WO2023085297A1 - ペレット、成形品、および、ペレットの製造方法 - Google Patents

ペレット、成形品、および、ペレットの製造方法 Download PDF

Info

Publication number
WO2023085297A1
WO2023085297A1 PCT/JP2022/041639 JP2022041639W WO2023085297A1 WO 2023085297 A1 WO2023085297 A1 WO 2023085297A1 JP 2022041639 W JP2022041639 W JP 2022041639W WO 2023085297 A1 WO2023085297 A1 WO 2023085297A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
polycarbonate resin
carbon fiber
pellets
Prior art date
Application number
PCT/JP2022/041639
Other languages
English (en)
French (fr)
Inventor
象一 高島
涼 佐坂
Original Assignee
三菱エンジニアリングプラスチックス株式会社
株式会社新菱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社, 株式会社新菱 filed Critical 三菱エンジニアリングプラスチックス株式会社
Publication of WO2023085297A1 publication Critical patent/WO2023085297A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to pellets, molded products, and pellet manufacturing methods. In particular, it relates to pellets that make effective use of recycled carbon fibers.
  • Polycarbonate resins are widely used in many fields as resins having excellent heat resistance, impact resistance, transparency, and the like. Among them, polycarbonate resin compositions reinforced with inorganic fillers such as glass fibers and carbon fibers exhibit various excellent performances such as dimensional stability, mechanical strength, heat resistance, and electrical properties. It is widely used in industrial fields such as electronic parts (Patent Document 1). On the other hand, from the viewpoint of effective utilization of limited resources, recycling of carbon fibers is under consideration. As a recycled carbon fiber, for example, the one described in Patent Document 2 is known.
  • An object of the present invention is to solve such problems, and a molded article containing a polycarbonate resin and recycled carbon fibers, which has a mechanical strength close to that obtained when the same amount of virgin carbon fibers is blended. It is an object of the present invention to provide a pellet, a molded article, and a method for producing the pellet that can provide a molded article having excellent flame retardancy.
  • the present inventors conducted studies and found that by using a metal salt-based flame retardant as a flame retardant, it is possible to effectively suppress a decrease in mechanical strength even when recycled carbon fibers are used, and furthermore, , and found that excellent flame retardancy can be achieved, leading to the completion of the present invention.
  • the above problems have been solved by the following means. ⁇ 1> Formed from a composition containing 5 to 65 parts by mass of recycled carbon fiber, which is a heated carbon fiber reinforced resin, and 0.01 to 0.30 parts by mass of a metal salt-based flame retardant per 100 parts by mass of polycarbonate resin. pellets.
  • ⁇ 4> The pellet according to any one of ⁇ 1> to ⁇ 3>, wherein the metal salt-based flame retardant contains an organic sulfonic acid metal salt.
  • ⁇ 5> The pellet according to any one of ⁇ 1> to ⁇ 4>, wherein the polycarbonate resin contains a recycled polycarbonate resin.
  • ⁇ 6> The pellet according to any one of ⁇ 1> to ⁇ 5>, further comprising 0.5 to 30 parts by mass of a flow modifier with respect to 100 parts by mass of the polycarbonate resin.
  • ⁇ 7> Any one of ⁇ 1> to ⁇ 6>, further comprising 0.1 to 10 parts by mass in total of at least one selected from a mold release agent and carbon black with respect to 100 parts by mass of the polycarbonate resin Pellets according to one.
  • the amount of terminal hydroxyl groups of the polycarbonate resin is 150 to 800 ppm, Using an ISO multi-purpose test piece molded from the pellets, the bending strength measured according to ISO 178 is the same amount of the polycarbonate resin contained in the pellets.
  • the metal salt-based flame retardant contains an organic sulfonic acid metal salt, wherein the polycarbonate resin comprises a recycled polycarbonate resin; Further containing 0.5 to 30 parts by mass of a flow modifier with respect to 100 parts by mass of the polycarbonate resin,
  • a molded article containing polycarbonate resin and recycled carbon fiber which has a mechanical strength close to that of the case where the same amount of virgin carbon fiber is blended, and which is excellent in flame retardancy. It has become possible to provide efficient pellets, molded products, and pellet manufacturing methods.
  • the pellet of the present embodiment contains 5 to 65 parts by mass of recycled carbon fiber, which is a heated carbon fiber reinforced resin, and 0.01 to 0.30 parts by mass of a metal salt-based flame retardant per 100 parts by mass of polycarbonate resin.
  • a molded article formed from such pellets has a mechanical strength close to that obtained when the same amount of virgin carbon fiber is blended, and is a pellet capable of providing a molded article excellent in flame retardancy. In particular, high flexural strength retention can be achieved despite the use of recycled carbon fibers.
  • the addition of the metal salt flame retardant significantly improves the impact resistance of the molded article. The reason for this is that recycled carbon fibers typically have no or very little sizing agent present on their surface.
  • a metal salt-based flame retardant when added as a flame retardant, it is speculated that the metal salt-based flame retardant functions as a sizing agent and improves the retention rate of bending strength and impact resistance. . Adding a flame retardant to improve these mechanical properties is a surprising effect. Furthermore, by using a polycarbonate resin having a terminal hydroxyl group content of 150 to 800 ppm, a higher flexural strength retention could be achieved. The reason for this is presumed to be that the adhesion between the carbon fiber surface and the polycarbonate resin is improved and the mechanical strength is improved by adjusting the amount of terminal hydroxyl groups of the polycarbonate resin to 150 to 800 ppm. The details of the pellets of this embodiment will be described below.
  • the composition used in this embodiment contains a polycarbonate resin.
  • the type of polycarbonate resin is not particularly defined, but usually the main component is an aromatic polycarbonate resin, more preferably a bisphenol-type polycarbonate resin as the main component, and the main component is a bisphenol A-type polycarbonate. More preferably, it is a resin.
  • the main component means a component that accounts for 80% by mass or more (preferably 90% by mass or more, more preferably 95% by mass or more) of the polycarbonate resin contained in the composition.
  • the polycarbonate resin may be a polycarbonate resin obtained by a melt polymerization method or a polycarbonate resin obtained by an interfacial polymerization method, preferably a polycarbonate resin obtained by a melt polymerization method. It may also be a mixture of a polycarbonate resin obtained by a melt polymerization method and a polycarbonate resin obtained by an interfacial polymerization method. More specifically, the polycarbonate resin used in the present embodiment is preferably an aromatic polycarbonate resin, and can be produced, for example, from an aromatic dihydroxy compound and a carbonic acid diester by a melt transesterification method.
  • Aromatic dihydroxy compounds are, for example, bis(4-hydroxydiphenyl)methane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 2,2 -bis(4-hydroxy-3-t-butylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dibromo phenyl)propane, 4,4-bis(4-hydroxyphenyl)heptane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 4,4'-dihydroxybiphenyl, 3,3',5,5'-tetramethyl -4,4'-dihydroxybiphenyl, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)sulfide, bis(4-hydroxyphenyl)ether, bis(4-hydroxyphenyl)ketone
  • Carbonic acid diesters include, for example, diphenyl carbonate, substituted diphenyl carbonate typified by ditolyl carbonate, dialkyl carbonate typified by dimethyl carbonate, diethyl carbonate, di-t-butyl carbonate and the like. These carbonic acid diesters can be used alone or in combination of two or more. Among these, diphenyl carbonate and substituted diphenyl carbonate are preferred. In addition, the above carbonic acid diester may be substituted with a dicarboxylic acid or a dicarboxylic acid ester in an amount of preferably 50 mol % or less, more preferably 30 mol % or less.
  • dicarboxylic acids or dicarboxylic acid esters include terephthalic acid, isophthalic acid, diphenyl terephthalate, diphenyl isophthalate, and the like. When substituted with such a dicarboxylic acid or dicarboxylic acid ester, a polyester carbonate resin is obtained.
  • carbonic acid diesters including the above-mentioned substituted dicarboxylic acids or esters of dicarboxylic acids
  • carbonic acid diesters are usually used in excess relative to the aromatic dihydroxy compound. That is, it is used in a molar amount within the range of 1.001 to 1.3 times, preferably 1.01 to 1.2 times that of the aromatic dihydroxy compound.
  • the polycarbonate resin used in this embodiment preferably has a terminal hydroxyl group content of 150 to 800 ppm.
  • a polycarbonate resin with a terminal hydroxyl group amount of 150 to 800 ppm it is possible to improve the adhesion to the surface of the recycled carbon fiber, and the mechanical strength is compared with the case where a polycarbonate resin with a terminal hydroxyl group amount of less than 150 ppm is blended. so that it can be held higher. In particular, it becomes possible to maintain high bending strength.
  • the amount of terminal hydroxyl groups is preferably 200 ppm or more, more preferably 250 ppm or more, still more preferably 300 ppm or more, still more preferably 350 ppm or more, and even more preferably 400 ppm or more.
  • the content By setting the content to the above lower limit or more, the adhesion between the surface of the carbon fiber and the polycarbonate resin is improved, and the reaction rate of transesterification is increased, making it easier to obtain a polycarbonate resin having a desired molecular weight. It tends to be possible to reduce the residual amount of the carbonate ester in the resin, and to more effectively suppress the odor during molding and molding.
  • the amount of terminal hydroxyl groups is preferably 750 ppm or less, more preferably 700 ppm or less, still more preferably 650 ppm or less, even more preferably 640 ppm or less, and may be 610 ppm or less.
  • the thermal stability of the polycarbonate resin tends to be further improved.
  • the amount of terminal hydroxyl groups is measured according to the description of Examples described later.
  • the composition used in the present embodiment contains two or more kinds of polycarbonate resins, it is the amount of terminal hydroxyl groups of the polycarbonate resin mixture.
  • JP-A-2003-026911 For details of the polycarbonate resin having a terminal hydroxyl group content of 150 to 800 ppm, the description of JP-A-2003-026911 can be referred to, the content of which is incorporated herein.
  • the polycarbonate resin used in the present embodiment preferably has a melt volume rate (MVR) of 1 cm 3 /10 min or more, preferably 5 cm 3 /10 min or more. more preferably 8 cm 3 /10 min or more, preferably 40 cm 3 /10 min or less, and more preferably 30 cm 3 /10 min or less.
  • MVR melt volume rate
  • the viscosity-average molecular weight of the polycarbonate resin used in the present embodiment is preferably 5,000 or more, more preferably 10,000 or more, and 14,000 or more. More preferably, it is 50,000 or less.
  • the viscosity average molecular weight of the polycarbonate resin is the viscosity average molecular weight [Mv] converted from the solution viscosity measured at 25° C. using methylene chloride as a solvent.
  • the polycarbonate resin used in this embodiment may be a recycled polycarbonate resin.
  • recycled polycarbonate resin those derived from bottles, discs, pachinko machines, sheets, semiconductor transport containers, and the like are used.
  • the recycled polycarbonate resin is a recycled aromatic polycarbonate resin.
