WO2022118756A1 - 補強繊維回収用反応装置および再生補強繊維の製造方法 - Google Patents

補強繊維回収用反応装置および再生補強繊維の製造方法 Download PDF

Info

Publication number
WO2022118756A1
WO2022118756A1 PCT/JP2021/043454 JP2021043454W WO2022118756A1 WO 2022118756 A1 WO2022118756 A1 WO 2022118756A1 JP 2021043454 W JP2021043454 W JP 2021043454W WO 2022118756 A1 WO2022118756 A1 WO 2022118756A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
resin material
reinforced resin
reinforcing fibers
reinforcing
Prior art date
Application number
PCT/JP2021/043454
Other languages
English (en)
French (fr)
Inventor
春菜 円子
健次 古荘
Original Assignee
株式会社ミライ化成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミライ化成 filed Critical 株式会社ミライ化成
Priority to EP21900510.5A priority Critical patent/EP4257254A4/en
Priority to JP2022566889A priority patent/JP7222154B2/ja
Priority to KR1020237022201A priority patent/KR20230107389A/ko
Priority to CN202180079668.8A priority patent/CN116648314A/zh
Priority to US18/039,725 priority patent/US20240025084A1/en
Publication of WO2022118756A1 publication Critical patent/WO2022118756A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0047Compacting complete waste articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/70Chemical treatment, e.g. pH adjustment or oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/75Plastic waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0436Immersion baths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a reaction device for recovering reinforcing fibers and a method for manufacturing recycled reinforcing fibers.
  • Fiber reinforced plastic which uses fibers such as glass fiber as a reinforcing material, is a lightweight, high-strength, and highly elastic material, and is widely used for parts such as small ships, automobiles, and railroad vehicles. ing.
  • CFRP carbon fiber reinforced plastics
  • CFRP carbon fiber reinforced plastics
  • the methods for recovering the reinforcing fibers of the fiber-reinforced plastic are mainly the thermal decomposition method in which the resin component is thermally decomposed and removed by heat treatment to recover the reinforcing fiber, and the thermal decomposition method in which the resin component is dissolved and removed and reinforced by using a solvent.
  • Examples include a solvent method for recovering fibers. Of these, the solvent method is advantageous from the viewpoint of resource recycling because the resin component can be easily recovered.
  • Patent Document 1 discloses a step of cutting a lumpy composite material containing an inorganic material and an organic material to obtain a cut piece, and a method of crushing the cut piece to obtain a crushed piece. Then, in the same document, as a method for separating the inorganic material and the organic material of the crushed piece, a method of decomposing the organic material using a treatment liquid capable of decomposing the organic material contained in the crushed piece and recovering the inorganic material. Has been proposed.
  • an object of the present invention is a reaction device for recovering reinforcing fibers and a method for producing a recycled reinforcing fiber, which can maintain the shape and orientation of the reinforcing fibers when the reinforcing fibers are separated from the fiber-reinforced resin material by the solvent method. Is to provide.
  • the present inventors fix the fiber reinforced resin material itself in a fixed position while examining how to maintain the shape and orientation of the reinforcing fibers in the fiber reinforced resin material when the solvent method is used. If possible, they have found that the shape and orientation of the reinforcing fibers are maintained. Then, based on the above findings, the present inventors further studied and came to the present invention.
  • the gist of the present invention is as follows.
  • the reaction tank has an opening for charging the fiber-reinforced resin material, and is configured to be tiltable so that the opening tilts downward.
  • the fiber-reinforced resin material containing the reinforcing fiber and the resin component is treated with a treatment liquid containing a solvent. It has a step of dissolving at least a part of the resin component in the treatment liquid.
  • a method for producing a regenerated reinforcing fiber wherein in the step, the fiber-reinforced resin material is treated with the treatment liquid while being fixed by the fixing mechanism.
  • the present invention comprises a step of treating a fiber-reinforced resin material containing a reinforcing fiber and a resin component with a treatment liquid containing a solvent, and dissolving at least a part of the resin component in the treatment liquid.
  • a method for producing a regenerated reinforcing fiber wherein in the step, the fiber-reinforced resin material is treated with the treatment liquid in a state of being fixed by being pressed.
  • reaction device for recovering reinforcing fibers and a method for producing regenerated reinforcing fibers, which can maintain the shape and orientation of the reinforcing fibers when the reinforcing fibers are separated from the fiber-reinforced resin material by the above configuration. Can be done.
  • FIG. 1 is a perspective view showing an outline of a reaction device for recovering reinforcing fibers according to an embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view of the reinforcing fiber recovery reactor shown in FIG.
  • FIG. 3 is a partial cross-sectional view for explaining the operation of the reinforcing fiber recovery reactor shown in FIG.
  • FIG. 4 is a partial cross-sectional view for explaining the operation of the reinforcing fiber recovery reactor shown in FIG. 1.
  • FIG. 5 is a partial cross-sectional view for explaining the operation of the reinforcing fiber recovery reactor shown in FIG.
  • FIG. 6 is a partial cross-sectional view for explaining the operation of the reinforcing fiber recovery reactor shown in FIG. 1.
  • FIG. 7 is a perspective view showing an outline of a reaction device for recovering reinforcing fibers according to another embodiment of the present invention.
  • FIG. 1 is a perspective view showing an outline of a reinforcing fiber recovery reaction device according to an embodiment of the present invention
  • FIG. 2 is a partial cross-sectional view of the reinforcing fiber recovery reaction device shown in FIG.
  • the reinforcing fiber recovery reactor 1 shown in FIG. 1 is used for recovering reinforcing fibers from a fiber-reinforced resin material by a solvent method.
  • the fiber-reinforced resin material is a resin material reinforced by embedding reinforcing fibers such as carbon fibers.
  • the fiber reinforced resin material will be described in detail later.
  • the reinforcing fiber recovery reaction device 1 has a reaction tank 10, a lid 20, a fixing mechanism 30, and a support base 40.
  • a reaction tank 10 a reaction tank 10
  • a lid 20 a fixing mechanism 30, and a support base 40.
  • each configuration included in the reinforcing fiber recovery reaction device 1 will be described in detail in order.
  • the reaction tank 10 is a container that can accommodate the fiber-reinforced resin material and the solvent. As shown in FIG. 2, the reaction tank 10 includes a reaction tank main body 11, a temperature control jacket 13, a drain port 15, a valve 17, and a flange 19.
  • the reaction tank main body 11 is a bottomed cylindrical container having a bottom 113 at the bottom and an opening 115 at the top.
  • the reaction tank main body 11 has an accommodation space 111 capable of accommodating the fiber reinforced resin material and the solvent.
  • the fiber-reinforced resin material, the solvent, and other materials necessary for the reaction are accommodated in the accommodation space 111 of the reaction tank main body 11 through the opening 115.
  • the temperature control jacket 13 is arranged so as to surround the outer peripheral side surface of the reaction tank main body 11.
  • the temperature control jacket 13 can heat and / or cool the contents housed in the reaction tank main body 11 to control the temperature of the contents.
  • the temperature adjusting jacket 13 adjusts the temperature of the contents by passing a heat medium such as water through the inside thereof and performing heat exchange.
  • the temperature control jacket 13 may be a heating means such as an electric heater.
  • the drainage port 15 is provided at the bottom 113 of the reaction tank main body 11, and the liquid such as the treatment liquid existing in the accommodation space 111 of the reaction tank main body 11 can be discharged through the drainage port 15. Further, a valve 17 is attached in the middle of the drainage port 15, and the opening / closing of the drainage port 15 can be controlled by operating the valve 17.
  • the flange 19 is a disk-shaped member protruding from the outer peripheral edge portion near the opening 115 of the reaction tank main body 11. During the reaction, the flange 19 comes into contact with the flange 27 of the lid 20, which will be described later, to prevent leakage of the contents in the reaction tank main body 11 together with the flange 27. Further, by fixing the flange 19 and the flange 27, the lid 20 can be fixed to the reaction tank main body 11.
  • the lid 20 is a removable lid for opening and closing the reaction tank 10, and the reaction tank 10 can be closed by arranging the lid 20 so as to cover the opening 115.
  • the lid 20 has a lid main body 21, a liquid injection port 23, an exhaust port 25, and a flange 27.
  • the lid body 21 is the main part of the lid 20, and has a shape in which the bowl is turned upside down.
  • a through hole is provided in the central portion of the lid main body 21, and the control member 33 of the fixing mechanism 30, which will be described later, penetrates therethrough. Further, a liquid injection port 23 and an exhaust port 25 are attached to the lid main body 21.
  • the liquid injection port 23 is a pipe for injecting a treatment liquid such as a solvent.
  • the exhaust port 25 is a pipe for removing excess gas such as steam generated when the reaction tank 10 is used.
  • the liquid injection port 23 and the exhaust port 25 are provided on the upper surface of the lid main body 21, but the present invention is not limited to the illustrated embodiment, and the lid main body 21 is at an arbitrary position or a reaction tank. It can be attached to any position of 10. Further, a plurality of liquid injection ports 23 and exhaust ports 25 may be attached depending on their uses.
  • the flange 27 is a disk-shaped member that protrudes from the outer peripheral edge of the reaction tank 10 on the opening 115 side in the lid main body 21. The flange 27 comes into contact with the flange 19 of the reaction tank 10 during the reaction to prevent leakage of the contents in the reaction tank main body 11 together with the flange 19.
  • the fixing mechanism 30 is fixed by pressing the fiber reinforced resin material when the reinforcing fiber recovery reaction device 1 is used.
  • the fixing mechanism 30 has a pressing member 31, a control member 33, a support member 35, an elastic member 37, and a regulating member 39.
  • the pressing member 31 is arranged in the accommodation space 111 of the reaction tank 10 when the reinforcing fiber recovery reaction device 1 is used.
  • the pressing member 31 has a plate shape and has a pressing surface 311 for pressing the fiber reinforced resin material. Further, in the present embodiment, the pressing member 31 is arranged so that the pressing surface 311 is horizontal and substantially parallel to the support surface 351 of the support member 35. The position of the pressing member 31 having the above configuration is controlled by the control member 33, and the fiber reinforced resin material can be pressed by the pressing surface 311.
  • the area of the pressing surface 311 of the pressing member 31 is not particularly limited, but is, for example, 10% or more and 90% or less, preferably 30% or more and 50% or less of the area of the cross section parallel to the pressing surface 311 in the accommodation space 111. There can be. As a result, even when the fiber-reinforced resin material is fixed by using the pressing member 31, the treatment liquid can easily flow in the accommodation space 111, and the treatment liquid can easily permeate into the fiber-reinforced resin material.
  • the control member 33 is a rod-shaped member, and one end thereof is connected to the pressing member 31. Further, the other end side of the control member 33 penetrates the lid main body 21 and is connected to a drive device (not shown). Then, by moving the control member 33 in the direction perpendicular to the pressing surface 311 (that is, up and down in the figure), the pressing member 31 can move in the direction perpendicular to the pressing surface 311.
  • the support member 35 is arranged below the control member 33 in the accommodation space 111.
  • the support member 35 has a plate shape, and one support surface 351 is arranged so as to face the pressing surface 311.
  • the support member 35 supports the fiber reinforced resin material from the side opposite to the pressing member 31 on the support surface 351. Thereby, when the fiber reinforced resin material is pressed by the pressing member 31, the fiber reinforced resin material can be fixed between the pressing member 31 and the support member 35.
  • the area of the support surface 351 of the support member 35 is not particularly limited, but is, for example, 10% or more and 90% or less, preferably 30% or more and 50% or less of the area of the cross section parallel to the support surface 351 in the accommodation space 111. There can be. As a result, even when the fiber-reinforced resin material is fixed by using the support member 35, the treatment liquid can easily flow in the accommodation space 111, and the treatment liquid can easily permeate into the fiber-reinforced resin material.
