gas distribution, and the insufficient hydrogen supply causes the local voltage of the anode to exceed the cathode and the reverse polarity phenomenon occurs.
  • the reverse pole will seriously damage the structure of the catalytic layer, make the hydrogen and oxygen in the reaction chamber blend, and even cause an explosion. Therefore, the development of high-performance catalysts with high platinum loading, high stability and durability, and certain anti-reverse properties is of great significance for promoting the development and application of fuel cells.
  • Chinese patent application CN111659419A discloses a method for preparing carbon-supported platinum-based alloy catalyst by heat treatment in reducing atmosphere. The platinum content is 28.6-37.5 wt% and the particle size is 4-6 nm; Chinese patent application CN111509244A discloses a platinum-based alloy catalyst.
  • the technical problem to be solved by the present invention is to overcome the deficiencies and shortcomings of the prior art, and to provide a catalyst with high stability and durability, anti-reverse polarity performance, and high Pt content, and a preparation method thereof.
  • the catalyst prepared by the invention has high Pt loading, good stability/durability, and anti-reverse polarity function; the preparation method has the advantages of small particles of active components and uniform dispersion, simple and rapid preparation process, and easy realization of mass production.
  • the catalyst uses the conductive carbon black modified by titanium and silicon nitride (oxide) as the carrier to improve the antioxidant capacity of the catalyst carrier, thereby improving the stability and durability of the catalyst; platinum is the main active component of the catalyst, and the content can be as high as 60 wt% and above; by adding a small amount of Ir (0.1-1.0 wt%) to the catalyst to give the catalyst anti-reverse properties.
  • the preparation method is an improved microwave sol method.
  • the technical scheme proposed by the present invention is:
  • a small amount of iridium or ruthenium is added to the catalyst to make the catalyst have the ability to resist reverse polarity.
  • the content of active components in the catalyst is as high as 60 wt% or more, and its rapid and efficient preparation is realized by the microwave sol method.
  • Pretreatment of carbon black carrier disperse the carbon black carrier in an organic solvent such as acetone and stir to remove oil, wash and dry, heat and stir in a strong oxidizing solution for reflux treatment for 8-12 hours, wash with deionized water, 70 -110 o C drying to obtain pretreated carbon support;
  • organic solvent such as acetone
  • step (3) after cooling the reaction system completed in step (3) to room temperature, adjusting the pH to acidity with an acidic solution, then ultrasonically breaking the gel, suction filtration, washing and drying to obtain a catalyst sample;
  • step (4) The catalyst prepared in step (4) is placed in a tube furnace, and hydrogen, a mixture of hydrogen and nitrogen, nitrogen, etc. are introduced for high-temperature post-treatment to obtain the target catalyst of the present invention.
  • the carbon carrier in step (1) is Cabot Black One or more of Pearls 2000, Ketjenblack, Cabot XC-72R, multi-walled carbon nanotubes CNTs, reduced graphene oxide RGO;
  • the organic solvent is acetone, tetrahydrofuran, dichloromethane, butanedione one or more of;
  • the strong oxidizing solution used is one or more of hydrogen peroxide solution, concentrated sulfuric acid, and nitric acid solution; during processing, the concentration of the carbon carrier is 10-40 g/L range; the heating and refluxing temperature is 60-80°C.
  • the loading amount of the titanium and silicon nitride (oxide) compound on the carbon support in step (2) is 1-15 Within the range of wt%, the molar ratio of titanium and silicon is 1:0.1 - 0.1:1.
  • the titanium precursors in step (2) include tetrabutyl titanate, titanium tetrachloride, metatitanic acid, and isopropyl titanate;
  • the silicon precursors include tetraethyl orthosilicate, tetramethyl phthalate Oxysilane, methyl silicate.
  • the method for nitriding treatment in step (2) includes: calcining at 700-1000° C. for 2-3 h in an ammonia gas atmosphere; mixing the carrier with melamine, dicyandiamide and urea, and then in an inert atmosphere
  • the nitriding temperature is 700-1000°C
  • the time is 2-3 h
  • the heating rate of roasting is 1-5°C/min.
  • the precious metal precursor in step (3) includes one or more of chloroplatinic acid, tetraammine platinum dichloro, and platinum acetylacetonate; And one or more of ruthenium trichloride, ruthenium oxide, potassium chlororuthenate, iridium trichloride, and hexachloroiridic acid.
  • the content of the active component Pt in the catalyst is in the range of 20-60 wt%; the content of Ir or Ru is in the range of 0.1-1.0 wt%.
  • the complexing agent in step (3) includes citric acid, citrate, EDTA, ethylenediaminetetraacetate, monoethanolamine, diethanolamine, and triethanolamine, and the molar ratio of the complexing agent to the precious metal precursor is 2:1-4:1;
  • the reducing agent includes one or more of polyols such as methanol, ethanol, ethylene glycol, propylene glycol, glycerol, butylene glycol, and the mol ratio of the reducing agent to the precious metal precursor is 300:1-3000:1;
  • the solvent is a mixture of water and ethylene glycol, wherein the water content is 0-50%.
  • the alkaline solution in step (3) includes potassium hydroxide, sodium hydroxide solution, and ammonia water, and the final pH range is 8-12.
  • the microwave reaction power is 200-500 W
  • the reaction temperature is 80-160 °C
  • the reaction time is 5-20 min.
  • the acidic solution in step (4) includes dilute nitric acid solution, adjust pH to 1-4, ultrasonic for 10-30 min; wash with deionized water for several times until there is no chloride ion in the filtrate.
  • step (1) and step (4) adopts vacuum drying, blast drying or freeze drying.
  • the post-treatment temperature in step (5) is 100-300 °C, and the time is 1-3 h; the heating temperature rise rate is 1-5 °C/min.
  • the invention also provides an application of Pt(Ir/Ru)/Ti x Si y N z @C in a fuel cell catalyst.
