WO2022124332A1 - 樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法 - Google Patents

樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2022124332A1
WO2022124332A1 PCT/JP2021/045107 JP2021045107W WO2022124332A1 WO 2022124332 A1 WO2022124332 A1 WO 2022124332A1 JP 2021045107 W JP2021045107 W JP 2021045107W WO 2022124332 A1 WO2022124332 A1 WO 2022124332A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
resin composition
carbon fiber
parts
Prior art date
Application number
PCT/JP2021/045107
Other languages
English (en)
French (fr)
Inventor
象一 高島
史浩 武藤
隆行 鈴木
宏之 有田
Original Assignee
三菱エンジニアリングプラスチックス株式会社
株式会社新菱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=81973297&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022124332(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱エンジニアリングプラスチックス株式会社, 株式会社新菱 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to JP2022515600A priority Critical patent/JP7212816B2/ja
Priority to EP21903431.1A priority patent/EP4261250A4/en
Priority to CN202180082039.0A priority patent/CN116568744A/zh
Publication of WO2022124332A1 publication Critical patent/WO2022124332A1/ja
Priority to US18/327,471 priority patent/US20230303826A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic

Definitions

  • the present invention relates to a resin composition, pellets, a molded product, and a method for producing a resin composition.
  • the present invention relates to a resin composition using a thermoplastic resin and regenerated carbon fiber.
  • Thermoplastic resins are widely used in various equipment parts.
  • reinforcing fibers One of the representative examples of such reinforcing fibers is carbon fiber.
  • Patent Document 1 is known as such an example.
  • the regenerated carbon fiber for example, those described in Patent Document 2 and Patent Document 3 are known.
  • An object of the present invention is to solve such a problem, and to improve the mechanical strength of a resin composition using a thermoplastic resin and regenerated carbon fiber, and further to have excellent productivity. The purpose is to do. Further, it is an object of the present invention to provide a pellet formed from the resin composition, a molded product, and a method for producing the resin composition.
  • a functional group-containing compound is blended in addition to the thermoplastic resin and the regenerated carbon fiber, and the regenerated carbon fiber containing the residue derived from the epoxy resin is obtained.
  • the above problem was solved.
  • the above problems have been solved by the following means. ⁇ 1> With respect to 100 parts by mass of the thermoplastic resin With 10 to 70 parts by mass of recycled carbon fiber, Contains 0.1 to 15 parts by mass of the functional group-containing compound.
  • the regenerated carbon fiber is a calcined product of a composite of an epoxy resin and a carbon fiber, and contains a residue derived from the epoxy resin in a proportion of 5% by mass or more.
  • the maximum bending strength according to ISO 178 when molded into an ISO multipurpose test piece with a thickness of 4 mm is 130 MPa or more.
  • Resin composition. ⁇ 2> The resin composition according to ⁇ 1>, wherein the content of the functional group-containing compound is 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the regenerated carbon fiber is a calcined product of a composite of an epoxy resin and a carbon fiber, and contains a residue derived from the epoxy resin in a proportion of 10% by mass or more.
  • ⁇ 4> The content of the functional group-containing compound is 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the regenerated carbon fiber is a calcined product of a composite of an epoxy resin and a carbon fiber, and contains a residue derived from the epoxy resin in a proportion of 10% by mass or more.
  • ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the regenerated carbon fiber contains a residue derived from the epoxy resin in a proportion of 5% by mass or more and 30% by mass or less.
  • thermoplastic resin contains at least one of a polyester resin, a polycarbonate resin, and a styrene-based resin.
  • thermoplastic resin contains a polybutylene terephthalate resin.
  • thermoplastic resin contains a polybutylene terephthalate resin.
  • the functional group-containing compound is at least selected from the group consisting of a compound having an epoxy group, a carbodiimide compound, a compound having an oxazoline group, a compound having an oxazoline group, a compound having a carboxy group, and a compound having an amide group.
  • ⁇ 14> A pellet formed from the resin composition according to any one of ⁇ 1> to ⁇ 13>.
  • ⁇ 15> The pellet according to ⁇ 14>, wherein the number average fiber length of the regenerated carbon fibers in the pellet is 100 to 500 ⁇ m.
  • ⁇ 16> The resin composition according to any one of ⁇ 1> to ⁇ 13>, or the molded product formed from the pellets according to ⁇ 14> or ⁇ 15>.
  • ⁇ 17> The molded product according to ⁇ 16>, which is an injection molded product.
  • ⁇ 18> The molded product according to ⁇ 17>, wherein the number average fiber length of the regenerated carbon fibers in the molded product is 100 to 500 ⁇ m.
  • ⁇ 20> With respect to 100 parts by mass of the thermoplastic resin With 10 to 70 parts by mass of recycled carbon fiber, Contains 0.1 to 15 parts by mass of the functional group-containing compound.
  • the regenerated carbon fiber It is a fired product of a composite of epoxy resin and carbon fiber, and A method for producing a resin composition containing a residue derived from the epoxy resin in a proportion of 5% by mass or more.
  • the regenerated carbon fiber is supplied from a side feeder in the middle of the cylinder of the extruder.
  • ⁇ 21> The method for producing a resin composition according to ⁇ 20>, wherein the resin composition is the resin composition according to any one of ⁇ 1> to ⁇ 13>.
  • the present invention it has become possible to improve the mechanical strength of the resin composition using the thermoplastic resin and the regenerated carbon fiber, and to further improve the productivity. Further, it has become possible to provide pellets formed from the resin composition, a molded product, and a method for producing the resin composition.
  • the present embodiment will be described in detail.
  • the following embodiments are examples for explaining the present invention, and the present invention is not limited to the present embodiment.
  • "-" is used in the meaning which includes the numerical values described before and after it as the lower limit value and the upper limit value.
  • various physical property values and characteristic values shall be at 23 ° C. unless otherwise specified.
  • the resin composition of the present embodiment contains 10 to 70 parts by mass of the regenerated carbon fiber and 0.1 to 15 parts by mass of the functional group-containing compound with respect to 100 parts by mass of the thermoplastic resin. It is a baked product of a composite of epoxy resin and carbon fiber, and contains a residue derived from the epoxy resin in a proportion of 5% by mass or more, and is bent according to ISO 178 when molded into an ISO multipurpose test piece having a thickness of 4 mm. The maximum strength is 130 MPa or more. With such a configuration, the mechanical strength of the resin composition can be improved and the productivity can be improved. In particular, since the recycled carbon fiber is used, a resin composition with a reduced environmental load can be obtained.
  • the mechanism for improving the mechanical strength and productivity of the resin composition is presumed to be as follows.
  • the regenerated carbon fiber Since the regenerated carbon fiber has undergone a firing step, a treatment agent usually does not adhere to the surface of the regenerated carbon fiber, so that the affinity between the regenerated carbon fiber and the thermoplastic resin is low, and the resulting resin composition is obtained. It is presumed that the mechanical strength of the carbon fiber is low.
  • the converging agent does not adhere to the regenerated carbon fiber, and the fiber tends to be entangled and become cotton-like. There was a problem.
  • the functional group-containing compound by adding the functional group-containing compound at the time of melt-kneading, the compound functions as a surface treatment agent for the regenerated carbon fiber, the affinity with the resin is improved, and as a result, the mechanical strength is improved.
  • the resin composition of the present embodiment contains a thermoplastic resin.
  • the type of the thermoplastic resin is not particularly specified, but polyester resin (thermoplastic polyester resin) such as polyethylene terephthalate resin, polytrimethylene terephthalate resin, and polybutylene terephthalate resin; polyamide resin; polycarbonate resin; styrene resin.
  • Polyolefin resins such as polyethylene resin, polypropylene resin, cyclic cycloolefin resin; polyacetal resin; polyimide resin; polyetherimide resin; polyurethane resin; polyphenylene ether resin; polyphenylene sulfide resin; polysulfone resin; polymethacrylate resin; and the like are preferably exemplified.
  • Polyester resin, polycarbonate resin and styrene resin are preferably contained.
  • One embodiment of the thermoplastic resin in the resin composition of the present embodiment is to include a polybutylene terephthalate resin.
  • the content of the polybutylene terephthalate resin in the thermoplastic resin in the resin composition of the present embodiment is preferably 30 to 100% by mass.
  • the proportion of the polybutylene terephthalate resin in the thermoplastic resin is preferably 60 to 100% by mass, more preferably 80 to 100% by mass. , 90 to 100% by mass, more preferably 95 to 100% by mass, and even more preferably 98 to 100% by mass.
  • another embodiment of the thermoplastic resin in the resin composition of the present embodiment is that 30 to 100% by mass of the thermoplastic resin is polybutylene terephthalate resin.
  • the thermoplastic resin may contain only the polybutylene terephthalate resin, or the polybutylene terephthalate resin and one or more other thermoplastic resins (for example, polycarbonate resin, polyethylene terephthalate resin). , And an AS resin, preferably a polyethylene terephthalate resin, and an AS resin).
  • the proportion of the polybutylene terephthalate resin in the thermoplastic resin is preferably 40 to 100% by mass.
  • the polyester resin is a polyester obtained by polycondensation of a dicarboxylic acid compound and a dihydroxy compound, polycondensation of an oxycarboxylic acid compound, polycondensation of these compounds, etc., and may be either homopolyester or copolyester.
  • an aromatic dicarboxylic acid or an ester-forming derivative thereof is preferably used as the dicarboxylic acid compound constituting the polyester resin.
  • the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, biphenyl-2,2'-dicarboxylic acid, and the like.
  • aromatic dicarboxylic acids may be used alone or in admixture of two or more. As is well known, these can be used in the polycondensation reaction as an ester-forming derivative such as a dimethyl ester in addition to the free acid. In addition, if it is a small amount, along with these aromatic dicarboxylic acids, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, dodecandioic acid and sebacic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid and 1 , 4-Cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids can be mixed and used.
  • aliphatic dicarboxylic acids such as adipic acid, azelaic acid, dodecandioic acid and sebacic acid
  • 1,2-cyclohexanedicarboxylic acid 1,3-cyclohexane
  • dihydroxy compound constituting the thermoplastic polyester resin examples include aliphatic diols such as ethylene glycol, propylene glycol, butanediol, hexylene glycol, neopentyl glycol, 2-methylpropane-1,3-diol, diethylene glycol and triethylene glycol. , Cyclohexane-1,4-dimethanol and other alicyclic diols, and mixtures thereof. If the amount is small, one or more long-chain diols having a molecular weight of 400 to 6,000, that is, polyethylene glycol, poly-1,3-propylene glycol, polytetramethylene glycol, or the like may be copolymerized. In addition, aromatic diols such as hydroquinone, resorcin, naphthalene diol, dihydroxydiphenyl ether, and 2,2-bis (4-hydroxyphenyl) propane can also be used.
  • aromatic diols such as hydroquinone,
  • trifunctional monomers such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, and trimethylolpropane for introducing a branched structure, and fatty acids for adjusting the molecular weight, etc.
  • trimellitic acid trimesic acid
  • pyromellitic acid pyromellitic acid
  • pentaerythritol trimethylolpropane
  • fatty acids for adjusting the molecular weight, etc.
  • a small amount of the monofunctional compound can also be used in combination.
  • polyester resin a resin mainly composed of a polycondensation of a dicarboxylic acid and a diol, that is, a resin in which 50% by mass, preferably 70% by mass or more of the entire resin is composed of this polycondensate is used.
  • the dicarboxylic acid is preferably an aromatic carboxylic acid
  • the diol is preferably an aliphatic diol.
  • the polyester resin is preferably a polyalkylene terephthalate resin in which 95 mol% or more of the acid component is terephthalic acid and 95% by mass or more of the alcohol component is an aliphatic diol.
  • Typical examples are polybutylene terephthalate resin and polyethylene terephthalate resin. It is preferable that these are close to homopolyester, that is, 95% by mass or more of the whole resin is composed of a terephthalic acid component and a 1,4-butanediol or ethylene glycol component.
  • the main component of the thermoplastic polyester resin is preferably polyethylene terephthalate resin or polybutylene terephthalate resin, and more preferably polybutylene terephthalate resin.
  • polyethylene terephthalate resin or polybutylene terephthalate resin and more preferably polybutylene terephthalate resin.
  • those obtained by copolymerizing polyalkylene glycol such as isophthalic acid, dimer acid and polytetramethylene glycol (PTMG) are also preferable.
  • these copolymers have a copolymerization amount of 1 mol% or more and less than 50 mol% in all polybutylene terephthalate segments.
  • the copolymerization amount is preferably 2 to 50 mol%, more preferably 3 to 40 mol%, and particularly preferably 5 to 30 mol%.
  • the intrinsic viscosity of the polyester resin is preferably 0.5 to 2 dL / g. From the viewpoint of formability and mechanical properties, those having an intrinsic viscosity in the range of 0.6 to 1.5 dL / g are more preferable. When an intrinsic viscosity of 0.5 dL / g or more is used, the mechanical strength of the obtained resin composition molded product tends to be further improved. Also. By setting the content to 2 dL / g or less, the fluidity of the resin composition tends to be improved, and the moldability tends to be improved.
  • the intrinsic viscosity of the polyester resin shall be measured at 30 ° C. in a 1: 1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the acid value (AV) of the polyester resin is preferably 1 to 50 eq / t. Within such a range, a resin composition having excellent hydrolysis resistance, thermal stability and the like can be obtained.
  • the acid value was determined by dissolving 0.5 g of polyester resin in 25 mL of benzyl alcohol and titrating using a 0.01 mol / L benzyl alcohol solution of sodium hydroxide.
  • As the indicator 0.10 g of phenolphthalein dissolved in a mixed solution of 50 mL of ethanol and 50 mL of water can be used.
  • the polycarbonate resin is a optionally branched polymer or copolymer obtained by reacting a dihydroxy compound or a small amount of a polyhydroxy compound with a phosgene or a carbonic acid diester.
  • the method for producing the polycarbonate resin is not particularly limited, and those produced by a conventionally known phosgene method (interfacial polymerization method) or melting method (transesterification method) can be used.
  • aromatic polycarbonate resins derived from 2,2-bis (4-hydroxyphenyl) propane, or 2,2-bis (4-hydroxyphenyl) propane and other aromatic dihydroxys are used.
  • Aromatic polycarbonate copolymers derived from the compound are preferred. Further, it may be a copolymer mainly composed of an aromatic polycarbonate resin, such as a polymer having a siloxane structure or a copolymer with an oligomer. Furthermore, two or more of the above-mentioned polycarbonate resins may be mixed and used.
  • a monovalent aromatic hydroxy compound may be used, for example, m- and p-methylphenol, m- and p-propylphenol, p-tert-butylphenol, p-long chain. Examples thereof include alkyl-substituted phenols.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 20,000 or more, more preferably 23,000 or more, and even more preferably 25,000 or more.
  • Mv The viscosity average molecular weight
  • the obtained resin composition tends to have higher mechanical strength such as impact resistance.
  • it is preferably 60,000 or less, more preferably 40,000 or less, and further preferably 35,000 or less.
  • a resin composition of 60,000 or less the fluidity of the resin composition is improved and the moldability tends to be improved.
  • the method for producing the polycarbonate resin is not particularly limited, and a polycarbonate resin produced by any of the phosgene method (interfacial polymerization method) and the melting method (transesterification method) can be used. Further, a polycarbonate resin produced by a melting method and subjected to post-treatment for adjusting the amount of OH groups at the ends is also preferable.
