WO2022110626A1 - 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法 - Google Patents

一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法 Download PDF

Info

Publication number
WO2022110626A1
WO2022110626A1 PCT/CN2021/089122 CN2021089122W WO2022110626A1 WO 2022110626 A1 WO2022110626 A1 WO 2022110626A1 CN 2021089122 W CN2021089122 W CN 2021089122W WO 2022110626 A1 WO2022110626 A1 WO 2022110626A1
Authority
WO
WIPO (PCT)
Prior art keywords
optionally
electromagnetic wave
wave absorber
preparation
green body
Prior art date
Application number
PCT/CN2021/089122
Other languages
English (en)
French (fr)
Inventor
王朝明
王开旺
朱勇
严正信
吕飞雨
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to EP21896141.5A priority Critical patent/EP4253346A1/en
Publication of WO2022110626A1 publication Critical patent/WO2022110626A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • C04B2235/945Products containing grooves, cuts, recesses or protusions

Definitions

  • the application belongs to the technical field of magnetic materials, and relates to a ferrite material for electromagnetic absorption and shielding, an electromagnetic wave absorber and a preparation method thereof.
  • Microwave anechoic chamber is the key equipment and ideal site for electromagnetic compatibility (EMC) testing and testing.
  • Microwave anechoic chamber is also known as shielding anechoic chamber, anechoic chamber, non-reflection shielding room, etc.
  • EMC electromagnetic compatibility
  • Microwave anechoic chamber is also known as shielding anechoic chamber, anechoic chamber, non-reflection shielding room, etc.
  • absorbing materials used in EMC anechoic chambers dielectric loss absorbing materials, ferrite magnetic absorbing materials and composite absorbing materials.
  • the ferrite absorber is directly attached to the metal wall of the shielded anechoic chamber, which can absorb the low frequency part of the electromagnetic wave to the maximum extent.
  • FCC and EU standards require a lower frequency limit of 30MHz for EMC testing, so an EMC anechoic chamber must provide acceptable test accuracy in this frequency range.
  • the International Electrotechnical Commission (IEC) defines the frequency range of the uniform field required to test the radiation sensitivity of electronic equipment to be as low as 26MHz, so the low-frequency performance of the microwave anechoic chamber is very attractive, and the ferrite magnetic absorber has become the quality of the microwave anechoic chamber. The essential.
  • the permeability ui of the oxygen body needs to be improved.
  • the magnetic permeability of ferrite needs to be about 5000, and the magnetic permeability of nickel-zinc ferrite material is generally only below 2000, so for this low-frequency absorbing material, only manganese-zinc-ferrite can be used. body material.
  • is the wavelength of the electromagnetic wave
  • t is the thickness of the absorbing material
  • CN110845228A discloses a kind of iron-poor soft ferrite, which is composed of main component and auxiliary components, in terms of mole percentage, the main component includes Fe 2 O 3 of 46.0-49.9 mol %, ZnO of 21.0-26.0 mol % and The balance of MnO; based on the mass sum of the main components, the auxiliary components contain at least 500-2500 ppm of TiO 2 or 1000-5000 ppm of SnO 2 .
  • CN105272194A discloses a nickel-zinc series ferrite wave absorbing material formula, powder and manufacturing method thereof.
  • the formula includes main components and additives.
  • the main components are Fe2O3 , zinc oxide ZnO, and nickelous oxide NiO.
  • the weight percentages of the main components are: Fe 2 O 3 is 64-70wt%, ZnO is 15-25wt%, NiO is 6-21wt%, and the total weight percentage of the main components is 100wt%; the additives are tantalum oxide and /or Niobium oxide.
  • CN109688780B discloses a preparation method of an iron-silicon-aluminum electromagnetic wave absorber.
  • the manganese-zinc ferrite and iron-silicon aluminum alloy powder are mixed and ball-milled, the material-to-ball ratio is 1:14-16, ball-milling is performed for 5-50 hours, and then dried to obtain iron Silicon-aluminum electromagnetic wave absorber, the manganese-zinc ferrite accounts for 0.5-5at% of the iron-silicon-aluminum electromagnetic wave absorber, and the proportion of the manganese-zinc ferrite is: 52-55at% Fe 2 O 3 , 33 ⁇ 36at%MnO, 10 ⁇ 14at%ZnO.
  • the purpose of the present application is to provide a ferrite material for electromagnetic absorption and shielding, an electromagnetic wave absorber and a preparation method thereof.
  • the present application selects and optimizes the proportion of each component in the main component and the auxiliary component, so that the The manufactured electromagnetic wave absorber has excellent overall performance, the magnetic permeability at 100KHz reaches 3500-6000, the reflection loss of the material is significantly reduced, and the frequency range of absorbing noise electromagnetic wave is broadened.
  • the present application provides a ferrite material for electromagnetic absorption and shielding
  • the ferrite material includes a main component and a sub-component;
  • the main component includes Fe 2 O 3 , ZnO and MnO, and
  • the secondary components include CuO, NiO and Co 2 O 3 .
  • This application defines the sub-components including CuO, NiO and Co 2 O 3 .
  • the effect of adding CuO is to reduce the sintering temperature, make the grain more complete and the structure more dense, and on the other hand, Cu 2+ can partially replace the crystal lattice
  • the Mn ions in the material can improve the permeability and performance stability.
  • the role of adding NiO is to replace part of the Mn ions, thereby improving the saturation magnetic induction and sintering density of the material.
  • the role of adding Co 2 O 3 is to replace the Mn ions in the lattice.
  • Mn ions, Co ferrites have a large positive K1 value
  • manganese-zinc ferrites have a negative K1 value.
  • Appropriate addition can play a compensating role, thereby reducing the magnetocrystalline anisotropy field and improving the magnetic permeability and cut-off frequency of the material.
  • the three substances in the sub-component cooperate with each other, so that the electromagnetic wave absorber has excellent overall performance.
  • the magnetic permeability at 100KHz reaches 3500-6000, the reflection loss of the material is significantly reduced, and the frequency range of absorbing noise electromagnetic waves is broadened. .
  • the mole percentage of the main component is 100 mol %, wherein Fe 2 O 3 accounts for 44-46 mol %, such as 44 mol %, 44.2 mol %, 44.6 mol %, 44.8 mol % mol%, 45mol%, 45.2mol%, 45.4mol%, 45.6mol%, 45.8mol% or 46mol%, ZnO accounts for 20-24mol%, such as 20mol%, 20.5mol%, 21mol%, 21.5mol%, 22mol% %, 22.5 mol %, 23 mol %, 23.5 mol % or 24 mol %, but are not limited to the recited values, other non-recited values within this range of values are also applicable, and the balance is MnO.
  • the secondary components include 0-3wt% of CuO, 0-0.1wt% of NiO and 0-1wt% of Co 2 O 3 .
  • CuO may be is 0.5wt%, 1.0wt%, 1.5wt%, 2.0wt%, 2.5wt% or 3.0wt%
  • NiO can be 0.01wt%, 0.02wt%, 0.03wt%, 0.04wt%, 0.05wt%, 0.06wt% %, 0.07wt%, 0.08wt %, 0.09wt % or 0.1wt%
  • the content of Co2O3 can be 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt%, 0.5wt%, 0.6wt%, 0.7wt%, 0.8wt%, 0.9wt% or 1.0wt%, but not limited to the listed values, other non-recited values within the numerical range are also applicable, the content
  • the present application by optimizing the distribution ratio of each component in the auxiliary components, the overall performance of the prepared electromagnetic wave absorber is excellent. frequency range. Specifically, the present application defines that the sub-components include 0-3wt% CuO. When the addition amount of CuO is higher than 3wt%, the grains will grow abnormally, form giant crystals, and the grain consistency will be deteriorated , thereby deteriorating the material properties.
