WO2022110632A1 - 一种矩形磁芯自动挤压成型机的组合芯模给送机构 - Google Patents

一种矩形磁芯自动挤压成型机的组合芯模给送机构 Download PDF

Info

Publication number
WO2022110632A1
WO2022110632A1 PCT/CN2021/089545 CN2021089545W WO2022110632A1 WO 2022110632 A1 WO2022110632 A1 WO 2022110632A1 CN 2021089545 W CN2021089545 W CN 2021089545W WO 2022110632 A1 WO2022110632 A1 WO 2022110632A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
combined
core mold
servo motor
slide rail
Prior art date
Application number
PCT/CN2021/089545
Other languages
English (en)
French (fr)
Inventor
张希望
Original Assignee
佛山市南海矽钢铁芯制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市南海矽钢铁芯制造有限公司 filed Critical 佛山市南海矽钢铁芯制造有限公司
Publication of WO2022110632A1 publication Critical patent/WO2022110632A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/82Rotary or reciprocating members for direct action on articles or materials, e.g. pushers, rakes, shovels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Definitions

  • the invention relates to the technical field of automatic extrusion molding of rectangular magnetic cores, in particular to a combined core die feeding mechanism of an automatic extrusion molding machine for rectangular magnetic cores.
  • the existing small rectangular magnetic cores are widely used in electronic communication equipment, electronic power control system and industrial control equipment. These rectangular magnetic cores are small in size and weigh in the range of 0.2 to 3 kg/piece.
  • a rectangular core mold is used as the tire mold and a notch is formed, and the silicon steel strip is inserted into the notch, and the core mold is driven by a motor to rotate, and the silicon steel strip is wound on the core mold. After reaching the preset thickness, the silicon steel strip is cut and welded firmly, and then the core mold is removed together with the rectangular magnetic core. Since the core mold needs to be loaded and unloaded manually, it can only be operated by a single person and a single machine. The fixing of the silicon steel strip also needs to be manually operated.
  • the head of the silicon steel strip adopts the hook method to hang the belt, after the rectangular magnetic core is wound, it needs to be Only by manually cutting off the hook can the rectangular magnetic core and the core mold be separated, which is time-consuming and labor-intensive and wastes materials. It can be seen that this winding forming method has low production efficiency, unstable product quality and high production cost.
  • the machine is divided into the following steps: The first step is to store the Shape or elliptical magnetic cores and send them to the first stage of the next step one by one; the second step is to send the cores from the 1# station of the first stage to the 3rd stage of the second stage.
  • the fourth step is to send the rectangular combined core mold into the The inner cavity of the approximately rectangular magnetic core;
  • the fifth step is to extrude the approximately rectangular magnetic core into a rectangular magnetic core;
  • the sixth step is to raise the rectangular magnetic core with the combined core mold to the same level as the first bearing table On the horizontal plane, it is sent from the 3# station to the 5# station and handed over to the next process.
  • the technical problem to be solved by the present invention is to provide a combined core mold feeding mechanism of a rectangular magnetic core automatic extrusion molding machine. Sent to the preset position, and then, the rectangular composite core mold is accurately clamped into the inner cavity of the approximately rectangular magnetic core set on the material receiving table by the clamp, and then the approximately rectangular magnetic core is clamped in the next step. The core is extruded into a rectangular core.
  • the combined mandrel feeding mechanism has the advantages of simple structure, accurate moving position, accurate and reliable action, stable product quality and high production efficiency.
  • a combined core mold feeding mechanism of a rectangular magnetic core automatic extrusion molding machine comprising a machine base, a material bearing table of a magnetic core up and down lifting mechanism, a substantially rectangular magnetic core is placed in the center of the material bearing table, and the combined core
  • the mold feeding mechanism is composed of a combined core mold pushing mechanism, a combined core mold walking mechanism, and a combined core mold up-down lifting mechanism located in the Y-axis direction of the Cartesian coordinate system; the combined core mold pushing mechanism It includes the first servo motor, the first screw rod, the first screw rod pair, the push plate, the base with the chute and the core mold storage slot.
  • a longitudinally arranged anti-jamming is fixed in the center of the bottom surface of the core mold storage slot.
  • the length of the anti-jamming round pad rod is the same length as the length of the core mold storage slot, and the core mold storage slot with a U-shaped cross section is matched and snapped with the chute with the chute base Sliding connection
  • the output shaft of the first servo motor is connected with one end of the first screw rod
  • the first servo motor is fixed on the mounting seat
  • the other end of the first screw rod is movably connected with the support seat
  • the first screw rod is attached to the first screw rod to move connected
  • the first screw pair is fixedly connected with the push plate through the first connecting plate
  • the first servo motor pushes the rectangular composite core placed in the core mold storage slot through the first screw, the first screw pair and the push plate