  • the styrene resin examples include homopolymers of styrene-based monomers, copolymers of styrene-based monomers and other copolymerizable monomers, and the like. More specifically, the styrene resin includes polystyrene resin, acrylonitrile-styrene copolymer (AS resin), impact resistant polystyrene resin (HIPS), acrylonitrile-butadiene-styrene copolymer (ABS resin), and acrylonitrile-.
  • AS resin acrylonitrile-styrene copolymer
  • HIPS impact resistant polystyrene resin
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • ABS resin acrylonitrile-.
  • Acrylic rubber-styrene copolymer (AAS resin), acrylonitrile-styrene-acrylic rubber copolymer (ASA resin), acrylonitrile-ethylene propylene rubber-styrene copolymer (AES resin), styrene-IPN type rubber copolymer And the like, and the like.
  • AS resin acrylonitrile-styrene copolymer
  • HIPS impact-resistant polystyrene resin
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • AS resin acrylonitrile-styrene copolymer
  • AS resin impact-resistant polystyrene resin
  • HIPS acrylonitrile-butadiene-styrene copolymer
  • AS resin acrylonitrile-styrene copolymer
  • HIPS Impact resistant polystyrene resin
  • AS resin acrylonitrile-styrene copolymer
  • the content of the rubber component in the styrene-based resin is preferably 3 to 70% by mass, more preferably 5 to 50% by mass, and even more preferably 7 to 30% by mass.
  • the content of the rubber component is 3% by mass or more, the impact resistance tends to be improved, and when it is 50% by mass or less, the flame retardancy tends to be improved, which is preferable.
  • the average particle size of the rubber component is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 6 ⁇ m, and even more preferably 0.2 to 3 ⁇ m. When the average particle size is 0.05 ⁇ m or more, the impact resistance tends to be improved, and when the average particle size is 10 ⁇ m or less, the appearance tends to be improved, which is preferable.
  • the weight average molecular weight of the styrene resin is usually 50,000 or more, preferably 100,000 or more, more preferably 150,000 or more, and usually 500,000 or less, preferably 500,000 or less. It is 400,000 or less, more preferably 300,000 or less.
  • the number average molecular weight is usually 10,000 or more, preferably 30,000 or more, more preferably 50,000 or more, and usually 300,000 or less, preferably 200, It is 000 or less, more preferably 150,000 or less. It is preferable to use such a styrene resin because the impact resistance is easily improved.
  • the melt flow rate (MFR) of the styrene resin measured in accordance with JIS K7210 is preferably 0.1 to 30 g / 10 minutes, preferably 0.5 to 25 g /. More preferably, it is 10 minutes.
  • MFR melt flow rate
  • the MFR is 0.1 g / 10 minutes or more, the fluidity tends to be improved, and when the MFR is 30 g / 10 minutes or less, the impact resistance tends to be improved, which is preferable.
  • Examples of the method for producing such a styrene resin include known methods such as an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk polymerization method.
  • the content of the thermoplastic resin in the resin composition of the present embodiment is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 75% by mass or more, and further preferably 80% by mass. % Or more is more preferable.
  • the resin composition of the present embodiment may contain only one type of thermoplastic resin, or may contain two or more types of thermoplastic resin. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the resin composition of the present embodiment contains 10 to 70 parts by mass of regenerated carbon fiber with respect to 100 parts by mass of the thermoplastic resin. Further, the regenerated carbon fiber is a calcined product of a composite of an epoxy resin and a carbon fiber, and contains a residue derived from the epoxy resin in a proportion of 5% by mass or more. By using such regenerated carbon fiber, it is possible to obtain a thermoplastic resin composition having excellent environmental suitability, various properties such as mechanical strength, and good productivity.
  • the recycled carbon fiber is, for example, a used carbon fiber reinforced resin (aircraft, vehicle, electric / electronic equipment, etc.) or an intermediate product (prepreg) of carbon fiber reinforced resin generated from the manufacturing process of the carbon fiber reinforced resin. It refers to the carbon fiber recovered from the cut pieces.
  • virgin carbon fiber is a new carbon fiber that is not a regenerated carbon fiber, such as one that is generally sold as carbon fiber.
  • the type of carbon fiber is not particularly specified, but PAN-based carbon fiber is preferable.
  • the number average fiber diameter of the regenerated carbon fiber is more preferably 3 ⁇ m or more, and further preferably 4 ⁇ m or more. Further, it is preferably 10 ⁇ m or less, and more preferably 8 ⁇ m or less. When the number average fiber diameter of the regenerated carbon fibers is in such a range, it becomes easy to obtain a resin composition having further improved mechanical properties.
  • the regenerated carbon fiber contains a residue derived from an epoxy resin in a proportion of 5% by mass or more, preferably 8% by mass or more, more preferably 10% by mass or more, and 12% by mass or more. Is more preferable.
  • the regenerated carbon fiber preferably contains a residue derived from an epoxy resin in a proportion of 30% by mass or less, more preferably 25% by mass or less, still more preferably 22% by mass or less, 19. It is more preferably mass% or less, further preferably 16 mass% or less, and may be 14 mass% or less.
  • the epoxy resin may contain additives as needed.
  • the additive include a curing agent, a curing aid, an internal mold release agent, a flame retardant, an antioxidant, a light stabilizer, an ultraviolet absorber, a colorant and the like.
  • the regenerated carbon fiber used in this embodiment is obtained by burning a composite of an epoxy resin and carbon fiber.
  • the amount of the epoxy resin-derived residue is achieved by firing in a continuous incinerator, firing in a nitrogen atmosphere, firing at a predetermined temperature, and the like.
  • the content of the regenerated carbon fiber in the resin composition of the present embodiment is 10 parts by mass or more, preferably 11 parts by mass or more, and preferably 12 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin. More preferably, it may be 15 parts by mass or more, 20 parts by mass or more, and 25 parts by mass or more depending on the intended use. By setting the value to the lower limit or more, a good strength improving effect and an electromagnetic wave shielding effect improving effect can be obtained.
  • the content of the regenerated carbon fiber in the resin composition of the present embodiment is 70 parts by mass or less, preferably 60 parts by mass or less, and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin.
  • It is more preferably 40 parts by mass or less, further preferably 35 parts by mass or less, and further, 25 parts by mass or less, 20 parts by mass or less, 17 parts by mass depending on the application and the like. Hereinafter, it may be 16 parts by mass or less. By setting the value to the upper limit or less, it is easy to obtain a molded product having better fluidity and better appearance and smoothness.
  • the composition of the present embodiment preferably contains the regenerated carbon fiber in the composition at a ratio of 5 to 40% by mass in terms of a substantial amount of carbon fiber.
  • the resin composition of the present embodiment may contain only one kind of regenerated carbon fiber, or may contain two or more kinds of recycled carbon fibers. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the composition of the present embodiment may or may not contain virgin carbon fiber.
  • An example of the composition of the present embodiment is an embodiment in which virgin carbon fiber is contained in a proportion of 5 to 50% by mass (preferably 5 to 30% by mass) of the content of the regenerated carbon fiber.
  • another example of the composition of the present embodiment is an embodiment in which the virgin carbon fiber is less than 5% by mass (preferably less than 3% by mass, more preferably less than 1% by mass) of the content of the regenerated carbon fiber. ..
  • the resin composition of the present embodiment contains 0.1 to 15 parts by mass of the functional group-containing compound with respect to 100 parts by mass of the thermoplastic resin. Unlike virgin carbon fiber, the regenerated carbon fiber does not have a surface treatment agent attached to it. Therefore, it was presumed that the mechanical strength was inferior. In this embodiment, it is presumed that the functional group-containing compound acts as a substitute for the surface treatment agent and improves the mechanical strength.
  • the functional group-containing compound used in this embodiment is selected from the group consisting of a compound having an epoxy group, a carbodiimide compound, a compound having an oxazoline group, a compound having an oxazine group, a compound having a carboxy group, and a compound having an amide group. It is preferable to contain at least one kind, and it is more preferable to contain a compound having an epoxy group.
  • [weight average molecular weight] / [functional group equivalent (unit of functional group equivalent: g / eq)] is preferably 1 to 30, more preferably 1 to 10. It is more preferably to 6 and even more preferably 2 to 6.
  • the value is set to the lower limit or higher, the number of functional groups in one molecule of the functional group-containing compound increases, and the reaction of the functional group-containing compound has a high effect of improving the affinity between the regenerated carbon fiber and the thermoplastic resin. Is presumed to be.
  • the value is not more than the upper limit, the fluidity tends to be improved without excessively reacting with, for example, the terminal carboxylic acid of the polyester resin.
  • the weight average molecular weight is preferably 15,000 or less, more preferably 10,000 or less, and further preferably 5,000 or less. By setting the value to the upper limit or less, the fluidity of the thermoplastic resin tends to be excellent.
  • the weight average molecular weight is preferably 100 or more, more preferably 200 or more, and further preferably 500 or more. By setting it to the above lower limit value or more, it is possible to keep the outgas at the time of melting and heating lower.
  • the weight average molecular weight of the functional group-containing compound is measured according to a polystyrene-equivalent molecule by gel permeation chromatography (hereinafter, “GPC”).
  • the functional group equivalent is preferably 100 g / eq or more, more preferably 150 g / eq or more, and further preferably 200 g / eq or more. Further, in the functional group-containing compound, the functional group equivalent is preferably 1500 g / eq, more preferably 900 g / eq or less, and further preferably 800 g / eq or less.
  • the compound having an epoxy group is a compound having one or more epoxy groups in one molecule, and examples thereof include a glycidyl compound, an aromatic ring-containing compound having an epoxy group, an alicyclic compound having an epoxy group, and the like. It is preferable to contain at least an aromatic ring-containing compound having an epoxide.
  • the compound having an epoxy group examples include bisphenol A type epoxy compound (including bisphenol A diglycidyl ether), bisphenol F type epoxy compound (including bisphenol F diglycidyl ether), and biphenyl type epoxy compound (bis (glycidyloxy). ) Biphenyl), resorcin-type epoxy compounds (including resorcinol diglycidyl ether), novolak-type epoxy compounds, benzoic acid glycidyl esters, terephthalic acid diglycidyl esters, orthophthalic acid diglycidyl esters, and other epoxy compounds with an aromatic ring.
  • Examples thereof include (di) glycidyl esters (for example, unsaturated fatty acids), alicyclic epoxy compounds such as vinylcyclohexendioxide and dicyclopentadiene oxide, and epoxy-modified styrene-acrylic copolymers.
  • glycidyl esters for example, unsaturated fatty acids
  • alicyclic epoxy compounds such as vinylcyclohexendioxide and dicyclopentadiene oxide
  • epoxy-modified styrene-acrylic copolymers examples thereof include (di) glycidyl esters (for example, unsaturated fatty acids), alicyclic epoxy compounds such as vinylcyclohexendioxide and dicyclopentadiene oxide, and epoxy-modified styrene-acrylic copolymers.
  • a styrene-acrylic copolymer containing a glycidyl group in the side chain a bisphenol A type epoxy compound, a no
  • Carbodiimide compound In the resin composition of the present embodiment, it is also preferable to contain a carbodiimide compound as the reactive compound thereof.
  • the carbodiimide compound any of an aliphatic aliphatic carbodiimide compound having an aliphatic main chain, an alicyclic carbodiimide compound having an alicyclic main chain, and an aromatic carbodiimide compound having an aromatic main chain can be used. Above all, it is preferable to use an aliphatic carbodiimide compound having good reactivity with the polymer terminal.
  • the type of the carbodiimide compound may be a monomer type or a polymer type, but in the present embodiment, the polymer type is preferable.
  • Examples of the aliphatic carbodiimide compound include diisopropylcarbodiimide and dioctyldecylcarbodiimide.
  • Examples of the alicyclic carbodiimide compound include dicyclohexylcarbodiimide and poly (4,4'-dicyclohexylmethanecarbodiimide), and poly (4,4'-dicyclohexylmethanecarbodiimide) is particularly preferable.
  • Examples of commercially available products include "Carbodilite” (trade name; manufactured by Nisshinbo Chemical Co., Ltd.).
  • aromatic carbodiimide compound examples include diphenylcarbodiimide, di-2,6-dimethylphenylcarbodiimide, N-triyl-N'-phenylcarbodiimide, di-p-nitrophenylcarbodiimide, di-p-aminophenylcarbodiimide, and di-p.
  • Examples of the compound having an oxazoline group include oxazoline, alkyloxazoline (alkyloxazoline having 1 to 4 carbon atoms such as 2-methyloxazoline and 2-ethyloxazoline), and bisoxazoline compounds.
  • bisoxazoline compound examples include 2,2'-bis (2-oxazoline), 2,2'-bis (alkyl-2-oxazoline) [2,2'-bis (4-methyl-2-oxazoline), and the like.
  • 2,2'-bis (alkyl-with 1 to 6 carbon atoms) such as 2,2'-bis (4-ethyl-2-oxazoline) and 2,2'-bis (4,4-dimethyl-2-oxazoline) 2-Oxazoline), etc.]
  • 2,2'-bis (cycloalkyl-2) -Oxazoline) 2,2'-bis (4-cyclohexazoline), etc.]
  • 2,2'-bis (aralkyl-2-oxazoline) 2,2'-bis (4-benzyl-2-oxazoline)
  • Etc. 2,2'-alkylene bis (2-o
  • 2,2'-Phenylene-bis (alkyl-2-oxazoline having 1 to 6 carbon atoms), etc.], 2,2'-allyloxyalkambis (2-oxazoline) [2,2'-9,9 '-Diphenoxyetambis (2-oxazoline), etc.], 2,2'-Cycloalkylene bis (2-oxazoline) [2,2'-cyclohexylenebis (2-oxazoline), etc.], N, N'-alkylene Bis (2-carbamoyl-2-oxazoline N) [N, N'-ethylenebis (2-carbamoyl-2-oxazoline), N, N'-tetramethylenebis (2-carbamoyl-2-oxazoline), etc.
  • the compound having an oxazoline group also includes a vinyl polymer containing an oxazoline group (manufactured by Nippon Shokubai Co., Ltd., Epocross RPS series, RAS series, RMS series, etc.). Of these oxazoline compounds, the bisoxazoline compound is preferable.
  • ⁇ Compound with oxazine group As the compound having an oxazine group, oxazine, a bisoxazine compound and the like can be used.
  • Examples of the bisoxazine compound include 2,2'-bis (5,6-dihydro-4H-1,3-oxazine) and 2,2'-bis (alkyl-5,6-dihydro-4H-1,3).
  • -Oxazine) [2,2'-bis (4-methyl-5,6-dihydro-4H-1,3-oxazine), 2,2'-bis (4,4-dimethyl-5,6-dihydro-4H) -1,3-Oxazine), 2,2'-bis (4,5-dimethyl-5,6-dihydro-4H-1,3-oxazine) and other 2,2'-bis (1 to 6 carbon atoms) Alkyl-5,6-dihydro-4H-1,3-oxazine), etc.], 2,2'-alkylene bis (5,6-dihydro-4H-1,3-oxazine) [2,2'-methylenebis (5) , 6-dihydro-4H-1,
  • Examples of the compound having a carboxy group include formic acid, acetic acid, propionic acid, acrylic acid, methacrylic acid, oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, adipic acid, benzoic acid, and phthalate.
  • Acid terephthalic acid, lactic acid, malic acid, tartaric acid, diphenolic acid benzenesulfonic acid, toluenesulfonic acid, dodecylbenzenesulfonic acid, nonylbenzenesulfonic acid, nitrobenzenesulfonic acid, cyanobenzenesulfonic acid, hydroxybenzenesulfonic acid, methylsulfonic acid , Trifluoromethanesulfonic acid, trifluoroacetic acid, nitrobenzenecarboxylic acid, cyanobenzenecarboxylic acid, hydroxybenzenecarboxylic acid, hydroxyacetic acid and salts thereof.
  • Examples of the compound having an amide group include (meth) acrylamide, N-methylmethacrylamide, methylolated acrylamide, methylolated methacrylamide, ureidovinyl ether, ⁇ -ureidoisobutylvinyl ether, ureidoethyl acrylate and the like.
  • the functional group-containing compound is contained in an amount of 0.1 part by mass or more and 0.2 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin.
  • the upper limit of the functional group-containing compound is 15 parts by mass or less, preferably 12 parts by mass or less, and more preferably 10 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. It is more preferably 8 parts by mass or less, further preferably 5 parts by mass or less, further preferably 4 parts by mass or less, further preferably 3 parts by mass or less, and 2.5 parts by mass. The following is even more preferable.
  • the resin composition of the present embodiment may contain only one kind of functional group-containing compound, or may contain two or more kinds. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the resin composition of the present embodiment may contain other components in addition to those described above, if necessary, as long as the desired physical properties are not significantly impaired.