  • the present application also defines that the secondary components include 0-1 wt% Co 2 O 3 , when the addition amount of Co 2 O 3 is higher than 1 wt %, the magnetic permeability will decrease significantly, which is due to Co 2 O 3 .
  • Ferrite has a large positive K1, and excessive addition will increase the K1 in the final ferrite, thereby reducing the overall performance.
  • the present application provides an electromagnetic wave absorber prepared from the ferrite material described in the first aspect.
  • the magnetic permeability of the electromagnetic wave absorber at 25°C is 3500-6000, such as 3500, 4000, 4500, 5000, 5500 or 6000, but not limited to Recited values apply equally well to other non-recited values within that range.
  • the maximum reflection loss of the electromagnetic wave absorber is -24dB.
  • the best matching frequency of the electromagnetic wave absorber is 25-50MHz, for example, it can be 25MHz, 30MHz, 35MHz, 40MHz, 45MHz or 50MHz, but it is not limited to the listed values, and other values within the range of the values are not limited. The values listed also apply.
  • the electromagnetic wave absorber has a sheet-like structure, and a through hole is formed in the center of the electromagnetic wave absorber along the thickness direction.
  • the thickness of the electromagnetic wave absorber is 3 to 10 mm, such as 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm or 10 mm, but not limited to the listed values, other values within the range The same applies to non-recited values.
  • the present application provides a preparation method of the electromagnetic wave absorber described in the second aspect, the preparation method comprising:
  • the said electromagnetic wave absorber is obtained by heat preservation and sintering of the green body.
  • the preparation method specifically comprises the following steps:
  • the electromagnetic wave absorber is obtained by thermally sintering the green body.
  • the preparation method provided by the present application adopts pre-sintering and secondary sand grinding, through pre-sintering, various raw materials are partially reacted and partially ferrite, which is beneficial to the control of blank forming and sintering shrinkage; the effect of secondary sand grinding It is to make the particle size reach a certain distribution range, which is conducive to the uniform growth of grains during the sintering process.
  • the sanding time is 50-70min, such as 50min, 52min, 54min, 56min, 58min, 60min, 62min, 64min, 66min, 68min Or 70min, but it is not limited to the listed values, other unlisted values within the numerical range are also applicable, and can be selected as 60min.
  • the mixture after sanding is cyclically mixed for 20 to 40 minutes before spray granulation.
  • the mixture after sanding is cyclically mixed for 20 to 40 minutes before spray granulation.
  • other unrecited values within the range of values are also applicable, and further optional 30min.
  • the temperature of the spray granulation is 200-400°C, such as 200°C, 220°C, 240°C, 260°C, 280°C, 300°C, 320°C, 340°C, 360°C, 380°C or 400°C, but is not limited to the recited values, and other unrecited values within this range of values are also applicable.
  • the time of the secondary sand grinding is 100-150min, for example, it can be 100min, 105min, 110min, 115min, 120min, 125min, 130min, 135min, 140min, 145min or 150min, but not limited to the listed values, other unlisted values within the numerical range are also applicable, and 120min is optional.
  • the PVA accounts for 0.05-0.1wt% of the total mass of the sand and abrasive, for example, it can be 0.05wt%, 0.06wt%, 0.07wt%, 0.08wt% %, 0.09 wt % or 0.1 wt %, but not limited to the recited values, other unrecited values within the range of values are also applicable, and can be optionally 0.08 wt %.
  • the defoaming agent accounts for 0.001-0.005wt% of the total mass of the abrasive, for example, it may be 0.001wt%, 0.002wt%, 0.003wt%, 0.004wt% or 0.005wt%, but not limited to Recited values, other non-recited values within this range of values also apply, optionally 0.004 wt %.
  • the evaluated particle size of the particles obtained by the secondary spray granulation is 50-200 ⁇ m, for example, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 110 ⁇ m, 120 ⁇ m, 130 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m , 190 ⁇ m or 200 ⁇ m, but are not limited to the recited values, and other unrecited values within the numerical range are also applicable.
  • the density of the green body is 2.9-3.1g/cm 3 , for example, it can be 2.9g/cm 3 , 2.92g/cm 3 , 2.94g/cm 3 , 2.96g/cm 3 , 2.98g/cm 3 cm 3 , 3.0g/cm 3 , 3.02g/cm 3 , 3.04g/cm 3 , 3.06g/cm 3 , 3.08g/cm 3 or 3.1g/cm 3 , but not limited to the recited values, the values The same applies to other non-recited values in the range.
  • the blank has a sheet-like structure, and a through hole is formed in the center of the blank along the thickness direction.
  • step (IV) the heat preservation and sintering process includes:
  • the green body is heated from room temperature to T 1 at the heating rate of V 1 under the air atmosphere, and kept for a period of time; then, the green body is cooled to T 2 at the cooling rate of V 2 under the protective atmosphere; Continue to drop to room temperature at a cooling rate of V 3 under a neutral atmosphere.
  • the present application adopts a gradient sintering process, which is beneficial to the discharge of glue and organic additives in the blank, is beneficial to the uniform growth of crystal grains, and appropriately controls the sintering cost.
  • the volume concentration of oxygen in the air atmosphere is 2-6%, such as 2.0%, 2.5%, 3.0%, 3.5%, 4.0%, 4.5%, 5.0%, 5.5% or 6.0%, However, it is not limited to the recited numerical values, and other unrecited numerical values within the numerical range are equally applicable.
  • the V 1 is 0.3 to 2°C/min, for example, 0.3°C/min, 0.4°C/min, 0.5°C/min, 0.6°C/min, 0.7°C/min, 0.8°C/min, 0.9°C/min, 1.0°C/min, 1.1°C/min, 1.2°C/min, 1.3°C/min, 1.4°C/min, 1.5°C/min, 1.6°C/min, 1.7°C/min, 1.8°C/min, 1.9°C/min or 2.0°C/min, but not limited to the recited values, and other non-recited values within the numerical range are also applicable.
  • the T 1 is 1300-1450°C, such as 1300°C, 1310°C, 1320°C, 1330°C, 1340°C, 1350°C, 1360°C, 1370°C, 1380°C, 1390°C, 1400°C , 1410°C, 1420°C, 1430°C, 1440°C or 1450°C, but are not limited to the recited values, and other unrecited values within the range of values are also applicable.
  • the temperature is kept for 3 to 8h at T1, for example, it can be 3h, 4h, 5h, 6h, 7h or 8h, but it is not limited to the enumerated values, and other unenumerated values within the numerical range are also applicable, Further optional is 5h.
  • the protective atmosphere is nitrogen atmosphere.
  • the V 2 is 1.5-1.7°C/min, for example, it can be 1.5°C/min, 1.52°C/min, 1.54°C/min, 1.56°C/min, 1.58°C/min, 1.6°C/min, 1.62°C/min, 1.64°C/min, 1.66°C/min, 1.68°C/min or 1.7°C/min, but not limited to the listed values, other unlisted values within the range are also applicable, and further optional 1.67°C/min.
  • the T 2 is 800-1000°C, such as 800°C, 820°C, 840°C, 860°C, 880°C, 900°C, 920°C, 940°C, 960°C, 980°C or 1000°C , but not limited to the listed numerical values, other unlisted numerical values within the numerical range are also applicable, and further optional 900°C.
  • the V 3 is 1 to 5°C/min, such as 1.0°C/min, 1.5°C/min, 2.0°C/min, 2.5°C/min, 3.0°C/min, 3.5°C/min, 4.0°C/min, 4.5°C/min or 5.0°C/min, but not limited to the listed values, other non-recited values within the numerical range are also applicable, and further optional is 3°C/min.
  • the electromagnetic wave absorber produced has excellent overall performance, the magnetic permeability at 100KHz reaches 3500-6000, and the reflection loss of the material Significantly reduces, while broadening the frequency range of absorbing noise electromagnetic waves.