  • the conductive carbon black modified with titanium and silicon nitride (oxide) is used as the carrier to improve the antioxidant capacity of the catalyst carrier and effectively improve the stability and durability of the catalyst.
  • the present invention can synthesize a catalyst with a high degree of dispersion and a high loading of Pt, and the active component content is as high as 60 wt% or more, which is beneficial to the preparation of a high-performance membrane electrode with a thin catalytic layer.
  • the present invention adopts the microwave organosol method with controllable power and time, which can effectively control the power and time of microwave heating and microwave reaction, takes less time, and the synthesized particles are uniformly dispersed, which can effectively control the particle size.
  • the reaction system used in the present invention is environmentally friendly and low in cost. Polyols and water are used as solvents, and one or more polyols are used as reducing agents.
  • the complexing agent used is easy to remove and easy to realize industrialization.
  • Example 1 is the XRD pattern of the Pt(Ir)/Ti x Si y N z @C catalyst containing 60% Pt prepared in Example 1.
  • FIG. 2 is a voltammetric cycle diagram of the Pt(Ir)/Ti x Si y N z @C catalyst containing 60% Pt prepared in Example 1 and the JM 60% Pt/C catalyst.
  • FIG 3 is a graph showing the oxygen reduction performance of the Pt(Ir)/Ti x Si y N z @C catalyst containing 60% Pt prepared in Example 1 and the JM 60% Pt/C catalyst.
  • step (3) 405 ⁇ l of 0.386 mol/L chloroplatinic acid solution, 10 ⁇ l 0.142 mol/L hydrated iridium trichloride solution, 100 mg citric acid, and 30 ml ethylene glycol were mixed uniformly by ultrasonic, then 20 mg of the carrier obtained in step (2) was added into it, and ultrasonically mixed uniformly; Add 5 wt% KOH solution, adjust the pH to greater than 10, and sonicate for 20 min;
  • step (3) The solution obtained in step (3) was placed in a microwave reactor, 300 W, and reacted at 120 ° C for 10 min;
  • step (3) The solution obtained in step (3) was placed in a microwave reactor, 300 W, and reacted at 140 °C for 5 min; after the reaction system was cooled to room temperature, 10 wt% HNO 3 solution was added dropwise to adjust the pH to 4, Ultrasonic for 15 min, suction filtration, washing, vacuum drying, calcination at 100 °C for 3 h in nitrogen atmosphere, and cooling to room temperature to prepare Pt(Ru)/ Six N y @C catalyst containing 60% Pt .
  • step (3) After ultrasonically mixing 415 ⁇ l of 0.386 mol/L platinum acetylacetonate solution, 25 ⁇ l of 0.241 mol/L ruthenium trichloride solution, 130 mg EDTA, 21 ml ethylene glycol, and 9 ml deionized water, take the solution. 20 mg of the carrier obtained in step (2) was added, and ultrasonically mixed uniformly; under stirring conditions, 5 wt% KOH solution was added dropwise, the pH was adjusted to greater than 10, and ultrasonication was performed for 20 min;
  • step (3) The solution obtained in step (3) was placed in a microwave reactor, 300 W, and reacted at 100 °C for 20 min; after the reaction system was cooled to room temperature, 10 wt% HNO 3 solution was added dropwise to adjust the pH to 4, Ultrasonic for 15 min, suction filtration, washing, and vacuum drying; then calcined at 150 °C for 2 h in a hydrogen and nitrogen atmosphere, and cooled to room temperature to obtain Pt(Ru)/Ti x N y @ containing 60% Pt. CNTs catalyst.
  • step (2) 270 ⁇ l of 0.386 mol/L chloroplatinic acid solution, 30 ⁇ l 0.142 mol/L of ruthenium trichloride hydrate solution, 100 mg of disodium EDTA, 27 ml of ethylene glycol, and 3 ml of deionized water were mixed uniformly by ultrasonic, and 30 mg of the carrier obtained in step (2) was added into it. , ultrasonically mixed uniformly; under stirring conditions, add 5 wt% KOH solution dropwise, adjust the pH to greater than 10, and ultrasonicate for 20 min;
  • step (3) The solution obtained in step (3) was placed in a microwave reactor, 300 W, and reacted at 160 °C for 10 min; after the reaction system was cooled to room temperature, 10 wt% HNO 3 solution was added dropwise to adjust the pH to 4, Ultrasonic for 15 min, suction filtration, washing, and vacuum drying; then calcined at 100 °C for 2 h in a hydrogen atmosphere, and cooled to room temperature to obtain Pt(Ru)/Ti x Si y N z @ containing 40% Pt C catalyst.