  • other components include various resin additives.
  • 1 type may be contained in the other component, and 2 or more types may be contained in arbitrary combinations and ratios. Specific examples thereof include stabilizers, mold release agents, pigments, dyes, ultraviolet absorbers, antistatic agents, antifogging agents, antiblocking agents, fluidity improving agents, plasticizers, dispersants, antibacterial agents and the like.
  • the resin composition of the present embodiment preferably contains at least one of a stabilizer, a mold release agent and a pigment.
  • the resin composition of the present embodiment is adjusted so that the total of the thermoplastic resin, the regenerated carbon fiber, the functional group-containing compound, and other components to be selectively blended is 100% by mass.
  • the total of the thermoplastic resin, the regenerated carbon fiber and the functional group-containing compound accounts for 95% by mass or more of the resin composition.
  • the total of the thermoplastic resin, the regenerated carbon fiber, the functional group-containing compound, the stabilizer, the mold release agent and the pigment accounts for 99% by mass or more of the resin composition.
  • the resin composition of the present embodiment may contain a stabilizer.
  • the stabilizer include a hindered phenol-based compound, a hindered amine-based compound, a phosphorus-based compound, and a sulfur-based stabilizer. Among these, hindered phenolic compounds are preferable.
  • Specific examples of the stabilizer include paragraphs 0046 to 0057 of JP-A-2018-07722, paragraphs 0030-0037 of JP-A-2019-0560335, and paragraph 0066 of International Publication No. 2017/038949. The description of ⁇ 0078 can be taken into consideration, and these contents are incorporated in the present specification.
  • the resin composition of the present embodiment preferably contains a stabilizer in an amount of 0.01 part by mass or more, more preferably 0.05 part by mass or more, and 0.08 part by mass or more with respect to 100 parts by mass of the thermoplastic resin. It is more preferable to include it.
  • the upper limit of the content of the stabilizer is preferably 3 parts by mass or less, more preferably 1 part by mass or less, and 0.5 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. It is more preferably present, and more preferably 0.4 parts by mass or less.
  • the resin composition of the present embodiment may contain only one kind of stabilizer or two or more kinds of stabilizers. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the resin composition of the present embodiment preferably contains a mold release agent.
  • a mold release agent known release agents can be widely used, and an esterified product of an aliphatic carboxylic acid is preferable.
  • the esterified product of the aliphatic carboxylic acid is preferably a polyhydric alcohol and an esterified product of the aliphatic carboxylic acid having 10 to 19 carbon atoms.
  • the release agent the description in paragraphs 0063 to 0077 of JP-A-2018-07722 and the description of paragraphs 0090 to 0098 of JP-A-2019-123809 can be referred to, and these contents are described in the present specification. Incorporated into the book.
  • the resin composition of the present embodiment preferably contains a mold release agent in an amount of 0.01 part by mass or more, more preferably 0.08 part by mass or more, and 0.2 part by mass with respect to 100 parts by mass of the thermoplastic resin. It is more preferable to include the above.
  • the upper limit of the content of the release agent is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and 1 part by mass or less with respect to 100 parts by mass of the thermoplastic resin. It is more preferably 0.8 parts by mass or less, and even more preferably 0.8 parts by mass or less.
  • the resin composition may contain only one type of release agent or two or more types. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the resin composition of the present embodiment may contain a pigment and / or a dye depending on the intended use.
  • the types of pigments and dyes may be appropriately selected according to the intended use. Specifically, black pigments such as inorganic pigments (carbon black (for example, acetylene black, lamp black, thermal black, furnace black, channel black, Ketjen black, etc.)), red pigments such as iron oxide red, molybdate orange, etc. (Orange pigments, white pigments such as titanium oxide), organic pigments (yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.) and the like.
  • black pigments such as inorganic pigments (carbon black (for example, acetylene black, lamp black, thermal black, furnace black, channel black, Ketjen black, etc.)
  • red pigments such as iron oxide red, molybdate orange, etc.
  • range pigments white pigments such as titanium oxide
  • organic pigments yellow pigments, orange pigments, red pigments, blue
  • the total amount of the dye and the pigment in the resin composition of the present embodiment is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the resin composition of the present embodiment may contain only one type of dye and pigment, or may contain two or more types. When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the resin composition of the present embodiment preferably has a small specific gravity.
  • the specific gravity is preferably 2.0 or less, more preferably 1.8 or less, further preferably 1.6 or less, and even more preferably 1.4 or less. ..
  • the lower limit is not particularly determined, but it is practical that the specific gravity of the thermoplastic resin is exceeded.
  • the melt volume rate (MVR) measured at 250 ° C. and a load of 5.00 kgf is high.
  • the MVR is preferably 5 cm 3/10 min or more, more preferably 20 cm 3/10 min or more, further preferably 30 cm 3/10 min or more, and 35 cm 3/10 min or more.
  • the upper limit of the MVR is not particularly determined, but for example, 80 cm 3/10 min or less is practical.
  • the resin composition of the present embodiment preferably has a high maximum bending strength according to ISO 178 when molded into an ISO multipurpose test piece having a thickness of 4 mm. Specifically, the maximum bending strength is preferably 130 MPa or more, more preferably 150 MPa or more, further preferably 170 MPa or more, further preferably 175 MPa or more, and 178 MPa or more. It is even more preferable to have.
  • the upper limit of the maximum bending strength is not particularly determined, but is practically 300 MPa or less, for example.
  • the resin composition of the present embodiment preferably has a high flexural modulus when molded into an ISO multipurpose test piece having a thickness of 4 mm.
  • the flexural modulus is preferably 7500 MPa or more, more preferably 8000 MPa or more, and even more preferably 8500 MPa or more.
  • the upper limit of the maximum bending strength is not particularly determined, but is practically, for example, 20000 MPa or less.
  • the resin composition of the present embodiment preferably has a high notched Charpy impact strength when molded into an ISO multipurpose test piece having a thickness of 4 mm.
  • the notched Charpy impact strength is preferably 2.0 kJ / m 2 or more, more preferably 2.5 kJ / m 2 or more, and more preferably 3.0 kJ / m 2 or more. Is even more preferable.
  • the upper limit of the notched Charpy impact strength is not particularly determined, but it is practically, for example, 7.0 kJ / m 2 or less.
  • the resin composition of the present embodiment has a maximum bending strength of 170 MPa or more and a Charpy impact strength of 3 kJ / m 2 or more according to ISO 178 when molded into an ISO multipurpose test piece having a thickness of 4 mm. Is preferable.
  • the resin composition of the present embodiment preferably has an electromagnetic wave shielding property of 14 dB or more.
  • the upper limit of the electromagnetic wave shielding property is not particularly determined, but it is practically 30 dB or less.
  • the specific gravity, MVR, maximum bending strength, flexural modulus, notched Charpy impact strength, and electromagnetic wave shielding property are measured according to the methods described in Examples described later.
  • the resin composition of the present embodiment can be produced by a conventional method for producing a resin composition containing a thermoplastic resin.
  • the resin composition of the present embodiment contains 100 parts by mass of a thermoplastic resin, 10 to 70 parts by mass of a predetermined regenerated carbon fiber, and 0.1 to 15 parts by mass of a functional group-containing compound (preferably 0.1 to 5 parts). (Parts by mass) is put into an extruder and manufactured by a method including melt-kneading.
  • the regenerated carbon fiber may not have a surface treatment agent or a converging agent attached to the surface of the carbon fiber, but in the present embodiment, it is a calcined product of a composite of an epoxy resin and a carbon fiber, and is derived from the epoxy resin.
  • the resin-derived residue plays a role of a surface treatment agent, a convergent, etc., and is a functional group.
  • the contained compound plays a role as a surface treatment agent for the regenerated carbon fiber, and can be put into an extruder for melt-kneading.
  • each component may be mixed in advance and supplied to the extruder at one time, or each component may be mixed in advance without being mixed in advance, or only a part thereof may be mixed in advance and supplied to the extruder using a feeder. May be good.
  • the extruder may be a single-screw extruder or a twin-screw extruder. Further, a masterbatch may be prepared by melt-kneading some components of a dye or a pigment (for example, carbon black) with a resin component, and then the remaining components may be blended and melt-kneaded.
  • a preferable example of the method for producing the resin composition of the present embodiment is to add 10 to 70 parts by mass of the regenerated carbon fiber and 0.1 to 15 parts by mass of the functional group-containing compound with respect to 100 parts by mass of the thermoplastic resin.
  • a method for producing a resin composition wherein the regenerated carbon fiber is a calcined product of a composite of an epoxy resin and a carbon fiber, and the residue derived from the epoxy resin is contained in a proportion of 5% by mass or more. It is a method including supplying carbon fiber from a side feeder in the middle of a cylinder of an extruder.
  • the fat composition here is preferably the resin composition of the present embodiment described above.
  • the heating temperature for melt-kneading can usually be appropriately selected from the range of 220 to 350 ° C.
  • the number average fiber length of the regenerated carbon fibers in the pellet is preferably 100 ⁇ m or more, more preferably 130 ⁇ m or more, further preferably 180 ⁇ m or more, and more preferably 210 ⁇ m or more. More preferred.
  • the number average fiber length of the regenerated carbon fibers in the pellet is usually 500 ⁇ m, and even when it is 450 ⁇ m or less, 400 ⁇ m or less, 350 ⁇ m or less, and 320 ⁇ m or less, it can be sufficiently applied depending on the application. Further, it is preferable that the number average fiber length of the regenerated carbon fibers in the molded product when the resin composition is molded into an ISO test piece having a thickness of 4 mm also satisfies the above range.
  • the molded article of the present embodiment is formed from the resin composition of the present embodiment or the pellets of the present embodiment.
  • the number average fiber length of the regenerated carbon fibers in the molded product is preferably 100 ⁇ m or more, more preferably 130 ⁇ m or more, and 180 ⁇ m or more. It is more preferably 210 ⁇ m or more, and more preferably 210 ⁇ m or more.
  • the number average fiber length of the regenerated carbon fibers in the molded product is usually 500 ⁇ m, and even when it is 450 ⁇ m or less, 400 ⁇ m or less, 350 ⁇ m or less, and 320 ⁇ m or less, it can be sufficiently applied depending on the application.
  • the molded product of this embodiment Since the molded product of this embodiment has good mechanical strength and electromagnetic shielding properties, it has various uses such as various storage containers, electrical / electronic equipment parts, office automation (OA) equipment parts, home appliance equipment parts, and the like. It can be applied to mechanical mechanism parts, vehicle mechanism parts, in-vehicle housing parts, and the like, and is preferably used for in-vehicle housing parts. Further, the molded product of the present embodiment is suitable for an injection molded product because it has excellent fluidity (resin easily flows) and can efficiently disperse the regenerated carbon fibers in the mold.
  • the method for producing the molded product is not particularly limited, and any molding method generally used for the resin composition containing the thermoplastic resin can be arbitrarily adopted.
  • any molding method generally used for the resin composition containing the thermoplastic resin can be arbitrarily adopted.
  • an injection molding method, an ultra-high speed injection molding method, an injection compression molding method, a two-color molding method, a hollow molding method such as gas assist, a molding method using a heat insulating mold, and a rapid heating mold were used.
  • Molding method, foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermal molding method, rotary molding method, laminated molding method, press molding method, Blow molding method and the like can be mentioned, and injection molding is particularly preferable.
  • the description in paragraphs 0113 to 0116 of Japanese Patent No. 6183822 can be referred to, and these contents are incorporated in the present specification.
  • the residue of the regenerated carbon fiber in Table 1 shows the amount of carbide in the regenerated carbon fiber. That is, since the regenerated carbon fiber used in the present invention is a calcined product of a composite of an epoxy resin and a carbon fiber, the regenerated carbon fiber contains a residue (carbohydrate) derived from the epoxy resin.
  • the amount of the resin residue is a value obtained from the formula (1) by calculating the carbon fiber mass contained in the carbon fiber reinforced resin before the heat treatment from the carbon fiber content. The unit is expressed in mass%. (BA x X) / (B) x 100 formula (1)
  • B Weight of heat treated product
  • MVR melt volume rate
  • ⁇ Maximum bending strength, flexural modulus> The pellets of the resin composition obtained above are dried at 120 ° C. for 7 hours, and then used by an injection molding machine (“J-85AD-60H” manufactured by Japan Steel Works, Ltd.) to have a thickness of 4 mm according to ISO20753 and ISO294-1.
  • the ISO multipurpose test piece was injection molded.
  • the ISO bending test piece (thickness 4 mm) obtained above was measured for maximum bending strength and flexural modulus according to ISO178 (unit: MPa).
  • Electromagnetic wave shielding property is 14 dB or more
  • B Electromagnetic wave shielding property is less than 14 dB
  • Comparative Example 7 All the components shown in Table 3 (including virgin carbon fiber) were stirred and mixed. The obtained mixture is put into the main hopper of a twin-screw extruder equipped with one vent, and kneaded under the conditions of a screw rotation speed of 250 rpm and a discharge rate of 200 kg / hour under the temperature conditions of the melting temperature of the thermoplastic resin to strand. Extruded into a shape to obtain pellets of the resin composition. Others were the same as in Example 1.
  • the resin composition of the present invention has excellent productivity and high mechanical strength (Examples 1 to 6). Further, the resin composition of the present invention has achieved low specific density, excellent appearance, excellent fluidity, excellent electromagnetic wave shielding property, and excellent environmental aptitude. In particular, it had excellent performance close to that of Comparative Example 4 using virgin carbon fiber.
  • Comparative Example 1 when a non-fired composite of epoxy resin and carbon fiber was used as the regenerated carbon fiber (Comparative Example 1), the mechanical strength was inferior. Furthermore, the electromagnetic wave shielding property was also inferior. When the functional group-containing compound was not blended (Comparative Example 2), the mechanical strength was inferior. When a recycled carbon fiber containing no residue was used (Comparative Example 3), the productivity was inferior.
  • Example 5 When the content of the regenerated carbon fiber was less than 10 parts by mass of the regenerated carbon fiber with respect to 100 parts by mass of the thermoplastic resin (Comparative Example 5), the mechanical strength was inferior. When the content of the regenerated carbon fiber was more than 70 parts by mass of the regenerated carbon fiber with respect to 100 parts by mass of the thermoplastic resin (Comparative Example 6), the productivity was inferior. In Example 6, when the regenerated carbon fiber was changed to an equal amount of virgin carbon fiber and the raw materials were added all at once (Comparative Example 7), the bending characteristics were significantly inferior. It was considered that the background of this was that the carbon fiber length in the pellets and molded products was shortened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