  • the content of the polycarbonate resin in the composition used in this embodiment is preferably 60 to 95% by mass. Further, the content of the polycarbonate resin in the resin component contained in the composition used in the present embodiment is preferably 90% by mass or more, more preferably 95% by mass or more, and 97% by mass or more. is more preferable, and 99% by mass or more is even more preferable.
  • the composition used in the present embodiment may contain only one type of polycarbonate resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the composition used in this embodiment contains 5 to 65 parts by mass of recycled carbon fiber, which is a heated carbon fiber reinforced resin, per 100 parts by mass of polycarbonate resin.
  • recycled carbon fibers generally do not substantially contain treatment agents such as surface treatment agents and sizing agents, sufficient melt-kneading with polycarbonate resin may be difficult.
  • the char which is the residue derived from the resin, plays a role like a treatment agent for the carbon fiber, and is stable with the polycarbonate resin.
  • recycled carbon fiber refers to, for example, carbon fiber recovered from used carbon fiber reinforced resin (aircraft, vehicles, electric/electronic devices, etc.) and carbon fiber reinforced resin generated from the manufacturing process of carbon fiber reinforced resin. Carbon fiber recovered from cut pieces such as intermediate products (prepreg). In contrast, virgin carbon fiber is generally new carbon fiber that is not recycled carbon fiber, such as those sold as carbon fiber.
  • a heated carbon fiber reinforced resin is used as the recycled carbon fiber.
  • the resin becomes a carbide and exists on the surface of the carbon fiber.
  • the carbon fiber reinforced resin in this embodiment contains carbon fiber and matrix resin.
  • the matrix resin may be a thermosetting resin or a thermoplastic resin.
  • the thermosetting resin may be uncured or cured.
  • Thermosetting resins include epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, cyanate resins, polyimide resins, and the like.
  • thermoplastic resins include polyamides, polyolefins, polyesters, polycarbonates, acrylic resins, acrylonitrile-butadiene-styrene copolymers, polyether ether ketones, polyphenylene sulfides and the like.
  • the matrix resin may contain additives as necessary. Additives include curing agents, curing aids, internal release agents, antioxidants, light stabilizers, ultraviolet absorbers, colorants, and the like.
  • the heating temperature of the carbon fiber reinforced resin is not particularly defined as long as it is a temperature at which the matrix resin is carbonized, but it is preferably 300 to 700°C, more preferably 400 to 700°C, and even more preferably 500 to 700°C.
  • the recycled carbon fiber which is a heated product of carbon fiber reinforced resin, the description of International Publication No. WO 2018/212016 can be referred to, and the contents thereof are incorporated herein.
  • the resin residue content in the recycled carbon fiber is preferably 5% by mass or more, preferably 10% by mass or more, and preferably 20% by mass or less, and 15% by mass or less. is more preferable.
  • recycled carbon fibers usually have substantially no treatment agents (sizing agents, sizing agents, surface treatment agents, etc.) on their surfaces.
  • substantially free means that the amount of the treatment agent is, for example, less than 1.0% by mass, further less than 0.1% by mass, and particularly less than 0.01% by mass of the total amount of recycled carbon fibers less than, more particularly less than 0.001% by weight.
  • the number average fiber diameter of the recycled carbon fibers is more preferably 3 ⁇ m or more, and even more preferably 4 ⁇ m or more. Moreover, it is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less. When the number average fiber diameter of the recycled carbon fibers is within such a range, it becomes easier to obtain pellets with improved mechanical properties, particularly strength and elastic modulus.
  • the content of the recycled carbon fiber which is the heated product of the carbon fiber reinforced resin, is 5 parts by mass or more, preferably 8 parts by mass or more, with respect to 100 parts by mass of the polycarbonate resin. , 10 parts by mass or more, 13 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, 25 parts by mass or more, or 30 parts by mass or more.
  • the content of the recycled carbon fiber is 65 parts by mass or less, preferably 60 parts by mass or less, more preferably 55 parts by mass or less, and 50 parts by mass with respect to 100 parts by mass of the polycarbonate resin.
  • the composition used in the present embodiment preferably contains recycled carbon fiber, which is a heated product of carbon fiber reinforced resin, at a rate of 5% by mass or more in terms of the amount of substantial carbon fiber in the composition. It is more preferably contained at a rate of 10% by mass, more preferably at a rate of 15% by mass or more, and preferably at a rate of 45% by mass or less, and more preferably at a rate of 40% by mass or less. preferable.
  • the composition used in the present embodiment may contain only one type of recycled carbon fiber, which is a heated carbon fiber reinforced resin, or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the total amount of polycarbonate resin (preferably polycarbonate resin having a terminal hydroxyl group content of 150 to 800 ppm), recycled carbon fiber, and metal salt flame retardant accounts for 90% by mass or more of the composition. is preferred, more preferably 95% by mass or more, and even more preferably 97% by mass or more.
  • the upper limit of the total amount is 100% by mass.
  • the composition used in this embodiment may or may not contain virgin carbon fibers.
  • An example of the composition used in the present embodiment is an aspect in which virgin carbon fibers are contained at a ratio of 5 to 50% by mass (preferably 5 to 30% by mass) of the content of recycled carbon fibers.
  • the content of virgin carbon fibers is less than 5% by mass (preferably less than 3% by mass, more preferably less than 1% by mass) of the content of recycled carbon fibers. It is an aspect.
  • the composition used in this embodiment contains 0.01 to 0.30 parts by mass of a metal salt-based flame retardant per 100 parts by mass of polycarbonate resin.
  • a metal salt-based flame retardant By containing a metal salt-based flame retardant, the mechanical properties of the resulting molded article can be enhanced. In particular, the retention rate of bending strength and impact resistance can be increased.
  • an organic metal salt flame retardant is preferable, and an organic alkali metal salt compound is more preferable.
  • the organic metal salt-based flame retardant include metal sulfonates, metal carboxylates, metal borates, metal phosphates, and the like. From the viewpoint of thermal stability, metal organic sulfonates are preferred.
  • alkali metal salts examples include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs). Among them, sodium, potassium, and cesium are preferred.
  • organic sulfonic acid alkali metal salts include alkali metal salts of fluorine-containing aliphatic sulfonic acids and aromatic sulfonic acids.
  • alkali metal salts of fluorine-containing aliphatic sulfonic acids and aromatic sulfonic acids include potassium perfluorobutanesulfonate, lithium perfluorobutanesulfonate, sodium perfluorobutanesulfonate, cesium perfluorobutanesulfonate, potassium trifluoromethanesulfonate, and lithium trifluoromethanesulfonate.
  • sodium trifluoromethanesulfonate sodium trifluoromethanesulfonate, cesium trifluoromethanesulfonate, etc., alkali metal salts of fluorine-containing aliphatic sulfonic acids having at least one CF bond in the molecule; diphenylsulfone-3,3′-dipotassium disulfonate, Potassium diphenylsulfone-3-sulfonate, sodium benzenesulfonate, sodium (poly)styrenesulfonate, sodium p-toluenesulfonate, sodium (branched) dodecylbenzenesulfonate, sodium trichlorobenzenesulfonate, potassium benzenesulfonate, styrenesulfonate potassium (poly)styrenesulfonate, potassium paratoluenesulfonate, potassium (branched) dodecylbenz
  • alkali metal salts of fluorine-containing aliphatic sulfonic acids are particularly preferred, and alkali metal salts of perfluoroalkanesulfonic acids are more preferred, specifically potassium perfluorobutanesulfonate and trifluoromethanesulfonic acid. Sodium and the like are particularly preferred.
  • fluorine-containing organic sulfonic acid alkali metal salt examples include Megafac F114P (trade name) manufactured by DIC Corporation, Biowet C4 (trade name) manufactured by LANXESS, and IHT-FR21 (trade name) manufactured by Insight High Technology. .
  • the content of the metal salt-based flame retardant in the composition used in the present embodiment is preferably 0.02 parts by mass or more, more preferably 0.03 parts by mass or more, relative to 100 parts by mass of the polycarbonate resin. , more preferably 0.04 parts by mass or more, and even more preferably 0.05 parts by mass or more.
  • the upper limit of the content of the metal salt-based flame retardant is preferably 0.20 parts by mass or less, more preferably 0.10 parts by mass or less, relative to 100 parts by mass of the polycarbonate resin.
  • the composition used in the present embodiment may contain only one kind of metal salt flame retardant, or may contain two or more kinds thereof. When two or more types are included, the total amount is preferably within the above range.
  • the pellets of the present embodiment may or may not contain a flame retardant other than the metal salt flame retardant.
  • Flame retardants other than metal salt-based flame retardants include halogen-based flame retardants, phosphorus-based flame retardants, nitrogen-based flame retardants (melamine cyanurate, etc.), and the like.
  • the pellets of the present embodiment do not substantially contain flame retardants other than metal salt-based flame retardants.
  • “Substantially free" means that the content of the flame retardant other than the metal salt flame retardant in the composition is 10% by mass or less of the content of the metal salt flame retardant, and 5% by mass or less. It is preferably 1% by mass or less, more preferably 0.1% by mass or less.
  • the composition used in this embodiment may contain an anti-dripping agent. By including the anti-dripping agent, the flame retardancy of the resulting molded article can be further improved.
  • Polytetrafluoroethylene (PTFE) is preferable as the anti-dripping agent. It has fibril-forming ability, easily disperses in polycarbonate resin, and exhibits a tendency to bond resins together to form a fibrous material.
  • Specific examples of polytetrafluoroethylene include "Teflon (registered trademark) 6J” or “Teflon (registered trademark) 30J” commercially available from Mitsui-DuPont Fluorochemicals, and products commercially available from Daikin Chemical Industries. The name “Polyflon” or the trade name “Fluon” marketed by Asahi Glass Co., Ltd. can be used.
  • the content thereof is preferably 0.01 parts by mass or more, preferably 0.05 parts by mass or more, relative to 100 parts by mass of the polycarbonate resin. More preferably, it is 0.08 parts by mass or more. By making it more than the said lower limit, there exists a tendency for flame retardancy to improve more.
  • the upper limit of the content of the anti-dripping agent is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, more preferably 3 parts by mass or less, relative to 100 parts by mass of the polycarbonate resin. More preferred. By making it equal to or less than the above upper limit, the mechanical strength of the resulting molded product tends to be further improved.
  • the composition used in this embodiment may contain only one anti-dripping agent, or may contain two or more anti-dripping agents. When two or more types are included, the total amount is preferably within the above range.
  • the composition used in this embodiment preferably contains 0.5 to 30 parts by mass of the flow modifier with respect to 100 parts by mass of the polycarbonate resin.
  • a fluidity modifier By including a fluidity modifier, the fluidity of the polycarbonate resin can be improved while maintaining excellent bending strength.