  • the mold moves forward along the Y-axis direction
  • the rectangular combined core mold is composed of a wedge-shaped first mold core block located in the middle and a right-angled trapezoidal second mold core block and a third mold core block located on both sides.
  • the base with chute is fixed on the auxiliary base;
  • the combined mandrel walking mechanism includes the second servo motor, the second screw, the second screw pair, the cantilever, the slide rail, the slide rail pair, the clamp, the cylinder and the bracket , the left end of the cantilever is fixedly connected with the second screw rod, the left part of the cantilever is fixedly connected with the slide rail, and the right end of the cantilever is provided with a hanging clamp and a cylinder for controlling the opening and closing of the clamp.
  • the servo motor, the second screw rod and the slide rail are supported on the bracket, the slide rail is connected with the slide rail in a sliding manner, the output shaft of the second servo motor is connected with one end of the second screw rod, and the second servo motor passes through the second
  • the lead screw, the second lead screw pair and the slide rail pair drive the cantilever and the slide rail along the Y axis to move forward and backward;
  • Rod, screw slide rail pair and the second connecting plate, the output shaft of the third servo motor is connected with one end of the third screw rod, the lower half of the guide rail is fixedly connected with the base with the chute, and the upper end of the guide rail is fixedly connected with the third servo motor.
  • the screw slide rail pair is fixedly connected with the second connecting plate
  • the second connecting plate is fixedly connected with the bracket
  • the third servo motor drives the combined core mold traveling mechanism along the third screw, the screw slide rail pair and the second connecting plate.
  • the guide rail set in the Z-axis direction moves up and down.
  • the present invention has the following remarkable effects:
  • the combined core mold feeding mechanism of the rectangular magnetic core automatic extrusion molding machine of the present invention is composed of a combined core mold pushing mechanism, a combined core mold traveling mechanism and a combined core mold set in the Z axis direction, which are respectively arranged in the Y-axis direction of the Cartesian coordinate system.
  • the mold is composed of upper and lower lifting mechanisms.
  • the rectangular combined core mold is composed of three wedge-shaped core blocks. A group of rectangular combined core molds are arranged in the core mold storage slot in order. Make sure that the center line of the rectangular combined core mold is parallel to the X axis.
  • the core block in the middle must be raised a certain height than the core blocks on the left and right sides before extrusion, so that the three core blocks will not be squeezed and stuck to each other during the pushing process.
  • the combined core mold walking mechanism makes the clamp clamp the rectangular combined core mold located at the preset position at the outer end of the core mold storage tank and send it to the center just above the approximately rectangular magnetic core placed in the center of the material bearing table along the Y-axis direction.
  • the mold up and down lifting mechanism lowers the clamps that clamp the rectangular combined core mold along the Z-axis direction and puts the lower part of the rectangular combined core mold into the cavity of the approximately rectangular magnetic core. Then, the clamps are opened, and the entire rectangular combined core mold drops approximately Inside the inner cavity of the rectangular magnetic core, waiting for the execution of the next extrusion step.
  • FIG. 1 is a schematic structural diagram of a combined core die feeding mechanism of a rectangular magnetic core automatic extrusion molding machine according to the present invention.
  • FIG. 2 is a schematic cross-sectional view of the core mold storage tank shown in FIG. 1 equipped with a rectangular composite core mold.
  • FIG. 3 is a schematic structural diagram of the approximately rectangular magnetic core shown in FIG. 1 equipped with a rectangular composite core mold.
  • a combined core mold feeding mechanism of a rectangular magnetic core automatic extrusion molding machine includes a machine base 16 and a material bearing table 17 of the magnetic core up and down lifting mechanism.
  • the center of the material bearing table 17 is An approximately rectangular magnetic core 24 is placed, and the combined core mold feeding mechanism consists of a combined core mold pushing mechanism, a combined core mold traveling mechanism, and a combined core mold set in the Z axis direction of the Cartesian coordinate system.
  • the mold is composed of an upper and lower lifting mechanism; the combined core mold pushing mechanism includes a first servo motor 1, a first lead screw 22, a first lead screw pair 25, a push plate 20, a first connecting plate 27, a base with a chute 18 and a core
  • the mold storage slot 21, the center of the inner cavity bottom surface of the core mold storage slot 21 is fixed with a longitudinally arranged anti-jamming circular spacer 23, the length of the anti-jam round spacer 23 is the same as the length of the core mold storage slot 21.
  • the lengths are the same length, the core mold storage slot 21 with a U-shaped cross-section is matched with the chute with the chute base 18 in a snap fit and sliding connection, the first servo motor 1 is fixed on the mounting seat 28, and the first screw rod One end of 22 is fixedly connected with the output shaft of the first servo motor 1, and the other end of the first screw rod 22 is movably connected with the support seat 29; the first screw rod pair 25 is movably connected with the first screw rod 22, and the first screw rod pair 25