熱可塑性樹脂と再生炭素繊維を用いた樹脂組成物について、機械的強度を向上させ、さらに、生産性に優れたものとすること。樹脂組成物から形成されたペレット、成形品、および、樹脂組成物の製造方法の提供。熱可塑性樹脂100質量部に対して、再生炭素繊維10~70質量部と、官能基含有化合物0.1~15質量部とを含み、再生炭素繊維が、エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、エポキシ樹脂由来の残渣を5質量%以上の割合で含み、4mm厚さのISO多目的試験片に成形したときの曲げ最大強さが130MPa以上である、樹脂組成物。

Description

樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法
 本発明は、樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法に関する。特に、熱可塑性樹脂と再生炭素繊維を用いた樹脂組成物に関する。
 熱可塑性樹脂は、各種の機器部品に広く用いられている。特に、熱可塑性樹脂から形成される成形品の機械的強度を高めるため、強化繊維を用いることが広く行われている。このような強化繊維の代表例の1つが炭素繊維である。このような例として、特許文献1が知られている。
 一方、限りある資源の有効活用の観点から、炭素繊維を再利用することが検討されている。再生炭素繊維としては、例えば、特許文献2、特許文献3に記載のものが知られている。
特開昭51-109056号公報 特開2016-041800号公報 国際公開第2018/212016号
 しかしながら、熱可塑性樹脂に再生炭素繊維を配合すると、新規に製造された炭素繊維、すなわち、バージン炭素繊維を配合した場合と比べて、機械的強度が劣ってしまう。また、熱可塑性樹脂と再生炭素繊維を用いた場合、溶融混練が上手くできず、生産性に劣る場合があることが分かった。
 本発明は、かかる課題を解決することを目的とするものであって、熱可塑性樹脂と再生炭素繊維を用いた樹脂組成物について、機械的強度を向上させ、さらに、生産性に優れたものとすることを目的とする。さらに、前記樹脂組成物から形成されたペレット、成形品、および、樹脂組成物の製造方法を提供することを目的とする。
 上記課題のもと、本発明者が検討を行った結果、熱可塑性樹脂と再生炭素繊維に加え、官能基含有化合物を配合し、さらに、再生炭素繊維として、エポキシ樹脂由来の残渣を含むものを用いることにより上記課題は解決された。
 具体的には下記手段により、上記課題は解決された。
<1>熱可塑性樹脂100質量部に対して、
再生炭素繊維10~70質量部と、
官能基含有化合物0.1~15質量部とを含み、
前記再生炭素繊維が、エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、前記エポキシ樹脂由来の残渣を5質量%以上の割合で含み、
4mm厚さのISO多目的試験片に成形したときのISO178に従った曲げ最大強さが130MPa以上である、
樹脂組成物。
<2>前記官能基含有化合物の含有量が、熱可塑性樹脂100質量部に対して、0.1~5質量部である、<1>に記載の樹脂組成物。
<3>前記再生炭素繊維が、エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、前記エポキシ樹脂由来の残渣を10質量%以上の割合で含む、
<1>または<2>に記載の樹脂組成物。
<4>前記官能基含有化合物の含有量が、熱可塑性樹脂100質量部に対して、0.1~5質量部であり、
前記再生炭素繊維が、エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、前記エポキシ樹脂由来の残渣を10質量%以上の割合で含み、
4mm厚さのISO多目的試験片に成形したときのISO178に従った曲げ最大強さが170MPa以上である、<1>に記載の樹脂組成物。
<5>前記再生炭素繊維が、前記エポキシ樹脂由来の残渣を5質量%以上30質量%以下の割合で含む、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>前記熱可塑性樹脂が、ポリエステル樹脂、ポリカーボネート樹脂およびスチレン系樹脂の少なくとも1種を含む、<1>~<5>のいずれか1つに記載の樹脂組成物。
<7>前記熱可塑性樹脂が、ポリブチレンテレフタレート樹脂を含む、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>前記熱可塑性樹脂の30~100質量%がポリブチレンテレフタレート樹脂である、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9>前記官能基含有化合物が、エポキシ基を有する化合物、カルボジイミド化合物、オキサゾリン基を有する化合物、オキサジン基を有する化合物、カルボキシ基を有する化合物、およびアミド基を有する化合物からなる群から選ばれる少なくとも1種を含む、<1>~<8>のいずれか1つに記載の樹脂組成物。
<10>前記官能基含有化合物がエポキシ基を有する化合物を含む、<1>~<9>のいずれか1つに記載の樹脂組成物。
<11>前記官能基含有化合物において、[重量平均分子量]/[官能基当量(官能基当量の単位:g/eq)]が1~30である、<1>~<10>のいずれか1つに記載の樹脂組成物。
<12>前記官能基含有化合物において、[重量平均分子量]/[官能基当量(官能基当量の単位:g/eq)]が1~10である、<1>~<11>のいずれか1つに記載の樹脂組成物。
<13>前記再生炭素繊維が、前記エポキシ樹脂由来の残渣を25質量%以下の割合で含む、<1>~<12>のいずれか1つに記載の樹脂組成物。
<14><1>~<13>のいずれか1つに記載の樹脂組成物から形成されたペレット。
<15>前記ペレット中の再生炭素繊維の数平均繊維長が100~500μmである、<14>に記載のペレット。
<16><1>~<13>のいずれか1つに記載の樹脂組成物、あるいは、<14>または<15>に記載のペレットから形成された成形品。
<17>射出成形品である、<16>に記載の成形品。
<18>前記成形品中の再生炭素繊維の数平均繊維長が100~500μmである、<17>に記載の成形品。
<19>車載用筐体部品である、<16>~<18>のいずれか1つに記載の成形品。
<20>熱可塑性樹脂100質量部に対して、
再生炭素繊維10~70質量部と、
官能基含有化合物0.1~15質量部とを含み、
前記再生炭素繊維が、
エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、
前記エポキシ樹脂由来の残渣を5質量%以上の割合で含む樹脂組成物の製造方法であり、
前記再生炭素繊維を、押出機のシリンダー途中のサイドフィーダーから供給することを含む、
樹脂組成物の製造方法。
<21>前記樹脂組成物が、<1>~<13>のいずれか1つに記載の樹脂組成物である、<20>に記載の樹脂組成物の製造方法。
 本発明により、熱可塑性樹脂と再生炭素繊維を用いた樹脂組成物について、機械的強度を向上させ、さらに、生産性に優れたものとすることが可能になった。さらに、前記樹脂組成物から形成されたペレット、成形品、および、樹脂組成物の製造方法を提供可能になった。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本実施形態の樹脂組成物は、熱可塑性樹脂100質量部に対して、再生炭素繊維10~70質量部と、官能基含有化合物0.1~15質量部とを含み、前記再生炭素繊維が、エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、前記エポキシ樹脂由来の残渣を5質量%以上の割合で含み、4mm厚さのISO多目的試験片に成形したときのISO178に従った曲げ最大強さが130MPa以上であることを特徴とする。
 このような構成とすることにより、樹脂組成物の機械的強度を向上させ、かつ、生産性を向上させることができる。特に、再生炭素繊維を用いることから、環境負荷を低減した樹脂組成物が得られる。
 樹脂組成物の機械的強度を向上させ、かつ、生産性を向上させるメカニズムは、以下の通りであると推定される。
 再生炭素繊維は焼成工程を経ていることから、通常、再生炭素繊維表面に処理剤が付着しておらず、そのため、再生炭素繊維と熱可塑性樹脂の親和性が低く、結果として得られる樹脂組成物の機械的強度が低くなっているものと推定される。また、再生炭素繊維には表面処理剤と同様に収束剤が付着しておらず、繊維が絡まり綿状となりやすいことから、溶融混練に於いてフィーダーでの投入が困難であり、生産性に乏しいという問題があった。本実施形態では、官能基含有化合物を溶融混練時に添加することにより、同化合物が再生炭素繊維の表面処理剤として機能し、樹脂との親和性を向上させ、結果として機械的強度の改善を果たしたものと推定される。
 また、再生炭素繊維として、その表面にエポキシ樹脂由来の残渣が一定量以上残っているものを用いることにより、かかるエポキシ樹脂由来の残渣が収束剤として働き、生産性の改善が図られている。本実施形態はこれら技術の適応により、環境適性に優れた再生炭素繊維を用い、機械的強度および生産性に優れた樹脂組成物の獲得を可能としたものである。
 以下、本実施形態について詳細に説明する。
<熱可塑性樹脂>
 本実施形態の樹脂組成物は、熱可塑性樹脂を含む。
 熱可塑性樹脂は、その種類等、特に定めるものではないが、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等のポリエステル樹脂(熱可塑性ポリエステル樹脂);ポリアミド樹脂;ポリカーボネート樹脂;スチレン系樹脂;ポリエチレン樹脂、ポリプロピレン樹脂、環状シクロオレフィン樹脂等のポリオレフィン樹脂;ポリアセタール樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂;ポリメタクリレート樹脂;等が好ましく例示され、ポリエステル樹脂、ポリカーボネート樹脂およびスチレン系樹脂の少なくとも1種を含むことが好ましい。
 本実施形態の樹脂組成物における熱可塑性樹脂の一実施形態は、ポリブチレンテレフタレート樹脂を含むことである。本実施形態の樹脂組成物における熱可塑性樹脂中のポリブチレンテレフタレート樹脂の含有量は、30~100質量%であることが好ましい。
 本実施形態の樹脂組成物における第一の実施形態は、熱可塑性樹脂中のポリブチレンテレフタレート樹脂の割合が、60~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることがさらに好ましく、95~100質量%であることが一層好ましく、98~100質量%であることがより一層好ましい。
 また、本実施形態の樹脂組成物における熱可塑性樹脂の他の一実施形態は、熱可塑性樹脂の30~100質量%がポリブチレンテレフタレート樹脂であることである。本実施形態においては、熱可塑性樹脂として、ポリブチレンテレフタレート樹脂のみを含んでいてもよいし、ポリブチレンテレフタレート樹脂と1種または2種以上の他の熱可塑性樹脂(例えば、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、および、AS樹脂、好ましくは、ポリエチレンテレフタレート樹脂、および、AS樹脂)との混合物であってもよい。本実施形態においては、熱可塑性樹脂中、ポリブチレンテレフタレート樹脂の割合は、40~100質量%であることが好ましい。
 ポリエステル樹脂は、ジカルボン酸化合物とジヒドロキシ化合物の重縮合、オキシカルボン酸化合物の重縮合あるいはこれらの化合物の重縮合等によって得られるポリエステルであり、ホモポリエステル、コポリエステルの何れであってもよい。
 ポリエステル樹脂を構成するジカルボン酸化合物としては、芳香族ジカルボン酸またはそのエステル形成性誘導体が好ましく使用される。
 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、1、5-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-3,3’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルフォン-4,4’-ジカルボン酸、ジフェニルイソプロピリデン-4,4’-ジカルボン酸、1,2-ビス(フェノキシ)エタン-4,4’-ジカルボン酸、アントラセン-2,5-ジカルボン酸、アントラセン-2,6-ジカルボン酸、p-ターフェニレン-4,4’-ジカルボン酸、ピリジン-2,5-ジカルボン酸等が挙げられ、テレフタル酸が好ましく使用できる。
 これらの芳香族ジカルボン酸は1種のみ、または、2種以上を混合して使用してもよい。これらは周知のように、遊離酸以外にジメチルエステル等のエステル形成性誘導体として重縮合反応に用いることができる。
 なお、少量であればこれらの芳香族ジカルボン酸と共にアジピン酸、アゼライン酸、ドデカンジオン酸、セバシン酸等の脂肪族ジカルボン酸や、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸および1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸を1種以上混合して使用することができる。
 熱可塑性ポリエステル樹脂を構成するジヒドロキシ化合物としては、エチレングリコール、プロピレングリコール、ブタンジオール、へキシレングリコール、ネオペンチルグリコール、2-メチルプロパン-1,3-ジオール、ジエチレングリコール、トリエチレングリコール等の脂肪族ジオール、シクロヘキサン-1,4-ジメタノール等の脂環式ジオール等、およびそれらの混合物等が挙げられる。なお、少量であれば、分子量400~6,000の長鎖ジオール、すなわち、ポリエチレングリコール、ポリ-1,3-プロピレングリコール、ポリテトラメチレングリコール等を1種以上共重合せしめてもよい。
 また、ハイドロキノン、レゾルシン、ナフタレンジオール、ジヒドロキシジフェニルエーテル、2,2-ビス(4-ヒドロキシフェニル)プロパン等の芳香族ジオールも用いることができる。
 また、上記のような二官能性モノマー以外に、分岐構造を導入するためトリメリット酸、トリメシン酸、ピロメリット酸、ペンタエリスリトール、トリメチロールプロパン等の三官能性モノマーや分子量調節のため脂肪酸等の単官能性化合物を少量併用することもできる。
 ポリエステル樹脂としては、通常は主としてジカルボン酸とジオールとの重縮合からなるもの、すなわち、樹脂全体の、通常50質量%、好ましくは70質量%以上がこの重縮合物からなるものを用いる。ジカルボン酸としては芳香族カルボン酸が好ましく、ジオールとしては脂肪族ジオールが好ましい。
 なかでも、ポリエステル樹脂として好ましいのは、酸成分の95モル%以上がテレフタル酸であり、アルコール成分の95質量%以上が脂肪族ジオールであるポリアルキレンテレフタレート樹脂である。その代表的なものはポリブチレンテレフタレート樹脂およびポリエチレンテレフタレート樹脂である。これらはホモポリエステルに近いもの、すなわち、樹脂全体の95質量%以上が、テレフタル酸成分および1,4-ブタンジオールまたはエチレングリコール成分からなるものであるのが好ましい。
 本実施形態において、熱可塑性ポリエステル樹脂は、その主成分がポリエチレンテレフタレート樹脂またはポリブチレンテレフタレート樹脂であることが好ましく、ポリブチレンテレフタレート樹脂であることがより好ましい。
 また、イソフタル酸、ダイマー酸、ポリテトラメチレングリコール(PTMG)等のポリアルキレングリコール等が共重合されているものも好ましい。なお、これらの共重合体は、共重合量が、ポリブチレンテレフタレート全セグメント中の1モル%以上、50モル%未満のものをいう。中でも、共重合量が好ましくは2~50モル%、より好ましくは3~40モル%、特に好ましくは5~30モル%である。