  • FIG. 1 is a schematic structural diagram of the electromagnetic wave absorber prepared in Example 1 of the present application.
  • This embodiment provides a preparation method of an electromagnetic wave absorber, and the preparation method includes the following steps:
  • the green body was heated to 1300 °C from room temperature at a heating rate of 0.3 °C/min in an air atmosphere with a volume concentration of oxygen of 21%, and kept for 3 hours; then, the green body was heated at 1.5 °C in a nitrogen atmosphere The temperature was lowered to 800°C at a cooling rate of /min; finally, the green body was continuously lowered to normal temperature at a cooling rate of 1°C/min under a nitrogen atmosphere to obtain the electromagnetic wave absorber.
  • the prepared electromagnetic wave absorber is shown in Figure 1. , is a sheet-like structure, and a through hole is opened in the center along the thickness direction, and the thickness is 5.2mm.
  • the magnetic permeability of the prepared electromagnetic wave absorber was tested by E4991 impedance analyzer, and the test conditions were 25°C, 100 kHz and 0.25 mT; Test its reflection loss; see Table 2 for the magnetic permeability, reflection loss and optimal matching frequency of the electromagnetic wave absorber.
  • the green body was heated to 1350 °C from room temperature at a heating rate of 0.8 °C/min in an air atmosphere with a volume concentration of oxygen of 21%, and kept for 4 hours; then, the green body was heated at 1.6 °C in a nitrogen atmosphere.
  • the temperature was lowered to 850°C at a cooling rate of , is a sheet-like structure, and a through hole is opened in the center along the thickness direction, and the thickness is 5.2mm.
  • the magnetic permeability of the prepared electromagnetic wave absorber was tested by E4991 impedance analyzer, and the test conditions were 25°C, 100 kHz and 0.25 mT; Test its reflection loss; see Table 2 for the magnetic permeability, reflection loss and optimal matching frequency of the electromagnetic wave absorber.
  • the green body was heated to 1400 °C from room temperature at a heating rate of 1.2 °C/min in an air atmosphere with a volume concentration of oxygen of 4%, and kept for 5 hours; then, the green body was heated to 1.67 °C in a nitrogen atmosphere.
  • the temperature was lowered to 900 °C at a cooling rate of , is a sheet-like structure, and a through hole is opened in the center along the thickness direction, and the thickness is 5.2mm.
  • the magnetic permeability of the prepared electromagnetic wave absorber was tested by E4991 impedance analyzer, and the test conditions were 25°C, 100 kHz and 0.25 mT; Test its reflection loss; see Table 2 for the magnetic permeability, reflection loss and optimal matching frequency of the electromagnetic wave absorber.
  • the green body was heated to 1420 °C from normal temperature at a heating rate of 1.6 °C/min in an air atmosphere with a volume concentration of oxygen of 21%, and kept for 7 hours; then, the green body was heated to 1.68 °C under a nitrogen atmosphere The temperature was lowered to 950 °C at a cooling rate of , is a sheet-like structure, and a through hole is opened in the center along the thickness direction, and the thickness is 5.2mm.
  • the green body was heated to 1450 °C from room temperature at a heating rate of 2 °C/min in an air atmosphere with a volume concentration of oxygen of 21%, and kept for 8 hours; then, the green body was heated to 1.7 °C in a nitrogen atmosphere.
  • the temperature was lowered to 1000°C at a cooling rate of /min; finally, the green body was further lowered to room temperature at a cooling rate of 5°C/min under a nitrogen atmosphere to obtain the electromagnetic wave absorber.
  • the prepared electromagnetic wave absorber is shown in Figure 1. , is a sheet-like structure, and a through hole is opened in the center along the thickness direction, and the thickness is 5.2mm.
  • Example 5 The difference between this example and Example 5 is that the content of CuO in the secondary component is adjusted to 3.5wt%, the content of each component in the main component and the secondary component is shown in Table 1, and the process steps and operating parameters are the same as those in Example 1. Exactly the same.
  • Example 5 The difference between this example and Example 5 is that the content of NiO in the subcomponent is adjusted to 0.15wt%, the content of each component in the main component and the subcomponent is shown in Table 1, and the process steps and operating parameters are the same as those in Example 1. Exactly the same.
  • Example 5 The difference between this example and Example 5 is that the content of Co 2 O 3 in the secondary component is adjusted to 1.5wt%, the content of each component in the main component and the secondary component is shown in Table 1, and the process steps and operating parameters are the same as Example 1 is exactly the same.
  • Example 5 The difference between this comparative example and Example 5 is that CuO in the sub-component is omitted, and only NiO and Co 2 O 3 are added.
  • the content of each component in the main and sub-components is shown in Table 1, and other process steps and operations The parameters are exactly the same as in Example 1.
  • Example 5 The difference between this comparative example and Example 5 is that NiO in the sub-component is omitted, and only CuO and Co 2 O 3 are added.
  • the content of each component in the main and sub-components is shown in Table 1, and other process steps and operations The parameters are exactly the same as in Example 1.
  • Example 5 The difference between this comparative example and Example 5 is that Co 2 O 3 in the secondary components is omitted, and only CuO and NiO are added.
  • Example 5 The difference between this comparative example and Example 5 is that NiO and Co 2 O 3 in the secondary components are omitted, and only CuO is added.
  • the content of each component in the main and secondary components is shown in Table 1, and other process steps and operations The parameters are exactly the same as in Example 1.
  • Example 5 The difference between this comparative example and Example 5 is that CuO and Co 2 O 3 in the sub-components are omitted, and only NiO is added.
  • the content of each component in the main and sub-components is shown in Table 1, and other process steps and operations The parameters are exactly the same as in Example 1.
  • Example 5 The difference between this comparative example and Example 5 is that CuO and NiO in the secondary components are omitted, and only Co 2 O 3 is added.
  • Embodiment 1 disclosed by CN110845228A, which specifically includes the following steps:
  • the green body is sintered at 1300° C., and the holding time is 5 hours.
  • the performance of the electromagnetic wave absorbers prepared in Examples 1-5 and Comparative Examples 1-10 was tested, and the magnetic permeability of the prepared electromagnetic wave absorbers was tested by using an E4991 impedance analyzer.
  • the test conditions were 25 ° C, 100 kHz and 0.25 mT. ; Put the prepared electromagnetic wave absorber into the coaxial cavity, and use 5232A to test its reflection loss in the 25-300MHz frequency band; the magnetic permeability and reflection loss of the electromagnetic wave absorber are shown in Table 2.
  • Example 5 From the test results of Example 5 and Comparative Examples 4-9, it is found that when one or two additives of CuO, NiO and Co2O3 are lacking in the material, the magnetic permeability or insertion loss of the material cannot reach the required level. effect, or the magnetic permeability and insertion loss can not achieve the desired effect, this is because these three additives not only have their own added effects, but also have a certain interaction between the three, and the composite addition has a certain effect on the properties of the material. have better effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