  • the first connecting plate 27 is fixedly connected with the pushing plate 20 , and the first servo motor 1 pushes the rectangular combined core mold 19 placed in the core mold storage groove 21 through the first screw 22 , the first screw pair 25 and the pushing plate 20 .
  • the rectangular composite core mold 19 consists of a wedge-shaped first core block 19-1 located in the middle and a right-angled trapezoidal second core block 19-2 and a third core block located on both sides.
  • the core blocks 19-3 are assembled.
  • the base 18 with the chute is fixed on the sub base 26; the combined core mold traveling mechanism includes the second servo motor 2, the second screw 6, the second screw pair 9, the cantilever 8, the slide rail 11, and the slide rail pair 12.
  • the clamp 13, the cylinder 14 and the bracket 10 the left end of the cantilever 8 is fixedly connected with the second screw rod 9, the left part of the cantilever 8 is fixedly connected with the slide rail 12, and the right end of the cantilever 8 is provided with a downward hanging clamp 13 and the cylinder 14 that controls the opening and closing of the clamp 13, the second servo motor 2, the second screw 6, and the slide rail 11 are supported on the bracket 10, and the slide rail pair 12 is slidably connected to the slide rail 11.
  • the output shaft of the second servo motor 2 is connected with one end of the second screw 6, and the second servo motor 2 drives the cantilever 8 and the clamp 13 through the second screw 6, the second screw pair 9 and the slide rail pair 12
  • the slide rail 11 arranged along the Y-axis direction moves forward and backward; the upper and lower lifting mechanism of the combined core mold includes the third servo motor 3, the guide rail 4, the third screw 5, the screw slide rail 7 and the second connecting plate 15.
  • the output shaft of the third servo motor 3 is connected to one end of the third screw rod 5, the lower half of the guide rail 4 is fixedly connected to the base 18 with the chute, the upper end of the guide rail 4 is fixedly connected to the third servo motor 3, and the screw slide rail
  • the pair 7 is fixedly connected to the second connecting plate 15
  • the second connecting plate 15 is fixedly connected to the bracket 10
  • the third servo motor 3 drives the combined core through the third screw 5 , the screw slide rail pair 7 and the second connecting plate 15
  • the mold travel mechanism moves up and down along the guide rail 4 arranged in the Z-axis direction.
  • the core mold used for extruding the approximately rectangular magnetic core 24 into a rectangular magnetic core is a rectangular combined core mold 19, which consists of a wedge-shaped first mold core block 19-1, a second mold core block 19-2 and The third core block 19-3 is assembled.
  • the first core block 19-1 in the middle should be a certain height higher than the second and third core blocks 19-2 and 19-3 of the same height.
  • a long anti-jamming circular spacer rod 23 is fixed in the center of the bottom surface of the inner cavity. Stuck to death.
  • the core mold storage slot 21 and the base 18 with the chute adopt a snap connection structure, so that when replacing the rectangular combined core mold 19, only the entire slot needs to be replaced. Put on a new slot.
  • the first servo motor 1 precisely pushes the rectangular combined mandrel 19 in the mandrel storage tank 21 forward to the preset position through the first screw 22 , the first screw pair 25 , the first connecting plate 27 and the pushing plate 20 .
  • the pushing distance each time is the thickness dimension of the rectangular combined core mold 19 .
  • the combined core mold pushing mechanism precisely pushes the rectangular combined core mold 19 to the position of the clamp 13 with the opened jaws, and the clamp 13 clamps the rectangular combined core mold 19 under the driving of the cylinder 14;
  • the second servo motor 2 accurately sends the rectangular combined core mold 19 to the material holder through the second screw 6 , the second screw pair 9 , the slide rail 11 , the slide rail pair 12 , the cantilever 8 and the clamp 13 .
  • the approximate rectangular magnetic core 24 in the center of the table 17 is directly above the center position; the third servo motor 3 of the combined core mold up and down lifting mechanism passes through the third screw 5, the screw slide rail pair 7, the guide rail 4, the second connecting plate 15 and the combination. Together with the core mold running mechanism, the rectangular combined core mold 19 is accurately placed into the inner cavity of the approximately rectangular magnetic core 24 .
  • the center of the X-axis of the inner cavity of the approximately rectangular magnetic core 24 and the center of the core mold storage slot 21X in the axial direction are designed and assembled on the same axis, which simplifies the rectangular combined core mold 19 so that the rectangular combined mandrel 19 only needs to move in the Y-axis direction and the Z-axis direction.
  • the rectangular composite core mold 19 is clamped by the clamp 13 and placed into the inner cavity of the approximately rectangular magnetic core 24 on the material receiving table 17 precisely.
  • the above automatic working process is realized by means of precise control of the conventional program controller PLC provided in the rectangular magnetic core automatic extrusion molding machine.