  • the elastic member 37 supports the support member 35 by being arranged between the support member 35 and the bottom 113 of the reaction tank main body 11.
  • the elastic member 37 is a so-called compression coil spring.
  • the support member 35 can move downward according to the pressing force of the pressing member 31.
  • excessive pressure is prevented from being applied to the fiber reinforced resin material, and damage to the reinforcing fibers in the fiber reinforced resin material is suppressed.
  • the support member 35 can reciprocate correspondingly due to the presence of the elastic member 37. By reciprocating the pressing member 31 and the supporting member 35, the processing liquid in the accommodation space 111 is agitated.
  • the regulating member 39 has a regulating plate 391 and a connecting member that connects the regulating plate 391 to the bottom 113 of the reaction tank main body 11.
  • the regulation plate 391 is fixed to the bottom 113 side of the reaction tank main body 11 with respect to the support member 35 and substantially parallel to the support member 35. Then, when the support member 35 moves downward, it comes into contact with the regulation plate 391 of the regulation member 39 to regulate the downward movement position of the support member 35. That is, the regulating member 39 determines the position where the support member 35 can be moved downward.
  • the fixing mechanism 30 can move the pressing member 31 downward and squeeze the fiber reinforced resin material between the pressing member 31 and the support member 35. ..
  • the support table 40 shown in FIG. 1 is a table that supports the reaction tank 10.
  • the support base 40 has a support base main body 41 and a rotating shaft 43.
  • the support base main body 41 is a pillar erected from the ground.
  • the rotary shaft 43 is rotatably connected to the upper part of the support base main body 41 and to the reaction tank 10. This makes it possible to tilt the reaction tank 10. As a result, the opening 115 of the reaction tank 10 can be inclined downward, and it becomes easy to put in the fiber-reinforced resin material and take out the reinforcing fibers after the reaction.
  • the reinforcing fiber recovery reaction device 1 it is possible to carry out the reaction while pressing and fixing the fiber reinforced resin material by the fixing mechanism 30.
  • the shape of the reinforcing fibers in the fiber-reinforced resin material is less likely to be deformed.
  • the reinforcing fibers are fixed by the fixing mechanism 30, so that the reinforcing fibers are less likely to be entangled.
  • the treatment liquid uniformly permeates the reinforcing fibers in the fiber-reinforced resin material. And the dissolution reaction of the resin component can proceed uniformly.
  • the reinforcing fiber recovery reaction device 1 it is possible to carry out the reaction while pressing and fixing the fiber reinforced resin material by the fixing mechanism 30. Therefore, it is possible to process a wide variety of fiber-reinforced resin materials regardless of their size and shape. For example, finely cut fiber-reinforced resin materials and large prepreg sheets can be treated to recover recycled reinforcing fibers.
  • the recovered recycled reinforcing fiber can be washed and deliquescented. Therefore, a plurality of steps for recovering the regenerated reinforcing fiber can be performed by using the reinforcing fiber recovery reaction device 1 without changing the device.
  • the processing liquid can be agitated as the pressing member 31 reciprocates.
  • the support member 35 can also reciprocate with the reciprocation of the pressing member 31, the fiber reinforced resin material itself can be fixed and stirred.
  • the method for producing a regenerated reinforcing fiber according to the present invention comprises a dissolution step in which a fiber-reinforced resin material containing a reinforcing fiber and a resin component is treated with a treatment liquid containing a solvent, and at least a part of the resin component is dissolved in the treatment liquid.
  • the fiber-reinforced resin material is treated with the treatment liquid in a fixed state by being pressed.
  • the method for producing the regenerated reinforcing fiber according to the present invention may be carried out by any device, but in the following description, typically, an example using the above-described reaction device for recovering the reinforcing fiber according to the present embodiment. Will be described in detail.
  • 3 to 6 are partial cross-sectional views for explaining an example of the operation of the reinforcing fiber recovery reaction device in the method for producing a regenerated reinforcing fiber according to the present embodiment.
  • each step of the method for producing the regenerated reinforcing fiber according to the present embodiment will be described in order.
  • the fiber reinforced resin material 100 to be used in the melting step is prepared.
  • the fiber-reinforced resin material is a resin material reinforced by embedding reinforcing fibers.
  • the fiber reinforced resin material 100 is not particularly limited, and for example, carbon fiber reinforced plastics (CFRP), glass fiber reinforced plastics (GFRP), and glass long fiber mat reinforced.
  • CFRP carbon fiber reinforced plastics
  • GFRP glass fiber reinforced plastics
  • GMT Thermoplastics
  • AFRP Aramid-Fiber-Reinforced Plastics
  • KFRP Kevlar Fiber Reinforced Plastics
  • DFRP basalt fiber reinforced plastics, boron fiber reinforced plastics, and prepregs thereof.
  • the carbon fiber reinforced plastic is used in a relatively large amount and the amount of energy consumed during the production of the carbon fiber is large, the used carbon fiber reinforced plastic and / or the carbon fiber in this prepreg is used. It is desirable to collect and reuse it.
  • the reinforcing fibers in the fiber-reinforced resin material 100 exist in the state of a fiber bundle (toe) in which a plurality of reinforcing fibers are aligned in one direction, and a woven fabric or a non-woven fabric in which the fiber bundles of the reinforcing fibers are used for warps and wefts. It may be present in a state where each reinforcing fiber is arranged at a random position and direction.
  • the method according to the present embodiment is suitable for recovering reinforcing fibers from a fiber reinforced resin material containing a fiber bundle or a woven reinforcing fiber.
  • the reinforcing fiber may be in the form of chips, and in this case, for example, chopped fibers obtained by cutting fiber bundles, chip-shaped woven fabrics, and the like can be mentioned.
  • the resin component contained in the fiber-reinforced resin material 100 is not particularly limited, and may be, for example, either a thermosetting resin or a thermoplastic resin. Further, the thermosetting resin may be an uncured one or a cured product.
  • thermosetting resin is not particularly limited, and examples thereof include epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, cyanate resin, polyimide resin, melamine resin, urethane resin, polycarbonate resin, and polyacetal resin. , One of these can be used alone or in combination of two or more as a resin component.
  • thermoplastic resin is not particularly limited, and examples thereof include polyamide, polyolefin, polyester, polycarbonate, acrylic resin, acrylonitrile-butadiene-styrene copolymer, polyether ketone, polyphenylene sulfide, and the like, and one of them may be used. It can be used alone or in combination of two or more as a resin component.
  • the fiber reinforced resin material 100 itself may be in the form of a sheet or may be in the form of a cut chip.
  • the method according to the present embodiment can be suitably applied to the sheet-shaped fiber-reinforced resin material 100, for which it has been difficult to recover the reinforcing fibers in the past.
  • the size of the fiber reinforced resin material 100 is not particularly limited as long as it can be stored in the storage space 111 of the reaction tank 10.
  • the length of one piece of the fiber reinforced resin material 100 can be, for example, 100 mm or more, preferably 500 mm or more and 3000 mm or less. More specifically, as the fiber reinforced resin material 100, for example, a laminated fiber reinforced resin material sheet having a width of 1000 mm ⁇ 500 mm and a thickness of about 300 mm can be used.
  • the prepared fiber-reinforced resin material 100 is treated with a treatment liquid 200 containing a solvent, and at least a part of the resin component is dissolved in the treatment liquid 200.
  • the fiber reinforced resin material 100 and the treatment liquid 200 are charged into the accommodation space 111 of the reaction tank 10 of the reinforced fiber recovery reactor 1. Treat in reaction vessel 10.
  • the treatment liquid 200 will be described first, and then a specific procedure will be described.
  • the treatment liquid 200 in this step contains at least a solvent and dissolves at least a part of the resin component in the fiber reinforced resin material 100.
  • the resin component dissolves means that not only the resin component itself is directly dissolved in the treatment liquid 200, but also the resin component is decomposed to form a reactant, and the product is said to be. It also includes dissolving in the treatment liquid 200.
  • the solvent is the main component of the treatment liquid 200.
  • the solvent is not particularly limited as long as it can dissolve the resin component of the fiber-reinforced resin material 100 or the reaction product thereof in this step, and for example, water and / or various organic solvents can be used.
  • the organic solvent is not particularly limited, and is, for example, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, an amide solvent, an aromatic hydrocarbon, a halogenated aromatic hydrocarbon, or a halogenated aliphatic hydrocarbon. Etc., and one of these can be used alone or in combination of two or more.
  • Examples of the alcohol-based solvent include aliphatic alcohol-based solvents, aromatic alcohol-based solvents, glycol-based solvents, and other polyhydric alcohols such as glycerin.
  • Examples of the fatty alcohol system include 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-pentanol and 2-.
  • Examples thereof include acyclic fatty alcohols such as cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, and alicyclic alcohols such as 4-methylcyclohexanol.
  • Examples of the aromatic alcohol solvent include phenol, cresol, benzyl alcohol, phenoxyethanol and the like.
  • the glycol-based solvent include ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, and diethylene glycol.
  • Monobutyl ether triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol, polyethylene glycol (molecular weight 200-400), 1,2-propanediol, 1,3-propanediol, 1,2 -Butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, dipropylene glycol and the like can be mentioned.
  • ether solvent examples include aliphatic ethers such as dimethyl ether, diethyl ether, ethyl methyl ether, dipropyl ether, diisopropyl ether, dibutyl ether and dihexyl ether, 1,3-dioxolane, 1,4-dioxane, tetrahydrofuran and furan.
  • cyclic ethers such as, anisole, phenetol, diphenyl ether, and aromatic-containing ethers such as benzofuran.
  • ester solvent examples include methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, pentyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, and the like.
  • ketone solvent examples include acetone, methylethylketone, 2-pentanone, 3-pentanone, 2-hexanone, methylisobutylketone, 2-heptanone, 4-ptanone, diisobutylketone, cyclohexanone, methylcyclohexanone, holon, isophorone, and acetylacetone.
  • amide solvent examples include formamide, N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, 2-pyrrolidone and N-methyl-2.
  • -Pyrrolidone, caprolactam, carbamid acid ester and the like can be mentioned.
  • aromatic hydrocarbons include benzene, toluene, xylene and the like.
  • halogenated aromatic hydrocarbon include orthochlorophenol and orthodichlorobenzene.
  • halogenated aliphatic hydrocarbon include chloroform, methylene chloride and the like.
  • the content of the solvent contained in the treatment liquid 200 is not particularly limited, but is, for example, 0.01% by mass or more and 100% by mass or less, 40% by mass or more and 60% by mass or less, and 80% by mass or more and 100% by mass or less. Can be.
  • the treatment liquid 200 may contain a catalyst.
  • the catalyst is not particularly limited as long as it has an action of catalyzing the dissolution of the resin component in the fiber-reinforced resin material 100, and examples thereof include acidic substances and basic substances. These substances can improve the solubility of the resin component in a solvent by, for example, adding hydrogen ions, hydroxide ions, or the like to the functional group of the resin component, or by decomposing the resin component. ..
  • the solvent contains a protonic solvent, particularly water, the catalytic action of the acidic substance or the basic substance is further improved.
  • an inorganic acid an organic acid, a salt thereof, or a mixture thereof
  • the inorganic acid include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid and the like, and one of these can be used alone or in combination of two or more.
  • the phosphate include normal phosphate, metaphosphate, hypophosphate, phosphite, hypophosphite, pyrophosphate, trimetaphosphate, tetramethaphosphate, and pyrophosphite.
  • the organic acid include formic acid, acetic acid, citric acid, succinic acid, oxalic acid and the like.
  • Examples of the inorganic acid or salt of the organic acid include the above-mentioned alkali metals (eg, sodium, potassium, cesium, rubidium, etc.) and / or alkaline earth metals (eg, berylium, magnesium, calcium, strontium) of the above-mentioned inorganic acid or organic acid. , Barium, etc.) salt.
