CN113277840A - 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法 - Google Patents

一种高频高工作磁密低损耗锰锌铁氧体及其制备方法 Download PDF

Info

Publication number
CN113277840A
CN113277840A CN202110503438.1A CN202110503438A CN113277840A CN 113277840 A CN113277840 A CN 113277840A CN 202110503438 A CN202110503438 A CN 202110503438A CN 113277840 A CN113277840 A CN 113277840A
Authority
CN
China
Prior art keywords
crushing
working
temperature
sintering
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110503438.1A
Other languages
English (en)
Other versions
CN113277840B (zh
Inventor
张强原
段金柱
邢冰冰
张志新
王丽婷
徐涛
李小龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDG Holding Co Ltd
Original Assignee
TDG Holding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDG Holding Co Ltd filed Critical TDG Holding Co Ltd
Priority to CN202110503438.1A priority Critical patent/CN113277840B/zh
Publication of CN113277840A publication Critical patent/CN113277840A/zh
Application granted granted Critical
Publication of CN113277840B publication Critical patent/CN113277840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明公开了一种高频高工作磁密低损耗锰锌铁氧体及其制备方法,所述软磁铁氧体由主成分和副成分组成,其特征在于主成份以氧化物计算由Fe2O3:54.55~55.20mol%,ZnO:4.0~5.0mol%,MnO余量组成;按主成分重量计的副成分I包括Nb2O5:0.01~0.06wt%、Co2O3:0.15~0.30wt%,CaCO3:0.05~0.15wt%、V2O5:0.01~0.04wt%,副成分Ⅱ由NiO:0.01~0.05wt%,SiO2:0.005~0.015wt%、MoO3:0.01~0.05wt%其中的至少两种组成。所述软磁铁氧体的制备方法采用的工艺步骤是:配料、砂磨、气氛预烧、两次粉碎、造粒、成型、烧结。通过配方设计、改进预烧工艺、粉碎工艺和优化烧结,最终可以使软磁铁氧体材料实现高频高工作磁密下低损耗特性。