Abstract

一种矩形磁芯自动挤压成型机的组合芯模给送机构,由设在直角坐标系Y轴方向的组合芯模推送机构、组合芯模行走机构和设在直角坐标系Z轴方向的组合芯模上下升降机构组成,组合芯模推进机构将矩形组合芯模精准地往前推送至预设位置,组合芯模行走机构将该矩形组合芯模送至置放在承料台中央的近似矩形磁芯正上方中心位置,组合芯模上下升降机构将该矩形组合芯模准确地放入近似矩形磁芯内腔内。本机构布置合理、移动位置精准,动作利索、可靠,工作效率高,节省了大量人工成本。

Description

一种矩形磁芯自动挤压成型机的组合芯模给送机构 技术领域
本发明涉及矩形磁芯自动挤压成型制造技术领域,特别涉及一种矩形磁芯自动挤压成型机的组合芯模给送机构。
背景技术
现有的小型矩形磁芯广泛应用在电子通讯设备、电子电力控制系统以及工业控制设备中。这些矩形磁芯外形尺寸小,重量在0.2~3kg/个范围内。现有的小型矩形磁芯是采用一个矩形的芯模做胎具并开有凹口,将硅钢带材插入该凹口,通过电机带动芯模旋转,将硅钢带材缠绕在芯模上,缠绕到预设厚度后将硅钢带材剪断并焊牢,然后将芯模连同矩形磁芯一起取下。由于芯模要靠人工装卸,所以只能单人单机操作,硅钢带材的固定也需由人工操作,而且,由于硅钢带材头部采用折钩方式挂带,绕完成矩形磁芯后又要人工将该折钩剪除,才能将矩形磁芯与芯模分离,费时费力还浪费材料。可见这种卷绕成型方式其生产效率低、产品质量不稳定、生产成本高。
为了克服上述的缺陷,可以考虑设计一台矩形磁芯自动挤压成型机,预制圆形或椭圆形磁芯供本机使用,该机分下面几个工步:第一工步:是储存圆形或椭圆形磁芯并逐个送至下一工步的第1承料台上;第二工步是将磁芯从第1承料台的1#工位送至第2承料台的3#工位,并通过上下升降机构降至下方;之后插入第三工步,对圆形或椭圆形磁芯进行挤压成型成近似矩形磁芯;第四工步是将矩形组合芯模送入近似矩形磁芯内腔;第五工步是对近似矩形磁芯挤压成型成矩形磁芯;第六工步,是将带组合芯模的矩形磁芯上升至与第1承料台面为同一水平面上,并从3#工位送至5#工位,交给下一工序。通过设计各种不同的机构,配以常规的整机程序控制器PLC和电动元件、气动元件,就成为能完成上述六个工步的矩形磁芯自动挤压成型机。
技术问题
本发明要解决的技术问题在于提供一种矩形磁芯自动挤压成型机的组合芯模给送机构,通过该组合芯模给送机构并借助于常规的程序控制器PLC能将矩形组合芯模送到预设位置,然后,通过夹钳将该矩形组合芯模准确无误地夹送到设置在承料台上的近似矩形磁芯的内腔内,再由下一工步将该近似矩形磁芯挤压成矩形磁芯。本组合芯模给送机构结构简单、移动位置准确,动作精准可靠,产品质量稳定,生产效率高。
技术解决方案
本发明所提出的技术解决方案是这样的:
一种矩形磁芯自动挤压成型机的组合芯模给送机构,包括机座、磁芯上下升降机构的承料台,所述承料台中央置放有近似矩形磁芯,所述组合芯模给送机构由设在直角坐标系Y轴方向的组合芯模推送机构、组合芯模行走机构和设在直角坐标系Z轴方向的组合芯模上下升降机构组成;所述组合芯模推送机构包括第1伺服电机、第1丝杆、第1丝杆付、推送板、带滑槽底座和芯模存储槽,所述芯模存储槽内腔底面中央固定有一根纵向布排的防卡死圆垫杆,所述防卡圆垫杆的长度与所述芯模存储槽的长度等长,所述横截面呈U形的芯模存储槽与所述带滑槽底座的滑槽匹配卡接滑动连接,第1伺服电机输出轴与第1丝杆一端相连接,第1伺服电机固定在安装座上,第1丝杆另一端与支承座活动连接;第1丝杆付与第1丝杆活动连接,所述第1丝杆付通过第1连接板与推送板固定连接,第1伺服电机通过第1丝杆、第1丝杆付和推送板推动置于芯模存储槽内的矩形组合芯模沿Y轴方向向前移动,所述矩形组合芯模由位于中间的、楔形的第1模芯块和位于两侧的、直角梯形的第2模芯块和第3