  • alkali metals eg, sodium, potassium, cesium, rubidium, etc.
  • alkaline earth metals eg, berylium, magnesium, calcium, strontium
  • inorganic acids particularly nitric acid, sulfuric acid, hydrochloric acid and phosphoric acid, are preferable because they are easily available and contribute to the promotion of dissolution of the resin component.
  • the content of the acidic substance depends on the type of the acidic substance used, the type of the solvent in the treatment liquid 200, and the resin component in the target fiber-reinforced resin material 100. Although it can be appropriately selected, the content of the acidic substance in the treatment liquid 200 can be, for example, 0.01% by mass or more and 100% by mass or less, particularly 10% by mass or more and 50% by mass or less.
  • Examples of the basic substance include inorganic basic substances such as lithium, alkali metals, hydroxides of alkaline earth metals, carbonates, hydrogen carbonates, sulfates, sulfites and nitrates, and dimethylamine and diethylamine. Examples thereof include amine compounds, and one of them can be used alone or in combination of two or more.
  • Examples of the alkali metal include sodium, potassium, cesium, rubidium and the like.
  • Examples of the alkaline earth metal include beryllium, magnesium, calcium, strontium, barium and the like.
  • alkali metal hydroxides, carbonates and bicarbonates are preferable because they are easily available and contribute to the promotion of dissolution of the resin component. More specifically, it is preferable that the basic substance contains at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate and potassium carbonate.
  • the content of the basic substance is determined by the type of the basic substance used, the type of the solvent in the treatment liquid 200, and the target fiber-reinforced resin material 100.
  • the content of the basic substance in the treatment liquid 200 can be, for example, 0.01% by mass or more and 100% by mass or less, particularly 10% by mass or more and 50% by mass or less, although it can be appropriately selected depending on the resin component.
  • the liquid is injected into the treatment liquid 200 and the accommodation space 111 from the liquid injection port 23.
  • the treatment liquid 200 may be injected into the accommodation space 111 all at once, or the components constituting the treatment liquid 200 may be divided and injected into the accommodation space 111. Further, when the treatment liquid 200 is injected, the fixing mechanism 30 does not have to fix the fiber reinforced resin material 100.
  • the fiber reinforced resin material 100 is treated with a treatment liquid.
  • the fiber-reinforced resin material 100 is pressed and fixed by the pressing member 31 of the fixing mechanism 30, and the treatment is performed by the treatment liquid 200.
  • the pressure of the pressing surface 311 when the fiber reinforced resin material 100 is pressed by the pressing member 31 is not particularly limited, and is, for example, 8.5 ⁇ 10 -5 Pa or more and 8.5 Pa or less, preferably 8.5 ⁇ 10 -4 . It can be Pa or more and 8.5 -1 Pa or less.
  • the pressing member 31 it is preferable to reciprocate the pressing member 31 up and down during the treatment with the treatment liquid 200 to stir the treatment liquid 200.
  • the support member 35 supported by the elastic member 37 reciprocates in conjunction with the reciprocating motion of the pressing member 31. Therefore, even if the pressing member 31 is reciprocated, the fiber reinforced resin material 100 is fixed between the pressing member 31 of the fixing mechanism 30 and the support member 35. As described above, the treatment liquid 200 can be agitated while fixing the fiber reinforced resin material 100.
  • the treatment liquid was agitated using a general stirring blade or the like, but in this case, the reinforcing fibers exposed from the fiber reinforced resin material are damaged by the stirring blade, or the reinforcing fibers are entangled with the stirring blade. was there. Therefore, conventionally, it has been difficult to recover the reinforcing fibers while maintaining the shape and orientation of the reinforcing fibers.
  • the fiber reinforced resin material 100 is fixed by the fixing mechanism 30, and the above problem is suppressed by stirring the reinforcing fiber while maintaining the shape and orientation of the reinforcing fiber. It is possible to collect it.
  • the moving distance (one-way distance) of the reciprocating pressing member 31 when stirring the processing liquid 200 using the fixing mechanism 30 is not particularly limited, but is, for example, 5 mm or more and 1000 mm or less, preferably 50 mm or more and 300 mm or less. be.
  • the temperature of the treatment liquid 200 during the treatment is not particularly limited and varies depending on the type of the treatment liquid 200, but is, for example, 30 ° C. or higher and 300 ° C. or lower, preferably 50 ° C. or higher and 100 ° C. or lower.
  • the temperature of the treatment liquid 200 is adjusted by operating the temperature adjustment jacket 13.
  • the treatment time with the treatment liquid 200 is not particularly limited, and is 1 minute or more and 1440 minutes or less, preferably 10 minutes or more and 60 minutes or less after reaching the target temperature.
  • the treatment with the treatment liquid 200 may be performed under normal pressure, reduced pressure, or pressurized.
  • the treatment with the treatment liquid 200 is performed under pressure, for example, the treatment can be performed in an atmosphere of 0.11 MPa or more and 7.0 MPa or less, particularly 0.11 MPa or more and 2.0 MPa or less.
  • the treatment with the treatment liquid 200 is preferably performed under normal pressure.
  • the treatment with the treatment liquid 200 By the treatment with the treatment liquid 200, at least a part of the resin component is eluted from the fiber reinforced resin material 100 into the treatment liquid, and the reinforcing fibers can be recovered.
  • the fiber reinforced resin material 100 with the pressing member 31 it is preferable to press the fiber reinforced resin material 100 with the pressing member 31 to squeeze the fiber reinforced resin material 100.
  • This enables efficient liquid removal. Specifically, by moving the pressing member 31 downward, the support member 35 that moves along with the pressing member 31 is moved to a position where it abuts on the regulating member 39. Then, by pressing the fiber reinforced resin material 100 with the pressing member 31 with a more appropriate pressure, liquid removal becomes possible.
  • cleaning is performed as necessary.
  • the cleaning can be performed by bringing the cleaning liquid into contact with the fiber reinforced resin material 100.
  • the treatment liquid 200 can be replaced with a cleaning liquid.
  • the temperature of the cleaning liquid and the cleaning time at the time of cleaning can be appropriately set.
  • the fiber-reinforced resin material 100 can be fixed and washed by the fixing mechanism 30. Therefore, it is possible to clean and recover the reinforcing fibers while maintaining the shape and orientation of the reinforcing fibers contained in the fiber reinforced resin material 100.
  • the water listed as the solvent of the treatment liquid 200 described above or various organic solvents can be used alone or in combination of two or more.
  • the cleaning liquid may contain an acidic substance or a basic substance.
  • the above dissolution step, liquid removal step and cleaning step can be performed multiple times as needed.
  • the cleaning step may be performed after repeating the dissolution step and the liquid removal step a plurality of times.
  • the dissolution step may be performed a plurality of times, then the liquid removal step may be performed, and then the cleaning step may be performed a required number of times.
  • the dissolution step, the deliquessing step, and the washing step may be performed in this order as many times as necessary.
  • the fiber-reinforced resin material 100 may be dried in a state where the resin component is dissolved and removed from the fiber-reinforced resin material 100 as described above. Drying can be performed, for example, by circulating a gas inside the accommodation space 111 of the reaction vessel 10 by an air supply means (not shown).
  • the gas to be circulated is not particularly limited, but from the viewpoint of safety, an inert gas such as air or nitrogen is preferable.
  • the fiber reinforced resin material 100 may be heated during drying. This promotes drying.
  • the heating may be performed by, for example, the temperature adjusting jacket 13 or by introducing the heated gas into the reaction tank 10.
  • the temperature of the gas at the time of heating is, for example, 0 ° C. or higher and 400 ° C. or lower, preferably 80 ° C. or higher and 110 ° C. or lower.
  • the fiber reinforced resin material 100 may be dried while being fixed by the fixing mechanism 30. This makes it possible to dry the reinforcing fibers while maintaining the shape and orientation of the reinforcing fibers contained in the fiber reinforced resin material 100.
  • the reinforcing fibers are recovered from the fiber reinforced resin material 100 to obtain recycled reinforcing fibers.
  • the regenerated reinforcing fiber can be easily taken out by tilting the opening 115 of the reaction tank 10 downward from the rotation shaft 43 of the support base 40 as a starting point.
  • the regenerated reinforcing fiber can be obtained.
  • the fiber-reinforced resin material 100 is pressed and fixed by the fixing mechanism 30, and the resin component in the fiber-reinforced resin material 100 is dissolved in a treatment liquid 200 containing a solvent.
  • the shape of the reinforcing fibers in the fiber-reinforced resin material 100 is less likely to be deformed.
  • the reinforcing fibers are less likely to be entangled because they are fixed. This makes it possible to maintain the shape and fiber direction of the obtained regenerated reinforcing fiber, for example, it is possible to maintain the fiber direction of the obtained regenerated reinforcing fiber in one direction, and it is manufactured using the regenerated reinforcing fiber.
  • the physical properties of the fiber-reinforced resin material such as physical strength, are also improved.
  • the treatment liquid uniformly permeates the reinforcing fibers in the fiber-reinforced resin material 100. And the dissolution reaction of the resin component can proceed uniformly.
  • the fixing mechanism 30 it is possible to carry out the reaction while pressing and fixing the fiber reinforced resin material by the fixing mechanism 30. Therefore, it is possible to process a wide variety of fiber reinforced resin materials 100 regardless of size and shape. For example, finely cut fiber-reinforced resin materials and large prepreg sheets can be treated to recover recycled reinforcing fibers.
  • the support member 35 is supported and arranged on the elastic member 37, but the present invention is not limited to this, and the support member 35 is, for example, as in the reinforcing fiber recovery reaction device 1A shown in FIG. May be omitted.
  • the bottom 113 of the reaction tank main body 11 functions as a support member, and the fixing mechanism 30A is configured by the pressing member 31, the control member 33, and the bottom 113.
  • the fixing mechanism 30 is configured such that the pressing member 31 and the supporting member 35 press and fix the fiber reinforced resin material 100 from the vertical direction, but the present invention is limited thereto. Instead, the fixing mechanism may press and fix the fiber reinforced resin material in any direction.
  • the pressing member and the supporting member may be arranged so as to press and fix the fiber reinforced resin material in the horizontal direction.
  • the pressing member 31 and the supporting member 35 are configured to have a plate shape, but the present invention is not limited to this.
  • the pressing member and the supporting member may be provided with holes. This reduces the fluid resistance during stirring.
  • the pressing member and the supporting member may be a mesh-like sheet.
  • the processing liquid 200 is stirred by moving the pressing member 31 and the supporting member 35 up and down, but the present invention is not limited to this.
  • the reaction vessel may be provided with a stirrer at a portion that does not come into contact with the fiber reinforced resin material.
  • stirring may be performed by keeping the position of the fixing mechanism fixed and by moving the reaction tank.
  • the mode of motion of the reaction vessel is not particularly limited, and may be, for example, a reciprocating motion or a rotary motion in the vertical direction and / or the horizontal direction.
  • the elastic member 37 has been described as a compression coil spring, but the present invention is not limited to this, and the elastic member can be composed of any elastic member.
  • elastic members include leaf springs such as lap leaf springs and thin leaf springs, torsion springs, bamboo child springs, rubber, and polymer elastic bodies such as elastomers.
  • reaction tank 10 and the reaction tank main body 11 have been described as having a cylindrical shape, but the present invention is not limited thereto.
  • shape of the reaction tank main body 11 may be changed so that the accommodation space thereof forms a substantially rectangular parallelepiped.
  • the present invention is not limited to this, and the present invention is not limited to this.
  • the method for producing the regenerated reinforcing fiber according to the above method does not have to use the above-mentioned reaction device for recovering the reinforcing fiber according to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