  • the fluidity modifier used in the present embodiment can be a known one, and may be a low molecular weight or oligomer (number average molecular weight of less than 2000) or a high molecular weight (number average molecular weight of 2000 or more). good.
  • an oligomer having a number average molecular weight of 1000 or more and less than 2000 can be used.
  • a number average molecular weight here is a polystyrene conversion value measured by GPC (gel permeation chromatography) method.
  • polyester oligomers examples include polyester oligomers, polycarbonate oligomers, polycaprolactone, low-molecular-weight acrylic copolymers, and aliphatic rubber-polyester block copolymers, with polycarbonate oligomers being preferred.
  • the descriptions in paragraphs 0050 to 0056 of Japanese Patent No. 4736260 and the descriptions in paragraphs 0059 to 0070 of JP-A-2011-063812 can be referred to, the contents of which are incorporated herein.
  • the content of the flow modifier is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, with respect to 100 parts by mass of the polycarbonate resin. It is more preferably at least 3 parts by mass, even more preferably at least 3 parts by mass, and even more preferably at least 5 parts by mass. By setting it to the above lower limit or more, the fluidity of the polycarbonate resin tends to be further improved.
  • the content of the flow modifier is preferably 30 parts by mass or less, more preferably 25 parts by mass or less, even more preferably 20 parts by mass or less, and 17 parts by mass or less. is more preferable, and it is even more preferable that it is 16 parts by mass or less.
  • the composition used in this embodiment may contain only one flow modifier, or may contain two or more flow modifiers. When two or more types are included, the total amount is preferably within the above range.
  • the composition used in this embodiment may contain other components than those mentioned above.
  • thermoplastic resins other than polycarbonate resins, dyes, pigments, impact modifiers, antistatic agents, slip agents, antiblocking agents, release agents, antifog agents, natural oils, synthetic oils, waxes, organic fillers agents and the like are exemplified.
  • the total amount of these ingredients may be, for example, 0.1-10% by weight of the composition.
  • the composition used in the present embodiment is, for example, a total of 0.1 to 10 parts by weight (preferably 0.5 to 5 parts by weight) of at least one selected from a release agent and carbon black per 100 parts by weight of a polycarbonate resin. parts by mass).
  • a molded article obtained from the pellets of the present embodiment preferably has a high bending strength close to that of a polycarbonate resin blended with virgin carbon fibers.
  • the bending strength measured according to ISO 178 is the same amount of the polycarbonate resin contained in the pellets. Polycarbonate resin having a terminal hydroxyl group amount of 140 ppm is recycled.
  • the retention is 85% or more compared to the bending strength measured according to ISO 178. is preferred.
  • the ISO multipurpose test piece is an 80 mm x 10 mm x 4 mm thick flat plate test piece (for example, an 80 mm x 10 mm x 4 mm thick flat plate test piece cut from an ISO multipurpose test piece).
  • the retention rate is more preferably 86% or more, further preferably 88% or more, still more preferably 90% or more, and even more preferably 95% or more. , is more preferably 98% or more, and more preferably more than 100%.
  • a practical upper limit of the value is 110% or less.
  • Such a high retention rate is achieved by blending a metal salt flame retardant. Such a high retention rate can be achieved more effectively by using a polycarbonate resin having a terminal hydroxyl group content of 150 to 800 ppm.
  • Molded articles obtained from the pellets of the present embodiment preferably have excellent flame retardancy. Specifically, it is preferable that the pellet of the present embodiment is molded into a UL test piece having a thickness of 1.5 mm, and the flame retardancy is V-0 when subjected to the UL94 test.
  • the pellets used in this embodiment can be produced by a conventional method for producing pellets containing polycarbonate resin.
  • the pellets used in the present embodiment are composed of 100 parts by mass of polycarbonate resin (preferably polycarbonate resin having a terminal hydroxyl group content of 150 to 800 ppm) and 5 to 65 parts by mass of recycled carbon fiber which is a heated product of carbon fiber reinforced resin. , 0.01 to 0.30 parts by mass of a metal salt-based flame retardant is charged into an extruder and melt-kneaded.
  • Recycled carbon fibers may not have a surface treatment agent or a sizing agent attached to the surface of the carbon fibers, but in this embodiment, by using a heated carbon fiber reinforced resin as the recycled carbon fibers, residue derived from the resin plays the role of a surface treatment agent, etc., and melt-kneading becomes possible after being put into an extruder. Therefore, it can be made into pellets.
  • Each component may be premixed and supplied to the extruder at once, or each component may be premixed without premixing, or only a part thereof may be premixed and supplied to the extruder using a feeder. good too.
  • the extruder may be a single screw extruder or a twin screw extruder.
  • some components of dyes and pigments may be melt-kneaded with a resin component to prepare a masterbatch, and then the rest of the components may be blended and melt-kneaded. It is also preferable to supply the carbon fibers from a side feeder in the middle of the cylinder of the extruder.
  • the heating temperature for melt-kneading can usually be appropriately selected from the range of 250 to 350°C.
  • the molded article of this embodiment is formed from the pellet of this embodiment. Since the molded article of the present embodiment has good mechanical strength, it can be used in various applications such as various storage containers, electrical and electronic equipment parts, office automation (OA) equipment parts, home appliance parts, mechanical mechanism parts, It can be applied to vehicle mechanism parts and the like.
  • OA office automation
  • the method for producing the molded article of the present embodiment is not particularly limited, and any molding method generally employed for a composition or pellets containing a polycarbonate resin can be employed. Examples include injection molding, ultra-high speed injection molding, injection compression molding, two-color molding, hollow molding such as gas assist, molding using heat insulating molds, and rapid heating molds. Molding method, foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method, A blow molding method and the like can be mentioned, and injection molding is particularly preferable. Details of injection molding can be referred to paragraphs 0113 to 0116 of Japanese Patent No. 6183822, the contents of which are incorporated herein.
  • the recycled carbon fiber residue in Table 2 indicates the amount of char in the recycled carbon fiber. That is, since the recycled carbon fiber used in this embodiment is a fired product of a composite of a resin (eg, epoxy resin) and carbon fiber, the recycled carbon fiber contains residue (carbide) derived from the resin (eg, epoxy resin). It is included.
  • the amount of resin residue is a value obtained from the formula (X) by calculating the carbon fiber mass contained in the carbon fiber reinforced resin before heat treatment from the carbon fiber content. The unit is % by mass. [B - (A ⁇ C) / (B)] ⁇ 100 Formula (X) A: Mass of carbon fiber reinforced resin before heat treatment B: Mass of heat-treated product C: Carbon fiber content of carbon fiber reinforced resin before heat treatment
  • the amount of terminal hydroxyl groups in a polycarbonate resin represents the total amount of terminal hydroxyl groups shown below, and the ratio of the mass of the terminal hydroxyl groups to the total mass of the polycarbonate resin is expressed in ppm.
  • the measurement method followed the colorimetric determination by the titanium tetrachloride/acetic acid method (the method described in Macromol. Chem. 88 215 (1965)).
  • R 5 is a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 20 carbon atoms, a cycloalkyl group having 4 to 20 carbon atoms and a cycloalkyl group having 6 to 20 carbon atoms. It is a group selected from 20 aryl groups, and r represents an integer of 0-2. When r is 2, two R 5 may be the same or different.
  • the wavy line portion is the bonding position with the main chain of the polycarbonate resin.
  • ⁇ Tensile strength, tensile modulus and tensile strain> Using the ISO multi-purpose test piece obtained above, a tensile test was performed according to ISO527-1 and ISO527-2 to determine tensile strength, tensile modulus and tensile strain. Units for tensile strength and tensile modulus are given in MPa. The unit of tensile strain is %.
  • the retention rate of bending strength is shown as a relative value when the bending strength of Comparative Example 1 is 100% in Comparative Examples 1 to 4 and Examples 1 to 6, and in Comparative Examples 5, 7 and 8. , Shown as relative values when the bending strength of Comparative Example 5 is 100%, Comparative Examples 6 and 7, and Examples 9 to 11 are shown as relative values when the bending strength of Comparative Example 6 is 100% Indicated.
  • the pellets obtained above are injection molded using an injection molding machine (“SE50DUZ” manufactured by Sumitomo Heavy Industries, Ltd.) under the conditions of a resin temperature of 290 ° C. and a mold temperature of 80 ° C., length 127 mm, width 12
  • SE50DUZ injection molding machine
  • a UL test specimen of 0.7 mm and 1.5 mm wall thickness was obtained.
  • the obtained UL test specimen was conditioned in a constant temperature room at 23 ° C. and a relative humidity of 50% for 48 hours, and passed the UL94 test (plastic for equipment parts) specified by Underwriters Laboratories (UL) in the United States. Combustion test of materials).
  • the UL94 test is a method for evaluating flame retardancy from the afterflame time and drip property after 10 seconds of indirect flame of a burner on a test piece held vertically, V-0, V-1 and V- In order to have the flame retardancy of 2, it is necessary to satisfy the criteria shown in Table 3 below. Nonconforming means that none of V-0 to V-2 apply.
  • Comparative Examples 1 to 3 and Examples 1 to 4 and 6 the amounts of carbon fibers in the pellets (composition) are substantially the same. That is, since the recycled carbon fiber used in the present invention is a heated carbon fiber reinforced resin, the carbon fiber contains resin-derived residue (resin residue). Direct comparison of the mechanical strength becomes possible by adjusting the amount of carbon fiber excluding the resin residue to be the same amount. The same applies to the amounts of carbon fibers in Comparative Examples 5, 7 and 8, and the amounts of carbon fibers in Comparative Examples 6 and 7 and Examples 9 to 11, respectively.
  • the molded article formed from the pellets of the present embodiment can achieve mechanical strength close to that when using virgin carbon fibers, even though recycled carbon fibers are used. It was also excellent in flame retardancy (Examples 1 to 11).
  • the use of a metal salt-based flame retardant significantly improved the retention of bending strength (comparison between Comparative Example 3 and Example 1, and comparison between Comparative Example 7 and Example 9).
  • the retention rate of bending strength was remarkably improved (comparison between Examples 1 and 2, comparison between Examples 7 and 8, 9 and Example 10).
  • the use of the metal salt flame retardant significantly improved the non-notched Charpy impact strength (comparison between Comparative Example 3 and Example 1, and comparison between Comparative Example 7 and Example 9).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ポリカーボネート樹脂とリサイクル炭素繊維を含む成形品であって、同量のバージン炭素繊維を配合した場合に近い機械的強度を有し、かつ、難燃性に優れた成形品を提供可能なペレット、成形品、ペレットの製造方法の提供。ポリカーボネート樹脂100質量部に対し、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維5~65質量部と、金属塩系難燃剤0.01~0.30質量部を含む組成物から形成されたペレット。