Description

一种高频高工作磁密低损耗锰锌铁氧体及其制备方法
技术领域
本发明涉及锰锌铁氧体材料领域,具体涉及一种高频高工作磁密低损耗锰锌铁氧体材料及其制备方法。
背景技术
目前开关电源被广泛应用在工业、民用和军事等各个领域,电子产品的小型化、集成化发展,整机密度越来越大,特别是第三代半导体的应用,提高了开关电源的使用频率,开关管的频率从原来的100kHz提升到500kHz~1MHz,甚至MHz级以上,并且功率密度越来越大,即需求较高频率和磁通密度,通常有两种解决方式,一种是即工作频率提高到MHz以上,工作磁通密度Bm可以降低,但是受限于线圈的影响,开关频率目前主要集中在500kHz~1MHz,因此工作磁通密度Bm也较高,而磁性元件其体积和重量一般占到整个电路的20至30%,损耗占总损耗的约30%,因此这对应用于变压器中作为功率转换的锰锌铁氧体材料而言,应具有高的截止频率,并且在高频高工作磁密下具有较低的损耗,即高频工作磁密低损耗。
目前公布的高频低损耗材料工作频率可以做到1MHz~5MHz,但是是在较低的工作磁通密度下工作,比如专利号CN106830913 B(工作频率1MHz~5MHz)、专利号CN103396111 B(工作频率1MH~3MHz),专利号CN112456994A公布了一种低温烧结高频低损耗MnZn软磁铁氧体及其制造方法,通过纳米掺杂降低烧结温度,珠磨机研磨降低D90-D50,该专利实现了3MHz 80mT、5MHz 50mT低损耗特性,不足之处在于该材料在低温保持稳定,高温损耗上升较快,对于高频锰锌铁氧体来说,功率损耗可以转化为Pcv=kfαBmβ,α一般在1~2之间,β在2~3之间(Bm在50mT以下),工作频率和工作磁通密度对β影响很大,随着频率增加,工作磁通密度增加,β增长较快,导致功耗上升较快。日立金属公布了ML95S材料,在1MHz 75mT 23℃和100℃典型损耗分别为700kW/m3和1000kW/m3,而在100mT下,23℃和100℃损耗都在2000 kW/m3以上,较高的损耗影响开关电源的转换效率。相比于ML95S材料,本发明材料在1MHz100mT下25℃~100℃功耗都小于800 kW/m3,损耗降低一半以上,在一定程度上提升了开关电源的转换效率,满足现代电子技术发展的需求。
发明内容
本发明正是为了克服现有技术的不足而提供一种高频高工作磁密低损耗锰锌铁氧体材料,通过配方精选优化,辅以低熔点物质掺杂,降低烧结温度,再对预烧工艺进行改进提升,通过加入气氛保持良好的粉料活性,以及两次粉碎,降低粉碎粒径,最后匹配低温烧结,并且在致密化段根据材料烧结过程特点进行曲线优化,所制备的锰锌铁氧体材料在1MHz 100mT下25℃和100℃功耗小于800kW/m3,并且100℃下的饱和磁通密度达到430mT以上,使锰锌铁氧体材料适应高频变压器和服务器电感的需求。
本发明解决技术问题所采用的技术方案是:制备一种高频高工作磁密低损耗锰锌铁氧体材料,由主成分和副成分组成,其特征在于:主成份以氧化物计算由Fe2O3 :54.55~55.20mol%,ZnO:4.0~5.0mol%,MnO余量组成;按主成分重量计的副成分I包括Nb2O5 :0.01~0.06wt%、Co2O3:0.15~0.30wt%,CaCO3 :0.05~0.15wt%、V2O5 :0.01~0.04wt%,副成分Ⅱ由NiO:0.01~0.05wt%,、SiO2 :0.005~0.015wt%、MoO3:0.01~0.05wt%其中的至少两种组成。
一种如上所述的高频高工作磁密低损耗锰锌铁氧体材料的制备方法,包括如下步骤:
1) 配料:按照主配方Fe2O3、ZnO 和MnO的比例进行称量并混合砂磨,砂磨时间15min~30min;
2)预烧:将混合后的粉料进行带有气氛的窑炉预烧,预烧温度800℃~1000℃,保温气氛5%~15%,其中较优的是预烧温度为840℃~950℃,从开始升温到降温结束氧含量保持恒定,氧含量6%~10%;
3)粉碎:将添加剂加入预烧料进行两次粉碎,第一次粉碎时间为40~70min,二次粉碎时间10~20min。第一次粉碎介质是钢球,第二次粉碎介质是锆球,粉碎粒径0.4~0.8μm;
4)造粒:将砂磨后的料浆烘干后进行造粒;
5)成型:将造粒好的颗粒进行压制;
6)烧结:将毛坯在窑炉中烧结,烧结温度1060~1100℃,其中升温段800~1000℃,升温速率2.0~3.5℃/min,从1000℃升温至保温温度,升温速率≤1.5℃/min。其中较优的升温段800~1000℃,升温速率2.5~3.0℃/min,从1000℃升温至保温温度,升温速率≤1℃/min。
本发明的有益效果是: 通过控制主成分、副成分的组成及含量,改进预烧、砂磨工艺、优化烧结,所制备的锰锌铁氧体材料在1MHz 100mT下25℃和100℃功耗小于800kW/m3,并且100℃下的饱和磁通密度达到430mT以上,使锰锌铁氧体材料适应高频变压器和服务器电感的需求。