溶媒法において繊維強化樹脂材料から補強繊維を分離する際に、補強繊維束の形状および配向を維持することのできる、補強繊維回収用反応装置および再生補強繊維の製造方法を提供する。 溶媒法により繊維強化樹脂材料から補強繊維を回収するために用いられる装置であって、前記繊維強化樹脂材料と溶媒とを収容する反応槽と、前記繊維強化樹脂材料を押圧可能な押圧部材を含み、収容された前記繊維強化樹脂材料を前記押圧部材により押圧することにより固定可能な固定機構と、を有する、補強繊維回収用反応装置。

Description

補強繊維回収用反応装置および再生補強繊維の製造方法 関連出願の相互参照
 本出願は、2020年12月2日に日本国において出願された日本国特許出願:特願2020-200195に基づく優先権を主張し、その全内容を参照により援用する。
 本発明は、補強繊維回収用反応装置および再生補強繊維の製造方法に関する。
 ガラス繊維等の繊維を強化材として用いた繊維強化プラスチック(Fiber Reinforced Plastics;FRP)は、軽量、高強度、かつ高弾性の材料であり、小型船舶、自動車、鉄道車両等の部材に幅広く使用されている。また、更なる軽量化、高強度化、及び高弾性化を目的として、炭素繊維を強化材として用いた炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics;CFRP)が開発されており、航空機、自動車等の部材に使用されている。
 近年、使用済みの繊維強化プラスチックの廃棄量が増大傾向にあり、その再生利用技術の開発が検討されている。繊維強化プラスチックの補強繊維を回収する方法としては、主に、熱処理により樹脂成分を熱分解して除去し補強繊維を回収する熱分解法と、溶媒を用いて樹脂成分を溶解させて除去し補強繊維を回収する溶媒法とが挙げられる。このうち、溶媒法は、樹脂成分の回収が容易であり、資源リサイクルの観点から有利である。
 溶媒法としては、例えば、特許文献1において提案される方法が挙げられる。特許文献1には、無機材料と有機材料とを含む塊状の複合材料を裁断して裁断片を得る工程と、前記裁断片を破砕して破砕片を得る方法が開示されている。そして、同文献においては、破砕片の無機材料と有機材料とを分離する方法として、破砕片に含まれる有機材料を分解しうる処理液を用いて有機材料を分解し、無機材料を回収する方法が提案されている。
特開2020-11482号公報
 しかしながら、溶媒法においては、繊維強化樹脂材料中の樹脂成分を効率よく溶解させるためには、溶媒と繊維強化樹脂材料との混合液を攪拌する必要があった。混合液を攪拌すると、繊維強化樹脂材料中に存在する補強繊維の繊維束の形状および配向を保つことが困難である。補強繊維の繊維束の形状および配向を保つことができない場合、回収される補強繊維の繊維方向が揃わず、回収される補強繊維の用途が、限定されてしまう。
 したがって、本発明の目的は、溶媒法において繊維強化樹脂材料から補強繊維を分離する際に、補強繊維の形状および配向を維持することのできる、補強繊維回収用反応装置および再生補強繊維の製造方法を提供することにある。
 本発明者らは、溶媒法を用いた際に繊維強化樹脂材料中の補強繊維の形状および配向をいかにして維持するかを検討する中で、繊維強化樹脂材料自体を一定の位置に固定することができれば、補強繊維の形状および配向を維持することを見出した。そして、以上の知見に基づき、本発明者らはさらに検討を行い、本発明に至った。
 本発明の要旨は、以下の通りである。
(1) 溶媒法により繊維強化樹脂材料から補強繊維を回収するために用いられる装置であって、
 前記繊維強化樹脂材料と溶媒とを収容する反応槽と、
 前記繊維強化樹脂材料を押圧可能な押圧部材を含み、収容された前記繊維強化樹脂材料を前記押圧部材により押圧することにより固定可能な固定機構と、を有する、補強繊維回収用反応装置。
(2) 前記押圧部材は、板状をなしている、(1)に記載の補強繊維回収用反応装置。
(3) 前記押圧部材は、前記繊維強化樹脂材料を押圧する押圧面を有し、押圧面と垂直な方向に往復可能である、(1)または(2)に記載の補強繊維回収用反応装置。
(4) 前記固定機構は、前記繊維強化樹脂材料を前記押圧部材と反対側から支持する支持部材を有する、(1)~(3)のいずれか一項に記載の補強繊維回収用反応装置。
(5) 前記支持部材は、板状をなしている、(4)に記載の補強繊維回収用反応装置。
(6) 前記支持部材は、前記押圧部材へ向けた方向に往復可能である、(4)または(5)記載の補強繊維回収用反応装置。
(7) さらに、前記支持部材を支持する弾性部材を有する、(4)~(6)のいずれか一項に記載の補強繊維回収用反応装置。
(8) 前記弾性部材は、圧縮コイルばねである、(7)に記載の補強繊維回収用反応装置。
(9) さらに、前記支持部材の移動位置を規制する規制部材を有する、(4)~(8)のいずれか一項に記載の補強繊維回収用反応装置。
(10) 前記反応槽は、前記繊維強化樹脂材料を投入するための開口部を有し、かつ、前記開口部が下方へ向けて傾くように、傾斜可能に構成されている、(1)~(9)のいずれか一項に記載の補強繊維回収用反応装置。
(11) 前記補強繊維が炭素繊維である、(1)~(10)のいずれか一項に記載の補強繊維回収用反応装置。
(12) (1)~(11)のいずれか一項に記載の補強繊維回収用反応装置を用いて、補強繊維と樹脂成分とを含む繊維強化樹脂材料を溶媒を含む処理液により処理し、前記樹脂成分の少なくとも一部を前記処理液に溶解させる工程を有し、
 前記工程において、前記繊維強化樹脂材料は、前記固定機構により固定された状態で、前記処理液により処理される、再生補強繊維の製造方法。
(13) 補強繊維と樹脂成分とを含む繊維強化樹脂材料を溶媒を含む処理液により処理し、前記樹脂成分の少なくとも一部を前記処理液に溶解させる工程を有し、
 前記工程において、前記繊維強化樹脂材料は、押圧されることにより固定された状態で、前記処理液により処理される、再生補強繊維の製造方法。
(14) 前記工程において、前記繊維強化樹脂材料を固定した状態で、前記溶媒の攪拌を行う、(12)または(13)に記載の再生補強繊維の製造方法。
 以上の構成により溶媒法において繊維強化樹脂材料から補強繊維を分離する際に、補強繊維の形状および配向を維持することのできる、補強繊維回収用反応装置および再生補強繊維の製造方法を提供することができる。
図1は、本発明の一実施形態に係る補強繊維回収用反応装置の概要を示す斜視図である。 図2は、図1に示す補強繊維回収用反応装置の部分断面図である。 図3は、図1に示す補強繊維回収用反応装置の動作を説明するための部分断面図である。 図4は、図1に示す補強繊維回収用反応装置の動作を説明するための部分断面図である。 図5は、図1に示す補強繊維回収用反応装置の動作を説明するための部分断面図である。 図6は、図1に示す補強繊維回収用反応装置の動作を説明するための部分断面図である。 図7は、本発明の他の実施形態に係る補強繊維回収用反応装置の概要を示す斜視図である。
 以下、図面を参照しつつ本発明の好適な実施形態について詳細に説明する。なお、図中、説明の容易化のため、適宜説明の必要のない部材を省略した。また、図示の各部材の寸法は、説明の容易化のため適宜拡大、縮小されており、実際の各部材の大きさを示すものではない。
 図1は、本発明の一実施形態に係る補強繊維回収用反応装置の概要を示す斜視図、図2は、図1に示す補強繊維回収用反応装置の部分断面図である。
 図1に示す補強繊維回収用反応装置1は、溶媒法により繊維強化樹脂材料から補強繊維を回収するために用いられる。繊維強化樹脂材料は、炭素繊維等の補強繊維が埋設されることにより強化された樹脂材料である。なお、繊維強化樹脂材料については、後に詳述する。
 補強繊維回収用反応装置1は、反応槽10と、蓋20と、固定機構30と、支持台40とを有している。以下、補強繊維回収用反応装置1が備える各構成について順に詳述する。
 反応槽10は、繊維強化樹脂材料と溶媒とを収容可能な容器である。図2に示すように、反応槽10は、反応槽本体11と、温度調整ジャケット13と、排液口15と、バルブ17と、フランジ19とを備えている。
 反応槽本体11は、下部に底部113、上部に開口部115を備える有底筒状の容器である。反応槽本体11は、繊維強化樹脂材料と溶媒とを収容可能な収容空間111を有する。反応槽本体11の収容空間111に対し、開口部115を介して繊維強化樹脂材料および溶媒等の反応に必要な材料が収容される。
 温度調整ジャケット13は、反応槽本体11の外周側面を囲うようにして配置されている。温度調整ジャケット13は、反応槽本体11に収容された内容物を加熱および/または冷却し、内容物の温度を調節することができる。温度調整ジャケット13は、例えば水等の熱媒体をその内部に通過させ、熱交換を行うことにより、内容物の温度を調節する。あるいは、温度調整ジャケット13は、電熱ヒータ等の加熱手段であってもよい。
 排液口15は、反応槽本体11の底部113に設けられており、排液口15を通じて反応槽本体11の収容空間111に存在する処理液等の液体を排出することができる。また、排液口15の途中には、バルブ17が取り付けられており、バルブ17を操作することにより、排液口15の開閉を制御することができる。
 フランジ19は、反応槽本体11の開口部115付近の外周縁部より突出した円盤状の部材である。フランジ19は、反応時において後述する蓋20のフランジ27と当接して、フランジ27とともに反応槽本体11中の内容物の漏出を防止する。また、フランジ19とフランジ27とを固定することにより、反応槽本体11に対し蓋20を固定することができる。
 蓋20は、反応槽10の開閉のための脱着可能な蓋であり、開口部115を覆うように配置することにより反応槽10を閉じることができる。蓋20は、蓋本体21と、注液口23と、排気口25と、フランジ27とを有している。
 蓋本体21は、蓋20の主要部であり、椀を逆さまにした形状をなしている。そして、蓋本体21の中央部には貫通孔が設けられ、後述する固定機構30の制御部材33が貫通している。また、蓋本体21には、注液口23と、排気口25と、が取り付けられている。
 注液口23は、溶媒等の処理液を注入するための配管である。また、排気口25は、反応槽10使用時において生じた蒸気等の余剰の気体を除去するための配管である。なお、本実施形態においては、注液口23および排気口25は蓋本体21の上面に設けられているが、本発明は図示の態様に限定されず、蓋本体21の任意の位置または反応槽10の任意の位置に取り付けることができる。また、注液口23および排気口25は、それらの用途に応じて複数取り付けられていてもよい。
 フランジ27は、蓋本体21において反応槽10の開口部115側の外周縁部より突出した円盤状の部材である。フランジ27は、反応時において反応槽10のフランジ19と当接して、フランジ19とともに反応槽本体11中の内容物の漏出を防止する。