Description

ペレット、成形品、および、ペレットの製造方法
 本発明は、ペレット、成形品、および、ペレットの製造方法に関する。特に、リサイクル炭素繊維を有効活用したペレットに関する。
 ポリカーボネート樹脂は、耐熱性、耐衝撃性、透明性等に優れた樹脂として、多くの分野で幅広く用いられている。中でもガラス繊維や炭素繊維といった無機充填剤で強化したポリカーボネート樹脂組成物は、寸法安定性、機械的強度、耐熱性、および電気的特性といった種々優れた性能を示すことから、カメラ、OA機器、電気電子部品といった産業分野で幅広く使用されている(特許文献1)。
 一方、限りある資源の有効活用する観点から、炭素繊維をリサイクルすることが検討されている。リサイクル炭素繊維としては、例えば、特許文献2に記載のものが知られている。
特開2011-063812号公報 国際公開第2018/212016号
 しかしながら、ポリカーボネート樹脂にリサイクル炭素繊維を配合すると、新規に製造された炭素繊維、すなわち、バージン炭素繊維を配合した場合と比べて、機械的強度が劣ってしまう。そして、ポリカーボネート樹脂とリサイクル炭素繊維を含む組成物において、機械的強度を、バージン炭素繊維を配合した場合に近いものとすることができれば、炭素繊維のリサイクル率の向上が期待できる。一方、このようなリサイクル炭素繊維を配合したポリカーボネート樹脂にも、難燃性が求められる場合がある。
 本発明は、かかる課題を解決することを目的とするものであって、ポリカーボネート樹脂とリサイクル炭素繊維を含む成形品であって、同量のバージン炭素繊維を配合した場合に近い機械的強度を有し、かつ、難燃性に優れた成形品を提供可能なペレット、成形品、ペレットの製造方法を提供することを目的とする。
 上記課題の下、本発明者が検討を行った結果、難燃剤として、金属塩系難燃剤を用いることにより、リサイクル炭素繊維を用いても、機械的強度の低下を効果的に抑制し、さらに、優れた難燃性を達成しうることを見出し、本発明を完成しうるに至った。
 具体的には、下記手段により、上記課題は解決された。
<1>ポリカーボネート樹脂100質量部に対し、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維5~65質量部と、金属塩系難燃剤0.01~0.30質量部を含む組成物から形成されたペレット。
<2>前記ポリカーボネート樹脂の末端水酸基量が150~800ppmである、<1>に記載のペレット。
<3>前記ペレットから成形されたISO多目的試験片を用い、ISO178に従って測定された曲げ強さが、前記ペレットに含まれる前記ポリカーボネート樹脂を等量の末端水酸基量が140ppmであるポリカーボネート樹脂に、リサイクル炭素繊維を炭素繊維量が等量となるバージン炭素繊維に置き換えた組成物から成形されたISO多目的試験片を用い、ISO178に従って測定された曲げ強さと比較して、保持率が85%以上である、<1>または<2>に記載のペレット。
<4>前記金属塩系難燃剤が、有機スルホン酸金属塩を含む、<1>~<3>のいずれか1つに記載のペレット。
<5>前記ポリカーボネート樹脂が、リサイクルされたポリカーボネート樹脂を含む、<1>~<4>のいずれか1つに記載のペレット。
<6>前記ポリカーボネート樹脂100質量部に対し、さらに、流動改質剤を0.5~30質量部含む、<1>~<5>のいずれか1つに記載のペレット。
<7>さらに、前記ポリカーボネート樹脂100質量部に対し、離型剤およびカーボンブラックから選択される少なくとも1種を合計で0.1~10質量部含む、<1>~<6>のいずれか1つに記載のペレット。
<8>前記ポリカーボネート樹脂の末端水酸基量が150~800ppmであり、
前記ペレットから成形されたISO多目的試験片を用い、ISO178に従って測定された曲げ強さが、前記ペレットに含まれる前記ポリカーボネート樹脂を等量の末端水酸基量が140ppmであるポリカーボネート樹脂に、リサイクル炭素繊維を炭素繊維量が等量となるバージン炭素繊維に置き換えた組成物から成形されたISO多目的試験片を用い、ISO178に従って測定された曲げ強さと比較して、保持率が85%以上であり、
前記金属塩系難燃剤が、有機スルホン酸金属塩を含み、
前記ポリカーボネート樹脂が、リサイクルされたポリカーボネート樹脂を含み、
前記ポリカーボネート樹脂100質量部に対し、さらに、流動改質剤を0.5~30質量部含み、
さらに、前記ポリカーボネート樹脂100質量部に対し、離型剤およびカーボンブラックから選択される少なくとも1種を合計で0.1~10質量部含む、請求項1に記載のペレット。
<9><1>~<8>のいずれか1つに記載のペレットから形成された成形品。
<10>ポリカーボネート樹脂100質量部と、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維5~65質量部と、金属塩系難燃剤0.01~0.30質量部を押出機に投入し、溶融混練することを含む、ペレットの製造方法。
 本発明により、ポリカーボネート樹脂とリサイクル炭素繊維を含む成形品であって、同量のバージン炭素繊維を配合した場合に近い機械的強度を有し、かつ、難燃性に優れた成形品を提供可能なペレット、成形品、ペレットの製造方法を提供可能になった。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書において、ppmは質量ppmを意味する。
 本明細書で示す規格で説明される測定方法等が年度によって異なる場合、特に述べない限り、2021年1月1日時点における規格に基づくものとする。
 本実施形態のペレットは、ポリカーボネート樹脂100質量部に対し、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維5~65質量部と、金属塩系難燃剤0.01~0.30質量部を含む組成物から形成されたペレットである。
 このようなペレットから形成された成形品は、同量のバージン炭素繊維を配合した場合に近い機械的強度を有し、かつ、難燃性に優れた成形品を提供可能なペレットとなる。特に、リサイクル炭素繊維を用いているにもかかわらず、高い曲げ強さ保持率を達成できる。また、驚くべきことに、金属塩系難燃剤を配合することにより、成形品の耐衝撃性が顕著に向上する。
 この理由は、リサイクル炭素繊維は、通常、その表面にサイジング剤が存在していないか、存在していてもごく微量である。このような状況下、難燃剤として、金属塩系難燃剤を配合すると、金属塩系難燃剤がサイジング剤として機能し、曲げ強さの保持率や耐衝撃性を高めることができたと推測される。難燃剤を配合して、これらの機械的物性が向上することは驚くべき効果である。
 さらに、末端水酸基量が150~800ppmのポリカーボネート樹脂を用いることにより、さらに高い曲げ強さの保持率を達成できた。この理由は、ポリカーボネート樹脂の末端水酸基量を150~800ppmとすることにより、炭素繊維表面とポリカーボネート樹脂との密着性が向上し、機械的強度が向上したためであると推測される。
 以下、本実施形態のペレットの詳細について説明する。
<ポリカーボネート樹脂>
 本実施形態で用いる組成物は、ポリカーボネート樹脂を含む。ポリカーボネート樹脂の種類は特に定めるものでは無いが、通常は、その主成分が、芳香族ポリカーボネート樹脂であり、その主成分がビスフェノール型ポリカーボネート樹脂であることがより好ましく、その主成分がビスフェノールA型ポリカーボネート樹脂であることがさらに好ましい。ここで、主成分とは、組成物に含まれるポリカーボネート樹脂の80質量%以上(好ましくは90質量%以上、より好ましくは95質量%以上)を占める成分のことをいう。
 ポリカーボネート樹脂は、溶融重合法で得られたポリカーボネート樹脂であっても、界面重合法で得られたポリカーボネート樹脂であってもよく、溶融重合法で得られたポリカーボネート樹脂であることが好ましい。また、溶融重合法で得られたポリカーボネート樹脂と界面重合法で得られたポリカーボネート樹脂の混合物であってもよい。
 より具体的には、本実施形態で使用するポリカーボネート樹脂は、好ましくは芳香族ポリカーボネート樹脂であり、例えば、芳香族ジヒドロキシ化合物および炭酸ジエステルを原料とし、溶融エステル交換法により製造できる。
 芳香族ジヒドロキシ化合物は、例えば、ビス(4-ヒドロキシジフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’-ジヒドロキシビフェニル、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)ケトン等が挙げられる。これらの芳香族ジヒドロキシ化合物は、単独で、または2種以上を混合して用いることができる。これらのなかでも、2,2-ビス(4-ヒドロキシフェニル)プロパンが好ましい。
 炭酸ジエステルは、例えば、ジフェニルカーボネート、ジトリルカーボネート等に代表される置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ-t-ブチルカーボネート等に代表されるジアルキルカーボネートが挙げられる。これらの炭酸ジエステルは、単独で、または2種以上を混合して用いることができる。これらのなかでも、ジフェニルカーボネート、置換ジフェニルカーボネートが好ましい。
 また、上記の炭酸ジエステルは、好ましくはその50モル%以下、さらに好ましくは30モル%以下の量を、ジカルボン酸またはジカルボン酸エステルで置換してもよい。代表的なジカルボン酸またはジカルボン酸エステルとしては、テレフタル酸、イソフタル酸、テレフタル酸ジフェニル、イソフタル酸ジフェニル等が挙げられる。このようなジカルボン酸またはジカルボン酸エステルで置換した場合には、ポリエステルカーボネート樹脂が得られる。
 これら炭酸ジエステル(上記の置換したジカルボン酸またはジカルボン酸のエステルを含む。)は、芳香族ジヒドロキシ化合物に対して、通常、過剰に用いられる。すなわち、芳香族ジヒドロキシ化合物に対して1.001~1.3倍、好ましくは1.01~1.2倍の範囲内のモル量で用いられる。