具体实施方式
实施例1:一种高频高工作磁密低损耗锰锌铁氧体材料,由主成分和副成分组成,主成分由Fe2O3 :54.55mol%,ZnO:5mol%,MnO余量组成;副成分I由Nb2O5 :0.02wt%、Co2O3:0.30wt%,CaCO3 :0.08wt%、V2O5 :0.03wt%组成,副成分Ⅱ由NiO:0.02wt%, SiO2 :0.05wt%组成。以上副成分按Fe2O3、ZnO、MnO总重量百分比进行计算。
一种制作实施例1所述的高频高工作磁密低损耗锰锌铁氧体材料的制备方法,包括如下步骤:
1) 配料:按照主配方Fe2O3、MnO、ZnO的比例进行称量并混合砂磨,砂磨时间为15min;
2)预烧:将混合后的粉料进行预烧,预烧920℃,从升温开始到降温结束氧含量为10%;
3)粉碎:将添加剂加入预烧料进行两次粉碎,第一次粉碎时间为70min,二次粉碎时间20min,粒径0.6um;
4)造粒:将砂磨后的料浆烘干后进行造粒;
5)成型:将造粒好的颗粒进行压制;
6)烧结:将毛坯在窑炉中烧结,烧结温度1080℃,其中升温段800~1000℃、升温速率2.5℃/min,1000℃~1080℃升温速率0.8℃/min。
实施例2:一种高频高工作磁密低损耗锰锌铁氧体材料,由主成分和副成分组成,主成分由Fe2O3 :55.0mol%,ZnO:4.3mol%,MnO余量组成;副成分I由Nb2O5 :0.03wt%、Co2O3:0.25wt%,CaCO3 :0.10wt%、V2O5 :0.02wt%组成,副成分Ⅱ由NiO:0.03wt%, SiO2 :0.04wt%组成。以上副成分按Fe2O3、ZnO、MnO总重量百分比进行计算。
一种制作实施例2所述的高频高工作磁密低损耗锰锌铁氧体材料的制备方法,包括如下步骤:
1) 配料:按照主配方Fe2O3、MnO、ZnO的比例进行称量并混合砂磨,砂磨时间为15min;
2)预烧:将混合后的粉料进行预烧,预烧880℃,从升温开始到降温结束氧含量为9%;
3)粉碎:将添加剂加入预烧料进行两次粉碎,第一次粉碎时间为60min,二次粉碎时间10min,粒径0.7um;
4)造粒:将砂磨后的料浆烘干后进行造粒;
5)成型:将造粒好的颗粒进行压制;
6)烧结:将毛坯在窑炉中烧结,烧结温度1090℃,其中升温段800~1000℃升温速率2.5℃/min,1000℃~1090℃升温速率0.8℃/min。
实施例3:一种高频高工作磁密低损耗锰锌铁氧体材料,由主成分和副成分组成,主成分由Fe2O3 :55.2mol%,ZnO:4.0mol%,MnO余量组成;副成分I由Nb2O5 :0.02wt%、Co2O3:0.2200wt%,CaCO3 :0.15wt%、V2O5 :0.02wt%组成,副成分Ⅱ由NiO:0.02wt%, MoO3 :0.02wt%组成。以上副成分按Fe2O3、ZnO、MnO总重量百分比进行计算。
一种制作实施例3所述的高频高工作磁密低损耗锰锌铁氧体材料的制备方法,包括如下步骤:
1) 配料:按照主配方Fe2O3、MnO、ZnO的比例进行称量并混合砂磨,砂磨时间为20min;
2)预烧:将混合后的粉料进行预烧,预烧860℃,从升温开始到降温结束氧含量为8%;
3)粉碎:将添加剂加入预烧料进行两次粉碎,第一次粉碎时间为40min,二次粉碎时间20min;粒径0.7um;
4)造粒:将砂磨后的料浆烘干后进行造粒;
5)成型:将造粒好的颗粒进行压制;
6)烧结:将毛坯在窑炉中烧结,烧结温度1080℃,其中升温段800~1000℃升温速率3℃/min,1000℃~1080℃升温速率0.9℃/min。
实施例4:一种高频高工作磁密低损耗锰锌铁氧体材料,由主成分和副成分组成,主成分由Fe2O3 :55.2mol%,ZnO:4.5mol%,MnO余量组成;副成分I由Nb2O5 :0.03wt%、Co2O3:0.18wt%,CaCO3 :0.15wt%、V2O5 :0.01wt%组成,副成分Ⅱ由NiO:0.05wt%, SiO2 :0.1wt%组成。以上副成分按Fe2O3、ZnO、MnO总重量百分比进行计算。
一种制作实施例4所述的高频高工作磁密低损耗锰锌铁氧体材料的制备方法,包括如下步骤:
1) 配料:按照主配方Fe2O3、MnO、ZnO的比例进行称量并混合砂磨,砂磨时间为20min;
2)预烧:将混合后的粉料进行预烧,预烧840℃,从升温开始到降温结束氧含量为6%;
3)粉碎:将添加剂加入预烧料进行两次粉碎,第一次粉碎时间为50min,二次粉碎时间20min,粒径0.4um;
4)造粒:将砂磨后的料浆烘干后进行造粒;
5)成型:将造粒好的颗粒进行压制;
6)烧结:将毛坯在窑炉中烧结,烧结温度1060℃,其中升温段800~1000℃升温速率3℃/min,1000℃~1060℃升温速率0.9℃/min。