提供一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法。该铁氧体材料包括主组分和副组分;主组分包括Fe2O3、ZnO和MnO,副组分包括CuO、NiO和Co2O3。电磁波吸收体是由该铁氧体材料制备得到的。电磁波吸收体的制备方法包括:称取并混合Fe2O3、Mn3O4和ZnO以及CuO、NiO和Co2O3,造粒、成型后得到坯体,坯体经保温烧结。由于对主成分和副成分中各组分进行特殊选择并对配比进行优化,该电磁波吸收体整体性能优异,在100KHz时的磁导率达到3500~6000,反射损耗显著降低,同时拓宽了吸收噪音电磁波的频率范围。

Description

一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法 技术领域
本申请属于磁性材料技术领域,涉及一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法。
背景技术
微波暗室是电磁兼容(EMC)试验、测试的关键装备和理想场地.微波暗室又称屏蔽暗室、电波暗室、无反映屏蔽室等。目前用于EMC微波暗室的吸波材料主要有三类:介电损耗型吸波材料、铁氧体磁性吸收材料以及复合吸波材料等。铁氧体吸波体直接贴在屏蔽暗室的金属壁上,可最大限度地吸收电磁波的低频部分。FCC和欧盟标准要求EMC测试的频率下限为30MHz,因此,EMC微波暗室必须在这一频率范围内提供可接受的测试精度。国际电工委员会(IEC)定义了测试电子设备辐射敏感度的均匀场要求的频率范围最低到26MHz,所以微波暗室的低频性能十分引人注目,铁氧体磁性吸波材料因此成了微波暗室质量的关键。
根据铁氧体吸波材料的一般原理:当磁导率ui>200时,ui*fm=1.5x105MHz,fm为铁氧体电磁波吸收体的匹配频率,随着EMC测试频率标准往低频移,铁氧体的磁导率ui需要提高。当EMC测试频率在30MHz时,铁氧体的磁导率需要5000左右,镍锌铁氧体材料磁导率一般只有2000以下,所以对于这种低频率的吸波材料只能采用锰锌铁氧体材料。为了达到一定频率电磁波在铁氧体中吸收效果最佳,铁氧体材料的的复数磁导率u需满足u=λ/(2πt),λ为电磁波波长,t为吸波材料的厚度,所以用于一定频率的吸波锰锌铁氧体材料,与常规的锰锌铁氧体材料还要有所区别。
CN110845228A公开了一种贫铁软磁铁氧体,它由主成分和副成分组成,以摩尔百分比计,所述主成分包括46.0~49.9mol%的Fe 2O 3、21.0~26.0mol%的ZnO以及余量的MnO;以主成分质量和为基准,所述副成分至少含有500~2500ppm的TiO 2或1000-5000ppm的SnO 2
CN105272194A公开了一种镍锌系铁氧体吸波材料配方、粉末及其制造方法,配方包括主成份和添加物,主成份是三氧化二铁Fe 2O 3、氧化锌ZnO、氧化亚镍NiO,主成份的重量百分含量是:Fe 2O 3为64~70wt%,ZnO为15~25wt%,NiO为6~21wt%,主成份含量总计重量百分比100wt%;添加物为钽氧化物和/或铌氧化物。
CN109688780B公开了一种铁硅铝电磁波吸收剂的制备方法,将锰锌铁氧体与铁硅铝合金粉混合球磨,料球比为1:14~16,球磨5~50h,然后烘干得到铁硅铝电磁波吸收剂,所述锰锌铁氧体占所述铁硅铝电磁波吸收剂的0.5~5at%,所述锰锌铁氧体的配比为:52~55at%Fe 2O 3、33~36at%MnO、10~14at%ZnO。
但目前的电磁波吸收体的反射损耗仍较高,材料的吸收电磁波能力并不理想,因此急需对其组分和配方加以优化改进。
发明内容
本申请的目的在于提供一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法,本申请通过对主成分和副成分中各组分进行特殊选择并对配比进行优化,使制造得到的电磁波吸收体整体性能优异,在100KHz时的磁导率达到3500~6000,材料的反射损耗显著降低,同时拓宽了吸收噪音电磁波的频率范围。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供了一种电磁吸收与屏蔽的铁氧体材料,所述的铁氧体材料包括主组分和副组分;所述的主组分包括Fe 2O 3、ZnO和MnO,所述的副组分包括CuO、NiO和Co 2O 3
本申请限定了副组分包括CuO、NiO和Co 2O 3,添加CuO的作用一方面在于降低烧结温度,使晶粒更加完整、组织更加致密,另一方面Cu 2+可以部份替换晶格中的Mn离子,从而提高磁导率、性能稳定性,添加NiO的作用在于取代部份Mn离子,从而提高材料的饱和磁感应强度和烧结密度,添加Co 2O 3的作用在于置换晶格中的Mn离子,Co铁氧体具有较大正K1值,锰锌铁氧体为负K1值,适当添加可以起到补偿作用,从而降低磁晶各项异性场,提高材料的磁导率和截止频率,副组分中的三种物质相互协同,使制造得到的电磁波吸收体整体性能优异,在100KHz时的磁导率达到3500~6000,材料的反射损耗显著降低,同时拓宽了吸收噪音电磁波的频率范围。
作为本申请一种可选的技术方案,以主组分的摩尔百分比为100mol%计,其中,Fe 2O 3占44~46mol%,例如可以是44mol%、44.2mol%、44.6mol%、44.8mol%、45mol%、45.2mol%、45.4mol%、45.6mol%、45.8mol%或46mol%,ZnO占20~24mol%,例如可以是20mol%、20.5mol%、21mol%、21.5mol%、22mol%、22.5mol%、23mol%、23.5mol%或24mol%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,余量为MnO。
可选地,以主组分的质量分数为100wt%计,所述的副组分中包括0~3wt%的CuO、0~0.1wt%NiO以及0~1wt%的Co 2O 3,CuO可以是0.5wt%、1.0wt%、1.5wt%、2.0wt%、2.5wt%或3.0wt%,NiO可以是0.01wt%、0.02wt%、0.03wt%、0.04wt%、0.05wt%、0.06wt%、0.07wt%、0.08wt%、0.09wt%或0.1wt%,Co 2O 3 的含量可以是0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%或1.0wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,CuO、NiO和Co 2O 3的含量均不包括0。
本申请通过对副成分中各组分配比进行优化,使制备得到的电磁波吸收体整体性能优异,在100KHz时的磁导率达到3500~6000,材料的反射损耗显著降低,同时拓宽了吸收噪音电磁波的频率范围。具体而言,本申请限定了副组分中包括0~3wt%的CuO,当CuO的添加量高于3wt%时,会导致晶粒异常长大,形成巨晶,使晶粒一致性变差,从而使材料性能恶化,这是由于CuO是低熔点物质,添加量过多,形成液相烧结,加速晶粒生长,造成晶粒异常长大;本申请还限定了副组分中包括0~0.1wt%的NiO,当NiO的添加量高于0.1wt%时,会导致磁导率显著下降,这是由于Ni+在晶格中站B位,使B位置离子磁矩降低,从而降低磁导率显著下降;本申请还限定了副组分中包括0~1wt%的Co 2O 3,当Co 2O 3的添加量高于1wt%时,会导致磁导率显著下降,这是由于Co铁氧体具有较大的正K1,过量添加会造成最终铁氧体中的K1增大,从而降低综合性能。
第二方面,本申请提供了一种电磁波吸收体,所述的电磁波吸收体由第一方面所述的铁氧体材料制备得到。
作为本申请一种可选的技术方案,所述的电磁波吸收体在25℃下的磁导率为3500~6000,例如可以是3500、4000、4500、5000、5500或6000,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述的电磁波吸收体的最高反射损耗为-24dB。
可选地,所述的电磁波吸收体的最佳匹配频率为25~50MHz,例如可以是25MHz、30MHz、35MHz、40MHz、45MHz或50MHz,但并不仅限于所列举的 数值,该数值范围内其他未列举的数值同样适用。
可选地,所述的电磁波吸收体为片状结构,所述的电磁波吸收体的中心处开设有沿厚度方向贯穿的通孔。
可选地,所述的电磁波吸收体的厚度为3~10mm,例如可以是3mm、4mm、5mm、6mm、7mm、8mm、9mm或10mm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
第三方面,本申请提供了一种第二方面所述的电磁波吸收体的制备方法,所述的制备方法包括:
按照主组分中各组分的摩尔百分比计算并称取Fe 2O 3、Mn 3O 4和ZnO,与副组分CuO、NiO和Co 2O 3混合后经造粒成型后得到坯体,坯体经保温烧结得到所述的电磁波吸收体。
作为本申请一种可选的技术方案,所述的制备方法具体包括如下步骤:
(Ⅰ)按照主组分中各组分的摩尔百分比计算并称取Fe 2O 3、Mn 3O 4和ZnO,加水砂磨,喷雾造粒得到喷雾料;
(Ⅱ)喷雾料经预烧后加水进行二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
(Ⅲ)向砂磨料中加入PVA和消泡剂后进行二次喷雾造粒得到颗粒,颗粒经成型处理得到坯体;
(Ⅳ)坯体经保温烧结得到所述的电磁波吸收体。