 本実施形態で用いるポリカーボネート樹脂は、末端水酸基量が150~800ppmであることが好ましい。末端水酸基量が150~800ppmであるポリカーボネート樹脂を用いることにより、リサイクル炭素繊維表面との密着性を向上させることができ、機械的強度を末端水酸基量が150ppmより小さいポリカーボネート樹脂を配合した場合と比較して、高く保持することが可能になる。特に、曲げ強さを高く維持することが可能になる。
 前記末端水酸基量は、200ppm以上であることが好ましく、250ppm以上であることがより好ましく、300ppm以上であることがさらに好ましく、350ppm以上であることが一層好ましく、400ppm以上であることがより一層好ましく、450ppm以上であることがさらに一層好ましく、500ppm以上であることが特に一層好ましく、550ppm以上であってもよい。前記下限値以上とすることにより、炭素繊維表面とポリカーボネート樹脂との密着性が向上し、かつ、エステル交換の反応速度が速くなり所望の分子量を有するポリカーボネート樹脂が得られやすくなり、また、ポリカーボネート樹脂中のカーボネートエステルの残存量を少なくでき、成形加工時や成形品としたときの臭気をより効果的に抑制できる傾向にある。また、前記末端水酸基量は、750ppm以下であることが好ましく、700ppm以下であることがより好ましく、650ppm以下であることがさらに好ましく、640ppm以下であることが一層好ましく、610ppm以下であってもよい。前記上限値以下とすることにより、ポリカーボネート樹脂の熱安定性がより向上する傾向にある。
 末端水酸基量は、後述する実施例の記載に従って測定される。
 本実施形態で用いる組成物が2種以上のポリカーボネート樹脂を含む場合、ポリカーボネート樹脂混合物の末端水酸基量とする。
 末端水酸基量が150~800ppmであるポリカーボネート樹脂の詳細は、特開2003-026911号公報の記載を参酌でき、この内容は本明細書に組み込まれる。
 本実施形態で用いるポリカーボネート樹脂(2種以上含まれる場合は、ポリカーボネート樹脂の混合物)は、また、メルトボリュームレイト(MVR)が1cm/10min以上であることが好ましく、5cm/10min以上であることがより好ましく、8cm/10min以上であることがさらに好ましく、また、40cm/10min以下であることが好ましく、30cm/10min以下であることがより好ましい。前記下限値以上とすることにより、特に、5cm/10min以上とすることにより、高流動で成形性により優れる傾向にあり、前記上限値以下とすることにより、衝撃性や耐熱性が高く維持される傾向にある。MVRは、JIS K 7210に従って測定される。
 本実施形態で用いるポリカーボネート樹脂(2種以上含まれる場合は、ポリカーボネート樹脂の混合物)の粘度平均分子量は、5000以上であることが好ましく、10000以上であることがより好ましく、14000以上であることがさらに好ましく、また、50000以下であることが好ましい。粘度平均分子量が5000以上のものを用いることにより、得られる成形品の機械的強度がより向上する傾向にある。また、粘度平均分子量が50000以下のものを用いることにより、溶融したペレットの流動性が向上し、成形性がより向上する傾向にある。
 なお、ポリカーボネート樹脂の粘度平均分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算される粘度平均分子量[Mv]である。
 本実施形態で用いるポリカーボネート樹脂は、リサイクルされたポリカーボネート樹脂であってもよい。リサイクルされたポリカーボネート樹脂を用いることにより、環境負荷を低減させたペレットを提供することが可能になる。リサイクルされたポリカーボネート樹脂とは、ボトル、ディスク、パチンコ、シート、半導体搬送容器等由来のもの等が用いられる。リサイクルされたポリカーボネート樹脂は、リサイクルされた芳香族ポリカーボネート樹脂であることが好ましい。
 本実施形態で用いる組成物において、ポリカーボネート樹脂の含有量は、60~95質量%であることが好ましい。また、本実施形態で用いる組成物に含まれる樹脂成分中のポリカーボネート樹脂の含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましく、99質量%以上であることが一層好ましい。
 本実施形態で用いる組成物は、ポリカーボネート樹脂を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<リサイクル炭素繊維>
 本実施形態で用いる組成物は、ポリカーボネート樹脂100質量部に対し、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維5~65質量部を含む。このようなリサイクル炭素繊維を、金属塩系難燃剤と共に用いることにより、ポリカーボネート樹脂にバージン炭素繊維を配合した組成物に対し、高い機械的強度を維持することができる。リサイクル炭素繊維は、通常、表面処理剤や収束剤等の処理剤を実質的に有さないため、ポリカーボネート樹脂との十分な溶融混練が困難になる場合がある。しかしながら、本実施形態では、リサイクル炭素繊維として、炭素繊維強化樹脂の加熱物を用いることにより、樹脂由来の残渣である炭化物が炭素繊維の処理剤のような役割を果たし、ポリカーボネート樹脂との安定した溶融混練を可能にしていると推測される。
 ここで、リサイクル炭素繊維とは、例えば、使用済みの炭素繊維強化樹脂(航空機、車両、電気・電子機器等)から回収された炭素繊維や炭素繊維強化樹脂の製造工程から発生する炭素繊維強化樹脂の中間製品(プリプレグ)等の切れはしから回収された炭素繊維をいう。これに対し、バージン炭素繊維とは、一般的に、炭素繊維として販売されているものなど、リサイクル炭素繊維ではない新品の炭素繊維である。
 本実施形態では、リサイクル炭素繊維として炭素繊維強化樹脂の加熱物が用いられる。炭素繊維強化樹脂が加熱されることにより、樹脂が炭化物となって、炭素繊維の表面に存在する。
 本実施形態における炭素繊維強化樹脂は、炭素繊維およびマトリックス樹脂を含む。
 炭素繊維の種類は特に定めるものではないが、PAN系炭素繊維が好ましい。
 マトリックス樹脂は、熱硬化性樹脂であってもよく、熱可塑性樹脂であってもよい。熱硬化性樹脂は、未硬化のものであってもよく、硬化物であってもよい。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、シアネート樹脂、ポリイミド樹脂等が挙げられる。熱可塑性樹脂としては、ポリアミド、ポリオレフィン、ポリエステル、ポリカーボネート、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエーテルエーテルケトン、ポリフェニレンスルフィド等が挙げられる。
 マトリックス樹脂は、必要に応じて添加剤を含んでいてもよい。添加剤としては、硬化剤、硬化助剤、内部離型剤、酸化防止剤、光安定剤、紫外線吸収剤、着色剤等が挙げられる。
 炭素繊維強化樹脂の加熱温度は、マトリックス樹脂が炭化する温度であれば特に定めるものではないが、300~700℃が好ましく、400~700℃がより好ましく、500~700℃がさらに好ましい。
 炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維の詳細は、国際公開第2018/212016号の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 リサイクル炭素繊維における樹脂残渣含有量の割合は、5質量%以上であることが好ましく、10質量%以上であることが好ましく、また、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。
 リサイクル炭素繊維は、上述の通り、通常、その表面に処理剤(サイジング剤、収束剤、表面処理剤等)を実質的に有さない。実質的に有さないとは、処理剤の量が、リサイクル炭素繊維の総量の、例えば1.0質量%未満であり、さらには0.1質量%未満であり、特には0.01質量%未満であり、より特には0.001質量%未満である。
 リサイクル炭素繊維の数平均繊維径は、3μm以上であることがより好ましく、4μm以上であることがさらに好ましい。また、10μm以下であることが好ましく、8μm以下であることがより好ましい。リサイクル炭素繊維の数平均繊維径がこのような範囲にあることで、機械的物性、特に強度、弾性率がより向上したペレットが得られやすくなる。
 本実施形態で用いる組成物において、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維の含有量は、ポリカーボネート樹脂100質量部に対し、5質量部以上であり、8質量部以上であることが好ましく、10質量部以上、13質量部以上、15質量部以上、20質量部以上、25質量部以上、30質量部以上であってもよい。前記下限値以上とすることにより、機械的強度により優れた組成物が得られる傾向にある。また、前記リサイクル炭素繊維の含有量は、ポリカーボネート樹脂100質量部に対し、65質量部以下であり、60質量部以下であることが好ましく、55質量部以下であることがより好ましく、50質量部以下、45質量部以下であってもよい。前記上限値以下とすることにより、機械的強度により優れ、かつ、成形性により優れた組成物が得られる傾向にある。
 また、本実施形態で用いる組成物は、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維を組成物中、実質的な炭素繊維の量換算で、5質量%以上の割合で含むことが好ましく、10質量%の割合で含むことがより好ましく、15質量%以上の割合で含むことがさらに好ましく、また、45質量%以下の割合で含むことが好ましく、40質量%以下の割合で含むことがより好ましい。
 本実施形態で用いる組成物は、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本実施形態で用いる組成物は、ポリカーボネート樹脂(好ましくは、末端水酸基量が150~800ppmであるポリカーボネート樹脂)とリサイクル炭素繊維と金属塩系難燃剤の総量が組成物の90質量%以上を占めることが好ましく、95質量%以上を占めることがより好ましく、97質量%以上を占めることがさらに好ましい。前記総量の上限は100質量%である。