 ポリエステル樹脂の固有粘度は、0.5~2dL/gであるのが好ましい。成形性および機械的特性の点からして、0.6~1.5dL/gの範囲の固有粘度を有するものがより好ましい。固有粘度が0.5dL/g以上のものを用いると、得られる樹脂組成物成形品の機械的強度がより向上する傾向にある。また。2dL/g以下とすることにより、樹脂組成物の流動性が向上する傾向にあり、成形性が向上する傾向にある。なお、ポリエステル樹脂の固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定するものとする。
 また、ポリエステル樹脂の酸価(AV)は、1~50eq/tが好ましい。このような範囲とすることにより、耐加水分解性や熱安定性等に優れた樹脂組成物を得ることができる。酸価は、ベンジルアルコール25mLにポリエステル樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定した。指示薬はフェノールフタレイン0.10gをエタノール50mLおよび水50mLの混合液に溶解したものが使用できる。
 次に、ポリカーボネート樹脂について説明する。
 ポリカーボネート樹脂は、ジヒドロキシ化合物またはこれと少量のポリヒドロキシ化合物を、ホスゲンまたは炭酸ジエステルと反応させることによって得られる、分岐していてもよい重合体または共重合体である。ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、従来公知のホスゲン法(界面重合法)や溶融法(エステル交換法)により製造したものを使用することができる。
 原料のジヒドロキシ化合物としては、芳香族ジヒドロキシ化合物が好ましく、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニル等が挙げられ、好ましくはビスフェノールAが挙げられる。また、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物を使用することもできる。
 ポリカーボネート樹脂としては、上述した中でも、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される芳香族ポリカーボネート樹脂、または、2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導される芳香族ポリカーボネート共重合体が好ましい。また、シロキサン構造を有するポリマーまたはオリゴマーとの共重合体等の、芳香族ポリカーボネート樹脂を主体とする共重合体であってもよい。さらには、上述したポリカーボネート樹脂の2種以上を混合して用いてもよい。
 ポリカーボネート樹脂の分子量を調節するには、一価の芳香族ヒドロキシ化合物を用いればよく、例えば、m-およびp-メチルフェノール、m-およびp-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等が挙げられる。
 ポリカーボネート樹脂の粘度平均分子量(Mv)は、20,000以上であることが好ましく、23,000以上であることがより好ましく、25,000以上であることがさらに好ましい。粘度平均分子量が20,000以上のものを用いることにより、得られる樹脂組成物が耐衝撃性等の機械的強度がより向上する傾向にある。また、60,000以下であることが好ましく、40,000以下であることがより好ましく、35,000以下であることがさらに好ましい。60,000以下のものを用いることにより、樹脂組成物の流動性が向上し、成形性が向上する傾向にある。
 なお、本発明において、ポリカーボネート樹脂の粘度平均分子量(Mv)は、ウベローデ粘度計を用いて、20℃にて、ポリカーボネート樹脂のメチレンクロライド溶液の粘度を測定し極限粘度([η])を求め、次のSchnellの粘度式から算出される値を示す。
[η]=1.23×10-4Mv0.83
 ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、ホスゲン法(界面重合法)および溶融法(エステル交換法)のいずれの方法で製造したポリカーボネート樹脂も使用することができる。また、溶融法で製造したポリカーボネート樹脂に、末端のOH基量を調整する後処理を施したポリカーボネート樹脂も好ましい。
 次に、スチレン系樹脂について説明する。
 スチレン系樹脂としては、スチレン系単量体の単独重合体、スチレン系単量体と他の共重合可能な単量体との共重合体等が挙げられる。
 スチレン系樹脂としては、より具体的には、ポリスチレン樹脂、アクリロニトリル-スチレン共重合体(AS樹脂)、耐衝撃性ポリスチレン樹脂(HIPS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル-アクリルゴム-スチレン共重合体(AAS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)、スチレン-IPN型ゴム共重合体等の樹脂等が挙げられる。これらの中でも、アクリロニトリル-スチレン共重合体(AS樹脂)、耐衝撃性ポリスチレン樹脂(HIPS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)が好ましく、アクリロニトリル-スチレン共重合体(AS樹脂)および耐衝撃性ポリスチレン樹脂(HIPS)がより好ましく、アクリロニトリル-スチレン共重合体(AS樹脂)がさらに好ましい。
 スチレン系樹脂がゴム成分を含む場合、スチレン系樹脂中のゴム成分の含有量は3~70質量%が好ましく、5~50質量%がより好ましく、7~30質量%がさらに好ましい。ゴム成分の含有量を3質量%以上とすることにより、耐衝撃性が向上する傾向にあり、50質量%以下とすることにより、難燃性が向上する傾向となり好ましい。また、ゴム成分の平均粒子径は、0.05~10μmであることが好ましく、0.1~6μmであることがより好ましく、0.2~3μmであることがさらに好ましい。平均粒子径が0.05μm以上であると耐衝撃性が向上しやすい傾向にあり、10μm以下であると外観が向上する傾向にあり好ましい。
 スチレン系樹脂の重量平均分子量は、通常、50,000以上であり、好ましくは100,000以上であり、より好ましくは150,000以上であり、また、通常、500,000以下であり、好ましくは400,000以下であり、より好ましくは300,000以下である。また、数平均分子量は、通常、10,000以上であり、好ましくは30,000以上であり、より好ましくは50,000以上であり、また、通常、300,000以下であり、好ましくは200,000以下であり、より好ましくは150,000以下である。このようなスチレン系樹脂を使用することにより、耐衝撃性が向上しやすくなり好ましい。
 スチレン系樹脂の、JIS K7210(温度200℃、荷重5kgf)に準拠して測定されるメルトフローレイト(MFR)は、0.1~30g/10分であることが好ましく、0.5~25g/10分であることがより好ましい。MFRが0.1g/10分以上であると流動性が向上する傾向にあり、30g/10分以下であると耐衝撃性が向上する傾向となり好ましい。
 このようなスチレン系樹脂の製造方法としては、乳化重合法、溶液重合法、懸濁重合法あるいは塊状重合法等の公知の方法が挙げられる。
 本実施形態の樹脂組成物における熱可塑性樹脂の含有量は、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、75質量%以上であることがさらに好ましく、80質量%以上であることが一層好ましい。
 本実施形態の樹脂組成物は、熱可塑性樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<再生炭素繊維>
 本実施形態の樹脂組成物は、熱可塑性樹脂100質量部に対して、再生炭素繊維10~70質量部を含む。さらに、再生炭素繊維が、エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、エポキシ樹脂由来の残渣を5質量%以上の割合で含むものである。かかる再生炭素繊維を用いることにより、環境適性に優れ、かつ、機械的強度などの各種特性および生産性良好な熱可塑性樹脂組成物を得ることができる。
 ここで、再生炭素繊維とは、例えば、使用済みの炭素繊維強化樹脂(航空機、車両、電気・電子機器等)や炭素繊維強化樹脂の製造工程から発生する炭素繊維強化樹脂の中間製品(プリプレグ)等の切れはしから回収された炭素繊維をいう。これに対し、バージン炭素繊維とは、一般的に、炭素繊維として販売されているものなど、再生炭素繊維ではない新品の炭素繊維である。
 炭素繊維の種類は特に定めるものではないが、PAN系炭素繊維が好ましい。
 再生炭素繊維の数平均繊維径は、3μm以上であることがより好ましく、4μm以上であることがさらに好ましい。また、10μm以下であることが好ましく、8μm以下であることがより好ましい。再生炭素繊維の数平均繊維径がこのような範囲にあることで、機械的物性がより向上した樹脂組成物が得られやすくなる。
 本実施形態において、再生炭素繊維は、エポキシ樹脂由来の残渣を5質量%以上の割合で含み、8質量%以上であることが好ましく、10質量%以上であることがさらに好ましく、12質量%以上であることが一層好ましい。前記下限値以上とすることにより、炭素繊維の収束剤としての効果が効果的に発揮されると推測される。また、再生炭素繊維は、エポキシ樹脂由来の残渣を30質量%以下の割合で含むことが好ましく、25質量%以下の割合で含むことがより好ましく、22質量%以下であることがさらに好ましく、19質量%以下であることが一層好ましく、16質量%以下であることがより一層好ましく、14質量%以下であってもよい。前記上限値以下とすることにより、エポキシ樹脂の残渣による機械的強度の低下を最低限に抑えながら、生産性向上の効果が得られやすくなる。
 前記エポキシ樹脂は、必要に応じて添加剤を含んでいてもよい。添加剤としては、硬化剤、硬化助剤、内部離型剤、難燃剤、酸化防止剤、光安定剤、紫外線吸収剤、着色剤等が挙げられる。
 本実施形態で用いる再生炭素繊維は、エポキシ樹脂と炭素繊維の複合物を燃やすことによって得られる。エポキシ樹脂由来の残渣の量は、連続の焼却炉で焼成すること、窒素雰囲気下で焼成すること、所定の温度で焼成すること等によって達成される。例えば、国際公開第2018/212016号の記載を参酌でき、この内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物における再生炭素繊維の含有量は、熱可塑性樹脂100質量部に対して、10質量部以上であり、11質量部以上であることが好ましく、12質量部以上であることがより好ましく、さらには用途等に応じて、15質量部以上、20質量部以上、25質量部以上であってもよい。前記下限値以上とすることにより、良好な強度向上効果および電磁波シールド性向上効果が得られる。また、本実施形態の樹脂組成物における再生炭素繊維の含有量は、熱可塑性樹脂100質量部に対して、70質量部以下であり、60質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることがさらに好ましく、35質量部以下であることが一層好ましく、さらには、用途等に応じて、25質量部以下、20質量部以下、17質量部以下、16質量部以下であってもよい。前記上限値以下とすることにより、流動性により優れ、外観および平滑性がより良好な成形品を得られ易い。
 また、本実施形態の組成物は、再生炭素繊維を組成物中、実質的な炭素繊維の量換算で、5~40質量%の割合で含むことが好ましい。
 本実施形態の樹脂組成物は、再生炭素繊維を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本実施形態の組成物は、バージン炭素繊維を含んでいてもよいし、含んでいなくてもよい。本実施形態の組成物の一例は、バージン炭素繊維を再生炭素繊維の含有量の5~50質量%(好ましくは5~30質量%)の割合で含む態様である。また、本実施形態の組成物の他の一例は、バージン炭素繊維を再生炭素繊維の含有量の5質量%未満(好ましくは3質量%未満、より好ましくは1質量%未満)である態様である。
<官能基含有化合物>
 本実施形態の樹脂組成物は、熱可塑性樹脂100質量部に対して、官能基含有化合物0.1~15質量部を含む。再生炭素繊維は、バージン炭素繊維と異なり、表面処理剤が付着していない。そのため、機械的強度が劣ると推測された。本実施形態では、官能基含有化合物が表面処理剤の代わりの役割を果たし、機械的強度を向上させていると推測される。
 本実施形態で用いる官能基含有化合物は、エポキシ基を有する化合物、カルボジイミド化合物、オキサゾリン基を有する化合物、オキサジン基を有する化合物、カルボキシ基を有する化合物、およびアミド基を有する化合物からなる群から選ばれる少なくとも1種を含むことが好ましく、エポキシ基を有する化合物を含むことがより好ましい。
 前記官能基含有化合物において、[重量平均分子量]/[官能基当量(官能基当量の単位:g/eq)]が1~30であることが好ましく、1~10であることがより好ましく、1~6であることがさらに好ましく、2~6であることが一層好ましい。前記下限値以上とすることにより、官能基含有化合物一分子中の官能基の数が多くなり、官能基含有化合物の反応により、再生炭素繊維と熱可塑性樹脂の親和性を向上させる効果が高く得られるものと推定される。他方、前記上限値以下とすることにより、例えば、ポリエステル樹脂の末端カルボン酸等と過剰に反応しすぎず、流動性が向上する傾向にある。
 前記官能基含有化合物においては、重量平均分子量が15000以下であることが好ましく、10000以下であることがより好ましく、5000以下であることがさらに好ましい。上記上限値以下とすることにより、熱可塑性樹脂の流動性に優れる傾向にある。下限値については、重量平均分子量が100以上であることが好ましく、200以上であることがより好ましく、500以上であることがさらに好ましい。上記下限値以上とすることにより、溶融加熱時のアウトガスをより低く抑えることが可能となる。前記官能基含有化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」)によるポリスチレン換算分子に従って測定される。
 前記官能基含有化合物においては、官能基当量が100g/eq以上であることが好ましく、より好ましくは150g/eq以上であり、さらに好ましくは、200g/eq以上である。また、前記官能基含有化合物においては、官能基当量が1500g/eqであることが好ましく、900g/eq以下であることがより好ましく、800g/eq以下であることがさらに好ましい。
 官能基当量を上記下限値以上とすることにより、再生炭素繊維の分散をより効果的に抑制し、押出・成形加工時の流動性が向上する傾向にある。上記上限値以下とすることにより、耐加水分解性や耐候性がより向上する傾向にある。
<<エポキシ基を有する化合物>>
 エポキシ基を有する化合物は、一分子中に一個以上のエポキシ基を有する化合物であり、グリシジル化合物、エポキシ基を有する芳香族環含有化合物、エポキシ基を有する脂環式化合物などが挙げられ、エポキシ基を有する芳香族環含有化合物を少なくとも含むことが好ましい。
 エポキシ基を有する化合物の具体例としては、ビスフェノールA型エポキシ化合物(ビスフェノールAジグリシジルエーテルを含む)、ビスフェノールF型エポキシ化合物(ビスフェノールFジグリシジルエーテルを含む)、ビフェニル型エポキシ化合物(ビス(グリシジルオキシ)ビフェニルを含む)、レゾルシン型エポキシ化合物(レゾルシノールジグリシジルエーテルを含む)、ノボラック型エポキシ化合物、安息香酸グリシジルエステル、テレフタル酸ジグリシジルエステル、オルトフタル酸ジグリシジルエステルなどの芳香族環を有するエポキシ化合物、メチルグリシジルエーテル、ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル、フェニルグリシジルエーテル、ブチルフェニルグリシジルエーテル、アリルグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、プロピレングリコールジグリシジルエーテルなどの(ジ)グリシジルエーテル類、ソルビン酸グリシジルエステル、アジピン酸ジグリシジルエステル、エポキシ化亜麻仁油、エポキシ化大豆油などのパラフィン系(例えば飽和脂肪酸系)またはオレフィン系(例えば不飽和脂肪酸系)の(ジ)グリシジルエステル類、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシドなどの脂環式エポキシ化合物類、また、エポキシ変性スチレン-アクリル共重合体等が挙げられる。