 固定機構30は、補強繊維回収用反応装置1の使用時において繊維強化樹脂材料を押圧することにより固定する。固定機構30は、押圧部材31と、制御部材33と、支持部材35と、弾性部材37と、規制部材39とを有している。
 押圧部材31は、補強繊維回収用反応装置1の使用時において反応槽10の収容空間111内に配置される。押圧部材31は、板状をなし、繊維強化樹脂材料を押圧するための押圧面311を有している。また、本実施形態においては押圧面311が水平にかつ支持部材35の支持面351と略平行になるように、押圧部材31が配置されている。以上の構成を有する押圧部材31は、制御部材33により位置が制御されて、押圧面311により繊維強化樹脂材料を押圧することができる。
 なお、押圧部材31の押圧面311の面積は、特に限定されないが、例えば、収容空間111における押圧面311に平行な断面の面積の10%以上90%以下、好ましくは30%以上50%以下であることができる。これにより、押圧部材31を用いて繊維強化樹脂材料を固定している場合においても、収容空間111における処理液の流動が容易となり、繊維強化樹脂材料への処理液の浸透が容易となる。
 制御部材33は、棒状の部材であり、一端が押圧部材31に接続されている。また、制御部材33の他端側は蓋本体21を貫通して、図示せぬ駆動装置に接続されている。そして、制御部材33が押圧面311と垂直な方向(すなわち図中上下)に、移動することにより、押圧部材31が押圧面311と垂直な方向に移動可能となる。
 支持部材35は、収容空間111において制御部材33よりも下方に配置される。支持部材35は、板状をなし、一方の支持面351が押圧面311と対向するように配置される。押圧部材31が繊維強化樹脂材料を押圧した場合において、支持部材35は、支持面351において押圧部材31と反対側から繊維強化樹脂材料を支持する。これにより、押圧部材31により繊維強化樹脂材料が押圧された際に、押圧部材31と支持部材35との間で繊維強化樹脂材料を固定することができる。
 なお、支持部材35の支持面351の面積は、特に限定されないが、例えば、収容空間111における支持面351に平行な断面の面積の10%以上90%以下、好ましくは30%以上50%以下であることができる。これにより、支持部材35を用いて繊維強化樹脂材料を固定している場合においても、収容空間111における処理液の流動が容易となり、繊維強化樹脂材料への処理液の浸透が容易となる。
 弾性部材37は、支持部材35と反応槽本体11の底部113との間に配置されることにより、支持部材35を支持する。弾性部材37は、いわゆる圧縮コイルばねである。このような弾性部材37を用いて支持部材35を支持することにより、支持部材35は押圧部材31の押圧力に応じて下方へ移動することが可能となる。この結果、繊維強化樹脂材料に過度の圧力が付加されることが防止され、繊維強化樹脂材料中の補強繊維の損傷が抑制される。また、押圧部材31が往復している場合には、弾性部材37の存在により支持部材35が対応して往復することが可能となる。押圧部材31および支持部材35が往復することにより、収容空間111中の処理液が攪拌される。
 規制部材39は、規制板391とこれを反応槽本体11の底部113と接続する接続部材とを有する。規制板391は、支持部材35よりも反応槽本体11の底部113側に、かつ支持部材35と略平行に固定されている。そして、支持部材35が下方に移動した際に規制部材39の規制板391と当接して、支持部材35の下方への移動位置を規制する。すなわち、規制部材39は、支持部材35の下方への移動可能な位置を決定している。固定機構30は、このような規制部材39を有することにより、押圧部材31を下方に移動させて、押圧部材31と支持部材35との間で、繊維強化樹脂材料を圧搾することが可能となる。
 図1に示す支持台40は、反応槽10を支持する台である。支持台40は、支持台本体41と、回転軸43とを有している。支持台本体41は、地面から立設される柱である。回転軸43は、支持台本体41の上方および反応槽10に回転可能に接続されている。これにより、反応槽10を傾けることが可能となる。これにより、反応槽10の開口部115が下方へ向けて傾斜することができ、繊維強化樹脂材料の投入や反応後の補強繊維の取り出しが容易となる。
 以上、本実施形態に係る補強繊維回収用反応装置1においては、固定機構30により繊維強化樹脂材料を押圧して固定しつつ、反応を行うことが可能である。これにより、溶媒を含む処理液で繊維強化樹脂材料を処理する際に、繊維強化樹脂材料中の補強繊維の形状が変形しにくくなる。特に、処理中に繊維強化樹脂材料中の樹脂成分が溶解して補強繊維が露出した後であっても、補強繊維は固定機構30により固定されているため、補強繊維の絡まりが起こりづらい。これにより、得られる再生補強繊維の形状、繊維方向を維持することが可能となり、例えば、得られる再生補強繊維の繊維方向を一方向に維持することが可能となり、再生補強繊維を用いて製造される繊維強化樹脂材料の物理的性質、例えば物理的強度も向上する。
 また、処理中において繊維強化樹脂材料中の樹脂成分が溶解して補強繊維束が露出した後に補強繊維同士が絡まりづらいことから、処理液が均一に繊維強化樹脂材料中の補強繊維に浸透することができ、樹脂成分の溶解反応が均一に進行することができる。
 また、本実施形態に係る補強繊維回収用反応装置1においては、固定機構30により繊維強化樹脂材料を押圧して固定しつつ、反応を行うことが可能である。したがって、大きさ、形状に関わりなく多種多様な繊維強化樹脂材料を処理することが可能である。例えば、細かく裁断された繊維強化樹脂材料や大型のプリプレグシートについても処理を行い、再生補強繊維を回収することができる。
 本実施形態に係る補強繊維回収用反応装置1を用いて、回収した再生補強繊維の洗浄、脱液も可能である。したがって、装置を変更することなく再生補強繊維を回収するための複数の工程を補強繊維回収用反応装置1を用いて行うことができる。
 さらに、本実施形態に係る補強繊維回収用反応装置1においては、押圧部材31が往復可能に構成されていることにより、押圧部材31の往復に伴い処理液の攪拌が可能となる。ここで、本実施形態においては支持部材35も押圧部材31の往復に伴って往復可能であるため、繊維強化樹脂材料自体は固定されつつ、攪拌が行われることが可能である。
2.再生補強繊維の製造方法
 次に、本発明の一実施形態に係る再生補強繊維の製造方法について説明する。本発明に係る再生補強繊維の製造方法は、補強繊維と樹脂成分とを含む繊維強化樹脂材料を溶媒を含む処理液により処理し、前記樹脂成分の少なくとも一部を処理液に溶解させる溶解工程を有し、前記溶解工程において、前記繊維強化樹脂材料は、押圧されることにより固定された状態で、前記処理液により処理される。
 なお、本発明に係る再生補強繊維の製造方法はいかなる装置で実施されてもよいが、以下の説明においては、代表的に、上述した本実施形態に係る補強繊維回収用反応装置を用いた例について詳細に説明する。図3~図6は、本実施形態に係る再生補強繊維の製造方法における補強繊維回収用反応装置の動作の一例説明するための部分断面図である。以下、本実施形態に係る再生補強繊維の製造方法の各工程について順に説明する。
2.1. 準備工程
 まず、溶解工程に先立ち、溶解工程に供する繊維強化樹脂材料100を準備する。繊維強化樹脂材料は、上述したように、補強繊維が埋設されることにより強化された樹脂材料である。このような、繊維強化樹脂材料100としては、特に限定されず、例えば、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics;CFRP)、ガラス繊維強化プラスチック(Glass Fiber Reinforced Plastics;GFRP)、ガラス長繊維マット強化熱可塑性プラスチック(Glass-Mat reinforced Thermoplastics;GMT)、アラミド繊維強化プラスチック(Aramid-Fiber-Reinforced Plastics;AFRP)、ケブラー繊維強化プラスチック(Kevlar Fiber Reinforced Plastics;KFRP)、ダイニーマ繊維強化プラスチック(Dyneema Fiber-Reinforced Plastics;DFRP)、バサルト繊維強化プラスチック、ボロン繊維強化プラスチック、およびこれらのプリプレグ等が挙げられる。上述した中でも、炭素繊維強化プラスチックは、使用量が比較的多く、また炭素繊維の製造時における消費エネルギー量が多大であるため、使用済みの炭素繊維強化プラスチックおよび/またはこのプリプレグ中の炭素繊維を回収し、再利用することが望ましい。
 また、繊維強化樹脂材料100中の補強繊維は、複数の補強繊維を一方向に引き揃えた繊維束(トウ)、補強繊維の繊維束を経糸および緯糸に用いた織物または不織布の状態で存在してもよいし、各補強繊維がランダムな位置および方向に配置された状態で存在していてもよい。特に、繊維束または織物状の補強繊維を溶媒法により取り出す場合には、処理液の浸透が進行しにくく、また補強繊維の形状および配向が崩れやすい傾向にあった。したがって、本実施形態に係る方法は、繊維束または織物状の補強繊維を含む繊維強化樹脂材料からの補強繊維の回収に適している。
 また、補強繊維はチップ状であってもよく、この場合、例えば、繊維束を切断したチョップド繊維、チップ状の織物等が挙げられる。
 繊維強化樹脂材料100に含まれる樹脂成分としては、特に限定されるものではなく、例えば、熱硬化性樹脂および熱可塑性樹脂のいずれであってもよい。また、熱硬化性樹脂は、未硬化のものであってもよいし、硬化物であってもよい。
 熱硬化性樹脂としては、特に限定されないが、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、シアネート樹脂、ポリイミド樹脂、メラミン樹脂、ウレタン樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて樹脂成分に用いることができる。
 熱可塑性樹脂としては、特に限定されないが、例えば、ポリアミド、ポリオレフィン、ポリエステル、ポリカーボネート、アクリル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、ポリエーテルケトン、ポリフェニレンスルフィド等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて樹脂成分に用いることができる。
 また、繊維強化樹脂材料100は、それ自身がシート状をなしていてもよいし、裁断されたチップ状をなしていてもよい。特に、本実施形態に係る方法は、従来補強繊維の回収が困難であったシート状の繊維強化樹脂材料100についても好適に適用できる。