 本実施形態で用いる組成物は、バージン炭素繊維を含んでいてもよいし、含んでいなくてもよい。本実施形態で用いる組成物の一例は、バージン炭素繊維をリサイクル炭素繊維の含有量の5~50質量%(好ましくは5~30質量%)の割合で含む態様である。また、本実施形態で用いる組成物の他の一例は、バージン炭素繊維の含有量がリサイクル炭素繊維の含有量の5質量%未満(好ましくは3質量%未満、より好ましくは1質量%未満)である態様である。
<金属塩系難燃剤>
 本実施形態で用いる組成物は、ポリカーボネート樹脂100質量部に対し、金属塩系難燃剤を0.01~0.30質量部含む。金属塩系難燃剤を含むことにより、得られる成形品の機械物性を高くすることができる。特に、曲げ強さの保持率や耐衝撃性を高くすることができる。
 金属塩系難燃剤としては、有機金属塩系難燃剤が好ましく、有機アルカリ金属塩化合物がより好ましい。
 有機金属塩系難燃剤としては、スルホン酸金属塩、カルボン酸金属塩、ホウ酸金属塩、リン酸金属塩等が挙げられるが、熱安定性の点から有機スルホン酸金属塩が好ましい。
 アルカリ金属塩を構成する金属としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)等が挙げられ、なかでも、ナトリウム、カリウム、セシウムが好ましい。
 有機スルホン酸アルカリ金属塩の好ましいものの例としては、含フッ素脂肪族スルホン酸および芳香族スルホン酸のアルカリ金属塩が挙げられる。そのなかでも好ましいものの具体例を挙げると、パーフルオロブタンスルホン酸カリウム、パーフルオロブタンスルホン酸リチウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸セシウム、トリフルオロメタンスルホン酸カリウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸セシウム等の、分子中に少なくとも1つのC-F結合を有する含フッ素脂肪族スルホン酸のアルカリ金属塩;ジフェニルスルホン-3,3’-ジスルホン酸ジカリウム、ジフェニルスルホン-3-スルホン酸カリウム、ベンゼンスルホン酸ナトリウム、(ポリ)スチレンスルホン酸ナトリウム、パラトルエンスルホン酸ナトリウム、(分岐)ドデシルベンゼンスルホン酸ナトリウム、トリクロロベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸カリウム、スチレンスルホン酸カリウム、(ポリ)スチレンスルホン酸カリウム、パラトルエンスルホン酸カリウム、(分岐)ドデシルベンゼンスルホン酸カリウム、トリクロロベンゼンスルホン酸カリウム、ベンゼンスルホン酸セシウム、(ポリ)スチレンスルホン酸セシウム、パラトルエンスルホン酸セシウム、(分岐)ドデシルベンゼンスルホン酸セシウム、トリクロロベンゼンスルホン酸セシウム等の、分子中に少なくとも1種の芳香族基を有する芳香族スルホン酸アルカリ金属塩等が挙げられる。
 上述した例示物のなかでも、含フッ素脂肪族スルホン酸のアルカリ金属塩が特に好ましく、パーフルオロアルカンスルホン酸のアルカリ金属塩がさらに好ましく、具体的にはパーフルオロブタンスルホン酸カリウム、トリフルオロメタンスルホン酸ナトリウム等が特に好ましい。
 含フッ素有機スルホン酸アルカリ金属塩として、具体的には、DIC社製商品名メガファックF114P、ランクセス社製商品名バイオウェットC4、インサイト・ハイテクノロジー社製商品名IHT-FR21などが例示される。
 本実施形態で用いる組成物における金属塩系難燃剤の含有量は、ポリカーボネート樹脂100質量部に対し、0.02質量部以上であることが好ましく、0.03質量部以上であることがさらに好ましく、0.04質量部以上であることが一層好ましく、0.05質量部以上であることがより一層好ましい。前記下限値以上とすることにより、得られる成形品の難燃性を高くできると共に、機械的強度保持率を高くすることができる傾向にある。また、前記金属塩系難燃剤の含有量の上限値は、ポリカーボネート樹脂100質量部に対し、0.20質量部以下であることが好ましく、0.10質量部以下であることがより好ましい。前記上限値以下とすることにより、得られる成形品の外観や機械的強度がより向上する傾向にある。
 本実施形態で用いる組成物は、金属塩系難燃剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 本実施形態のペレットは、金属塩系難燃剤以外の難燃剤を含んでいてもよいし、含んでいなくてもよい。
 金属塩系難燃剤以外の難燃剤としては、ハロゲン系難燃剤、リン系難燃剤、窒素系難燃剤(シアヌル酸メラミン等)等がある。
 本実施形態のペレットは、金属塩系難燃剤以外の難燃剤を実質的に含まないことが好ましい。実質的に含まないとは、組成物中の金属塩系難燃剤以外の難燃剤の含有量が、金属塩系難燃剤の含有量の10質量%以下であることをいい、5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
<滴下防止剤>
 本実施形態で用いる組成物は、滴下防止剤を含んでいてもよい。滴下防止剤を含むことにより、得られる成形品の難燃性をより向上させることができる。
 滴下防止剤としては、ポリテトラフルオロエチレン(PTFE)が好ましく、フィブリル形成能を有し、ポリカーボネート樹脂中に容易に分散し、かつ樹脂同士を結合して繊維状材料を作る傾向を示すものである。ポリテトラフルオロエチレンの具体例としては、例えば三井・デュポンフロロケミカルより市販されている商品名「テフロン(登録商標)6J」または「テフロン(登録商標)30J」、ダイキン化学工業より市販されている商品名「ポリフロン」あるいは旭硝子より市販されている商品名「フルオン」等が挙げられる。
 本実施形態で用いる組成物が滴下防止剤を含む場合、その含有量は、ポリカーボネート樹脂100質量部に対し、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.08質量部以上であることがさらに好ましい。前記下限値以上とすることにより、難燃性がより向上する傾向にある。また、前記滴下防止剤の含有量の上限値は、ポリカーボネート樹脂100質量部に対し、10質量部以下であることが好ましく、5質量部以下であることがより好ましく3質量部以下であることがさらに好ましい。前記上限値以下とすることにより、得られる成形品の機械的強度がより向上する傾向にある。
 本実施形態で用いる組成物は、滴下防止剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<流動改質剤>
 本実施形態で用いる組成物は、ポリカーボネート樹脂100質量部に対し、流動改質剤を0.5~30質量部含むことが好ましい。流動改質剤を含むことにより、優れた曲げ強さを保持したままポリカーボネート樹脂の流動性を向上させることができる。
 本実施形態で用いられる流動改質剤は、公知のものを用いることができ、低分子ないしオリゴマー(数平均分子量2000未満)であっても、高分子(数平均分子量2000以上)であってもよい。本実施形態では、例えば、数平均分子量が1000以上2000未満のオリゴマーを用いることができる。ここでの数平均分子量は、GPC(ゲルパーミエーションクロマトグラフィ)法により測定したポリスチレン換算値である。
 具体的には、ポリエステルオリゴマー、ポリカーボネートオリゴマー、ポリカプロラクトン、低分子量アクリル系共重合体、脂肪族ゴム-ポリエステルブロック共重合体が例示され、ポリカーボネートオリゴマーが好ましい。
 流動改質剤は、特許第4736260号公報の段落0050~0056の記載、特開2011-063812号公報の段落0059~0070の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本実施形態で用いる組成物において、流動改質剤の含有量は、ポリカーボネート樹脂100質量部に対し、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、2質量部以上であることがさらに好ましく、3質量部以上であることが一層好ましく、5質量部以上であることがより一層好ましい。前記下限値以上とすることにより、ポリカーボネート樹脂の流動性がより向上する傾向にある。前記流動改質剤の含有量は、また、30質量部以下であることが好ましく、25質量部以下であることがより好ましく、20質量部以下であることがさらに好ましく、17質量部以下であることが一層好ましく、16質量部以下であることがより一層好ましい。前記上限値以下とすることにより、耐熱性および耐衝撃性を低下させることなく、ポリカーボネート樹脂の流動性がより向上する傾向にある。
 本実施形態で用いる組成物は、流動改質剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<その他の成分>
 本実施形態で用いる組成物は、上記以外のその他の成分を含んでいてもよい。例えば、ポリカーボネート樹脂以外の熱可塑性樹脂、染料、顔料、耐衝撃性改良剤、帯電防止剤、スリップ剤、アンチブロッキング剤、離型剤、防曇剤、天然油、合成油、ワックス、有機系充填剤等が例示される。これらの成分の総量は、例えば、組成物の0.1~10質量%であってもよい。
 本実施形態で用いる組成物は、例えば、ポリカーボネート樹脂100質量部に対し、離型剤およびカーボンブラックから選択される少なくとも1種を合計で0.1~10質量部(好ましくは0.5~5質量部)含むことが例示される。
 離型剤としては、特開2021-031633号公報の段落0054~0064の記載、特開2019-056035号公報の段落0038~0044の記載を参酌でき、この内容は本明細書に組み込まれる。
 カーボンブラックとしては、特開2021-031633号公報の段落0065~0068の記載、特開2019-056035号公報の段落0014~0025の記載を参酌でき、この内容は本明細書に組み込まれる。
<物性>
 本実施形態のペレットから得られる成形品は、ポリカーボネート樹脂にバージン炭素繊維を配合した場合に近い高い曲げ強さを有することが好ましい。