  • step (2) 134 ⁇ l of 0.386 mol/L dichlorotetraammine platinum solution, 10 ⁇ l 0.142 mol/L hydrated iridium trichloride solution, 30 mg citric acid, and 30 ml ethylene glycol were mixed uniformly by ultrasonic, then 40 mg of the carrier obtained in step (2) was added into it, and ultrasonically mixed uniformly; Add 5 wt% KOH solution, adjust pH to 10, and sonicate for 20 min;
  • step (3) The solution obtained in step (3) was placed in a microwave reactor, 300 W, and reacted at 140 ° C for 10 min;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种高度稳定和具有抗反极性能的高Pt含量高性能催化剂及其制备方法。使用经过钛硅氮化物处理的碳黑作为催化剂载体,提升了催化剂的稳定性及耐久性,通过在活性组分中添加少量铱使得催化剂具备抗反极的能力,活性组分在催化剂中的含量可高达60 wt%及以上,通过微波溶胶法实现了其快速高效的制备;本发明通过将载体进行氮化物修饰处理,有效提高了催化剂的稳定性和耐久性;通过在催化剂中添加少量的铱,能赋予催化剂良好的抗反极性能。同时,本发明所制备的催化剂具有活性组分含量高、颗粒度小、分散性好、稳定性好、铱含量低等特点,而且制备过程简单快速、可有效降低制备成本,易于实现工业化规模生产。

Description

一种高度稳定和具有抗反极性能的高Pt含量高性能催化剂及其制备方法 技术领域
本发明属于新能源燃料电池技术领域,具体涉及一种高度稳定、具有抗反极性能和高Pt载量的高性能碳载铂基催化剂及其制备方法。
背景技术
燃料电池是一种直接将燃料的化学能转变为电能的电化学发电装置,具有启动快、寿命长、效率高、噪音低、污染小等优势,被认为是21世纪最有发展前景的发电技术。而催化剂作为燃料电池的关键材料之一,是制约燃料电池发展的巨大瓶颈。目前最好的催化剂仍是铂和铂基催化剂,但长时间使用会发生碳载体腐蚀,铂颗粒溶解、团聚、烧结,导致活性大幅度降低,提高催化剂的稳定性,制备高耐久性催化剂就显得至关重要。膜电极作为燃料电池的核心部件之一,为制备高性能膜电极,降低气体扩散阻力,降低催化层厚度,研究高铂载量催化剂就显得尤为重要。电堆是电化学反应发生的场所,是燃料电池动力系统的核心部分。当燃料电池电堆启动、关停或负载发生大幅度变化时,容易导致气体分配不合理,氢气供应不足导致阳极局部电压超过阴极而发生反极现象。反极会严重破坏催化层结构,使反应腔内氢氧共混,甚至引发爆炸。因此,开发高铂载量、高度稳定耐久、具备一定抗反极性能的高性能催化剂对于促进燃料电池的发展和应用具有十分重要的意义。
人们在提高铂和铂基催化剂性能方面进行了大量研究,目前最常用的制备方法主要有浸渍法、气相还原法、溶胶凝胶法等。如中国专利申请CN111659419A公开了一种通过还原气氛热处理,制备碳负载铂基合金催化剂的方法,铂含量在28.6-37.5 wt%,粒径在4-6 nm;中国专利申请CN111509244A公开了一种铂基催化剂及其制备方法,通过添加催化助剂二氧化钍,提高了催化剂的稳定性;中国专利申请CN111029599A公开了一种通过溶胶凝胶法制备载体、液相有机还原法制备具有抗反极性能的铱氧化物复合铌掺杂的二氧化钛纳米催化剂的方法。
目前的专利已在制备技术、高铂载量、抗反极、提升稳定性的一个或者二个方面做了探索和研究。到目前为止,尚无集新型制备技术、高铂载量、高度稳定耐久、具有优秀抗反极性能为一身的高性能燃料电池催化剂的研究报道。
技术解决方案
本发明所要解决的技术问题是,克服现有技术的不足和缺点,提供一种同时具备高度稳定耐久、具有抗反极性能、高Pt含量的催化剂及其制备方法。本发明制备的催化剂具有Pt载量高、稳定性/耐久性好、具有抗反极功能;制备方法则具有活性组分颗粒小且分散均匀,制备过程简单快速,易于实现批量生产。
本发明中催化剂以钛、硅氮(氧)化物修饰的导电碳黑作为载体提升催化剂载体的抗氧化能力,从而提升催化剂的稳定性和耐久性;铂为催化剂的主要活性组分,含量可高达60 wt%及以上;通过在催化剂中添加少量Ir(0.1-1.0 wt%)赋予催化剂抗反极的性能。所述制备方法为改进的微波溶胶法。
为解决上述技术问题,本发明提出的技术方案为:
一种高度稳定和具有抗反极性能的高Pt含量高性能催化剂的制备方法,使用了经过钛硅氮化物处理的碳黑作为催化剂载体,提升了催化剂的稳定性及耐久性,通过在活性组分中添加少量铱或钌,使得催化剂具备抗反极的能力,活性组分在催化剂中的含量高达60 wt%及以上,通过微波溶胶法实现了其快速高效的制备。包括以下步骤:
(1)碳黑载体的预处理,将碳黑载体分散在丙酮等有机溶剂中搅拌去油,洗涤干燥后,在强氧化性溶液中加热搅拌回流处理8-12小时,去离子水洗涤、70-110 oC干燥, 得到预处理的碳载体;
(2)取一定量的钛酸酯、硅酸酯溶解在含有少量冰乙酸的乙醇溶液中,然后加入经过预处理的碳黑载体浸渍,70 oC水浴蒸干溶剂,然后在70-110 oC条件下干燥,得到氧化硅及氧化钛二元氧化物包覆修饰的碳黑载体,将其置于管式炉中,通入氨气(或者使用其它氮化剂)高温煅烧,氧化物转化成为氮化物,冷却到室温,即得到钛硅氮化物修饰的碳黑载体;
(3)称取适量贵金属前驱体、络合剂、还原剂、溶剂均匀混合,得到含有前驱体的混合均匀的溶液,然后加入经过处理的碳黑载体,搅拌得到均匀的分散体系;用碱性溶液调节其pH值为碱性后,置于微波反应器中,选择合适的功率和反应时间,进行微波有机溶胶还原反应;
(4)使步骤(3)完成的反应体系冷却至室温后,用酸性溶液调节pH至酸性,然后超声破胶、抽滤、洗涤、干燥,得到催化剂样品;