 また、繊維強化樹脂材料100の大きさも、反応槽10の収容空間111に収納可能であれば特に限定されない。しかしながら、繊維強化樹脂材料100中の補強繊維の方向を保持することを考慮すると、繊維強化樹脂材料100の一片の長さは、例えば、100mm以上、好ましくは500mm以上3000mm以下であることができる。より具体的には、繊維強化樹脂材料100として、例えば1000mm×500mmの広さの積層された厚さ300mm程度の繊維強化樹脂材料シートを利用することもできる。
2.2. 溶解工程
 本工程においては、準備した繊維強化樹脂材料100を溶媒を含む処理液200により処理し、樹脂成分の少なくとも一部を処理液200に溶解させる。本実施形態においては具体的には、図3、図4に示すように、繊維強化樹脂材料100と処理液200とを補強繊維回収用反応装置1の反応槽10の収容空間111に投入し、反応槽10中で処理する。以下、まず処理液200について説明し、その後具体的な手順について説明する。
(i)処理液
 本工程における処理液200は、少なくとも溶媒を含み、繊維強化樹脂材料100中の樹脂成分の少なくとも一部を溶解させる。ここで、本明細書において、「樹脂成分が溶解する」とは、樹脂成分自体が直接処理液200に溶解することのみならず、樹脂成分が分解して反応物を生成し、当該生成物が処理液200に溶解することをも含む。
 溶媒は、処理液200の主成分である。溶媒としては、繊維強化樹脂材料100の樹脂成分またはその本工程における反応物を溶解可能であれば、特に限定されず、例えば、水および/または各種有機溶媒を用いることができる。
 有機溶媒としては、特に限定されないが、例えば、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アミド系溶媒、芳香族炭化水素、ハロゲン化芳香族炭化水素、ハロゲン化脂肪族炭化水素等が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。
 アルコール系溶媒としては、脂肪族アルコール系溶媒、芳香族アルコール系溶媒、グリコール系溶媒等や、グリセリン等のその他多価アルコールが挙げられる。
 脂肪族アルコール系としては、例えば、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、2-メチル-2-プロパノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、2,2-ジメチル-1-プロパノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-エチルヘキサノール、2-メチル-1-ペンタノール、4-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、ドデカノール、メタノール、エタノール等の非環式脂肪族アルコールや、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、4-メチルシクロヘキサノール等の脂環式アルコールが挙げられる。
 芳香族アルコール系溶媒としては、例えば、フェノール、クレゾール、ベンジルアルコール、フェノキシエタノール等が挙げられる。
 グリコール系溶媒としては、例えば、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコール、ポリエチレングリコール(分子量200~400)、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、ジプロピレングリコール等が挙げられる。
 エーテル系溶媒としては、例えば、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル等の脂肪族エーテル、1,3-ジオキソラン、1,4-ジオキサン、テトラヒドロフラン、フラン等の環式エーテル、アニソール、フェネトール、ジフェニルエーテル、ベンゾフラン等の芳香族含有エーテル等が挙げられる。
 エステル系溶媒としては、例えば、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、3-メトキシブチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、酢酸シクロヘキシル、酢酸ベンジル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、プロピオン酸イソペンチル、乳酸メチル、乳酸エチル、乳酸ブチル、酪酸メチル、酪酸エチル、酪酸ブチル、酪酸イソペンチル、イソ酪酸イソブチル、イソ吉草酸エチル、イソ吉草酸イソペンチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、γ-ブチロラクトン、シュウ酸ジエチル、シュウ酸ジブチル、マロン酸ジエチル、サリチル酸メチル、エチレングリコールジアセタート、ホウ酸トリブチル、リン酸トリメチル、リン酸トリエチル等が挙げられる。
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、メチルイソブチルケトン、2-ヘプタノン、4-プタノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ホロン、イソホロン、アセチルアセトン、アセトフェノン、ジエチルケトン、ジアセトンアルコール等が挙げられる。
 アミド系溶媒としては、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチル-2-ピロリドン、カプロラクタム、カルバミド酸エステル等が挙げられる。
 芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレン等が挙げられる。
 ハロゲン化芳香族炭化水素としては、例えば、オルトクロロフェノール、オルトジクロロベンゼン等が挙げられる。
 ハロゲン化脂肪族炭化水素としては、例えば、クロロホルム、塩化メチレン等が挙げられる。
 処理液200中に含まれる溶媒の含有量は、特に限定されないが、例えば、0.01質量%以上100質量%以下、また、40質量%以上60質量%以下、80質量%以上100質量%以下であることができる。
 また、処理液200は、触媒を含んでいてもよい。触媒としては、繊維強化樹脂材料100中の樹脂成分の溶解を触媒する作用を有する限り特に限定されないが、例えば、酸性物質および塩基性物質が挙げられる。これらの物質は、例えば、水素イオンまたは水酸化物イオン等を樹脂成分の官能基に付加して、あるいは、樹脂成分を分解することにより、樹脂成分の溶媒への溶解性を向上させることができる。特に、溶媒が、プロトン性溶媒を含む場合、とりわけ水を含む場合、酸性物質や塩基性物質の触媒作用がより一層向上する。
 酸性物質としては、無機酸、有機酸もしくはこれらの塩またはこれらの混合物を用いることができる。無機酸としては、例えば、硝酸、硫酸、塩酸、リン酸等を挙げることができ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。リン酸塩としては、例えば、正リン酸塩、メタリン酸塩、次リン酸塩、亜リン酸塩、次亜リン酸塩、ピロリン酸塩、トリメタリン酸塩、テトラメタリン酸塩、ピロ亜リン酸塩等が挙げられる。有機酸としては、例えば、ギ酸、酢酸、クエン酸、コハク酸、シュウ酸等が挙げられる。
 また、無機酸または有機酸の塩としては、上述した無機酸または有機酸のアルカリ金属(例えば、ナトリウム、カリウム、セシウム、ルビジウム等)および/またはアルカリ土類金属(例えばベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等)の塩が挙げられる。
 上述した中でも、無機酸、特に硝酸、硫酸、塩酸およびリン酸は、入手しやすく、かつ樹脂成分の溶解の促進に寄与しやすい点で好ましい。
 また、触媒として酸性物質が処理液200に含まれる場合、酸性物質の含有量は、用いる酸性物質の種類、処理液200中の溶媒の種類および対象となる繊維強化樹脂材料100中の樹脂成分によって適宜選択できるが、処理液200中の酸性物質の含有量は、例えば0.01質量%以上100質量%以下、特に、10質量%以上50質量%以下であることができる。
 塩基性物質としては、例えば、リチウム、アルカリ金属、アルカリ土類金属の水酸化物、炭酸塩、炭酸水素塩、硫酸塩、亜硫酸塩、硝酸塩等の無機塩基性物質や、ジメチルアミン、ジエチルアミン等のアミン化合物が挙げられ、これらのうち1種を単独でまたは2種以上を組み合わせて用いることができる。アルカリ金属としては、例えばナトリウム、カリウム、セシウム、ルビジウム等を挙げることができる。アルカリ土類金属としては、例えばベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
 上述した中でも、アルカリ金属の水酸化物、炭酸塩および炭酸水素塩は、入手しやすく、かつ樹脂成分の溶解の促進に寄与しやすい点で好ましい。より具体的には、塩基性物質が水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸水素カリウムおよび炭酸カリウムからなる群から選択される1種以上を含むことが好ましい。
 また、触媒として塩基性物質が処理液200に含まれる場合、塩基性物質の含有量は、用いる塩基性物質の種類、処理液200中の溶媒の種類および対象となる繊維強化樹脂材料100中の樹脂成分によって適宜選択できるが、処理液200中の塩基性物質の含有量は、例えば0.01質量%以上100質量%以下、特に、10質量%以上50質量%以下であることができる。
(ii)手順
 まず、図3に示すように、繊維強化樹脂材料100を反応槽10の収容空間111に投入する。本実施形態においては、繊維強化樹脂材料100は、固定機構30の押圧部材31と支持部材35との間に配置される。
 次いで、注液口23より、処理液200と収容空間111に注液する。なお、処理液200を一括して収容空間111に注液してもよいし、処理液200を構成する成分を分割して収容空間111に注液してもよい。また、処理液200の注液時において、固定機構30は、繊維強化樹脂材料100を固定していなくてもよい。
 次いで、繊維強化樹脂材料100を処理液で処理する。この場合において、図4に示すように、固定機構30の押圧部材31により繊維強化樹脂材料100を押圧して固定しつつ、処理液200による処理を行う。
 押圧部材31によって繊維強化樹脂材料100を押圧する際の押圧面311の圧力は、特に限定されず、例えば8.5×10-5Pa以上8.5Pa以下、好ましくは8.5×10-4Pa以上8.5-1Pa以下であることができる。