实施例5:一种高频高工作磁密低损耗锰锌铁氧体材料,由主成分和副成分组成,主成分由Fe2O3 :54.9mol%,ZnO:4.2mol%,MnO余量组成;副成分I由Nb2O5 :0.05wt%、Co2O3:0.30wt%,CaCO3 :0.10wt%、V2O5 :0.01wt%组成,副成分Ⅱ由NiO:0.01wt%, MoO3:0.02wt%、SiO2 :0.04wt%组成。以上副成分按Fe2O3、ZnO、MnO总重量百分比进行计算。
一种制作实施例5所述的高频高工作磁密低损耗锰锌铁氧体材料的制备方法,包括如下步骤:
1) 配料:按照主配方Fe2O3、MnO、ZnO的比例进行称量并混合砂磨,砂磨时间为15min;
2)预烧:将混合后的粉料进行预烧,预烧850℃,从升温开始到降温结束氧含量为8.5%;
3)粉碎:将添加剂加入预烧料进行两次粉碎,第一次粉碎时间为60min,二次粉碎时间10min;粒径0.6um;
4)造粒:将砂磨后的料浆烘干后进行造粒;
5)成型:将造粒好的颗粒进行压制;
6)烧结:将毛坯在窑炉中烧结,烧结温度1080℃,其中升温段800~1000℃升温速率3℃/min,1000℃~1080℃升温速率0.9℃/min。
实施例6:一种高频高工作磁密低损耗锰锌铁氧体材料,由主成分和副成分组成,主成分由Fe2O3 :54.7mol%,ZnO:4.3mol%,MnO余量组成;副成分I由Nb2O5 :0.04wt%、Co2O3:0.25wt%,CaCO3 :0.10wt%、V2O5 :0.02wt%组成,副成分Ⅱ由NiO:0.02wt%, MoO3:0.02wt%、SiO2 :0.03wt%组成。以上副成分按Fe2O3、ZnO、MnO总重量百分比进行计算。
一种制作实施例6所述的高频高工作磁密低损耗锰锌铁氧体材料的制备方法,包括如下步骤:
1) 配料:按照主配方Fe2O3、MnO、ZnO的比例进行称量并混合砂磨,砂磨时间为15min;
2)预烧:将混合后的粉料进行预烧,预烧870℃,从升温开始到降温结束氧含量为8.5%;
3)粉碎:将添加剂加入预烧料进行两次粉碎,第一次粉碎时间为70min,二次粉碎时间10min粒径0.5um;
4)造粒:将砂磨后的料浆烘干后进行造粒;
5)成型:将造粒好的颗粒进行压制;
6)烧结:将毛坯在窑炉中烧结,烧结温度1080℃,其中升温段800~1000℃升温速率2.5℃/min,1000℃~1080℃升温速率0.8℃/min。
实施例7:一种高频高工作磁密低损耗锰锌铁氧体材料,由主成分和副成分组成,主成分由Fe2O3 :54.8mol%,ZnO:4.2mol%,MnO余量组成;副成分I由Nb2O5 :0.04wt%、Co2O3:0.25wt%,CaCO3 :0.09wt%、V2O5 :0.01wt%组成,副成分Ⅱ由NiO:0.01wt%, MoO3:0.02wt%、SiO2 :0.03wt%组成。以上副成分按Fe2O3、ZnO、MnO总重量百分比进行计算。
一种制作实施例7所述的高频高工作磁密低损耗锰锌铁氧体材料的制备方法,包括如下步骤:
1) 配料:按照主配方Fe2O3、MnO、ZnO的比例进行称量并混合砂磨,砂磨时间为15min;
2)预烧:将混合后的粉料进行预烧,预烧980℃,从升温开始到降温结束氧含量为15%;
3)粉碎:将添加剂加入预烧料进行两次粉碎,第一次粉碎时间为70min,二次粉碎时间10min,粒径0.8um;
4)造粒:将砂磨后的料浆烘干后进行造粒;
5)成型:将造粒好的颗粒进行压制;
6)烧结:将毛坯在窑炉中烧结,烧结温度1100℃,其中升温段800~1000℃升温速率2.0℃/min,1000℃~1100℃升温速率1.5℃/min。
对比例1
对比实施例1的步骤和方法,主成分选择Fe2O3:55.3mol%,ZnO:5.26mol% ,其余为MnO;副成分选择Nb2O5:0.04wt%、Co2O3:0.25wt%、CaCO3:0.15wt%、V2O5:0.02wt%,以上副成分按Fe2O3、ZnO、MnO的总重量百分比进行计算。按照以下步骤进行试验。
1) 配料:按照主配方Fe2O3、ZnO、Co2O3、MnO的比例进行称量并混合砂磨,砂磨时间为15min;
2)预烧:将混合后的粉料进行预烧,预烧温度为950℃,空气中保温2h;
3)砂磨:将添加剂加入预烧料中进行砂磨,砂磨时间为80min,粒径1.5um
4)造粒:将砂磨后的料浆烘干后进行造粒;
5)成型:将造粒好的颗粒进行压制;
6)烧结:将毛坯在窑炉中采用平衡氧分压进行烧结,烧结温度为1220℃,中升温段800~1220℃升温速率2℃/min。
以上七个实施例和对比例制备的标准样环性能测试结果如下:
Figure RE-805473DEST_PATH_IMAGE001
本发明的锰锌铁氧体材料可以应用于变压器的高的工作频率,适应电子器件小型化集成化需求。