(5)步骤(4)制得的催化剂,置于管式炉中,通入氢气、氢气与氮气的混合气、氮气等进行高温后处理,即制得本发明的目标催化剂。
可选地,步骤(1)所述碳载体为卡博特Black Pearls 2000、科琴碳Ketjenblack、卡博特XC-72R、多壁碳纳米管CNTs、还原氧化石墨烯RGO中的一种或以上;所述有机溶剂为丙酮、四氢呋喃、二氯甲烷、丁二酮中的一种或以上;所用强氧化性溶液为过氧化氢溶液、浓硫酸、硝酸溶液中的一种或以上;处理时,碳载体的浓度在10-40 g/L范围内;所述加热回流温度为60-80℃。
步骤(2)所述钛、硅氮(氧)化物在碳载体上的负载量在1-15 wt%范围内,钛、硅的摩尔比为1:0.1 - 0.1:1。
进一步地,步骤(2)所述钛的前驱体包括钛酸四丁酯、四氯化钛、偏钛酸、钛酸异丙酯;所述硅的前驱体包括正硅酸乙酯、四甲氧基硅烷、硅酸甲酯。
进一步地,步骤(2)所述氮化处理的方法包括:在氨气气氛下700-1000℃焙烧2-3 h;将载体与三聚氰胺、双氰胺、尿素混合在一起,然后在惰性气氛下焙烧氮化,氮化温度为700-1000℃,时间为2-3 h;焙烧升温速率为1-5℃/min。
进一步地,步骤(3)所述贵金属前驱体包括氯铂酸、二氯四氨合铂、乙酰丙酮铂中的一种或以上; 以及三氯化钌、氧化钌、氯钌酸钾、三氯化铱、六氯铱酸中的一种或以上。催化剂中的活性组分Pt的含量范围为20-60 wt%;Ir或者Ru的含量在0.1-1.0 wt%。
进一步地,步骤(3)所述络合剂包括柠檬酸、柠檬酸盐、EDTA、 乙二胺四乙酸盐、单乙醇胺、二乙醇胺、三乙醇胺,络合剂与贵金属前驱体的摩尔比为2:1-4:1;所述还原剂包括甲醇、乙醇、乙二醇、丙二醇、丙三醇、丁二醇等多元醇中的一种或以上,还原剂与贵金属前驱体的摩尔比为300:1-3000:1;所述溶剂为水与乙二醇的混合物,其中水含量为0-50%。
进一步地,步骤(3)所述碱性溶液包括氢氧化钾、氢氧化钠溶液、氨水,最终pH的范围为8-12。
进一步地,步骤(3)所述微波有机溶胶还原中,微波反应功率为200-500 W,反应温度为80-160℃,反应时间为5-20 min。
进一步地,步骤(4)所述酸性溶液包括稀硝酸溶液,调节pH至1-4,超声10-30 min;用去离子水洗涤多次,至滤液中无氯离子为止。
进一步地,步骤(1)和步骤(4)所述的干燥处理采用真空干燥、鼓风干燥或冷冻干燥。
进一步地,步骤(5)所述后处理温度为100-300℃,时间为1-3 h;焙烧升温速率为1-5℃/min。
本发明还提供了一种Pt(Ir/Ru)/Ti xSi yN z@C在燃料电池催化剂中的应用。
有益效果
与现有技术相比,本发明的优势在于:
(1)本发明以钛、硅氮(氧)化物修饰的导电碳黑作为载体提升了催化剂载体的抗氧化能力,有效提高了催化剂的稳定性和耐久性。
(2)本发明在在活性组分中添加少量铱或钌,使得催化剂具备抗反极性能。
(3)本发明能够合成高分散度的高Pt载量催化剂,活性组分含量高达60 wt%及以上,有利于制备催化层薄的高性能膜电极。
(4)本发明采用可控功率及时间的微波有机溶胶法,可有效控制微波加热、微波反应的功率及时间,耗时短,且合成的颗粒均匀分散,能有效调控颗粒尺寸。
(5)本发明所用反应体系环境友好、成本低廉,以多元醇和水为溶剂、一种或多种多元醇为还原剂,使用的络合剂容易去除,易于实现工业化。
附图说明
图1为实施例1制备的含有60%Pt的Pt(Ir)/Ti xSi yN z@C催化剂的XRD图。
图2为实施例1制备的含有60%Pt的Pt(Ir)/Ti xSi yN z@C催化剂与JM 60%Pt/C催化剂的伏安循环曲线图。
图3为实施例1制备的含有60%Pt的Pt(Ir)/Ti xSi yN z@C催化剂与JM 60%Pt/C催化剂的氧还原性能曲线图。
本发明的最佳实施方式
在此处键入本发明的最佳实施方式描述段落。
本发明的实施方式
下面结合具体实施例对本发明作进一步地具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。
 
实施例1
(1)将10 g Black Pearls 2000分散在500 ml丙酮中搅拌8 h,抽滤、用去离子水洗涤、干燥后,将其加入200 ml的10 wt% HNO 3和100 ml的30 wt% H 2O 2混合液中在80℃下加热回流8 h,抽滤、用去离子水洗涤至中性、110 oC干燥,得到预处理的碳载体;
(2)将1 g预处理后的碳载体分散于5 ml含有少量冰乙酸的钛酸正丁酯和正硅酸乙酯的乙醇溶液中浸渍,其中钛酸正丁酯和正硅酸乙酯的浓度分别为0.09 mol/L和0.06 mol/L,70 oC水浴蒸干溶剂,然后在110 oC下干燥,得到氧化硅及氧化钛二元氧化物包覆修饰的碳黑载体;再在氨气气氛中700℃氮化处理3 h,冷却到室温,即得到钛硅氮化物修饰的碳载体,包覆氮化钛硅的含量约为4 wt%;
(3)将405 μl 的0.386 mol/L氯铂酸溶液、10 μl 的0.142 mol/L水合三氯化铱溶液、100 mg柠檬酸、30 ml乙二醇超声混合均匀后,取20 mg步骤(2)得到的载体加入其中,超声混合均匀;在搅拌条件下,滴加5 wt%的KOH溶液,调节pH至大于10,超声20 min;
(4)将步骤(3)得到的溶液置于微波反应器中,300 W,120℃下反应10 min;
待反应体系冷却至室温后,滴加10 wt%的HNO 3溶液调节pH至4,超声15 min,将其抽滤、洗涤,进行真空干燥;再在氢气气氛中150℃焙烧2 h,冷却到室温,即制得含有60%Pt的Pt(Ir)/Ti xSi yN z@C催化剂。
实施例2
(1)将5 g XC-72R分散在250 ml丁二酮中搅拌10 h,抽滤、用去离子水洗涤、干燥后,将其加入300 ml的30 wt%HNO 3溶液中在80℃下加热回流8 h,抽滤、用去离子水洗涤至中性、110 oC干燥,得到预处理的碳载体;