模芯块组合而成,带滑槽底座固定在副底座上;所述组合芯模行走机构包括第2伺服电机、第2丝杆、第2丝杆付、悬臂、滑轨、滑轨付、夹钳、气缸和支架,所述悬臂左端部与第2丝杆付固定连接,悬臂左部与滑轨付固定连接,悬臂右端部设有下悬的夹钳和控制该夹钳开、合动作的气缸,所述第2伺服电机、第2丝杆、滑轨支承在所述支架上,滑轨付与滑轨滑动连接,所述第2伺服电机输出轴与第2丝杆一端相连接,第2伺服电机通过第2丝杆、第2丝杆付和滑轨付驱动悬臂和夹钳沿Y轴方向设置的滑轨作前、后移动;所述组合芯模上下升降机构包括第3伺服电机、导轨、第3丝杆、丝杆滑轨付和第2连接板,第3伺服电机输出轴与第3丝杆一端相连接,导轨下半部与带滑槽底座固定连接,导轨上端部与第3伺服电机固定连接,丝杆滑轨付与第2连接板固定连接,该第2连接板与支架固定连接,第3伺服电机通过第3丝杆、丝杆滑轨付和第2连接板驱动组合芯模行走机构沿Z轴方向设置的导轨作上、下移动。
有益效果
与现有技术相比,本发明具有如下显著效果:
本发明一种矩形磁芯自动挤压成型机的组合芯模给送机构由分别设在直角坐标系Y轴方向的组合芯模推送机构、组合芯模行走机构和设在Z轴方向的组合芯模上下升降机构组成。矩形组合芯模由三块楔形模芯块组合而成,一组矩形组合芯模按序布排装在芯模存储槽内,要确保矩形组合芯模中线平行于X轴,由于矩形组合芯模位于中间的模芯块在挤压前必须比左右两侧的模芯块抬起一定的高度,使三块模芯块不会在推送过程中相互挤撑卡死,所以在芯模存储槽内底部中央焊有一根防卡死圆垫杆。组合芯模行走机构使夹钳夹住位于芯模存储槽外端预设位置上的矩形组合芯模并沿Y轴方向送至放置在承料台中央的近似矩形磁芯正上方中央,组合芯模上下升降机构使夹住矩形组合芯模的夹钳沿Z轴方向下降并将矩形组合芯模下部放入近似矩形磁芯内腔内,然后,夹钳张开,整个矩形组合芯模跌落近似矩形磁芯内腔内,等待下一个挤压工步的执行。可见,本机构布置合理、精准,动作利索、可靠,工作效率高,节省了大量人工成本。当然,完成上述三种机构的工作过程还需借助于常规的程序控制器PLC的控制。
附图说明
图1是本发明一种矩形磁芯自动挤压成型机的组合芯模给送机构的结构示意图。
图2是图1所示装有矩形组合芯模的芯模存储槽的横截面示意图。
图3是图1所示装有矩形组合芯模的近似矩形磁芯的结构示意图。
图中标记说明:1.第1伺服电机;2.第2伺服电机;3. 第3伺服电机;4.导轨;5.第3丝杆;6.第2丝杆;7.丝杆滑轨付;8.悬臂;9.第2丝杆;10.支架;11.滑轨;12.滑轨付;13.夹钳;14.气缸;15.第2连接板;16.机座;17.承料台;18.带滑槽底座;19.矩形组合芯模;19-1.第1模芯块;19-2.第2模芯块;19-3.第3模芯块;20.推送板;21.芯模存储槽;22.第1丝杆;23.防卡圆垫杆;24.近似矩形磁芯;25.第1丝杆付;26.副底座;27. 第1连接板;28.安装座;29.支承座。
本发明的最佳实施方式
通过下面实施例对本发明作进一步详细阐述。
参见图1~图3所示,一种矩形磁芯自动挤压成型机的组合芯模给送机构,包括机座16、磁芯上下升降机构的承料台17,所述承料台17中央置放有近似矩形磁芯24,所述组合芯模给送机构由设在直角坐标系Y轴方向的组合芯模推送机构、组合芯模行走机构和设在直角坐标系Z轴方向的组合芯模上下升降机构组成;所述组合芯模推送机构包括第1伺服电机1、第1丝杆22、第1丝杆付25、推送板20、第1连接板27、带滑槽底座18和芯模存储槽21,所述芯模存储槽21内腔底面中央固定有一根纵向布排的防卡死圆垫杆23,所述防卡圆垫杆23的长度与所述芯模存储槽21的长度等长,所述横截面呈U形的芯模存储槽21与所述带滑槽底座18的滑槽匹配卡接滑动连接,第1伺服电机1固定在安装座28上,第1丝杆22一端与第1伺服电机1输出轴固定连接,第1丝杆22另一端与支承座29活动连接;第1丝杆付25与第1丝杆22活动连接,所述第1丝杆付25通过第1连接板27与推送板20 固定连接,第1伺服电机1通过第1丝杆22、第1丝杆付25和推送板20推动置于芯模存储槽21内的矩形组合芯模19沿Y轴方向向前移动,所述矩形组合芯模19由位于中间的、楔形的第1模芯块19-1和位于两侧的、直角梯形的第2模芯块19-2和第3模芯块19-3组合而成。