本申请提供的制备方法采用预烧和二次砂磨,通过预烧使得各种原材料部分发生反应,部份铁氧体化,有利于毛坯成型和烧结收缩率的控制;二次砂磨的作用在于使颗粒的粒度达到一定的分布范围,有利于烧结过程中晶粒均匀生 长。
作为本申请一种可选的技术方案,步骤(Ⅰ)中,所述的砂磨时间为50~70min,例如可以是50min、52min、54min、56min、58min、60min、62min、64min、66min、68min或70min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,可选为60min。
可选地,砂磨后的混料循环混合20~40min后再进行喷雾造粒,例如可以是20min、22min、24min、26min、28min、30min、32min、34min、36min、38min或40min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步可选为30min。
可选地,所述的喷雾造粒的温度为200~400℃,例如可以是200℃、220℃、240℃、260℃、280℃、300℃、320℃、340℃、360℃、380℃或400℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请一种可选的技术方案,步骤(Ⅱ)中,所述的二次砂磨的时间为100~150min,例如可以是100min、105min、110min、115min、120min、125min、130min、135min、140min、145min或150min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,可选为120min。
作为本申请一种可选的技术方案,步骤(Ⅲ)中,所述的PVA占砂磨料总质量的0.05~0.1wt%,例如可以是0.05wt%、0.06wt%、0.07wt%、0.08wt%、0.09wt%或0.1wt%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,可选为0.08wt%。
可选地,所述的消泡剂占砂磨料总质量为0.001~0.005wt%,例如可以是0.001wt%、0.002wt%、0.003wt%、0.004wt%或0.005wt%,但并不仅限于所列举 的数值,该数值范围内其他未列举的数值同样适用,可选为0.004wt%。
可选地,二次喷雾造粒得到的颗粒评价粒径为50~200μm,例如可以是50μm、60μm、70μm、80μm、90μm、100μm、110μm、120μm、130μm、140μm、150μm、160μm、170μm、180μm、190μm或200μm,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述的坯体的密度为2.9~3.1g/cm 3,例如可以是2.9g/cm 3、2.92g/cm 3、2.94g/cm 3、2.96g/cm 3、2.98g/cm 3、3.0g/cm 3、3.02g/cm 3、3.04g/cm 3、3.06g/cm 3、3.08g/cm 3或3.1g/cm 3,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述的坯体为片状结构,所述的坯体的中心处开设有沿厚度方向贯穿的通孔。
作为本申请一种可选的技术方案,步骤(Ⅳ)中,所述的保温烧结过程包括:
坯体在空气气氛下,以V 1的升温速率由常温加热至T 1,保温一段时间;随后,坯体在保护性气氛下以V 2的降温速率降温至T 2;最后,坯体在保护性气氛下以V 3的降温速率继续降至常温。
本申请采用梯度烧结工艺,有利于毛坯中胶水和有机添加剂的排出,有利于晶粒的均匀生长,并适当控制烧结成本。
可选地,所述的空气气氛中氧气的体积浓度为2~6%,例如可以是2.0%、2.5%、3.0%、3.5%、4.0%、4.5%、5.0%、5.5%或6.0%,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述的V 1为0.3~2℃/min,例如可以是0.3℃/min、0.4℃/min、 0.5℃/min、0.6℃/min、0.7℃/min、0.8℃/min、0.9℃/min、1.0℃/min、1.1℃/min、1.2℃/min、1.3℃/min、1.4℃/min、1.5℃/min、1.6℃/min、1.7℃/min、1.8℃/min、1.9℃/min或2.0℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述的T 1为1300~1450℃,例如可以是1300℃、1310℃、1320℃、1330℃、1340℃、1350℃、1360℃、1370℃、1380℃、1390℃、1400℃、1410℃、1420℃、1430℃、1440℃或1450℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,在T 1温度下保温3~8h,例如可以是3h、4h、5h、6h、7h或8h,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步可选为5h。
可选地,所述的保护性气氛为氮气气氛。
可选地,所述的V 2为1.5~1.7℃/min,例如可以是1.5℃/min、1.52℃/min、1.54℃/min、1.56℃/min、1.58℃/min、1.6℃/min、1.62℃/min、1.64℃/min、1.66℃/min、1.68℃/min或1.7℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步可选为1.67℃/min。
可选地,所述的T 2为800~1000℃,例如可以是800℃、820℃、840℃、860℃、880℃、900℃、920℃、940℃、960℃、980℃或1000℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一步可选为900℃。
可选地,所述的V 3为1~5℃/min,例如可以是1.0℃/min、1.5℃/min、2.0℃/min、2.5℃/min、3.0℃/min、3.5℃/min、4.0℃/min、4.5℃/min或5.0℃/min,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,进一 步可选为3℃/min。
与现有技术相比,本申请的有益效果为:
本申请通过对主成分和副成分中各组分进行特殊选择并对配比进行优化,使制造得到的电磁波吸收体整体性能优异,在100KHz时的磁导率达到3500~6000,材料的反射损耗显著降低,同时拓宽了吸收噪音电磁波的频率范围。
附图说明
图1为本申请实施例1制备得到的电磁波吸收体的结构示意图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
实施例1
本实施例提供了一种电磁波吸收体的制备方法,所述的制备方法包括如下步骤:
(1)按照表1所示主组分中各组分的摩尔百分比计算并称取Fe 2O 3、Mn 3O 4和ZnO(MnO与Mn 3O 4通过Mn的摩尔百分比进行等价转换),加水砂磨50min,随后循环混合40min后进行喷雾造粒得到喷雾料,喷雾造粒的温度为200℃;
(2)喷雾料经预烧后加水进行100min的二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
(3)向砂磨料中加入PVA和消泡剂后进行二次喷雾造粒得到平均粒径为200μm的颗粒,PVA占砂磨料总质量的0.05wt%,消泡剂占砂磨料总质量为0.001wt%;颗粒经成型处理得到坯体,密度为2.9~3.1g/cm 3,坯体为片状结构,所述的坯体的中心处开设有沿厚度方向贯穿的通孔。
(4)坯体在空气气氛下,空气气氛中氧气的体积浓度为21%,以0.3℃/min 的升温速率由常温加热至1300℃,保温3h;随后,坯体在氮气气氛下以1.5℃/min的降温速率降温至800℃;最后,坯体在氮气气氛下以1℃/min的降温速率继续降至常温,得到所述的电磁波吸收体,制备得到的电磁波吸收体如图1所示,为片状结构,中心处开设有沿厚度方向贯穿的通孔,厚度为5.2mm。
采用E4991阻抗分析仪对制备得到的电磁波吸收体进行磁导率测试,测试条件为25℃、100kHz和0.25mT;将制备得到的电磁波吸收体放入同轴腔,采用5232A在25~300MHz频段内测试其反射损耗;电磁波吸收体的磁导率、反射损耗和最佳匹配频率见表2。
实施例2
(1)按照表1所示主组分中各组分的摩尔百分比计算并称取Fe 2O 3、Mn 3O 4和ZnO(MnO与Mn 3O 4通过Mn的摩尔百分比进行等价转换),加水砂磨55min,随后循环混合35min后进行喷雾造粒得到喷雾料,喷雾造粒的温度为250℃;
(2)喷雾料经预烧后加水进行110min的二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
(3)向砂磨料中加入PVA和消泡剂后进行二次喷雾造粒得到平均粒径为170μm的颗粒,PVA占砂磨料总质量的0.06wt%,消泡剂占砂磨料总质量为0.003wt%;颗粒经成型处理得到坯体,密度为2.9~3.1g/cm 3,坯体为片状结构。