(2)将1 g预处理后的碳载体分散于5 ml含有少量冰乙酸的0.37 mol/L的正硅酸乙酯的乙醇溶液中浸渍,70℃水浴蒸干溶剂,然后在110℃下干燥,得到氧化硅包覆修饰的碳黑载体;再在氨气气氛中700℃氮化处理3 h,冷却到室温,即得到氮化硅修饰的碳载体,包覆氮化硅的含量约为7 wt%;
(3)将400 μl 的0.386 mol/L二氯四铵合铂溶液、5 μl 的0.142 mol/L水合三氯化钌溶液、120 mg柠檬酸钠、15 ml乙二醇、15 ml去离子水超声混合均匀后,取20 mg步骤(2)得到的载体加入其中,超声混合均匀;在搅拌条件下,滴加5 wt%的KOH溶液,调节pH至大于10,超声20 min;
(4)将步骤(3)得到的溶液置于微波反应器中,300 W,140℃下反应5 min;待反应体系冷却至室温后,滴加10 wt%的HNO 3溶液调节pH至4,超声15 min,将其抽滤、洗涤,进行真空干燥,再在氮气气氛中100℃焙烧3 h,冷却到室温,即制得含有60%Pt的Pt(Ru)/Si xN y@C催化剂。
 
实施例3
(1)将5 g CNTs分散在250 ml丙酮中搅拌12 h,抽滤、用去离子水洗涤、干燥后,将其加入500 ml的6 mol/L的 H 2SO 4溶液中在80℃下加热回流8 h,抽滤、用去离子水洗涤至中性、110℃干燥,得到预处理的碳载体;
(2)将1 g预处理后的碳载体分散于5 ml含有少量冰乙酸的0.28 mol/L的钛酸正丁酯的乙醇溶液中浸渍,70 oC水浴蒸干溶剂,然后在110 oC下干燥,得到氧化钛包覆修饰的碳黑载体;再在氨气气氛中700℃氮化处理3 h,冷却到室温,即得到氮化钛修饰的碳载体,包覆氮化钛的含量约为8 wt%;
(3)将415 μl 的0.386 mol/L乙酰丙酮铂溶液、25 μl 的0.241 mol/L三氯化钌溶液、130 mg EDTA、21 ml乙二醇、9 ml去离子水超声混合均匀后,取20 mg步骤(2)得到的载体加入其中,超声混合均匀;在搅拌条件下,滴加5 wt%的KOH溶液,调节pH至大于10,超声20 min;
(4)将步骤(3)得到的溶液置于微波反应器中,300 W,100℃下反应20 min;待反应体系冷却至室温后,滴加10 wt%的HNO 3溶液调节pH至4,超声15 min,将其抽滤、洗涤,进行真空干燥;再在氢气和氮气气氛中150℃焙烧2 h,冷却到室温,即制得含有60%Pt的Pt(Ru)/Ti xN y@CNTs催化剂。
 
实施例4
(1)将10 g Ketjenblack分散在500 ml四氢呋喃中搅拌12 h,抽滤、用去离子水洗涤、干燥后,将其加入200 ml的10 wt% HNO 3和100 ml的10 wt% H 2O 2混合液溶液中在80℃下加热回流8 h,抽滤、用去离子水洗涤至中性、110 oC干燥,得到预处理后的碳载体;
(2)将1 g预处理后的碳载体分散于5 ml 含有少量冰乙酸的钛酸正丁酯和正硅酸乙酯的乙醇溶液中浸渍,其中钛酸正丁酯和正硅酸乙酯的含量为0.22 mol/L和0.32 mol/L,在70 oC水浴蒸干溶剂,然后在110 oC下干燥,得到氧化硅及氧化钛二元氧化物包覆修饰的碳黑载体;再在氨气气氛中700℃氮化处理3 h,冷却到室温,即得到钛硅氮化物修饰的碳载体,包覆氮化钛硅的含量约为12 wt%;
(3)将270 μl 的0.386 mol/L氯铂酸溶液、30 μl 的0.142 mol/L水合三氯化钌溶液、100 mg乙二胺四乙酸二钠、27 ml乙二醇、3 ml去离子水超声混合均匀后,取30 mg步骤(2)得到的载体加入其中,超声混合均匀;在搅拌条件下,滴加5 wt%的KOH溶液,调节pH至大于10,超声20 min;
(4)将步骤(3)得到的溶液置于微波反应器中,300 W,160℃下反应10 min;待反应体系冷却至室温后,滴加10 wt%的HNO 3溶液调节pH至4,超声15 min,将其抽滤、洗涤,进行真空干燥;再在氢气气氛中100℃焙烧2 h,冷却到室温,即制得含有40%Pt的Pt(Ru)/Ti xSi yN z@C催化剂。
 
实施例5
(1)将5 g RGO分散在200 ml丙酮中搅拌10 h,抽滤、用去离子水洗涤、干燥后,将其加入200 ml的15 wt% HNO 3和100 ml的15 wt% H 2O 2混合液中在80℃下加热回流10 h,抽滤、用去离子水洗涤至中性、110 oC干燥,得到预处理的碳载体;
(2)将1 g RGO分散于5 ml 含有少量冰乙酸的0.25 mol/L的钛酸正丁酯的乙醇溶液中浸渍,70 oC水浴蒸干溶剂,然后在110 oC下干燥,得到氧化钛包覆修饰的碳黑载体;再在氨气气氛中700℃氮化处理3 h,冷却到室温,即得到氮化钛修饰的碳载体,包覆氮化钛的含量约为8 wt%;
(3)将134 μl的0.386 mol/L二氯四氨合铂溶液、10 μl 的0.142 mol/L水合三氯化铱溶液、30 mg柠檬酸、30 ml乙二醇超声混合均匀后,取40 mg步骤(2)得到的载体加入其中,超声混合均匀;在搅拌条件下,滴加5 wt%的KOH溶液,调节pH至10,超声20 min;
(4)将步骤(3)得到的溶液置于微波反应器中,300 W,140℃下反应10 min;
待反应体系冷却至室温后,滴加10 wt%的HNO 3溶液调节pH至4,超声15 min,将其抽滤、洗涤,进行真空干燥;再在氢气气氛中100℃焙烧2 h,冷却到室温,即制得含有20%Pt的Pt(Ir)/Ti xN y@RGO催化剂。
 
实施例6
分别称取5 mg实施例1-5制备的催化剂材料,分散到50 μl Nafion(5%)溶液、475 μl乙醇、475 μl去离子水的混合溶液中,分散均匀后用移液枪移取5 μl滴在玻碳电极表面,烘干后在0.1 mol/l HClO 4溶液中测试氧还原催化活性。实施例1制备的Pt(Ir)/Ti xSi yN z@C的氧还原极化曲线如图3所示,伏安循环曲线图如图2所示,显示出优于商业碳铂的氧还原活性。其它实施例制备的催化剂的氧还原性能曲线图与图3类似,均显示了较为优异的氧还原性能。实施例1制备的Pt(Ir)/Ti xSi yN z@C的XRD图如图1所示,根据谢乐公式,活性组分平均粒径为3.2 nm。