带滑槽底座18固定在副底座26上;所述组合芯模行走机构包括第2伺服电机2、第2丝杆6、第2丝杆付9、悬臂8、滑轨11、滑轨付12、夹钳13、气缸14和支架10,所述悬臂8左端部与第2丝杆付9固定连接,悬臂8左部与滑轨付12固定连接,悬臂8右端部设有下悬的夹钳13和控制该夹钳13开、合动作的气缸14,所述第2伺服电机2、第2丝杆6、滑轨11支承在所述支架10上,滑轨付12与滑轨11滑动连接,所述第2伺服电机2输出轴与第2丝杆6一端相连接,第2伺服电机2通过第2丝杆6、第2丝杆付9和滑轨付12驱动悬臂8和夹钳13沿Y轴方向设置的滑轨11作前、后移动;所述组合芯模上下升降机构包括第3伺服电机3、导轨4、第3丝杆5、丝杆滑轨付7和第2连接板15,第3伺服电机3输出轴与第3丝杆5一端相连接,导轨4下半部与带滑槽底座18固定连接,导轨4上端部与第3伺服电机3固定连接,丝杆滑轨付7与第2连接板15固定连接,该第2连接板15与支架10固定连接,第3伺服电机3通过第3丝杆5、丝杆滑轨付7和第2连接板15驱动组合芯模行走机构沿Z轴方向设置的导轨4作上、下移动。
本发明的实施方式
本矩形磁芯自动挤压成型机的组合芯模给送机构的工作过程是这样的:
本实施例中,将近似矩形磁芯24挤压成矩形磁芯所用的芯模为矩形组合芯模19,它由楔形的第1模芯块19-1、第2模芯块19-2和第3模芯块19-3组合而成。挤压前,位于中间的第1模芯块19-1应比等高的第2、3模芯块19-2、19-3高出一定的高度,为此,需要在芯模存储槽21内腔底面中央固装一长条形的防卡死圆垫杆23,其作用在于将第1模芯块19-1抬起一定高度,使三块模芯块在推送过程中不会相互挤撑卡死。芯模存储槽21与带滑槽底座18采用卡接连接结构,使得换装矩形组合芯模19时只需整槽更换,槽内的矩形组合芯模19用完后将空槽拿走,换上新的一槽。当矩形组合芯模19规格尺寸发生变化时,只需更换相匹配规格的芯模存储槽21。第1伺服电机1通过第1丝杆22、第1丝杆付25、第1连接板27和推送板20将芯模存储槽21内的矩形组合芯模19精准地往前推送至预设位置,每次推送距离为该矩形组合芯模19的厚度尺寸。
组合芯模推送机构将矩形组合芯模19精准推送至已张开钳口的夹钳13的位置,在气缸14驱动下夹钳13夹持住该矩形组合芯模19;组合芯模行走机构的第2伺服电机2通过第2丝杆6、第2丝杆付9、滑轨11、滑轨付12、悬臂8和夹钳13将该矩形组合芯模19精准地送至置放在承料台17中央的近似矩形磁芯24正上方中心位置;组合芯模上下升降机构的第3伺服电机3通过第3丝杆5、丝杆滑轨付7、导轨4、第2连接板15和组合芯模行走机构一起将该矩形组合芯模19准确地放入近似矩形磁芯24内腔内。
组合芯模推送机构在设计制作时已将近似矩形磁芯24内腔X轴向的中心与芯模存储槽21X轴向的中心都设计组装在同一轴线上,这样就简化了矩形组合芯模19的移动维度,使矩形组合芯模19只需做Y轴方向和Z轴方向的移动,通过组合芯模行走机构(Y轴方向行走)和组合芯模上下升降机构(Z轴方向上下升降)的复合运动,再由夹钳13夹持矩形组合芯模19并将其精准地放入承料台17上的近似矩形磁芯24内腔内。
上述自动工作过程是借助于设在矩形磁芯自动挤压成型机的常规的程序控制器PLC的精准控制而实现的。