 中でも、側鎖にグリシジル基を含有するスチレン-アクリル共重合体、ビスフェノールA型エポキシ化合物、ノボラック型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビフェニル型エポキシ化合物等が好ましく、ビスフェノールA型エポキシ化合物がより好ましい。
<<カルボジイミド化合物>>
 本実施形態の樹脂組成物においては、その反応性化合物として、カルボジイミド化合物を含有することもまた好ましい。カルボジイミド化合物は、分子中にカルボジイミド基(-N=C=N-)を含有する化合物である。カルボジイミド化合物としては、主鎖が脂肪族の脂肪族カルボジイミド化合物、主鎖が脂環式の脂環式カルボジイミド化合物、主鎖が芳香族の芳香族カルボジイミド化合物の何れも使用することができる。中でも、ポリマー末端との反応性が良好である脂肪族カルボジイミド化合物の使用が好ましい。カルボジイミド化合物のタイプとして、モノマー型であっても、ポリマー型であってもよいが、本実施形態においてはポリマー型が好ましい。
 上記脂肪族カルボジイミド化合物としては、ジイソプロピルカルボジイミド、ジオクチルデシルカルボジイミド等を挙げることができる。上記脂環式カルボジイミド化合物としてはジシクロヘキシルカルボジイミド、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)等を挙げることができ、特にポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)が好ましい。
 市販のものとしては、「カルボジライト」(商品名;日清紡ケミカル社製)等を挙げることができる。
 上記芳香族カルボジイミド化合物としては、ジフェニルカルボジイミド、ジ-2,6-ジメチルフェニルカルボジイミド、N-トリイル-N’-フェニルカルボジイミド、ジ-p-ニトロフェニルカルボジイミド、ジ-p-アミノフェニルカルボジイミド、ジ-p-ヒドロキシフェニルカルボジイミド、ジ-p-クロロフェニルカルボジイミド、ジ-p-メトキシフェニルカルボジイミド、ジ-3,4-ジクロロフェニルカルボジイミド、ジ-2,5-ジクロロフェニルカルボジイミド、ジ-o-クロロフェニルカルボジイミド、p-フェニレン-ビス-ジ-o-トリイルカルボジイミド、p-フェニレン-ビス-ジシクロヘキシルカルボジイミド、p-フェニレン-ビス-ジ-p-クロロフェニルカルボジイミド、エチレン-ビス-ジフェニルカルボジイミド等のモノまたはジカルボジイミド化合物、ポリ(4,4’-ジフェニルメタンカルボジイミド)、ポリ(3,5’-ジメチル-4,4’-ビフェニルメタンカルボジイミド)、ポリ(p-フェニレンカルボジイミド)、ポリ(m-フェニレンカルボジイミド)、ポリ(3,5’-ジメチル-4,4’-ジフェニルメタンカルボジイミド)、ポリ(ナフチレンカルボジイミド)、ポリ(1,3-ジイソプロピルフェニレンカルボジイミド)、ポリ(1-メチル-3,5-ジイソプロピルフェニレンカルボジイミド)、ポリ(1,3,5-トリエチルフェニレンカルボジイミド)およびポリ(トリイソプロピルフェニレンカルボジイミド)などのポリカルボジイミド化合物が挙げられ、これらは2種以上併用することもできる。
<<オキサゾリン基を有する化合物>>
 上記オキサゾリン基を有する化合物としては、例えば、オキサゾリン、アルキルオキサゾリン(2-メチルオキサゾリン、2-エチルオキサゾリン等の炭素数1~4のアルキルオキサゾリン)やビスオキサゾリン化合物等を挙げることができる。
 上記ビスオキサゾリン化合物としては、例えば2,2’-ビス(2-オキサゾリン)、2,2’-ビス(アルキル-2-オキサゾリン)[2,2’-ビス(4-メチル-2-オキサゾリン)、2,2’-ビス(4-エチル-2-オキサゾリン)、2,2’-ビス(4,4-ジメチル-2-オキサゾリン)等の2,2’-ビス(炭素数1~6のアルキル-2-オキサゾリン)など]、2,2’-ビス(アリール-2-オキサゾリン)[2,2’-ビス(4-フェニル-2-オキサゾリン)など]、2,2’-ビス(シクロアルキル-2-オキサゾリン)[2,2’-ビス(4-シクロヘキシル-2-オキサゾリン)など]、2,2’-ビス(アラルキル-2-オキサゾリン)[2,2’-ビス(4-ベンジル-2-オキサゾリン)など]、2,2’-アルキレンビス(2-オキサゾリン)[2,2’-エチレンビス(2-オキサゾリン)、2,2’-テトラメチレンビス(2-オキサゾリン)等の2,2’-炭素数1~10のアルキレンビス(2-オキサゾリン)等]、2,2’-アルキレンビス(アルキル-2-オキサゾリン)[2,2’-エチレンビス(4-メチル-2-オキサゾリン)、2,2’-テトラメチレンビス(4,4-ジメチル-2-オキサゾリン)等の2,2’-炭素数1~10のアルキレンビス(炭素数1~6のアルキル-2-オキサゾリン)等]、2,2’-アリーレンビス(2-オキサゾリン)[2,2’-(1,3-フェニレン)-ビス(2-オキサゾリン)、2,2’-(1,4-フェニレン)-ビス(2-オキサゾリン)、2,2’-(1,2-フェニレン)-ビス(2-オキサゾリン)、2,2’-ジフェニレンビス(2-オキサゾリン)等]、2,2’-アリーレンビス(アルキル-2-オキサゾリン)[2,2’-(1,3-フェニレン)-ビス(4-メチル-2-オキサゾリン)、2,2’-(1,4-フェニレン)-ビス(4,4-ジメチル-2-オキサゾリン)等の2,2’-フェニレン-ビス(炭素数1~6のアルキル-2-オキサゾリン)等]、2,2’-アリーロキシアルカンビス(2-オキサゾリン)[2,2’-9,9’-ジフェノキシエタンビス(2-オキサゾリン)など]、2,2’-シクロアルキレンビス(2-オキサゾリン)[2,2’-シクロヘキシレンビス(2-オキサゾリン)など]、N,N’-アルキレンビス(2-カルバモイル-2-オキサゾリン)[N,N’-エチレンビス(2-カルバモイル-2-オキサゾリン)、N,N’-テトラメチレンビス(2-カルバモイル-2-オキサゾリン)等のN,N’-炭素数1~10のアルキレンビス(2-カルバモイル-2-オキサゾリン)等]、N,N’-アルキレンビス(2-カルバモイル-アルキル-2-オキサゾリン)[N,N’-エチレンビス(2-カルバモイル-4-メチル-2-オキサゾリン)、N,N’-テトラメチレンビス(2-カルバモイル-4,4-ジメチル-2-オキサゾリン)等のN,N’-炭素数1~10のアルキレンビス(2-カルバモイル-炭素数1~6のアルキル-2-オキサゾリン)等]、N,N’-アリーレンビス(2-カルバモイル-2-オキサゾリン)[N,N’-フェニレンビス(2-カルバモイル-オキサゾリン)など]等を挙げることができる。
 また、オキサゾリン基を有する化合物には、オキサゾリン基を含有するビニルポリマー(日本触媒社製、エポクロスRPSシリーズ、RASシリーズおよびRMSシリーズなど)なども含まれる。これらのオキサゾリン化合物のうちビスオキサゾリン化合物が好ましい。
<<オキサジン基を有する化合物>>
 上記オキサジン基を有する化合物として、オキサジンやビスオキサジン化合物等を用いることができる。
 上記ビスオキサジン化合物としては、例えば2,2’-ビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2’-ビス(アルキル-5,6-ジヒドロ-4H-1,3-オキサジン)[2,2’-ビス(4-メチル-5,6-ジヒドロ-4H-1,3-オキサジン)、2,2’-ビス(4,4-ジメチル-5,6-ジヒドロ-4H-1,3-オキサジン)、2,2’-ビス(4,5-ジメチル-5,6-ジヒドロ-4H-1,3-オキサジン)等の2,2’-ビス(炭素数1~6のアルキル-5,6-ジヒドロ-4H-1,3-オキサジン)など]、2,2’-アルキレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)[2,2’-メチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2’-エチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2’-ヘキサンメチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)等の2,2’-炭素数1~10のアルキレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)等]、2,2’-アリーレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)[2,2’-(1,3-フェニレン)-ビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2’-(1,4-フェニレン)-ビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2’-(1,2-フェニレン)-ビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2’-ナフチレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)、2,2’-ジフェニレンビス(5,6-ジヒドロ-4H-1,3-オキサジン)等]、N,N’-アルキレンビス(2-カルバモイル-5,6-ジヒドロ-4H-1,3-オキサジン)[N,N’-エチレンビス(2-カルバモイル-5,6-ジヒドロ-4H-1,3-オキサジン)、N,N’-テトラメチレンビス(2-カルバモイル-5,6-ジヒドロ-4H-1,3-オキサジン)等のN,N’-炭素数1~10のアルキレンビス(2-カルバモイル-5,6-ジヒドロ-4H-1,3-オキサジン)等]、N,N’-アルキレンビス(2-カルバモイル-アルキル-5,6-ジヒドロ-4H-1,3-オキサジン)[N,N’-エチレンビス(2-カルバモイル-4-メチル-5,6-ジヒドロ-4H-1,3-オキサジン)、N,N’-ヘキサメチレンビス(2-カルバモイル-4,4-ジメチル-5,6-ジヒドロ-4H-1,3-オキサジン)等のN,N’-炭素数1~10のアルキレンビス(2-カルバモイル-炭素数1~6のアルキル-5,6-ジヒドロ-4H-1,3-オキサジン)等]、N,N’-アリーレンビス(2-カルバモイル-5,6-ジヒドロ-4H-1,3-オキサジン)[N,N’-フェニレンビス(2-カルバモイル-オキサジン)など]等を挙げることができる。これらのオキサジン化合物のうち、ビスオキサジン化合物が好ましい。
<<カルボキシ基を有する化合物>>
 上記カルボキシ基を有する化合物(カルボン酸化合物)としては、例えばギ酸、酢酸、プロピオン酸、アクリル酸、メタクリル酸、シュウ酸、マロン酸、コハク酸、マレイン酸、フマル酸、アジピン酸、安息香酸、フタル酸、テレフタル酸、乳酸、リンゴ酸、酒石酸、ジフェノール酸ベンゼンスルホン酸、トルエンスルホン酸、ドデシルベンゼンスルホン酸、ノニルベンゼンスルホン酸、ニトロベンゼンスルホン酸、シアノベンゼンスルホン酸、ヒドロキシベンゼンスルホン酸、メチルスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸、ニトロベンゼンカルボン酸、シアノベンゼンカルボン酸、ヒドロキシベンゼンカルボン酸、ヒドロキシ酢酸およびその塩などを挙げることができる。
<<アミド基を有する化合物>>
 上記アミド基を有する化合物としては、例えば(メタ)アクリルアミド、N-メチルメタクリルアミド、メチロール化アクリルアミド、メチロール化メタクリルアミド、ウレイドビニルエーテル、β-ウレイドイソブチルビニルエーテル、ウレイドエチルアクリレート等を挙げることができる。
 本実施形態の樹脂組成物においては、官能基含有化合物を、熱可塑性樹脂100質量部に対して、0.1質量部以上含み、0.2質量部以上含むことが好ましい。前記下限値以上とすることにより、機械的強度をより向上させることが可能となる。また、前記官能基含有化合物の上限値は、熱可塑性樹脂100質量部に対して、15質量部以下であり、12質量部以下であることが好ましく、10質量部以下であることがより好ましく、8質量部以下であることがさらに好ましく、5質量部以下であることがさらに好ましく、4質量部以下であることが一層好ましく、3質量部以下であることがより一層好ましく、2.5質量部以下であることがさらに一層好ましい。前記上限値以下とすることにより、成形機中における滞留等による粘度変化およびゲル化促進をより少なくすることが可能になる。
 本実施形態の樹脂組成物は、官能基含有化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<他の成分>
 本実施形態の樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上記したもの以外に他の成分を含有していてもよい。他成分の例を挙げると、各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせおよび比率で含有されていてもよい。
 具体的には、安定剤、離型剤、顔料、染料、紫外線吸収剤、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。本実施形態の樹脂組成物は、安定剤、離型剤および顔料の少なくとも1種を含むことが好ましい。
 本実施形態の樹脂組成物は、熱可塑性樹脂、再生炭素繊維および官能基含有化合物、ならびに、選択的に配合される他の成分の合計が100質量%となるように調整される。本実施形態の樹脂組成物は、熱可塑性樹脂、再生炭素繊維および官能基含有化合物の合計が樹脂組成物の95質量%以上を占めることが好ましい。また、本実施形態の樹脂組成物は、熱可塑性樹脂、再生炭素繊維、官能基含有化合物、安定剤、離型剤および顔料の合計が樹脂組成物の99質量%以上を占めることが好ましい。
<<安定剤>>
 本実施形態の樹脂組成物は、安定剤を含んでいてもよい。安定剤は、ヒンダードフェノール系化合物、ヒンダードアミン系化合物、リン系化合物、硫黄系安定剤等が例示される。これらの中でも、ヒンダードフェノール系化合物が好ましい。
 安定剤としては、具体的には、特開2018-070722号公報の段落0046~0057の記載、特開2019-056035号公報の段落0030~0037の記載、国際公開第2017/038949号の段落0066~0078の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物は、安定剤を熱可塑性樹脂100質量部に対し、0.01質量部以上含むことが好ましく、0.05質量部以上含むことがより好ましく、0.08質量部以上含むことがさらに好ましい。また、前記安定剤の含有量の上限値は、熱可塑性樹脂100質量部に対し、3質量部以下であることが好ましく、1質量部以下であることがより好ましく、0.5質量部以下であることがさらに好ましく、0.4質量部以下であることが一層好ましい。
 本実施形態の樹脂組成物は、安定剤を1種のみ含んでいても、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<離型剤>>
 本実施形態の樹脂組成物は、離型剤を含むことが好ましい。
 離型剤は、公知の離型剤を広く用いることができ、脂肪族カルボン酸のエステル化物が好ましい。脂肪族カルボン酸のエステル化物は、多価アルコールと、炭素数10~19の脂肪族カルボン酸のエステル化物であることが好ましい。