 本実施形態のペレットから成形されたISO多目的試験片を用い、ISO178に従って測定された曲げ強さが、前記ペレットに含まれる前記ポリカーボネート樹脂を等量の末端水酸基量が140ppmであるポリカーボネート樹脂に、リサイクル炭素繊維を炭素繊維量が等量となるバージン炭素繊維に置き換えたペレットから成形されたISO多目的試験片を用い、ISO178に従って測定された曲げ強さと比較して、保持率が85%以上であることが好ましい。前記ISO多目的試験片は、80mm×10mm×4mm厚の平板試験片(例えば、ISO多目的試験片から切り出した80mm×10mm×4mm厚の平板試験片)である。また、前記保持率は、保持率が86%以上であることがより好ましく、88%以上であることがさらに好ましく、90%以上であることが一層好ましく、95%以上であることがより一層好ましく、98%以上であることがさらに一層好ましく、100%超であることが特に一層好ましい。前記値の上限値は、110%以下が実際的である。
 このような高い保持率は、金属塩系難燃剤を配合することによって達成される。このような高い保持率は、さらには、末端水酸基量が150~800ppmであるポリカーボネート樹脂を用いることによって、より効果的に達成される。
 本実施形態のペレットから得られる成形品は、難燃性が優れていることが好ましい。
 具体的には、本実施形態のペレットを1.5mmの厚さのUL試験片に成形し、UL94試験を行ったときの難燃性が、V-0を満たすことが好ましい。
<ペレットの製造方法>
 本実施形態で用いるペレットは、ポリカーボネート樹脂を含むペレットの常法の製法によって製造できる。例えば、本実施形態で用いるペレットは、ポリカーボネート樹脂100質量部(好ましくは末端水酸基量が150~800ppmであるポリカーボネート樹脂)と、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維5~65質量部と、金属塩系難燃剤0.01~0.30質量部を押出機に投入し、溶融混練することを含む方法によって製造される。リサイクル炭素繊維は、炭素繊維の表面に表面処理剤や収束剤が付着していない場合があるが、本実施形態ではリサイクル炭素繊維として炭素繊維強化樹脂の加熱物を用いることにより、樹脂由来の残渣が表面処理剤等の役割を果たし、押出機に投入しての溶融混練が可能になる。そのため、ペレットとすることができる。
 押出機には、各成分をあらかじめ混合して一度に供給してもよいし、各成分を予め混合することなく、ないしはその一部のみを予め混合し、フィーダーを用いて押出機に供給してもよい。押出機は、一軸押出機であっても、二軸押出機であってもよい。また、染料や顔料(例えば、カーボンブラック)の一部の成分を樹脂成分と溶融混練してマスターバッチを調製し、次いでこれに残りの成分を配合して溶融混練してもよい。
 なお、炭素繊維は、押出機のシリンダー途中のサイドフィーダーから供給することも好ましい。
 溶融混練に際しての加熱温度は、通常、250~350℃の範囲から適宜選ぶことができる。
 本実施形態の成形品は、本実施形態のペレットから形成される。
 本実施形態の成形品は、機械的強度が良好であるため、種々の用途、例えば、各種保存容器、電気・電子機器部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、車両機構部品などに適用できる。
<成形品の製造方法>
 本実施形態の成形品の製造方法は、特に限定されず、ポリカーボネート樹脂を含む組成物あるいはペレットについて一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等が挙げられ、中でも射出成形が好ましい。
 射出成形の詳細は、特許第6183822号公報の段落0113~0116の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
1.原料
 以下の実施例および比較例に使用した各原料成分は、以下の表1および表2のとおりである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<残渣の量>
 表2におけるリサイクル炭素繊維の残渣は、リサイクル炭素繊維中の炭化物の量を示している。すなわち、本実施例で用いるリサイクル炭素繊維は、樹脂(例えば、エポキシ樹脂)と炭素繊維の複合物の焼成物であるため、リサイクル炭素繊維には樹脂(例えば、エポキシ樹脂)由来の残渣(炭化物)が含まれている。樹脂残渣の量は、加熱処理前の炭素繊維強化樹脂に含まれる炭素繊維質量を炭素繊維含有率から算出し、式(X)から求めた値である。単位は、質量%で示している。
[B - (A × C)/(B)]× 100  式(X)
 A:加熱処理前の炭素繊維強化樹脂の質量
 B:加熱処理物の質量
 C:加熱処理前の炭素繊維強化樹脂の炭素繊維含有率
<ポリカーボネート樹脂中の末端水酸基量>
 ポリカーボネート樹脂(PC樹脂)の末端水酸基量は、下記に表される末端水酸基の総量を表し、ポリカーボネート樹脂の総質量に対する、末端水酸基の質量の割合をppmで表示したものである。またその測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)に従った。
Figure JPOXMLDOC01-appb-C000003
 上記式中、Rは、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数2~20のアルコキシカルボニル基、炭素数4~20のシクロアルキル基および炭素数6~20のアリール基から選択される基であり、rは0~2の整数を表す。rが2のときは、2つのRは、同一でもよいし、異なっていてもよい。波線部分は、ポリカーボネート樹脂の主鎖との結合位置である。
2.実施例1~11および比較例1~7
<コンパウンド>
 表4~7に記載の各原料を表に記載の含有量(全て質量部)となるように秤量し、1ベントを備えた二軸押出機を用い、炭素繊維以外の原料は押出機上流部のバレルより押出機にフィードし、炭素繊維はサイドフィードして、スクリュー回転数300rpm、吐出量200kg/時間、バレル温度280~310℃の条件で混練し、ストランド状に押出された溶融ペレットを水槽にて急冷し、ペレタイザーを用いてペレット化し、ペレットを得た。
<試験片の成形>
 得られたペレットを、120℃で5時間乾燥後、射出成形機(日本製鋼所製「J85AD」)にて、シリンダー温度300℃、金型温度100℃、成形サイクル50秒の条件で射出成形を行い、ISO多目的試験片(4mm厚)を作製した。
<引張強さ、張弾性率および引張歪み>
 上記で得られたISO多目的試験片を用い、ISO527-1、ISO527-2に従って引張試験を実施し、引張強さ、引張弾性率および引張歪みを求めた。
 引張強さおよび引張弾性率の単位は、MPaで示した。引張歪みの単位は、%で示した。
<曲げ強さ、曲げ強さの保持率および曲げ弾性率>
 上記で得られたISO多目的試験片を用いて80mm×10mm×4mm厚の平板試験片を作製し、ISO178に従い、前記試験片の曲げ強さおよび曲げ弾性率の測定を行った。また、曲げ強さの保持率を算出した。
 曲げ強さおよび曲げ弾性率の単位は、MPaで示した。曲げ強さの保持率の単位は、%で示した。
 曲げ強さの保持率は、比較例1~4、実施例1~6は、比較例1の曲げ強さを100%としたときの相対値として示し、比較例5、実施例7および8は、比較例5の曲げ強さを100%としたときの相対値として示し、比較例6および7、実施例9~11は、比較例6の曲げ強さを100%としたときの相対値として示した。
<ノッチ無しシャルピー衝撃強さ>
 上記で得られたISO多目的試験片を用い、ISO179-1およびISO179-2に従い、23℃におけるシャルピー衝撃強さ(ノッチ無し)の測定を行った。単位は、kJ/mで示した。
<難燃性>
 上記で得られたペレットについて、射出成形機(住友重機械工業社製「SE50DUZ」)を用い、樹脂温度290℃、金型温度80℃の条件下で射出成形を行い、長さ127mm、幅12.7mm、肉厚1.5mmのUL試験用試験片を得た。
 得られたUL試験用試験片を、23℃、相対湿度50%の恒温室の中で48時間調湿し、米国アンダーライターズ・ラボラトリーズ(UL)が定めているUL94試験(機器の部品用プラスチック材料の燃焼試験)に準拠して試験を実施した。
 UL94試験とは、鉛直に保持した試験片にバーナーの炎を10秒間接炎した後の残炎時間やドリップ性から難燃性を評価する方法であり、V-0、V-1およびV-2の難燃性を有するためには、以下の表3に示す基準を満たすことが必要となる。不適合とは、V-0~V-2のいずれにも該当しなかったことを意味する。
Figure JPOXMLDOC01-appb-T000004
 なお、比較例1~3、実施例1~4、6は、ペレット(組成物)中の実質的な炭素繊維の量が同量となるように配合している。すなわち、本発明で用いるリサイクル炭素繊維は、炭素繊維強化樹脂の加熱物であるため、炭素繊維には樹脂由来の残渣(樹脂残渣)が含まれている。この樹脂残渣を除いた炭素繊維の量が同量となるように調整することで、機械的強度の直接的な比較が可能になる。比較例5、実施例7および8の炭素繊維の量、ならびに、比較例6および7、実施例9~11の炭素繊維の量についても、それぞれ同様である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 上記結果から明らかな通り、本実施形態のペレットから形成された成形品は、リサイクル炭素繊維を用いているにもかかわらず、バージン炭素繊維を用いた場合に近い機械的強度を達成でき、さらに、難燃性にも優れていた(実施例1~11)。
 特に、金属塩系難燃剤を用いることにより、曲げ強さの保持率が格段に向上した(比較例3と実施例1の比較、比較例7と実施例9の比較)。さらに、所定の末端基濃度を有するポリカーボネート樹脂を用いることにより、曲げ強さの保持率が格段に向上した(実施例1と実施例2の比較、実施例7と実施例8の比較、実施例9と実施例10の比較)。
 また、金属塩系難燃剤を用いることにより、ノッチ無シャルピー衝撃強さも大幅に向上した(比較例3と実施例1の比較、比較例7と実施例9の比較)。