Claims (1)

  1. 一种矩形磁芯自动挤压成型机的组合芯模给送机构,包括机座(16)、磁芯上下升降机构的承料台(17),所述承料台(17)中央置放有近似矩形磁芯(24),其特征在于:所述组合芯模给送机构还包括设在直角坐标系Y轴方向的组合芯模推送机构、组合芯模行走机构和设在直角坐标系Z轴方向的组合芯模上下升降机构;所述组合芯模推送机构包括第1伺服电机(1)、第1丝杆(22)、第1丝杆付(25)、推送板(20)、第1连接板(27)、带滑槽底座(18)和芯模存储槽(21),所述芯模存储槽(21)内腔底面中央固定有一根纵向布排的防卡圆垫杆(23),所述防卡圆垫杆(23)的长度与所述芯模存储槽(21)的长度等长,横截面呈U形的所述芯模存储槽(21)与所述带滑槽底座(18)的滑槽匹配卡接滑动连接,第1伺服电机(1)固定在安装座(28)上,第1伺服电机(1)输出轴与第1丝杆(22)一端相连接,第1丝杆(22)另一端与支承座(29)活动连接;第1丝杆付(25)与第1丝杆(22)活动连接,所述第1丝杆付(25)通过第1连接板(27)与推送板(20)固定连接,第1伺服电机(1)通过第1丝杆(22)、第1丝杆付(25)和推送板(20)推动置于芯模存储槽(21)内的矩形组合芯模(19)沿Y轴方向向前移动,所述矩形组合芯模(19)由位于中间的、楔形的第1模芯块(19-1)和位于两侧的、直角梯形的第2模芯块(19-2)和第3模芯块(19-3)组合而成,带滑槽底座(18)固定在副底座(26)上;所述组合芯模行走机构包括第2伺服电机(2)、第2丝杆(6)、第2丝杆付(9)、悬臂(8)、滑轨(11)、滑轨付(12)、夹钳(13)、气缸(14)和支架(10),所述悬臂(8)左端部与第2丝杆付(9)固定连接,悬臂(8)左部与滑轨付(12)固定连接,悬臂(8)右端部设有下悬的夹钳(13)和控制该夹钳(13)开、合动作的气缸(14),所述第2伺服电机(2)、第2丝杆(6)、滑轨(11)支承在所述支架(10)上,滑轨付(12)与滑轨(11)滑动连接,所述第2伺服电机(2)输出轴与第2丝杆(6)一端相连接,第2伺服电机(2)通过第2丝杆(6)、第2丝杆付(9)和滑轨付(12)驱动悬臂(8)和夹钳(13)沿Y轴方向设置的滑轨(11)作前、后移动;所述组合芯模上下升降机构包括第3伺服电机(3)、导轨(4)、第3丝杆(5)、丝杆滑轨付(7)和第2连接板(15),第3伺服电机(3)输出轴与第3丝杆(5)一端相连接,导轨(4)下半部与带滑槽底座(18)固定连接,导轨(4)上端部与第3伺服电机(3)固定连接,丝杆滑轨付(7)与第2连接板(15)固定连接,该第2连接板(15)与支架(10)固定连接,第3伺服电机(3)通过第3丝杆(5)、丝杆滑轨付(7)和第2连接板(15)驱动组合芯模行走机构沿Z轴方向设置的导轨(4)作上、下移动。
PCT/CN2021/089545 2020-11-24 2021-04-25 一种矩形磁芯自动挤压成型机的组合芯模给送机构 WO2022110632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011331857.3A CN112151262B (zh) 2020-11-24 2020-11-24 一种矩形磁芯自动挤压成型机的组合芯模给送机构
CN202011331857.3 2020-11-24

Publications (1)

Publication Number Publication Date
WO2022110632A1 true WO2022110632A1 (zh) 2022-06-02

Family

ID=73887329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089545 WO2022110632A1 (zh) 2020-11-24 2021-04-25 一种矩形磁芯自动挤压成型机的组合芯模给送机构

Country Status (2)