 また、処理液200による処理中において、押圧部材31を上下に往復させて、処理液200の攪拌を行うことが好ましい。押圧部材31を往復させた場合、弾性部材37に支持された支持部材35は、押圧部材31の往復運動と連動して往復する。したがって、押圧部材31を往復させても繊維強化樹脂材料100は、固定機構30の押圧部材31と支持部材35との間に固定される。以上により、繊維強化樹脂材料100の固定を行いつつ、処理液200の攪拌を行うことができる。
 従来、一般的な攪拌翼等を用いて処理液を攪拌していたが、この場合においては、繊維強化樹脂材料から露出した補強繊維が攪拌翼によって損傷したり、攪拌翼に補強繊維が絡みつく問題があった。このため、従来は、補強繊維の形状や配向を維持したまま補強繊維を回収することは困難であった。これに対し、本実施形態においては、固定機構30により繊維強化樹脂材料100を固定しつつ、攪拌を行うことにより、上記の問題を抑制し、補強繊維の形状や配向を維持したまま補強繊維を回収することが可能である。
 また、固定機構30を用いて処理液200の攪拌を行う際の往復する押圧部材31の移動距離(片道の距離)は、特に限定されないが、例えば5mm以上1000mm以下、好ましくは50mm以上300mm以下である。
 また、処理中における処理液200の温度は、特に限定されず、処理液200の種類によって異なるが、例えば30℃以上300℃以下、好ましくは50℃以上100℃以下である。処理液200の温度の調整は、温度調整ジャケット13を作動させることにより行われる。
 処理液200による処理の時間は、特に限定されず、目的とする温度に達してから1分以上1440分以下、好ましくは10分以上60分以下である。
 また、処理液200による処理は、常圧下で行ってもよいし、減圧下で行ってもよいし、または加圧下で行ってもよい。処理液200による処理を加圧下で行う場合、例えば、0.11MPa以上7.0MPa以下、特に0.11MPa以上2.0MPa以下の雰囲気下で処理を行うことができる。なお、安全性および経済性を考慮すると、処理液200による処理は、常圧下で行うことが好ましい。
 処理液200による処理により、繊維強化樹脂材料100から樹脂成分の少なくとも一部が処理液に溶出し、補強繊維が回収可能となる。
2.3. 脱液工程
 処理液200による処理後には、図5に示すように、バルブ17を操作して排液口15を開放し、排液口15より処理液200を排出する。
 この場合において、押圧部材31により繊維強化樹脂材料100を押圧し、繊維強化樹脂材料100を圧搾することが好ましい。これにより効率的な脱液が可能となる。具体的には、押圧部材31を下に移動させることにより、これに伴って移動する支持部材35を規制部材39に当接する位置まで移動させる。そして、さらに適切な圧力で押圧部材31により繊維強化樹脂材料100を押圧することにより、脱液が可能となる。
2.4. 洗浄工程
 次に、必要に応じて洗浄を行う。洗浄は、洗浄液を繊維強化樹脂材料100と接触させることにより行うことができる。具体的には、上記の溶解工程および脱液工程において、処理液200を洗浄液に置き換えることにより実施できる。ただし、洗浄時における洗浄液の温度や洗浄時間は、適宜設定できる。
 ここで、洗浄時においては、固定機構30により繊維強化樹脂材料100を固定しつつ洗浄を行うことができる。このため、繊維強化樹脂材料100に含まれる補強繊維の形状や配向を維持したまま補強繊維を洗浄・回収することが可能である。
 洗浄液としては、上述した処理液200の溶媒に挙げられた水や各種有機溶媒を1種単独でまたは2種以上を組み合わせて用いることができる。
 また、洗浄液には、酸性物質や塩基性物質が含まれていてもよい。これらの物質により液性を調節することにより、繊維強化樹脂材料100中の残存する樹脂成分やその反応物を除去することができる。
 以上の溶解工程、脱液工程および洗浄工程は、必要に応じてそれぞれ複数回行うことができる。例えば、溶解工程および脱液工程を複数回繰り返したのちに洗浄工程を行ってもよい。また例えば、溶解工程を複数回行った後、脱液工程を行い、その後洗浄工程を必要な回数行ってもよい。あるいは、例えば、溶解工程、脱液工程、および洗浄工程をこの順に必要な回数行ってもよい。
2.5. 乾燥工程
 以上のようにして繊維強化樹脂材料100から樹脂成分を溶解、除去した状態で、繊維強化樹脂材料100を乾燥してもよい。乾燥は、例えば、反応槽10の収容空間111内部に図示せぬ送気手段により気体を流通させることにより行うことができる。流通させる気体としては、特に限定されないが、安全面から、空気または窒素等の不活性ガスが好ましい。
 また、乾燥時において、繊維強化樹脂材料100を加温してもよい。これにより、乾燥が促進される。加温は、例えば、温度調整ジャケット13により行ってもよいし、加温した気体を反応槽10に導入することにより行ってもよい。加温時における気体の温度は、例えば0℃以上400℃以下、好ましくは80℃以上110℃以下である。
 ここで、繊維強化樹脂材料100を固定機構30により固定しつつ乾燥を行ってもよい。これにより、繊維強化樹脂材料100に含まれる補強繊維の形状や配向を維持したまま補強繊維を乾燥させることが可能である。
2.6. 回収工程
 以上の工程を経て、繊維強化樹脂材料100から補強繊維を回収し、再生補強繊維を得る。本工程においては、図6に示すように、支持台40の回転軸43を起点に反応槽10の開口部115を下方へ向けて傾けることで、再生補強繊維を用意に取り出すことができる。
 以上により、再生補強繊維を得ることができる。本実施形態に係る再生補強繊維の製造方法では、繊維強化樹脂材料100を固定機構30により押圧して固定しつつ、繊維強化樹脂材料100中の樹脂成分を溶媒を含む処理液200に溶解させる。これにより、溶媒を含む処理液200で繊維強化樹脂材料100を処理する際に、繊維強化樹脂材料100中の補強繊維の形状が変形しにくくなる。特に、処理中に繊維強化樹脂材料100中の樹脂成分が溶解して補強繊維が露出した後であっても、固定されているため、補強繊維の絡まりが起こりづらい。これにより、得られる再生補強繊維の形状、繊維方向を維持することが可能となり、例えば、得られる再生補強繊維の繊維方向を一方向に維持することが可能となり、再生補強繊維を用いて製造される繊維強化樹脂材料の物理的性質、例えば物理的強度も向上する。
 また、処理中において繊維強化樹脂材料100中の樹脂成分が溶解して補強繊維束が露出した後に補強繊維同士が絡まりづらいことから、処理液が均一に繊維強化樹脂材料100中の補強繊維に浸透することができ、樹脂成分の溶解反応が均一に進行することができる。
 また、本実施形態に係る方法においては、固定機構30により繊維強化樹脂材料を押圧して固定しつつ、反応を行うことが可能である。したがって、大きさ、形状に関わりなく多種多様な繊維強化樹脂材料100を処理することが可能である。例えば、細かく裁断された繊維強化樹脂材料や大型のプリプレグシートについても処理を行い、再生補強繊維を回収することができる。
3.変形例
 次に、上述した本発明の実施形態のいくつかの変形例について説明する。以下、上述した実施形態との相違点を中心に説明し、同様の事項については説明を省略する。
 上述した実施形態においては、支持部材35を弾性部材37に支持させて配置したが、本発明はこれに限定されず、例えば、図7に示す補強繊維回収用反応装置1Aのように支持部材35を省略してもよい。この場合において、反応槽本体11の底部113は、支持部材として機能し、押圧部材31、制御部材33および底部113により固定機構30Aが構成される。
 また、上述した実施形態においては、固定機構30は、押圧部材31および支持部材35が上下方向から繊維強化樹脂材料100を押圧、固定するように構成されていたが、本発明はこれに限定されず、固定機構は任意の方向で繊維強化樹脂材料を押圧・固定してもよい。例えば、水平方向に繊維強化樹脂材料を押圧・固定するように、押圧部材および支持部材が配置されてもよい。
 また、上述した実施形態においては、押圧部材31および支持部材35が板状であるように構成されていたが、本発明はこれに限定されない。例えば、押圧部材および支持部材には穴が設けられていてもよい。これにより、攪拌時の流体抵抗が低減される。あるいは、押圧部材および支持部材は、網状のシートであってもよい。
 また、上述した実施形態においては、押圧部材31および支持部材35を上下することにより処理液200の攪拌を行ったが、本発明はこれに限定されない。例えば、反応槽には、繊維強化樹脂材料と接触しない部位に攪拌装置が設けられていてもよい。あるいは、固定機構の位置を固定した状態とし、一方で反応槽が運動することにより、攪拌が行われてもよい。反応槽の運動の態様は、特に限定されず、例えば、垂直方向および/または水平方向における往復運動、回転運動であることができる。
 また、例えば、上述した実施形態においては、弾性部材37が圧縮コイルばねであるとして説明したが、本発明はこれに限定されず、弾性部材は、任意の弾性部材で構成することができる。このような弾性部材としては、重ね板ばね、薄板ばね等の板ばね、トーションばね、竹の子ばね、ゴム、エラストマー等の高分子弾性体等が挙げられる。
 また、例えば、上述した実施形態においては、反応槽10および反応槽本体11が円筒状をなしているものとして説明したが、本発明はこれに限定されない。例えば、反応槽本体11は、その収容空間が略直方体をなすように、その形状を変更してもよい。
 また、例えば、上述した実施形態に係る再生補強繊維の製造方法においては、本実施形態に係る補強繊維回収用反応装置を用いた例について説明したが、本発明はこれに限定されず、本発明に係る再生補強繊維の製造方法は、上述した本発明に係る補強繊維回収用反応装置を用いなくてもよい。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
1             補強繊維回収用反応装置
10            反応槽
11            反応槽本体
13            温度調整ジャケット
15            排液口
17            バルブ
19            フランジ
20            蓋
21            蓋本体
23            注液口
25            排気口
27            フランジ
30            固定機構
31            押圧部材
33            制御部材
35            支持部材
37            弾性部材
39            規制部材
40            支持台
41            支持台本体
43            回転軸
100           繊維強化樹脂材料
200           処理液