本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种高度稳定和具有抗反极性能的高Pt含量高性能催化剂的制备方法,其特征在于,使用经过钛硅氮化物处理的碳黑作为催化剂载体,提升了催化剂的稳定性及耐久性,通过在活性组分中添加铱使得催化剂具备抗反极的能力,活性组分在催化剂中的含量为60 wt%以上,通过微波溶胶法实现了其快速高效的制备;
    具体制备过程包括以下步骤:
    (1)碳黑载体的预处理,将碳黑载体分散在有机溶剂中搅拌去油,洗涤干燥后,在强氧化性溶液中加热搅拌回流处理8-12小时,去离子水洗涤、70-110 oC干燥, 得到预处理的碳载体;
    (2)取钛前驱体、硅前驱体溶解在含有少量冰乙酸的乙醇溶液中,然后加入经过预处理的碳黑载体浸渍,70 oC水浴蒸干溶剂,然后70-110 oC条件下干燥,得到氧化硅及氧化钛二元氧化物包覆修饰的碳黑载体,将其置于管式炉中,氮化处理,将氧化物转化成为氮化物,冷却到室温,即得到钛硅氮化物修饰的碳黑载体;
    (3)称取贵金属前驱体、络合剂、还原剂、溶剂均匀混合,得到含有前驱体的混合均匀的溶液,然后加入步骤(2)得到的钛硅氮化物修饰的碳黑载体,搅拌得到均匀的分散体系;用碱性溶液调节其pH值为碱性后,置于微波反应器中,进行微波有机溶胶还原反应;
    (4)使步骤(3)完成的反应体系冷却至室温后,用酸性溶液调节pH至酸性,然后超声破胶、抽滤、洗涤、干燥,得到催化剂样品;
    (5)步骤(4)制得的催化剂,置于管式炉中,通入氢气、氢气与氮气的混合气或氮气进行高温后处理,即得Pt(Ir/Ru)/Ti xSi yN z@C催化剂。
  2. 根据权利要求1所述的方法,其特征在于:步骤(1)所述碳载体为卡博特Black Pearls 2000、科琴碳Ketjenblack、卡博特XC-72R、多壁碳纳米管CNTs、还原氧化石墨烯RGO中的一种以上;所述有机溶剂为丙酮、四氢呋喃、二氯甲烷、丁二酮中的一种以上;所用强氧化性溶液为过氧化氢溶液、浓硫酸、硝酸溶液中的一种或以上;处理时,碳载体的浓度在10-40 g/L范围内;所述加热回流温度为60-80℃。
  3. 根据权利要求1所述的方法,其特征在于:步骤(2)中,钛、硅氮化物或硅氧化物在碳载体上的负载量在1-15 wt%,钛、硅的摩尔比为1:0.1 - 0.1:1;
    所述钛前驱体包括钛酸四丁酯、四氯化钛、偏钛酸或钛酸异丙酯;所述硅前驱体包括正硅酸乙酯、四甲氧基硅烷或硅酸甲酯;
    所述氮化处理的方法包括:在氨气气氛下700-1000℃焙烧2-3 h;将载体与三聚氰胺、双氰胺、尿素混合在一起,然后在惰性气氛下焙烧氮化,氮化温度为700-1000℃,时间为2-3 h;焙烧升温速率为1-5℃/min。
  4. 根据权利要求1所述的方法,其特征在于:步骤(3)中,所述贵金属前驱体包括含铂化合物和含钌化合物;所述含铂化合物包括氯铂酸、二氯四氨合铂、乙酰丙酮铂中的一种以上; 所述含钌化合物包括三氯化钌、氧化钌、氯钌酸钾、三氯化铱、六氯铱酸中的一种以上;贵金属前驱体的添加量满足:催化剂中的活性组分Pt的含量范围为20-60 wt%;Ir或者Ru的含量在0.1-1.0 wt%。
  5. 根据权利要求1所述的方法,其特征在于:步骤(3)中,所述络合剂包括柠檬酸、柠檬酸盐、EDTA、 乙二胺四乙酸盐、单乙醇胺、二乙醇胺或三乙醇胺;所述络合剂与贵金属前驱体的摩尔比为2:1-4:1;所述还原剂包括甲醇、乙醇、乙二醇、丙二醇、丙三醇、丁二醇等多元醇中的一种以上,所述还原剂与贵金属前驱体的摩尔比为300:1-3000:1;所述溶剂为水与乙二醇的混合物,其中水含量为0-50%。
  6. 根据权利要求1所述的方法,其特征在于:步骤(3)所述碱性溶液包括氢氧化钾、氢氧化钠溶液或氨水,最终pH的范围为8-12;所述微波有机溶胶还原中,微波反应功率为200-500 W,反应温度为80-160℃,反应时间为5-20 min。
  7. 根据权利要求1所述的方法,其特征在于:步骤(4)中,所述酸性溶液包括稀硝酸溶液,调节pH至1-4,超声10-30 min;用去离子水洗涤多次,至滤液中无氯离子为止。
  8. 根据权利要求1所述的方法,其特征在于:步骤(1)和步骤(4)所述的干燥处理采用真空干燥、鼓风干燥或冷冻干燥。
  9. 根据权利要求1所述的方法,其特征在于:步骤(5)所述后处理温度为100-300℃,时间为1-3 h;焙烧升温速率为1-5℃/min。
  10. 由权利要求1~9任一项所述制备方法制备得到一种高度稳定和具有抗反极性能的高Pt含量高性能催化剂。
     
PCT/CN2021/130556 2020-12-22 2021-11-15 一种高度稳定和具有抗反极性能的高 Pt 含量高性能催化剂及其制备方法 WO2022134932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011530631.6 2020-12-22
CN202011530631.6A CN112952118A (zh) 2020-12-22 2020-12-22 一种高度稳定和具有抗反极性能的高Pt含量高性能催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2022134932A1 true WO2022134932A1 (zh) 2022-06-30

Family

ID=76234835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130556 WO2022134932A1 (zh) 2020-12-22 2021-11-15 一种高度稳定和具有抗反极性能的高 Pt 含量高性能催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN112952118A (zh)
WO (1) WO2022134932A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584511A (zh) * 2022-09-21 2023-01-10 中国船舶重工集团公司第七一八研究所 一种铜铁析氧催化剂的制备方法