Country Link
CN (1) CN112151262B (zh)
WO (1) WO2022110632A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151262B (zh) * 2020-11-24 2021-02-12 佛山市南海矽钢铁芯制造有限公司 一种矩形磁芯自动挤压成型机的组合芯模给送机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150259156A1 (en) * 2014-03-17 2015-09-17 Facility Functions, Inc. D wheel transfer device and method
CN206735291U (zh) * 2017-05-27 2017-12-12 江门杰富意磁性材有限公司 一种铁氧体磁芯坯排布装置
CN111415815A (zh) * 2020-04-27 2020-07-14 佛山市南海矽钢铁芯制造有限公司 一种矩形磁芯自动挤压成型机的磁芯输送及升降机构
CN111799085A (zh) * 2020-08-13 2020-10-20 佛山市南海矽钢铁芯制造有限公司 一种矩形磁芯自动挤压成型机的矩形磁芯挤压成型机构
CN112151262A (zh) * 2020-11-24 2020-12-29 佛山市南海矽钢铁芯制造有限公司 一种矩形磁芯自动挤压成型机的组合芯模给送机构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025888B2 (ja) * 1980-08-11 1985-06-20 松下電器産業株式会社 巻鉄心の製造方法
JPS58110017A (ja) * 1981-12-23 1983-06-30 Aichi Electric Mfg Co Ltd 巻鉄心の成形装置
CN201921993U (zh) * 2011-01-10 2011-08-10 欧雷诺精密五金(厦门)有限公司 一种芯砂模具自动接送产品的升降传送装置
CN204548595U (zh) * 2015-01-14 2015-08-12 湖州乐通电子厂 磁芯自动排料装置
CN110834052A (zh) * 2019-11-13 2020-02-25 华北电力大学 一种矩形非晶合金铁心定型模具
CN211168889U (zh) * 2019-11-27 2020-08-04 江苏创源电子有限公司 一种杆件装模设备
CN111112458B (zh) * 2019-12-31 2021-08-27 东莞盛翔精密金属有限公司 模具调节系统以及模具调节方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150259156A1 (en) * 2014-03-17 2015-09-17 Facility Functions, Inc. D wheel transfer device and method
CN206735291U (zh) * 2017-05-27 2017-12-12 江门杰富意磁性材有限公司 一种铁氧体磁芯坯排布装置
CN111415815A (zh) * 2020-04-27 2020-07-14 佛山市南海矽钢铁芯制造有限公司 一种矩形磁芯自动挤压成型机的磁芯输送及升降机构
CN111799085A (zh) * 2020-08-13 2020-10-20 佛山市南海矽钢铁芯制造有限公司 一种矩形磁芯自动挤压成型机的矩形磁芯挤压成型机构
CN112151262A (zh) * 2020-11-24 2020-12-29 佛山市南海矽钢铁芯制造有限公司 一种矩形磁芯自动挤压成型机的组合芯模给送机构

Also Published As

Publication number Publication date
CN112151262B (zh) 2021-02-12
CN112151262A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
CN105835210A (zh) 一种压制石膏空心砖的模具及其压制方法
CN111415815A (zh) 一种矩形磁芯自动挤压成型机的磁芯输送及升降机构
JP2022543857A (ja) 材料を自動供給排出する5軸縦型加工システム
WO2022110632A1 (zh) 一种矩形磁芯自动挤压成型机的组合芯模给送机构
WO2021204029A1 (zh) 一种矩形磁芯自动挤压成型机的磁芯储存给送机构
CN111231090B (zh) 一种全自动高效的蒸压加气混凝土砌块脱模装置
WO2022033075A1 (zh) 一种矩形磁芯自动挤压成型机的矩形磁芯挤压成型机构
CN113263590A (zh) 一种注浆生产线的脱模装置
CN109571854B (zh) 一种纱管自动生产设备
CN111571285A (zh) 一种模具加工用定位板上料开孔一体化设备
CN116984562A (zh) 一种用于铸造生产的铸造冶具以及配套的生产设备
CN217406362U (zh) 分块式定子绕线机
CN211604913U (zh) 一种矩形磁芯自动挤压成型机的磁芯输送及升降机构
CN214294203U (zh) 一种自动化模具
CN212193924U (zh) 双工位模具交替注塑外保压系统
CN211604910U (zh) 一种矩形磁芯自动挤压成型机的磁芯储存给送机构
CN212411829U (zh) 一种矩形磁芯自动挤压成型机的矩形磁芯挤压成型机构
CN219702509U (zh) 一种自动耦合点胶装置
CN111300733A (zh) 双工位模具交替注塑外保压系统
JPH031096B2 (zh)
CN219724321U (zh) 一种带梯度复合刀头冷压成型模具的自动定位装置
CN212919753U (zh) 一种吉他桶背槽自动加工设备
CN210755133U (zh) 一种自动上下模装置
CN210676497U (zh) 多模弯管机中的送料装置
CN211919957U (zh) 一种芯模输送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896147

Country of ref document: EP

Kind code of ref document: A1