(4)坯体在空气气氛下,空气气氛中氧气的体积浓度为21%,以0.8℃/min的升温速率由常温加热至1350℃,保温4h;随后,坯体在氮气气氛下以1.6℃/min的降温速率降温至850℃;最后,坯体在氮气气氛下以2℃/min的降温速率继续降至常温,得到所述的电磁波吸收体,制备得到的电磁波吸收体如图1所示,为片状结构,中心处开设有沿厚度方向贯穿的通孔,厚度为5.2mm。
采用E4991阻抗分析仪对制备得到的电磁波吸收体进行磁导率测试,测试条件为25℃、100kHz和0.25mT;将制备得到的电磁波吸收体放入同轴腔,采用5232A在25~300MHz频段内测试其反射损耗;电磁波吸收体的磁导率、反射损耗和最佳匹配频率见表2。
实施例3
(1)按照表1所示主组分中各组分的摩尔百分比计算并称取Fe 2O 3、Mn 3O 4和ZnO(MnO与Mn 3O 4通过Mn的摩尔百分比进行等价转换),加水砂磨60min,随后循环混合30min后进行喷雾造粒得到喷雾料,喷雾造粒的温度为300℃;
(2)喷雾料经预烧后加水进行120min的二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
(3)向砂磨料中加入PVA和消泡剂后进行二次喷雾造粒得到平均粒径为150μm的颗粒,PVA占砂磨料总质量的0.08wt%,消泡剂占砂磨料总质量为0.004wt%;颗粒经成型处理得到坯体,密度为2.9~3.1g/cm 3,坯体为片状结构。
(4)坯体在空气气氛下,空气气氛中氧气的体积浓度为4%,以1.2℃/min的升温速率由常温加热至1400℃,保温5h;随后,坯体在氮气气氛下以1.67℃/min的降温速率降温至900℃;最后,坯体在氮气气氛下以3℃/min的降温速率继续降至常温,得到所述的电磁波吸收体,制备得到的电磁波吸收体如图1所示,为片状结构,中心处开设有沿厚度方向贯穿的通孔,厚度为5.2mm。
采用E4991阻抗分析仪对制备得到的电磁波吸收体进行磁导率测试,测试条件为25℃、100kHz和0.25mT;将制备得到的电磁波吸收体放入同轴腔,采用5232A在25~300MHz频段内测试其反射损耗;电磁波吸收体的磁导率、反射损耗和最佳匹配频率见表2。
实施例4
(1)按照表1所示主组分中各组分的摩尔百分比计算并称取Fe 2O 3、Mn 3O 4和ZnO(MnO与Mn 3O 4通过Mn的摩尔百分比进行等价转换),加水砂磨65min,随后循环混合25min后进行喷雾造粒得到喷雾料,喷雾造粒的温度为350℃;
(2)喷雾料经预烧后加水进行140min的二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
(3)向砂磨料中加入PVA和消泡剂后进行二次喷雾造粒得到平均粒径为100μm的颗粒,PVA占砂磨料总质量的0.09wt%,消泡剂占砂磨料总质量为0.004wt%;颗粒经成型处理得到坯体,密度为2.9~3.1g/cm 3,坯体为片状结构。
(4)坯体在空气气氛下,空气气氛中氧气的体积浓度为21%,以1.6℃/min的升温速率由常温加热至1420℃,保温7h;随后,坯体在氮气气氛下以1.68℃/min的降温速率降温至950℃;最后,坯体在氮气气氛下以4℃/min的降温速率继续降至常温,得到所述的电磁波吸收体,制备得到的电磁波吸收体如图1所示,为片状结构,中心处开设有沿厚度方向贯穿的通孔,厚度为5.2mm。
实施例5
(1)按照表1所示主组分中各组分的摩尔百分比计算并称取Fe 2O 3、Mn 3O 4和ZnO(MnO与Mn 3O 4通过Mn的摩尔百分比进行等价转换),加水砂磨70min,随后循环混合20min后进行喷雾造粒得到喷雾料,喷雾造粒的温度为400℃;
(2)喷雾料经预烧后加水进行150min的二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
(3)向砂磨料中加入PVA和消泡剂后进行二次喷雾造粒得到平均粒径为50μm的颗粒,PVA占砂磨料总质量的0.1wt%,消泡剂占砂磨料总质量为 0.005wt%;颗粒经成型处理得到坯体,密度为2.9~3.1g/cm 3,坯体为片状结构。
(4)坯体在空气气氛下,空气气氛中氧气的体积浓度为21%,以2℃/min的升温速率由常温加热至1450℃,保温8h;随后,坯体在氮气气氛下以1.7℃/min的降温速率降温至1000℃;最后,坯体在氮气气氛下以5℃/min的降温速率继续降至常温,得到所述的电磁波吸收体,制备得到的电磁波吸收体如图1所示,为片状结构,中心处开设有沿厚度方向贯穿的通孔,厚度为5.2mm。
对比例1
本实施例与实施例5的区别在于,将副组分中CuO的含量调整为3.5wt%,主组分和副组分中各组分含量见表1,工艺步骤和操作参数与实施例1完全相同。
对比例2
本实施例与实施例5的区别在于,将副组分中NiO的含量调整为0.15wt%,主组分和副组分中各组分含量见表1,工艺步骤和操作参数与实施例1完全相同。
对比例3
本实施例与实施例5的区别在于,将副组分中Co 2O 3的含量调整为1.5wt%,主组分和副组分中各组分含量见表1,工艺步骤和操作参数与实施例1完全相同。
对比例4
本对比例与实施例5的区别在于,省去副组分中的CuO,仅添加NiO和Co 2O 3,主组分和副组分中各组分含量见表1,其他工艺步骤和操作参数与实施例1完全相同。
对比例5
本对比例与实施例5的区别在于,省去副组分中的NiO,仅添加CuO和Co 2O 3,主组分和副组分中各组分含量见表1,其他工艺步骤和操作参数与实施 例1完全相同。
对比例6
本对比例与实施例5的区别在于,省去副组分中的Co 2O 3,仅添加CuO和NiO,CuO和NiO的含量、其他工艺步骤和操作参数与实施例1完全相同。
对比例7
本对比例与实施例5的区别在于,省去副组分中的NiO和Co 2O 3,仅添加CuO,主组分和副组分中各组分含量见表1,其他工艺步骤和操作参数与实施例1完全相同。
对比例8
本对比例与实施例5的区别在于,省去副组分中的CuO和Co 2O 3,仅添加NiO,主组分和副组分中各组分含量见表1,其他工艺步骤和操作参数与实施例1完全相同。
对比例9
本对比例与实施例5的区别在于,省去副组分中的CuO和NiO,仅添加Co 2O 3,Co 2O 3的含量、其他工艺步骤和操作参数与实施例1完全相同。
对比例10
本对比例为CN110845228A公开的实施例1,具体包括如下步骤:
(1)准备作为主成分的Fe 2O 3、Mn 3O 4和ZnO(Fe 2O 3的摩尔百分比为47mol%,MnO的摩尔百分比为29mol%,ZnO的摩尔百分比为24mol%,其中,MnO与Mn 3O 4通过Mn的摩尔百分比进行等价转换),准备作为副成分的TiO 2、SnO 2、Na 2O(以Na 2CO 3形式)和Ta 2O 5;按表1称取主成分和副成分在砂磨机中进行湿式混合0.5小时,干燥后在空气中900℃下预烧2小时得到预烧料;
(2)将预烧料在砂磨机中砂磨2小时,干燥后(相对于干燥后的预烧料,100wt%)添加1.0wt%的聚乙烯醇(市售)作为粘接剂进行造粒、成型、烧结,最终得到外径为7.0mm、内径为3.0mm、高为10.0mm的圆环形坯体;
(3)将坯体在1300℃下进行烧结,保温时间为5小时。
对实施例1-5以及对比例1-10制备得到的电磁波吸收体进行性能测试,采用E4991阻抗分析仪对制备得到的电磁波吸收体进行磁导率测试,测试条件为25℃、100kHz和0.25mT;将制备得到的电磁波吸收体放入同轴腔,采用5232A在25~300MHz频段内测试其反射损耗;电磁波吸收体的磁导率、反射损耗见表2。
表1
Figure PCTCN2021089122-appb-000001
Figure PCTCN2021089122-appb-000002
表2
  磁导率 最高反射损耗
实施例1 3583 -26dB
实施例2 4210 -28dB
实施例3 5084 -35dB
实施例4 5430 -32dB
实施例5 3872 -25dB
对比例1 2890 -18dB
对比例2 2917 -20dB
对比例3 2430 -18dB
对比例4 2257 -19dB
对比例5 3243 -22dB
对比例6 3618 -20dB
对比例7 3420 -17dB
对比例8 2109 -15dB
对比例9 2044 -18dB
对比例10 3520 -22dB
由表2提供的测试结果可以看出:
(1)由实施例1-5可以看出配方在合适范围,材料的磁导率处于理想值,同时产品对电磁波的吸收率也比较大,插入损耗小于-24dB。
(2)由实施例1和对比例1的测试结果对比发现,当CuO添加量大于3%时,材料的磁导率降低,插入损耗增大,这是由于过量的CuO添加,导致材料过烧,晶粒异常长大。
(3)由实施例5、对比例2-3的测试结果对比发现,当NiO和Co2O3添加量超过本申请公开范围,材料的磁导率显著下降,同时插入损耗增大,这是由于Ni和Co在烧结过程中都会进入晶格,替代原有位置的离子,从而降低磁导率。
(4)由实施例5、对比例4-9的测试结果对比发现,当材料中缺少CuO、NiO、Co2O3中的一种或两种添加剂,材料的磁导率或插入损耗达不到所需效果,或磁导率和插入损耗都达不到所需效果,这是由于这三种添加剂不但具有各自添加的效果,同时三者之间还有一定的相互配合作用,复合添加对材料的特性具有更好的效果。
(5)由对比例10发现,虽然磁导率可以达到3000以上,但是插入损耗偏高,对电磁波吸收效果要差一些。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此。