 離型剤としては、具体的には、特開2018-070722号公報の段落0063~0077の記載、特開2019-123809号公報の段落0090~0098の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物は、離型剤を熱可塑性樹脂100質量部に対し、0.01質量部以上含むことが好ましく、0.08質量部以上含むことがより好ましく、0.2質量部以上含むことがさらに好ましい。また、前記離型剤の含有量の上限値は、熱可塑性樹脂100質量部に対し、5質量部以下であることが好ましく、3質量部以下であることがより好ましく、1質量部以下であることがさらに好ましく、0.8質量部以下であることが一層好ましい。
 樹脂組成物は、離型剤を1種のみ含んでいても、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<<顔料・染料>>
 本実施形態の樹脂組成物は、用途に応じて顔料および/または染料を含んでいてもよい。顔料および染料の種類は、用途に応じて適宜選択すればよい。具体的には、無機顔料(カーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックなど)などの黒色顔料、酸化鉄赤などの赤色顔料、モリブデートオレンジなどの橙色顔料、酸化チタンなどの白色顔料)、有機顔料(黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料など)などが挙げられる。
 本実施形態の樹脂組成物における、染料および顔料の合計量は、熱可塑性樹脂100質量部に対し0.01~5質量部であることが好ましい。
 本実施形態の樹脂組成物は、染料および顔料を1種のみ含んでいても、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<樹脂組成物の物性>
 本実施形態の樹脂組成物は、比重が小さい方が好ましい。具体的には、比重は、2.0以下であることが好ましく、1.8以下であることがより好ましく、1.6以下であることがさらに好ましく、1.4以下であることが一層好ましい。下限値は特に定めるものではないが、熱可塑性樹脂の比重超であることが実際的である。
 本実施形態の樹脂組成物のJIS K 7210に従い、250℃、荷重5.00kgfにて測定したメルトボリュームレート(MVR)が高い方が好ましい。具体的には、前記MVRが、5cm/10min以上であることが好ましく、20cm/10min以上であることがより好ましく、30cm/10min以上であることがさらに好ましく、35cm/10min以上であることが一層好ましい。前記MVRの上限値は特に定めるものではないが、例えば、80cm/10min以下が実際的である。
 本実施形態の樹脂組成物は、4mm厚さのISO多目的試験片に成形したときのISO178に従った曲げ最大強さが高い方が好ましい。具体的には、前記曲げ最大強さが、130MPa以上であることが好ましく、150MPa以上であることがより好ましく、170MPa以上であることがさらに好ましく、175MPa以上であることが一層好ましく、178MPa以上であることがより一層好ましい。また、前記曲げ最大強さの上限は、特に定めるものではないが、例えば、300MPa以下が実際的である。
 本実施形態の樹脂組成物は、4mm厚さのISO多目的試験片に成形したときの曲げ弾性率が高い方が好ましい。具体的には、前記曲げ弾性率が、7500MPa以上であることが好ましく、8000MPa以上であることがより好ましく、8500MPa以上であることがさらに好ましい。また、前記曲げ最大強さの上限は、特に定めるものではないが、例えば、20000MPa以下が実際的である。
 本実施形態の樹脂組成物は、4mm厚さのISO多目的試験片に成形したときのノッチ付きシャルピー衝撃強さが高い方が好ましい。具体的には、前記ノッチ付きシャルピー衝撃強さが、2.0kJ/m以上であるが好ましく、2.5kJ/m以上であることがより好ましく、3.0kJ/m以上であることがさらに好ましい。前記ノッチ付きシャルピー衝撃強さの上限は、特に定めるものではないが、例えば、7.0kJ/m以下であることが実際的である。
 本実施形態の樹脂組成物は、特に、4mm厚さのISO多目的試験片に成形したときのISO178に従った曲げ最大強さが170MPa以上、かつ、シャルピー衝撃強さが3kJ/m以上であることが好ましい。
 本実施形態の樹脂組成物は、さらに、電磁波シールド性が14dB以上であることが好ましい。前記電磁波シールド性の上限は、特に定めるものではないが、30dB以下であることが実際的である。
 上記比重、MVR、曲げ最大強さ、曲げ弾性率、ノッチ付きシャルピー衝撃強さおよび電磁波シールド性は、後述する実施例に記載の方法に従って測定される。
<樹脂組成物の製造方法>
 本実施形態の樹脂組成物は、熱可塑性樹脂を含む樹脂組成物の常法の製法によって製造できる。例えば、本実施形態の樹脂組成物は、熱可塑性樹脂100質量部と、所定の再生炭素繊維10~70質量部と、官能基含有化合物0.1~15質量部(好ましくは0.1~5質量部)とを押出機に投入し、溶融混練することを含む方法によって製造される。再生炭素繊維は、炭素繊維の表面に表面処理剤や収束剤が付着していない場合があるが、本実施形態ではエポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、エポキシ樹脂由来の残渣を5質量%以上(好ましくは10質量%以上)の割合で含む再生炭素繊維と官能基含有化合物を用いることにより、樹脂由来の残渣が表面処理剤や収束剤等の役割を果たし、官能基含有化合物が再生炭素繊維の表面処理剤等の役割を果たし、押出機に投入しての溶融混練が可能になる。そのため、本実施形態の樹脂組成物から形成されたペレットとすることができる。
 押出機には、各成分をあらかじめ混合して一度に供給してもよいし、各成分を予め混合することなく、ないしはその一部のみを予め混合し、フィーダーを用いて押出機に供給してもよい。押出機は、一軸押出機であっても、二軸押出機であってもよい。また、染料や顔料(例えば、カーボンブラック)の一部の成分を樹脂成分と溶融混練してマスターバッチを調製し、次いでこれに残りの成分を配合して溶融混練してもよい。
 なお、再生炭素繊維は、押出機のシリンダー途中のサイドフィーダーから供給することも好ましい。サイドフィードすることにより、得られるペレットや成形品中の再生炭素繊維の長さを長く保つことができ、得られる成形品の機械的強度、特に、曲げ最大強さを効果的に高くすることができる。
 すなわち、本実施形態の樹脂組成物の製造方法の好ましい一例は、熱可塑性樹脂100質量部に対して、再生炭素繊維10~70質量部と、官能基含有化合物0.1~15質量部とを含み、前記再生炭素繊維が、エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、前記エポキシ樹脂由来の残渣を5質量%以上の割合で含む樹脂組成物の製造方法であり、前記再生炭素繊維を、押出機のシリンダー途中のサイドフィーダーから供給することを含む方法である。ここでの脂組成物は、上述の本実施形態の樹脂組成物であることが好ましい。
 溶融混練に際しての加熱温度は、通常、220~350℃の範囲から適宜選ぶことができる。
 本実施形態の樹脂組成物の一例はペレットである。本実施形態においては、ペレット中の再生炭素繊維の数平均繊維長が100μm以上であることが好ましく、130μm以上であることがより好ましく、180μm以上であることがさらに好ましく、210μm以上であることが一層好ましい。前記ペレット中の再生炭素繊維の数平均繊維長は、通常、500μmであり、450μm以下、400μm以下、350μm以下、320μm以下である場合も用途に応じて十分に適用可能である。
 また、前記樹脂組成物を4mm厚さのISO試験片に成形したときの成形品中の再生炭素繊維の数平均繊維長も上記範囲を満たすことが好ましい。
 本実施形態の成形品は、本実施形態の樹脂組成物または本実施形態のペレットから形成される。
 本実施形態の成形品おいては、成形品(例えば、射出成形品)中の再生炭素繊維の数平均繊維長が100μm以上であることが好ましく、130μm以上であることがより好ましく、180μm以上であることがさらに好ましく、210μm以上であることが一層好ましい。前記成形品中の再生炭素繊維の数平均繊維長は、通常、500μmであり、450μm以下、400μm以下、350μm以下、320μm以下である場合も用途に応じて十分に適用可能である。
 本実施形態の成形品は、機械的強度および電磁波シールド性が良好であるため、種々の用途、例えば、各種保存容器、電気・電子機器部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、車両機構部品、車載用筐体部品などに適用でき、車載用筐体部品に好ましく用いられる。
 また、本実施形態の成形品は、流動性に優れ(樹脂が流動しやすく)、金型内での再生炭素繊維を効率的に分散させることができるので、射出成形品に適している。
<成形品の製造方法>
 成形品の製造方法は、特に限定されず、熱可塑性樹脂を含む樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等が挙げられ、中でも射出成形が好ましい。
 射出成形の詳細は、特許第6183822号公報の段落0113~0116の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
1.原料
 使用した原料は、下記表1に示した。
Figure JPOXMLDOC01-appb-T000001
<残渣の量>
 表1における再生炭素繊維の残渣は、再生炭素繊維中の炭化物の量を示している。すなわち、本発明で用いる再生炭素繊維は、エポキシ樹脂と炭素繊維の複合物の焼成物であるため、再生炭素繊維にはエポキシ樹脂由来の残渣(炭化物)が含まれている。樹脂残渣の量は、加熱処理前の炭素繊維強化樹脂に含まれる炭素繊維質量を炭素繊維含有率から算出し、式(1)から求めた値である。単位は、質量%で示している。
(B-A × X)/(B) × 100  式(1)
 A:加熱処理前の炭素繊維強化樹脂の質量
 B:加熱処理物の質量
 X:加熱処理前の炭素繊維強化樹脂の炭素繊維含有率
<官能基当量の測定>
 官能基当量は、JIS K 7236に従って測定した。単位は、eq/gで示した。
2.実施例1~6、比較例1~6
<樹脂組成物(ペレット)の製造>
 表2または表3に示すように、再生炭素繊維およびバージン炭素繊維以外の成分を撹拌混合した。表2および表3の各成分は質量部表記である。得られた混合物を、1ベントを備えた2軸押出機のメインホッパーに投入し、再生炭素繊維およびバージン炭素繊維はサイドフィーダーより供給し、熱可塑性樹脂の溶融温度の温度条件にて、スクリュー回転数250rpm、吐出量200kg/時間の条件で混練してストランド状に押し出し、樹脂組成物のペレットを得た。
 尚、比較例3は、サイドフィーダーによる再生炭素繊維の安定投入が不可能であったため、所定の樹脂組成物(ペレット)を得ることができなかった。
<生産性>
 スクリュー回転数250rpm、吐出量200kg/時間の条件において、樹脂組成物のペレットが得られたか否かを以て生産性の判断を行った。5人の専門家が行い、多数決で判断した。
A:樹脂組成物のペレットを得ることができた
B:上記以外、例えば、生産上の問題により、樹脂組成物のペレットを得ることができなかった等
<比重>
 ISO1183に準拠し、比重を測定した。
<外観>
 上記で得られたペレットを用い、射出成形機(日精樹脂工業社製「NEX-80」)にて、シリンダー設定温度260℃、金型温度80℃、射出時間1.0秒で射出成形し、100mm×100mm×2mm厚の平板状試験片を得た。この試験片の光沢性(グロス)をグロスメーター(日本電色工業社製「VG-7000」)により、入反射角60度での反射率の条件で測定し、以下の判断基準にて判定を行った。
S:グロス50以上
A:グロス50未満
<MVR(250℃,5.00kgf)、流動性判定>
 メルトボリュームレート(MVR)は、ISO1133に従い、250℃、荷重5.00kgfにて測定した。単位は、cm/10minで示した。
 また、流動性の判定は以下のとおり行った。
A:MVRが25cm/10min以上
B:MVRが5cm/10min以上25cm/10min未満
C:MVRが5cm/10min未満
<曲げ最大強さ、曲げ弾性率>
 上記で得られた樹脂組成物のペレットを120℃で7時間乾燥させた後、射出成形機(日本製鋼所社製「J-85AD-60H」)を用いて、ISO20753、ISO294-1に従って4mm厚さのISO多目的試験片を射出成形した。
 上記で得られたISO曲げ試験片(厚さ4mm)をISO178に従って曲げ最大強さおよび曲げ弾性率を測定した(単位:MPa)。
<ノッチ付きシャルピー衝撃強さ>
 上記で得られたISO多目的試験片を用い、ISO179-1およびISO179-2に従い、23℃におけるノッチ付きシャルピー衝撃強さの測定を行った。単位は、kJ/mで示した。
<機械的強度判定>
 上記曲げ最大強さに基づき、機械的強度を以下の通り判定した。
A:曲げ最大強さが170MPa以上
B:上記A以外
<電磁波シールド性@100MHz>
 上記で得られたペレットを用い、射出成形機(芝浦機械社製「EC-160NII」)にて、シリンダー設定温度260℃、金型温度80℃で射出成形し、150mm×150mm×2mm厚の平板状試験片を得た。得られた試験片についてKEC(関西電子工業振興センター)法準拠の電磁波シールド 性測定装置にて100MHzにおける電磁波シールド性(単位:dB)を測定した。
A:電磁波シールド性が14dB以上
B:電磁波シールド性が14dB未満
<炭素繊維長>
 上記記載で得られたペレット約0.5g、またはISO多目的試験片の場合は試験片中央部から約0.5gのサンプルを切り出し、500℃の電気炉(東洋製作所社製「電気マッフル炉KM-28」)内で3時間灰化し、熱可塑性樹脂成分のみを燃焼させた後、炭素繊維を折損しないようにやさしくピンセットで中性表面活性剤水溶液中に広げ、分散させた。分散水溶液を、ピペットを用いてスライドグラス上に移し、顕微鏡で20倍と40倍の倍率で写真撮影を行った。得られた写真を、画像解析ソフト(「Win-Loof」)を用い、1000~2000本の炭素繊維について測定を行い、繊維長の重量平均値を炭素繊維長とした。
<環境適性>
 再生原料を使用しているか否かを以て環境適性の判断を行った。
A:再生原料を使用している。
B:再生原料を使用していない。
比較例7
 表3に示す全成分(バージン炭素繊維を含む)を撹拌混合した。得られた混合物を、1ベントを備えた2軸押出機のメインホッパーに投入し熱可塑性樹脂の溶融温度の温度条件にて、スクリュー回転数250rpm、吐出量200kg/時間の条件で混練してストランド状に押し出し、樹脂組成物のペレットを得た。
 他は、実施例1と同様に行った。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記結果から明らかなとおり、本発明の樹脂組成物は、生産性に優れ、かつ、機械的強度が高いものであった(実施例1~6)。さらに、本発明の樹脂組成物は、低い比重、優れた外観、優れた流動性、優れた電磁波シールド性、および、優れた環境適性を達成していた。特に、バージン炭素繊維を用いた比較例4に近い優れた性能を有していた。
 これに対し、再生炭素繊維としてエポキシ樹脂と炭素繊維の複合物の焼成物でないものを用いた場合(比較例1)、機械的強度が劣っていた。さらに、電磁波シールド性も劣っていた。官能基含有化合物を配合しなかった場合(比較例2)、機械的強度が劣っていた。再生炭素繊維として、残渣を含まないものを用いた場合(比較例3)、生産性に劣っていた。再生炭素繊維の含有量が熱可塑性樹脂100質量部に対して、再生炭素繊維10質量部未満の場合(比較例5)、機械的強度が劣っていた。再生炭素繊維の含有量が熱可塑性樹脂100質量部に対して、再生炭素繊維70質量部超の場合(比較例6)、生産性が劣っていた。実施例6において、再生炭素繊維を等量のバージン炭素繊維に変更し、原料を一括添加した場合(比較例7)、曲げ特性が格段に劣っていた。この背景には、ペレットや成形品中の炭素繊維長が短くなってしまっていることが考えられた。