CN115663215A (zh) * 2022-12-12 2023-01-31 华北电力大学 负载型电催化剂的制备方法
CN115849314A (zh) * 2022-12-16 2023-03-28 常州工学院 一种氮化钛气凝胶的制备方法
CN115939422A (zh) * 2022-10-10 2023-04-07 福州大学 一种用于燃料电池负极的铈铝有机框架修饰的生物质碳复合材料的制备方法
CN115966716A (zh) * 2023-01-10 2023-04-14 福州大学 一种金属氮化物稳定Pt基合金燃料电池催化剂的制备方法
CN116005184A (zh) * 2022-12-19 2023-04-25 东北农业大学 化学修饰富勒烯c60载体的方法及其在电化学氢化大豆油脂中的应用
CN116053492A (zh) * 2023-01-10 2023-05-02 福州大学 超薄多孔碳层保护的Pt基合金催化剂的制备方法
CN116116404A (zh) * 2023-04-19 2023-05-16 浙江工业大学 一种水热法制备加氢催化剂的方法及该催化剂的应用
CN116144087A (zh) * 2023-02-20 2023-05-23 余姚市振大塑胶有限公司 一种耐高温丁腈橡胶降噪材料
CN116273049A (zh) * 2022-12-28 2023-06-23 惠生工程(中国)有限公司 一种合成乙醇酸甲酯用催化剂制备方法和活化方法
CN116422342A (zh) * 2023-02-24 2023-07-14 北京化工大学 一种多原子掺杂的表面富铂的催化剂及其制备方法
CN118225532A (zh) * 2024-05-21 2024-06-21 贵研检测科技(云南)有限公司 一种金属铱粉试样的快速溶解方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952118A (zh) * 2020-12-22 2021-06-11 华南理工大学 一种高度稳定和具有抗反极性能的高Pt含量高性能催化剂及其制备方法
CN114142050B (zh) * 2021-11-29 2024-04-23 一汽解放汽车有限公司 一种复合抗反极催化剂及其制备方法与应用
CN114361478A (zh) * 2021-12-17 2022-04-15 华南理工大学 一种少量高度分散铱表面修饰的燃料电池碳载铂基抗反极催化剂及其制备方法与应用
CN114540865A (zh) * 2022-03-18 2022-05-27 中国科学院长春应用化学研究所 一种用于水电解制氢的氧化铱催化剂的制备方法
CN114678502B (zh) * 2022-03-25 2024-10-18 广东邦普循环科技有限公司 一种石墨烯基氮化物负极材料及其制备方法
CN115999614B (zh) * 2023-02-16 2024-06-28 福州大学 一种紫外-可见-近红外光响应的二氧化碳还原光催化剂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694880A (zh) * 2009-10-22 2010-04-14 复旦大学 一种燃料电池电极催化剂
CN102327771A (zh) * 2011-07-14 2012-01-25 华南理工大学 微波有机溶胶法制备燃料电池碳载铂基电催化剂的方法
US20120065052A1 (en) * 2010-09-14 2012-03-15 Basf Se Process for producing a carbon-comprising support
CN108155390A (zh) * 2018-01-30 2018-06-12 成都新柯力化工科技有限公司 一种用于燃料电池的氮化钌配合物催化剂及制备方法
CN111029599A (zh) * 2019-08-28 2020-04-17 深圳市通用氢能科技有限公司 燃料电池抗反极催化剂及其制备方法
CN112952118A (zh) * 2020-12-22 2021-06-11 华南理工大学 一种高度稳定和具有抗反极性能的高Pt含量高性能催化剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1771902A4 (en) * 2004-06-30 2009-09-16 Georgia Tech Res Inst MICROSTRUCTURES AND METHODS OF MAKING
CN108963282A (zh) * 2018-07-05 2018-12-07 中山大学 一种溶剂热法还原的燃料电池碳载铂基催化剂及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694880A (zh) * 2009-10-22 2010-04-14 复旦大学 一种燃料电池电极催化剂
US20120065052A1 (en) * 2010-09-14 2012-03-15 Basf Se Process for producing a carbon-comprising support
CN102327771A (zh) * 2011-07-14 2012-01-25 华南理工大学 微波有机溶胶法制备燃料电池碳载铂基电催化剂的方法
CN108155390A (zh) * 2018-01-30 2018-06-12 成都新柯力化工科技有限公司 一种用于燃料电池的氮化钌配合物催化剂及制备方法
CN111029599A (zh) * 2019-08-28 2020-04-17 深圳市通用氢能科技有限公司 燃料电池抗反极催化剂及其制备方法
CN112952118A (zh) * 2020-12-22 2021-06-11 华南理工大学 一种高度稳定和具有抗反极性能的高Pt含量高性能催化剂及其制备方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584511A (zh) * 2022-09-21 2023-01-10 中国船舶重工集团公司第七一八研究所 一种铜铁析氧催化剂的制备方法