Claims (11)

  1. 一种电磁吸收与屏蔽的铁氧体材料,其包括主组分和副组分;所述的主组分包括Fe 2O 3、ZnO和MnO,所述的副组分包括CuO、NiO和Co 2O 3
  2. 根据权利要求1所述的铁氧体材料,其中,以主组分的摩尔百分比为100mol%计,Fe 2O 3占44~46mol%,ZnO占20~24mol%,余量为MnO。
  3. 根据权利要求1所述的铁氧体材料,其中,以主组分的质量分数为100wt%计,所述的副组分中包括0~3wt%的CuO、0~0.1wt%的NiO以及0~1wt%的Co 2O 3,且CuO、NiO和Co 2O 3的含量均不包括0。
  4. 一种电磁波吸收体,其由权利要求1-3中任一项所述的铁氧体材料制备得到。
  5. 根据权利要求4所述的电磁波吸收体,其中,所述的电磁波吸收体在25℃下、100kHz和0.25mT的测试条件下的磁导率为3500~6000;
    可选地,所述的电磁波吸收体在25~300MHz频段内的最高反射损耗为-24dB;
    可选地,所述的电磁波吸收体的最佳匹配频率为25~50MHz;
    可选地,所述的电磁波吸收体为片状结构,所述的电磁波吸收体的中心处开设有沿厚度方向贯穿的通孔;
    可选地,所述的电磁波吸收体的厚度为3~10mm。
  6. 一种权利要求4或5所述的电磁波吸收体的制备方法,其中,所述的制备方法包括:
    按照主组分中各组分的摩尔百分比计算并称取Fe 2O 3、Mn 3O 4和ZnO,与副组分CuO、NiO和Co 2O 3混合后经造粒成型后得到坯体,坯体经保温烧结得到所述的电磁波吸收体。
  7. 根据权利要求6所述的制备方法,其中,所述的制备方法具体包括如下步骤:
    (Ⅰ)按照主组分中各组分的摩尔百分比计算并称取Fe 2O 3、Mn 3O 4和ZnO,加水砂磨,喷雾造粒得到喷雾料;
    (Ⅱ)喷雾料经预烧后加水进行二次砂磨得到砂磨料,在二次砂磨过程中按特定比例加入副组分;
    (Ⅲ)向砂磨料中加入PVA和消泡剂后进行二次喷雾造粒得到颗粒,颗粒经成型处理得到坯体;
    (Ⅳ)坯体经保温烧结得到所述的电磁波吸收体。
  8. 根据权利要求7所述的制备方法,其中,步骤(Ⅰ)中,所述的砂磨时间为50~70min,可选为60min;
    可选地,砂磨后的混料循环混合20~40min后再进行喷雾造粒,可选为30min;
    可选地,所述的喷雾造粒的温度为200~400℃。
  9. 根据权利要求7或8所述的制备方法,其中,步骤(Ⅱ)中,所述的二次砂磨的时间为100~150min,可选为120min。
  10. 根据权利要求7-9任一项所述的制备方法,其中,步骤(Ⅲ)中,所述的PVA占砂磨料总质量的0.05~0.1wt%,可选为0.08wt%;
    可选地,所述的消泡剂占砂磨料总质量为0.001~0.005wt%,可选为0.004wt%;
    可选地,二次喷雾造粒得到的颗粒平均粒径为50~200μm;
    可选地,所述的坯体的密度为2.9~3.1g/cm 3
    可选地,所述的坯体为片状结构,所述的坯体的中心处开设有沿厚度方向贯穿的通孔。
  11. 根据权利要求7-10任一项所述的制备方法,其中,步骤(Ⅳ)中,所述的保温烧结过程包括:
    坯体在空气气氛下,以V 1的升温速率由常温加热至T 1,保温一段时间;随后,坯体在保护性气氛下以V 2的降温速率降温至T 2;最后,坯体在保护性气氛下以V 3的降温速率继续降至常温;
    可选地,所述的空气气氛中氧气的体积浓度为2~6%;
    可选地,所述的V 1为0.3~2℃/min;
    可选地,所述的T 1为1300~1450℃;
    可选地,在T 1温度下保温3~8h,可选为5h;
    可选地,所述的保护性气氛为氮气气氛;
    可选地,所述的V 2为1.5~1.7℃/min,可选为1.67℃/min;
    可选地,所述的T 2为800~1000℃,可选为900℃;
    可选地,所述的V 3为1~5℃/min,可选为3℃/min。
PCT/CN2021/089122 2020-11-30 2021-04-23 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法 WO2022110626A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21896141.5A EP4253346A1 (en) 2020-11-30 2021-04-23 Ferrite material for electromagnetic absorption and shielding, and electromagnetic wave absorber and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011384622.0A CN112390639B (zh) 2020-11-30 2020-11-30 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法
CN202011384622.0 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110626A1 true WO2022110626A1 (zh) 2022-06-02