Claims (14)

  1.  溶媒法により繊維強化樹脂材料から補強繊維を回収するために用いられる装置であって、
     前記繊維強化樹脂材料と溶媒とを収容する反応槽と、
     前記繊維強化樹脂材料を押圧可能な押圧部材を含み、収容された前記繊維強化樹脂材料を前記押圧部材により押圧することにより固定可能な固定機構と、を有する、補強繊維回収用反応装置。
  2.  前記押圧部材は、板状をなしている、請求項1に記載の補強繊維回収用反応装置。
  3.  前記押圧部材は、前記繊維強化樹脂材料を押圧する押圧面を有し、押圧面と垂直な方向に往復可能である、請求項1または2に記載の補強繊維回収用反応装置。
  4.  前記固定機構は、前記繊維強化樹脂材料を前記押圧部材と反対側から支持する支持部材を有する、請求項1~3のいずれか一項に記載の補強繊維回収用反応装置。
  5.  前記支持部材は、板状をなしている、請求項4に記載の補強繊維回収用反応装置。
  6.  前記支持部材は、前記押圧部材へ向けた方向に往復可能である、請求項4または5に記載の補強繊維回収用反応装置。
  7.  さらに、前記支持部材を支持する弾性部材を有する、請求項4~6のいずれか一項に記載の補強繊維回収用反応装置。
  8.  前記弾性部材は、圧縮コイルばねである、請求項7に記載の補強繊維回収用反応装置。
  9.  さらに、前記支持部材の移動位置を規制する規制部材を有する、請求項4~8のいずれか一項に記載の補強繊維回収用反応装置。
  10.  前記反応槽は、前記繊維強化樹脂材料を投入するための開口部を有し、かつ、前記開口部が下方へ向けて傾くように、傾斜可能に構成されている、請求項1~9のいずれか一項に記載の補強繊維回収用反応装置。
  11.  前記補強繊維が炭素繊維である、請求項1~10のいずれか一項に記載の補強繊維回収用反応装置。
  12.  請求項1~11のいずれか一項に記載の補強繊維回収用反応装置を用いて、補強繊維と樹脂成分とを含む繊維強化樹脂材料を溶媒を含む処理液により処理し、前記樹脂成分の少なくとも一部を前記処理液に溶解させる工程を有し、
     前記工程において、前記繊維強化樹脂材料は、前記固定機構により固定された状態で、前記処理液により処理される、再生補強繊維の製造方法。
  13.  補強繊維と樹脂成分とを含む繊維強化樹脂材料を溶媒を含む処理液により処理し、前記樹脂成分の少なくとも一部を前記処理液に溶解させる工程を有し、
     前記工程において、前記繊維強化樹脂材料は、押圧されることにより固定された状態で、前記処理液により処理される、再生補強繊維の製造方法。
  14.  前記工程において、前記繊維強化樹脂材料を固定した状態で、前記溶媒の攪拌を行う、請求項12または13に記載の再生補強繊維の製造方法。
PCT/JP2021/043454 2020-12-02 2021-11-26 補強繊維回収用反応装置および再生補強繊維の製造方法 WO2022118756A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21900510.5A EP4257254A4 (en) 2020-12-02 2021-11-26 REACTOR DEVICE FOR RECOVERING REINFORCING FIBERS AND PRODUCTION PROCESS FOR RECYCLED REINFORCING FIBERS
JP2022566889A JP7222154B2 (ja) 2020-12-02 2021-11-26 補強繊維回収用反応装置および再生補強繊維の製造方法
KR1020237022201A KR20230107389A (ko) 2020-12-02 2021-11-26 보강섬유 회수용 반응장치 및 재생 보강섬유의 제조방법
CN202180079668.8A CN116648314A (zh) 2020-12-02 2021-11-26 增强纤维回收用反应装置以及再生增强纤维的制造方法
US18/039,725 US20240025084A1 (en) 2020-12-02 2021-11-26 Reinforcing-fiber recovery reactor and method of producing recycled reinforcing fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020200195 2020-12-02
JP2020-200195 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022118756A1 true WO2022118756A1 (ja) 2022-06-09

Family

ID=81853902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043454 WO2022118756A1 (ja) 2020-12-02 2021-11-26 補強繊維回収用反応装置および再生補強繊維の製造方法

Country Status (6)

Country Link
US (1) US20240025084A1 (ja)
EP (1) EP4257254A4 (ja)
JP (1) JP7222154B2 (ja)
KR (1) KR20230107389A (ja)
CN (1) CN116648314A (ja)
WO (1) WO2022118756A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116274258A (zh) * 2023-05-12 2023-06-23 江苏苏洁环卫装备有限公司 一种垃圾房的喷淋式垃圾除臭设备
WO2024062960A1 (ja) * 2022-09-21 2024-03-28 株式会社イノアックコーポレーション ポリウレタンフォームの分解処理装置及びポリウレタンフォームの分解処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726057A (ja) * 1993-07-15 1995-01-27 Koji Aoki 樹脂廃棄物の処理装置及び処理方法並びに処理物
JP3072696U (ja) * 2000-04-20 2000-10-24 株式会社阿部鉄工所 発泡スチロールの溶解・回収装置
US20170081785A1 (en) * 2015-09-22 2017-03-23 Caterpillar Inc. Carbon fiber reclamation from composite materials
JP2020029552A (ja) * 2018-08-03 2020-02-27 ザ・ボーイング・カンパニーThe Boeing Company ルイス塩基を介した繊維強化ポリマーからの繊維の回収

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249562A (en) * 1978-11-06 1981-02-10 King Lloyd H Sr Inline dispersal valve
CA2105142C (en) * 1993-08-30 2001-03-13 Shigetomi Komatsu Method of recovering polystyrene waste materials and its apparatus for dissolving polystyrene waste materials
JP2001040134A (ja) * 1999-07-28 2001-02-13 Bio Venture Bank Kk 発泡スチロール減溶化装置
JP2001240697A (ja) * 2000-02-29 2001-09-04 Sanesu:Kk 溶媒触媒法による炭素繊維強化プラスチックからの炭素繊維回収方法
JP4595847B2 (ja) 2006-03-17 2010-12-08 日立化成工業株式会社 繊維強化プラスチックに含まれる繊維および充填材の分離回収方法
JP5347056B2 (ja) * 2011-08-30 2013-11-20 カーボンファイバーリサイクル工業株式会社 再生炭素繊維の製造装置及び再生炭素繊維の製造方法
JP5816898B2 (ja) 2012-03-28 2015-11-18 国立大学法人静岡大学 リサイクル繊維の製造方法およびリサイクル繊維製造システム
EP2906924B1 (en) * 2012-10-09 2020-10-28 Waters Technologies Corporation Apparatus and method for analyte extraction
DE102013200482A1 (de) 2013-01-15 2014-07-17 Siemens Aktiengesellschaft Verfahren zur Wiedergewinnung von Verstärkungsfasern aus faserverstärkten Kunststoffen
WO2017052229A1 (ko) * 2015-09-23 2017-03-30 롯데케미칼 주식회사 프리프레그 재활용 방법
KR101801788B1 (ko) 2015-12-11 2017-11-28 한국과학기술연구원 열경화성 수지 복합 재료로부터 섬유 집합체를 회수하는 방법 및 장치, 이로부터 회수된 섬유 집합체
JP6694862B2 (ja) 2017-11-09 2020-05-20 三菱重工業株式会社 強化繊維再生方法
JP7148109B2 (ja) 2018-04-18 2022-10-05 株式会社ジンテク 積層したチップ状または板状プラスチック複合材料の処理方法
JP2020011482A (ja) 2018-07-20 2020-01-23 日立化成株式会社 再生材料の製造方法、複合材料の処理方法及び炭素繊維

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726057A (ja) * 1993-07-15 1995-01-27 Koji Aoki 樹脂廃棄物の処理装置及び処理方法並びに処理物
JP3072696U (ja) * 2000-04-20 2000-10-24 株式会社阿部鉄工所 発泡スチロールの溶解・回収装置
US20170081785A1 (en) * 2015-09-22 2017-03-23 Caterpillar Inc. Carbon fiber reclamation from composite materials
JP2020029552A (ja) * 2018-08-03 2020-02-27 ザ・ボーイング・カンパニーThe Boeing Company ルイス塩基を介した繊維強化ポリマーからの繊維の回収

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4257254A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062960A1 (ja) * 2022-09-21 2024-03-28 株式会社イノアックコーポレーション ポリウレタンフォームの分解処理装置及びポリウレタンフォームの分解処理方法
CN116274258A (zh) * 2023-05-12 2023-06-23 江苏苏洁环卫装备有限公司 一种垃圾房的喷淋式垃圾除臭设备
CN116274258B (zh) * 2023-05-12 2024-04-19 江苏苏洁环卫装备有限公司 一种垃圾房的喷淋式垃圾除臭设备

Also Published As

Publication number Publication date
US20240025084A1 (en) 2024-01-25
EP4257254A1 (en) 2023-10-11
KR20230107389A (ko) 2023-07-14
JP7222154B2 (ja) 2023-02-14
JPWO2022118756A1 (ja) 2022-06-09
EP4257254A4 (en) 2024-06-19
CN116648314A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2022118756A1 (ja) 補強繊維回収用反応装置および再生補強繊維の製造方法
JP4602469B2 (ja) 不飽和ポリエステルの解重合方法および当該解重合方法を用いたポリエステルモノマーの回収方法
CN110922633B (zh) 一种碳纤维树脂基复合材料热降解催化剂及其应用方法
JP4686991B2 (ja) 炭素材料/酸無水物硬化エポキシ樹脂複合材料の分離方法
WO1997030113A1 (fr) Recyclage de dechets en resine de polyester non sature reticule
WO2024075786A1 (ja) 再生補強繊維の製造方法
JP7240567B2 (ja) 再生補強繊維の製造方法
JP2006241380A (ja) プラスチックの分解方法
JPWO2017154103A1 (ja) 炭素繊維不織布、炭素繊維不織布の製造方法、炭素繊維多層布、及び複合材料
JP6785424B2 (ja) 有機材料除去装置
JP6270100B2 (ja) 不飽和ポリエステルの解重合方法、およびその解重合方法を用いた不飽和ポリエステルの原料の回収方法
JP7470450B1 (ja) 再生補強繊維の製造方法
JP4978103B2 (ja) エステル交換反応触媒の再生方法
JP6785425B2 (ja) 有機材料除去方法及び再生材料の製造方法
JP4978104B2 (ja) 繊維強化プラスチック溶解触媒の再生方法
JP4718868B2 (ja) 熱硬化性樹脂の分解方法
JP2001055468A (ja) フェノール樹脂またはエポキシ樹脂の分解方法と製造方法
JP2019044101A (ja) 有機材料除去方法及び再生材料の製造方法
JP2019044100A (ja) 有機材料除去装置
CN110857341A (zh) 一种碳纤维树脂基复合材料的降解溶剂及降解方法
JP2005171066A (ja) プラスチックの分解方法
Dandy Supercritical fluids and their application to the recycling of high-performance carbon fibre reinforced composite materials
JPWO2017154104A1 (ja) 炭素繊維不織布、炭素繊維不織布の製造方法、炭素繊維多層布、及び複合材料
JP2008156532A (ja) プラスチックの再利用方法及び無機充填材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566889

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180079668.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18039725

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237022201

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021900510

Country of ref document: EP

Effective date: 20230703