CN115939422A (zh) * 2022-10-10 2023-04-07 福州大学 一种用于燃料电池负极的铈铝有机框架修饰的生物质碳复合材料的制备方法
CN115663215A (zh) * 2022-12-12 2023-01-31 华北电力大学 负载型电催化剂的制备方法
CN115663215B (zh) * 2022-12-12 2024-03-12 华北电力大学 负载型电催化剂的制备方法
CN115849314A (zh) * 2022-12-16 2023-03-28 常州工学院 一种氮化钛气凝胶的制备方法
CN116005184A (zh) * 2022-12-19 2023-04-25 东北农业大学 化学修饰富勒烯c60载体的方法及其在电化学氢化大豆油脂中的应用
CN116273049A (zh) * 2022-12-28 2023-06-23 惠生工程(中国)有限公司 一种合成乙醇酸甲酯用催化剂制备方法和活化方法
CN116053492A (zh) * 2023-01-10 2023-05-02 福州大学 超薄多孔碳层保护的Pt基合金催化剂的制备方法
CN115966716A (zh) * 2023-01-10 2023-04-14 福州大学 一种金属氮化物稳定Pt基合金燃料电池催化剂的制备方法
CN116144087A (zh) * 2023-02-20 2023-05-23 余姚市振大塑胶有限公司 一种耐高温丁腈橡胶降噪材料
CN116144087B (zh) * 2023-02-20 2023-10-27 余姚市振大塑胶有限公司 一种耐高温丁腈橡胶隔声材料
CN116422342A (zh) * 2023-02-24 2023-07-14 北京化工大学 一种多原子掺杂的表面富铂的催化剂及其制备方法
CN116422342B (zh) * 2023-02-24 2024-01-23 北京化工大学 一种多原子掺杂的表面富铂的催化剂及其制备方法
CN116116404A (zh) * 2023-04-19 2023-05-16 浙江工业大学 一种水热法制备加氢催化剂的方法及该催化剂的应用
CN118225532A (zh) * 2024-05-21 2024-06-21 贵研检测科技(云南)有限公司 一种金属铱粉试样的快速溶解方法

Also Published As

Publication number Publication date
CN112952118A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022134932A1 (zh) 一种高度稳定和具有抗反极性能的高 Pt 含量高性能催化剂及其制备方法
CN108134104B (zh) 一种燃料电池用复合催化剂载体及其制备方法和应用
CN104617306B (zh) 一种质子交换膜燃料电池铂基催化剂载体及其制备方法
CN113437308B (zh) 一种改性氮化碳负载贵金属基电催化剂及制备方法和应用
CN113113621A (zh) 有序低铂合金催化剂的制备方法和应用
CN103495432A (zh) 一种高效稳定的燃料电池催化剂制备方法
WO2021114056A1 (zh) 燃料电池阴极催化剂及其制备方法、膜电极及燃料电池
WO2019179530A1 (zh) 一种铂基合金催化剂及其制备方法、膜电极及燃料电池
CN109244485B (zh) 一种NiCo/TiO2电池阳极催化剂及其制备方法
CN114520343B (zh) 一种质子交换膜燃料电池抗反极催化剂及其制备方法
CN108043437B (zh) 一种空心SiC载体型Ir-Ru催化剂的制备方法
WO2018103580A1 (zh) 一种用于直接甲酸燃料电池的氧化钯催化剂及其制备方法
CN113097513A (zh) 一种基于层状MOF衍生的Fe基双金属锌空电池阴极催化剂及其制备方法
Sun et al. Synthesis of Nitrogen-doped Niobium Dioxide and its co-catalytic effect towards the electrocatalysis of oxygen reduction on platinum
JP4759507B2 (ja) 燃料電池用電極触媒,これを用いた燃料電池
CN110931815A (zh) 一种燃料电池炭载铂基催化剂的制备方法
KR102393974B1 (ko) 화학기상증착법을 이용하여 전이금속 및 백금을 담지시킨 백금 나노촉매의 제조 방법 및 그 백금 나노촉매와, 그 연료전지
CN114433156A (zh) 一种3D结构Fe/Fe3C@FeNC双功能氧电催化剂及其制备方法和应用
CN112701308A (zh) 一种具有高耐久性能燃料电池催化剂的制备方法
CN112331859B (zh) 一种g-C3N4/Ti4O7复合纳米材料的制备方法及其在电催化氧还原中的应用
CN108336375A (zh) 一种锯齿状金属纳米线-碳基燃料电池催化剂及制备方法
CN112968181A (zh) 一种碳包覆二氧化钛纳米花载体的制备方法及其担载铂或铂合金纳米催化剂的应用
CN115558954A (zh) 一种氧掺杂碳纳米片负载钯单原子催化剂及其制备方法和应用
CN112615012B (zh) 一种低铂燃料电池催化剂Pt/DC-N的制备方法
CN115347202A (zh) 一种燃料电池阴极铂基催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908932

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21908932

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.02.2024)