Family

ID=74605733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089122 WO2022110626A1 (zh) 2020-11-30 2021-04-23 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法

Country Status (3)

Country Link
EP (1) EP4253346A1 (zh)
CN (1) CN112390639B (zh)
WO (1) WO2022110626A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057697A (zh) * 2022-06-29 2022-09-16 横店集团东磁股份有限公司 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN115448710A (zh) * 2022-09-05 2022-12-09 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种低频铁氧体吸波材料及其制备方法
CN117550645A (zh) * 2023-11-02 2024-02-13 南通三优佳磁业有限公司 一种锰锌铁氧体超微粉的制备工艺及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390639B (zh) * 2020-11-30 2022-08-26 横店集团东磁股份有限公司 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1086205A (en) * 1963-10-15 1967-10-04 Western Electric Co Ferrite compositions
JPH06325922A (ja) * 1993-05-14 1994-11-25 Nippon Steel Corp 高電気抵抗表面層を有するMn−Znフェライト磁性材料およびその製造方法
CN101805173A (zh) * 2010-03-31 2010-08-18 苏州天铭磁业有限公司 一种贫铁配方的MnZn铁氧体材料及其制备方法
CN104496449A (zh) * 2014-12-01 2015-04-08 临安市三方磁业有限公司 一种锰锌铁氧体高频高阻抗材料及其制备方法
CN105272194A (zh) 2015-11-23 2016-01-27 杭州电子科技大学 一种镍锌系铁氧体吸波材料配方、粉末及其制造方法
CN109688780A (zh) 2019-01-22 2019-04-26 西华大学 一种铁硅铝电磁波吸收剂及其制备方法
CN110128124A (zh) * 2019-05-13 2019-08-16 海宁联丰磁业股份有限公司 一种宽温超低损耗软磁铁氧体材料及其制备方法
CN110156451A (zh) * 2019-03-13 2019-08-23 横店集团东磁股份有限公司 一种高阻抗的贫铁锰锌铁氧体材料及其制备方法
CN110824395A (zh) * 2019-11-26 2020-02-21 上海宝钢磁业有限公司 基于居里温度和磁感应强度快速确定贫铁锰锌铁氧体成分的方法
CN110845228A (zh) 2019-11-15 2020-02-28 苏州天源磁业股份有限公司 一种贫铁软磁铁氧体、电磁波吸收材料及其制备方法
CN112390639A (zh) * 2020-11-30 2021-02-23 横店集团东磁股份有限公司 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584438B2 (ja) * 1999-11-19 2004-11-04 ミネベア株式会社 Mn−Znフェライトおよびその製造方法
EP1666422B1 (en) * 2000-08-21 2008-07-02 TDK Corporation Ferrite material
CN1218435C (zh) * 2002-12-27 2005-09-07 磐石制路波株式会社 电磁波吸收体
CN103253931B (zh) * 2013-05-14 2015-07-08 江苏元京电子科技有限公司 一种用于电波暗室的铁氧体及其制备方法和用途

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1086205A (en) * 1963-10-15 1967-10-04 Western Electric Co Ferrite compositions
JPH06325922A (ja) * 1993-05-14 1994-11-25 Nippon Steel Corp 高電気抵抗表面層を有するMn−Znフェライト磁性材料およびその製造方法
CN101805173A (zh) * 2010-03-31 2010-08-18 苏州天铭磁业有限公司 一种贫铁配方的MnZn铁氧体材料及其制备方法
CN104496449A (zh) * 2014-12-01 2015-04-08 临安市三方磁业有限公司 一种锰锌铁氧体高频高阻抗材料及其制备方法
CN105272194A (zh) 2015-11-23 2016-01-27 杭州电子科技大学 一种镍锌系铁氧体吸波材料配方、粉末及其制造方法
CN109688780A (zh) 2019-01-22 2019-04-26 西华大学 一种铁硅铝电磁波吸收剂及其制备方法
CN110156451A (zh) * 2019-03-13 2019-08-23 横店集团东磁股份有限公司 一种高阻抗的贫铁锰锌铁氧体材料及其制备方法
CN110128124A (zh) * 2019-05-13 2019-08-16 海宁联丰磁业股份有限公司 一种宽温超低损耗软磁铁氧体材料及其制备方法
CN110845228A (zh) 2019-11-15 2020-02-28 苏州天源磁业股份有限公司 一种贫铁软磁铁氧体、电磁波吸收材料及其制备方法
CN110824395A (zh) * 2019-11-26 2020-02-21 上海宝钢磁业有限公司 基于居里温度和磁感应强度快速确定贫铁锰锌铁氧体成分的方法
CN112390639A (zh) * 2020-11-30 2021-02-23 横店集团东磁股份有限公司 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057697A (zh) * 2022-06-29 2022-09-16 横店集团东磁股份有限公司 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN115057697B (zh) * 2022-06-29 2023-05-16 横店集团东磁股份有限公司 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN115448710A (zh) * 2022-09-05 2022-12-09 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种低频铁氧体吸波材料及其制备方法
CN117550645A (zh) * 2023-11-02 2024-02-13 南通三优佳磁业有限公司 一种锰锌铁氧体超微粉的制备工艺及应用

Also Published As

Publication number Publication date
EP4253346A1 (en) 2023-10-04
CN112390639A (zh) 2021-02-23
CN112390639B (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2022110626A1 (zh) 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法
CN110156451B (zh) 一种高阻抗的贫铁锰锌铁氧体材料及其制备方法
CN111943658B (zh) 一种宽温低损耗MnZn铁氧体材料及其制备方法
CN108129143B (zh) 高叠加特性宽温低功耗锰锌软磁铁氧体及其制备方法
CN111233452B (zh) 一种高频高阻抗的贫铁锰锌铁氧体及其制备方法
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
CN113277840A (zh) 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法
CN115073158A (zh) 一种锰锌铁氧体材料及其制备方法与应用
JP3108804B2 (ja) Mn−Znフェライト
CN114195500A (zh) 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法
CN115340372B (zh) 一种低应力敏感的高频锰锌铁氧体材料及其制备方法
CN110845228B (zh) 一种贫铁软磁铁氧体、电磁波吸收材料及其制备方法
CN111116188A (zh) 一种锰锌高磁导率高居里温度高频高磁通材料及其制备方法
CN112645702B (zh) 一种宽频宽温高磁导率Mn-Zn铁氧体材料及其制备方法与应用
CN101183586A (zh) 高磁导率、低thd软磁铁氧体磁性材料及其制备方法
CN116375462A (zh) 一种宽温低功耗锰锌软磁铁氧体材料及其制备方法
CN113292328A (zh) 一种高频应用锰锌低功率损耗铁氧体材料及制备方法
US20240006103A1 (en) MnZn-BASED FERRITE AND METHOD FOR PRODUCING SAME
WO2022205537A1 (zh) 一种锰锌铁氧体、其制备方法及用途
CN113314289A (zh) 一种宽温宽频应用锰锌低功率铁氧体材料及制备方法
CN112341179A (zh) 一种高频锰锌铁氧体材料、其制备方法和应用
CN115536379B (zh) 一种高频低损软磁铁氧体材料及其制备方法和应用
JP3584437B2 (ja) Mn−Znフェライトの製造方法
CN115745592B (zh) 一种宽频高Tc高磁导率锰锌铁氧体材料及其制备方法
JP2000299217A (ja) 高透磁率酸化物磁性材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021896141

Country of ref document: EP

Effective date: 20230630