Claims (21)

  1. 熱可塑性樹脂100質量部に対して、
    再生炭素繊維10~70質量部と、
    官能基含有化合物0.1~15質量部とを含み、
    前記再生炭素繊維が、エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、前記エポキシ樹脂由来の残渣を5質量%以上の割合で含み、
    4mm厚さのISO多目的試験片に成形したときのISO178に従った曲げ最大強さが130MPa以上である、
    樹脂組成物。
  2. 前記官能基含有化合物の含有量が、熱可塑性樹脂100質量部に対して、0.1~5質量部である、請求項1に記載の樹脂組成物。
  3. 前記再生炭素繊維が、エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、前記エポキシ樹脂由来の残渣を10質量%以上の割合で含む、
    請求項1または2に記載の樹脂組成物。
  4. 前記官能基含有化合物の含有量が、熱可塑性樹脂100質量部に対して、0.1~5質量部であり、
    前記再生炭素繊維が、エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、前記エポキシ樹脂由来の残渣を10質量%以上の割合で含み、
    4mm厚さのISO多目的試験片に成形したときのISO178に従った曲げ最大強さが170MPa以上である、請求項1に記載の樹脂組成物。
  5. 前記再生炭素繊維が、前記エポキシ樹脂由来の残渣を5質量%以上30質量%以下の割合で含む、請求項1~4のいずれか1項に記載の樹脂組成物。
  6. 前記熱可塑性樹脂が、ポリエステル樹脂、ポリカーボネート樹脂およびスチレン系樹脂の少なくとも1種を含む、請求項1~5のいずれか1項に記載の樹脂組成物。
  7. 前記熱可塑性樹脂が、ポリブチレンテレフタレート樹脂を含む、請求項1~6のいずれか1項に記載の樹脂組成物。
  8. 前記熱可塑性樹脂の30~100質量%がポリブチレンテレフタレート樹脂である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9. 前記官能基含有化合物が、エポキシ基を有する化合物、カルボジイミド化合物、オキサゾリン基を有する化合物、オキサジン基を有する化合物、カルボキシ基を有する化合物、およびアミド基を有する化合物からなる群から選ばれる少なくとも1種を含む、請求項1~8のいずれか1項に記載の樹脂組成物。
  10. 前記官能基含有化合物がエポキシ基を有する化合物を含む、請求項1~9のいずれか1項に記載の樹脂組成物。
  11. 前記官能基含有化合物において、[重量平均分子量]/[官能基当量(官能基当量の単位:g/eq)]が1~30である、請求項1~10のいずれか1項に記載の樹脂組成物。
  12. 前記官能基含有化合物において、[重量平均分子量]/[官能基当量(官能基当量の単位:g/eq)]が1~10である、請求項1~11のいずれか1項に記載の樹脂組成物。
  13. 前記再生炭素繊維が、前記エポキシ樹脂由来の残渣を25質量%以下の割合で含む、請求項1~12のいずれか1項に記載の樹脂組成物。
  14. 請求項1~13のいずれか1項に記載の樹脂組成物から形成されたペレット。
  15. 前記ペレット中の再生炭素繊維の数平均繊維長が100~500μmである、請求項14に記載のペレット。
  16. 請求項1~13のいずれか1項に記載の樹脂組成物、あるいは、請求項14または15に記載のペレットから形成された成形品。
  17. 射出成形品である、請求項16に記載の成形品。
  18. 前記成形品中の再生炭素繊維の数平均繊維長が100~500μmである、請求項17に記載の成形品。
  19. 車載用筐体部品である、請求項16~18のいずれか1項に記載の成形品。
  20. 熱可塑性樹脂100質量部に対して、
    再生炭素繊維10~70質量部と、
    官能基含有化合物0.1~15質量部とを含み、
    前記再生炭素繊維が、
    エポキシ樹脂と炭素繊維の複合物の焼成物であり、かつ、
    前記エポキシ樹脂由来の残渣を5質量%以上の割合で含む樹脂組成物の製造方法であり、
    前記再生炭素繊維を、押出機のシリンダー途中のサイドフィーダーから供給することを含む、
    樹脂組成物の製造方法。
  21. 前記樹脂組成物が、請求項1~13のいずれか1項に記載の樹脂組成物である、請求項20に記載の樹脂組成物の製造方法。
PCT/JP2021/045107 2020-12-09 2021-12-08 樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法 WO2022124332A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022515600A JP7212816B2 (ja) 2020-12-09 2021-12-08 樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法
EP21903431.1A EP4261250A4 (en) 2020-12-09 2021-12-08 RESIN COMPOSITION, PELLET, MOLDED BODY AND METHOD FOR PRODUCING THE RESIN COMPOSITION
CN202180082039.0A CN116568744A (zh) 2020-12-09 2021-12-08 树脂组合物、粒料、成型品和树脂组合物的制造方法
US18/327,471 US20230303826A1 (en) 2020-12-09 2023-06-01 Resin composition, pellet and molded article, and process for producing resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-204357 2020-12-09
JP2020204357 2020-12-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/327,471 Continuation US20230303826A1 (en) 2020-12-09 2023-06-01 Resin composition, pellet and molded article, and process for producing resin composition

Publications (1)

Publication Number Publication Date
WO2022124332A1 true WO2022124332A1 (ja) 2022-06-16

Family

ID=81973297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045107 WO2022124332A1 (ja) 2020-12-09 2021-12-08 樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法

Country Status (5)

Country Link
US (1) US20230303826A1 (ja)
EP (1) EP4261250A4 (ja)
JP (1) JP7212816B2 (ja)
CN (1) CN116568744A (ja)
WO (1) WO2022124332A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151667A1 (en) * 2020-05-12 2023-03-22 Mitsubishi Engineering-Plastics Corporation Composition, pellet, molded product and composition production method
WO2023085297A1 (ja) * 2021-11-10 2023-05-19 三菱エンジニアリングプラスチックス株式会社 ペレット、成形品、および、ペレットの製造方法
WO2024009848A1 (ja) * 2022-07-04 2024-01-11 三菱ケミカル株式会社 樹脂組成物、ペレット、および、成形品

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109056A (ja) 1975-03-20 1976-09-27 Sumitomo Bakelite Co Taimamoseiseikeizairyono seizohoho
JP2016041800A (ja) 2014-08-18 2016-03-31 エフテックス有限会社 炭素繊維強化ポリエステル樹脂およびその射出成型体の製造方法
JP2017002125A (ja) * 2015-06-05 2017-01-05 東レ株式会社 リサイクル炭素繊維束
WO2017038949A1 (ja) 2015-09-04 2017-03-09 三菱化学株式会社 ポリエステル樹脂及び該ポリエステル樹脂の製造方法並びにポリエステル樹脂組成物
JP6183822B1 (ja) 2016-02-25 2017-08-23 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
JP2018058947A (ja) * 2016-10-03 2018-04-12 Jsr株式会社 繊維強化樹脂用組成物、繊維強化樹脂及び成形体
JP2018070722A (ja) 2016-10-27 2018-05-10 三菱エンジニアリングプラスチックス株式会社 車両内装部品用ポリブチレンテレフタレート樹脂組成物
WO2018101022A1 (ja) * 2016-11-29 2018-06-07 Jsr株式会社 繊維強化樹脂用組成物及びその製造方法、繊維強化樹脂、並びに成形体
JP2018185971A (ja) * 2017-04-26 2018-11-22 国立大学法人岐阜大学 直接炭素燃料電池
WO2018212016A1 (ja) 2017-05-17 2018-11-22 株式会社新菱 再生炭素繊維束、再生炭素繊維、再生炭素繊維ミルドの製造方法および再生炭素繊維束の製造装置、炭素繊維強化樹脂の製造方法、ならびに再生炭素繊維束
JP2019056035A (ja) 2017-09-20 2019-04-11 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物の製造方法
JP2019123809A (ja) 2018-01-17 2019-07-25 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形品
JP2019136932A (ja) * 2018-02-09 2019-08-22 アイカーボン株式会社 炭素繊維及び炭素繊維強化樹脂組成物の製造方法
JP2019155634A (ja) * 2018-03-08 2019-09-19 三菱重工業株式会社 複合材中間材料の製造方法
JP2019163354A (ja) * 2018-03-19 2019-09-26 高六商事株式会社 樹脂組成物、樹脂組成物の製造方法および成形体
JP2020062573A (ja) * 2018-10-15 2020-04-23 株式会社新菱 再生強化繊維の製造方法および製造装置
JP2022015366A (ja) * 2020-07-09 2022-01-21 トヨタ自動車株式会社 炭素繊維をリサイクルする方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958612B (zh) * 2011-11-29 2016-08-24 东丽株式会社 碳纤维增强热塑性树脂组合物、该组合物的粒料和成型品
KR20160070062A (ko) * 2013-10-11 2016-06-17 도레이 카부시키가이샤 탄소 섬유 강화 수지 조성물, 펠릿, 성형품 및 전자 기기 하우징
TW201631000A (zh) * 2014-10-21 2016-09-01 Toray Industries 纖維強化熱塑性樹脂成形品及纖維強化熱塑性樹脂成形材料
WO2018074066A1 (ja) * 2016-10-21 2018-04-26 住化ポリカーボネート株式会社 繊維強化ポリカーボネート樹脂組成物
JP2022062573A (ja) 2020-10-08 2022-04-20 太陽インキ製造株式会社 感光性積層樹脂構造体、ドライフィルム、硬化物および電子部品

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109056A (ja) 1975-03-20 1976-09-27 Sumitomo Bakelite Co Taimamoseiseikeizairyono seizohoho
JP2016041800A (ja) 2014-08-18 2016-03-31 エフテックス有限会社 炭素繊維強化ポリエステル樹脂およびその射出成型体の製造方法
JP2017002125A (ja) * 2015-06-05 2017-01-05 東レ株式会社 リサイクル炭素繊維束
WO2017038949A1 (ja) 2015-09-04 2017-03-09 三菱化学株式会社 ポリエステル樹脂及び該ポリエステル樹脂の製造方法並びにポリエステル樹脂組成物
JP6183822B1 (ja) 2016-02-25 2017-08-23 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
JP2018058947A (ja) * 2016-10-03 2018-04-12 Jsr株式会社 繊維強化樹脂用組成物、繊維強化樹脂及び成形体
JP2018070722A (ja) 2016-10-27 2018-05-10 三菱エンジニアリングプラスチックス株式会社 車両内装部品用ポリブチレンテレフタレート樹脂組成物
WO2018101022A1 (ja) * 2016-11-29 2018-06-07 Jsr株式会社 繊維強化樹脂用組成物及びその製造方法、繊維強化樹脂、並びに成形体
JP2018185971A (ja) * 2017-04-26 2018-11-22 国立大学法人岐阜大学 直接炭素燃料電池
WO2018212016A1 (ja) 2017-05-17 2018-11-22 株式会社新菱 再生炭素繊維束、再生炭素繊維、再生炭素繊維ミルドの製造方法および再生炭素繊維束の製造装置、炭素繊維強化樹脂の製造方法、ならびに再生炭素繊維束
JP2019056035A (ja) 2017-09-20 2019-04-11 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物の製造方法
JP2019123809A (ja) 2018-01-17 2019-07-25 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形品
JP2019136932A (ja) * 2018-02-09 2019-08-22 アイカーボン株式会社 炭素繊維及び炭素繊維強化樹脂組成物の製造方法
JP2019155634A (ja) * 2018-03-08 2019-09-19 三菱重工業株式会社 複合材中間材料の製造方法
JP2019163354A (ja) * 2018-03-19 2019-09-26 高六商事株式会社 樹脂組成物、樹脂組成物の製造方法および成形体
JP2020062573A (ja) * 2018-10-15 2020-04-23 株式会社新菱 再生強化繊維の製造方法および製造装置
JP2022015366A (ja) * 2020-07-09 2022-01-21 トヨタ自動車株式会社 炭素繊維をリサイクルする方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261250A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151667A1 (en) * 2020-05-12 2023-03-22 Mitsubishi Engineering-Plastics Corporation Composition, pellet, molded product and composition production method
EP4151667A4 (en) * 2020-05-12 2024-05-15 Mitsubishi Chem Corp COMPOSITION, PELLET, MOLDED PRODUCT AND METHOD FOR PRODUCING A COMPOSITION
WO2023085297A1 (ja) * 2021-11-10 2023-05-19 三菱エンジニアリングプラスチックス株式会社 ペレット、成形品、および、ペレットの製造方法
WO2024009848A1 (ja) * 2022-07-04 2024-01-11 三菱ケミカル株式会社 樹脂組成物、ペレット、および、成形品

Also Published As

Publication number Publication date
JP7212816B2 (ja) 2023-01-25
JPWO2022124332A1 (ja) 2022-06-16
US20230303826A1 (en) 2023-09-28
EP4261250A4 (en) 2024-04-24
EP4261250A1 (en) 2023-10-18
CN116568744A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2022124332A1 (ja) 樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法
KR101958884B1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
JP5581606B2 (ja) 成形性の優れた樹脂組成物、及びその成形体
JP2010105226A (ja) 樹脂成形体
JP2006104363A (ja) ポリブチレンテレフタレート樹脂組成物
KR20150013579A (ko) 유동성이 우수한 폴리카보네이트 수지 조성물, 및 그 성형체
KR102252550B1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
JP7288752B2 (ja) 熱可塑性樹脂組成物及び成形体
CN116964149A (zh) 聚酯树脂组合物及利用热烫印箔实施装饰后的成型品
JP6511852B2 (ja) バリア性に優れた熱可塑性樹脂組成物
WO2020111011A1 (ja) 熱可塑性樹脂組成物及び成形体
CN109641993B (zh) 环氧改性乙烯基系共聚物、包含该共聚物的热塑性树脂组合物及其成型品
KR20220094807A (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
EP3135728B1 (en) Thermoplastic resin composition and molded article comprising the same
CN113646375A (zh) 强化热塑性聚酯树脂组合物
JP2024039828A (ja) 樹脂組成物、ペレット、および、成形体
JP7448740B2 (ja) 樹脂組成物および成形品
JP3320588B2 (ja) ポリエステル樹脂組成物
KR102351503B1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
JP7288751B2 (ja) 熱可塑性樹脂組成物及び成形体
KR100831083B1 (ko) 고용융장력을 가지는 폴리에스테르계 열가소성 수지 조성물
JPH04146956A (ja) ポリブチレンテレフタレート樹脂組成物
JP2023037520A (ja) 樹脂組成物および成形品
WO2023090374A1 (ja) 樹脂組成物、ペレット、および、成形品
JPH107894A (ja) ポリエステル樹脂製箱形状成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022515600

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180082039.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903431

Country of ref document: EP

Effective date: 20230710