Claims (10)

  1. ポリカーボネート樹脂100質量部に対し、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維5~65質量部と、金属塩系難燃剤0.01~0.30質量部を含む組成物から形成されたペレット。
  2. 前記ポリカーボネート樹脂の末端水酸基量が150~800ppmである、請求項1に記載のペレット。
  3. 前記ペレットから成形されたISO多目的試験片を用い、ISO178に従って測定された曲げ強さが、前記ペレットに含まれる前記ポリカーボネート樹脂を等量の末端水酸基量が140ppmであるポリカーボネート樹脂に、リサイクル炭素繊維を炭素繊維量が等量となるバージン炭素繊維に置き換えた組成物から成形されたISO多目的試験片を用い、ISO178に従って測定された曲げ強さと比較して、保持率が85%以上である、請求項1または2に記載のペレット。
  4. 前記金属塩系難燃剤が、有機スルホン酸金属塩を含む、請求項1または2に記載のペレット。
  5. 前記ポリカーボネート樹脂が、リサイクルされたポリカーボネート樹脂を含む、請求項1または2に記載のペレット。
  6. 前記ポリカーボネート樹脂100質量部に対し、さらに、流動改質剤を0.5~30質量部含む、請求項1または2に記載のペレット。
  7. さらに、前記ポリカーボネート樹脂100質量部に対し、離型剤およびカーボンブラックから選択される少なくとも1種を合計で0.1~10質量部含む、請求項1または2に記載のペレット。
  8. 前記ポリカーボネート樹脂の末端水酸基量が150~800ppmであり、
    前記ペレットから成形されたISO多目的試験片を用い、ISO178に従って測定された曲げ強さが、前記ペレットに含まれる前記ポリカーボネート樹脂を等量の末端水酸基量が140ppmであるポリカーボネート樹脂に、リサイクル炭素繊維を炭素繊維量が等量となるバージン炭素繊維に置き換えた組成物から成形されたISO多目的試験片を用い、ISO178に従って測定された曲げ強さと比較して、保持率が85%以上であり、
    前記金属塩系難燃剤が、有機スルホン酸金属塩を含み、
    前記ポリカーボネート樹脂が、リサイクルされたポリカーボネート樹脂を含み、
    前記ポリカーボネート樹脂100質量部に対し、さらに、流動改質剤を0.5~30質量部含み、
    さらに、前記ポリカーボネート樹脂100質量部に対し、離型剤およびカーボンブラックから選択される少なくとも1種を合計で0.1~10質量部含む、請求項1に記載のペレット。
  9. 請求項1、2および8のいずれか1項に記載のペレットから形成された成形品。
  10. ポリカーボネート樹脂100質量部と、炭素繊維強化樹脂の加熱物であるリサイクル炭素繊維5~65質量部と、金属塩系難燃剤0.01~0.30質量部を押出機に投入し、溶融混練することを含む、ペレットの製造方法。
PCT/JP2022/041639 2021-11-10 2022-11-09 ペレット、成形品、および、ペレットの製造方法 WO2023085297A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-183343 2021-11-10
JP2021183343 2021-11-10

Publications (1)

Publication Number Publication Date
WO2023085297A1 true WO2023085297A1 (ja) 2023-05-19

Family

ID=86336113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041639 WO2023085297A1 (ja) 2021-11-10 2022-11-09 ペレット、成形品、および、ペレットの製造方法

Country Status (1)

Country Link
WO (1) WO2023085297A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11951656B2 (en) 2021-10-29 2024-04-09 Vartega Inc. Fiber-containing particles with dual-tapered shape

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026911A (ja) 2001-07-12 2003-01-29 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及びそれを用いた成形品
JP2006335890A (ja) * 2005-06-02 2006-12-14 Teijin Chem Ltd 再生樹脂組成物および再生樹脂組成物の製造方法
JP2008038003A (ja) * 2006-08-04 2008-02-21 Daicel Polymer Ltd ポリカーボネート系樹脂組成物及び薄肉成形品の耐屈曲性の改善方法
JP2011063812A (ja) 2010-11-24 2011-03-31 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及びそれを用いた成形品
JP2014122334A (ja) * 2012-11-20 2014-07-03 Techno Polymer Co Ltd ポリカーボネート樹脂組成物及び成形品
WO2016104467A1 (ja) * 2014-12-26 2016-06-30 乗明 伊集院 炭素繊維、その製造方法及び炭素繊維強化樹脂組成物
JP6183822B1 (ja) 2016-02-25 2017-08-23 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
WO2018212016A1 (ja) 2017-05-17 2018-11-22 株式会社新菱 再生炭素繊維束、再生炭素繊維、再生炭素繊維ミルドの製造方法および再生炭素繊維束の製造装置、炭素繊維強化樹脂の製造方法、ならびに再生炭素繊維束
JP2019056035A (ja) 2017-09-20 2019-04-11 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物の製造方法
JP2019136932A (ja) * 2018-02-09 2019-08-22 アイカーボン株式会社 炭素繊維及び炭素繊維強化樹脂組成物の製造方法
JP2020041253A (ja) * 2018-09-10 2020-03-19 ダイワボウホールディングス株式会社 ポリカーボネート繊維とその製造方法、およびそれを含む繊維強化プラスチック用シート、ならびに繊維強化プラスチック
WO2021010366A1 (ja) * 2019-07-17 2021-01-21 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
JP2021031633A (ja) 2019-08-28 2021-03-01 三菱エンジニアリングプラスチックス株式会社 レーザー吸収用ポリブチレンテレフタレート樹脂組成物
WO2021230132A1 (ja) * 2020-05-12 2021-11-18 三菱エンジニアリングプラスチックス株式会社 組成物、ペレット、成形品および組成物の製造方法
WO2022124332A1 (ja) * 2020-12-09 2022-06-16 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026911A (ja) 2001-07-12 2003-01-29 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及びそれを用いた成形品
JP4736260B2 (ja) 2001-07-12 2011-07-27 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及びそれを用いた成形品
JP2006335890A (ja) * 2005-06-02 2006-12-14 Teijin Chem Ltd 再生樹脂組成物および再生樹脂組成物の製造方法
JP2008038003A (ja) * 2006-08-04 2008-02-21 Daicel Polymer Ltd ポリカーボネート系樹脂組成物及び薄肉成形品の耐屈曲性の改善方法
JP2011063812A (ja) 2010-11-24 2011-03-31 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物及びそれを用いた成形品
JP2014122334A (ja) * 2012-11-20 2014-07-03 Techno Polymer Co Ltd ポリカーボネート樹脂組成物及び成形品
WO2016104467A1 (ja) * 2014-12-26 2016-06-30 乗明 伊集院 炭素繊維、その製造方法及び炭素繊維強化樹脂組成物
JP6183822B1 (ja) 2016-02-25 2017-08-23 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
WO2018212016A1 (ja) 2017-05-17 2018-11-22 株式会社新菱 再生炭素繊維束、再生炭素繊維、再生炭素繊維ミルドの製造方法および再生炭素繊維束の製造装置、炭素繊維強化樹脂の製造方法、ならびに再生炭素繊維束
JP2019056035A (ja) 2017-09-20 2019-04-11 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物の製造方法
JP2019136932A (ja) * 2018-02-09 2019-08-22 アイカーボン株式会社 炭素繊維及び炭素繊維強化樹脂組成物の製造方法
JP2020041253A (ja) * 2018-09-10 2020-03-19 ダイワボウホールディングス株式会社 ポリカーボネート繊維とその製造方法、およびそれを含む繊維強化プラスチック用シート、ならびに繊維強化プラスチック
WO2021010366A1 (ja) * 2019-07-17 2021-01-21 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
JP2021031633A (ja) 2019-08-28 2021-03-01 三菱エンジニアリングプラスチックス株式会社 レーザー吸収用ポリブチレンテレフタレート樹脂組成物
WO2021230132A1 (ja) * 2020-05-12 2021-11-18 三菱エンジニアリングプラスチックス株式会社 組成物、ペレット、成形品および組成物の製造方法
WO2022124332A1 (ja) * 2020-12-09 2022-06-16 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、ペレット、成形品、および、樹脂組成物の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11951656B2 (en) 2021-10-29 2024-04-09 Vartega Inc. Fiber-containing particles with dual-tapered shape

Similar Documents

Publication Publication Date Title
JP7051021B1 (ja) 組成物、ペレット、成形品および組成物の製造方法
JP5280669B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP6716551B2 (ja) ポリカーボネート樹脂組成物、およびポリカーボネート樹脂製プリプレグ
JP2012502145A (ja) 芳香族ポリカーボネートおよびポリ乳酸のブレンド、その製造方法およびその使用方法
WO2009060986A1 (ja) 樹脂組成物
JP6974527B2 (ja) レーザー溶着用部材及び成形品
TWI398463B (zh) An aromatic polycarbonate resin composition and a molded body using the same
EP3480255A1 (en) Thermoplastic resin composition and molded body obtained by molding same
WO2023085297A1 (ja) ペレット、成形品、および、ペレットの製造方法
KR102564588B1 (ko) 난연 폴리카보네이트 수지 조성물, 그것을 이용한 시트 및 필름, 및 그들의 제조 방법
KR20180078908A (ko) 폴리카보네이트 수지 조성물 및 이로부터 형성된 성형품
US20110245432A1 (en) Method for producing thermoplastic resin composition
CN115461408A (zh) 阻燃聚碳酸酯组合物
JP7288752B2 (ja) 熱可塑性樹脂組成物及び成形体
JP5312437B2 (ja) 熱伝導性ポリカーボネート系樹脂組成物および成形体
CN116888216B (zh) 具有高介电常数、高耐热性和改善的机械性质的热塑性组合物以及因此的成形制品
JP6800717B2 (ja) ポリカーボネート樹脂組成物
JP2019006866A (ja) ポリブチレンテレフタレート系樹脂組成物及び成形体
JP6039372B2 (ja) ポリブチレンテレフタレート系樹脂組成物
WO2023085298A1 (ja) ペレット、成形品、および、ペレットの製造方法
JP3676699B2 (ja) 透明なポリカーボネート/ポリエチレンテレフタレート組成物の連続製造方法、該組成物及び非晶性成形物
JP2023070900A (ja) ペレット、成形品、および、ペレットの製造方法
CN114026173B (zh) 纤维增强型阻燃性聚(酯-碳酸酯)组合物
KR102311477B1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2023090374A1 (ja) 樹脂組成物、ペレット、および、成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559656

Country of ref document: JP