Claims (5)

1.一种高频高工作磁密低损耗锰锌铁氧体材料,由主成分和副成分组成,其特征在于:主成份以氧化物计算,由Fe2O3 :54.55~55.20mol%,ZnO:4.0~5.0mol%,MnO余量组成;按主成分重量计的副成分I包括Nb2O5 :0.01~0.06wt%、Co2O3:0.15~0.30wt%,CaCO3 :0.05~0.15wt%、V2O5 :0.01~0.04wt%,副成分Ⅱ由NiO:0.01~0.05wt%、SiO2 :0.005~0.015wt%、MoO3:0.01~0.05wt%其中的至少两种组成。
2.一种如权利要求1所述的高频高工作磁密低损耗锰锌铁氧体材料的制备方法,其特征在于,包括如下步骤:
1) 配料:按照主配方Fe2O3、ZnO和MnO的比例进行称量并混合砂磨,砂磨时间15min~30min;
2)预烧:将混合后的粉料进行带有气氛的窑炉预烧,预烧温度800℃~1000℃,保温气氛5%~15%;
3)粉碎:将添加剂加入预烧料进行两次粉碎,第一次粉碎时间为40~70min,二次粉碎时间10~20min;
4)造粒:将砂磨后的料浆烘干后进行造粒;
5)成型:将造粒好的颗粒进行压制;
6)烧结:将毛坯在窑炉中烧结,烧结温度1060~1100℃,其中升温段800~1000℃,升温速率2.0~3.5℃/min,从1000℃升温至保温温度,升温速率≤1.5℃/min。
3.根据权利要求2所述的一种高频高工作磁密低损耗锰锌铁氧体材料的制备方法,其特征在于:步骤2)中所述的预烧温度为840~950℃,从开始升温到降温结束氧含量保持恒定,氧含量6%~10%。
4.根据权利要求2所述的一种高频高工作磁密低损耗锰锌铁氧体材料的制备方法,其特征在于:步骤3)中第一次粉碎介质是钢球,第二次粉碎介质是锆球,粉碎粒径0.4~0.8μm。
5.根据权利要求2所述的一种高频高工作磁密低损耗锰锌铁氧体材料的制备方法,其特征在于:步骤6)中所述的升温段800~1000℃,升温速率2.5~3.0℃/min,从1000℃升温至保温温度的升温速率≤1℃/min。
CN202110503438.1A 2021-05-10 2021-05-10 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法 Active CN113277840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110503438.1A CN113277840B (zh) 2021-05-10 2021-05-10 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110503438.1A CN113277840B (zh) 2021-05-10 2021-05-10 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法

Publications (2)

Publication Number Publication Date
CN113277840A true CN113277840A (zh) 2021-08-20
CN113277840B CN113277840B (zh) 2023-05-12

Family

ID=77278378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110503438.1A Active CN113277840B (zh) 2021-05-10 2021-05-10 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法

Country Status (1)

Country Link
CN (1) CN113277840B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340372A (zh) * 2022-08-12 2022-11-15 横店集团东磁股份有限公司 一种低应力敏感的高频锰锌铁氧体材料及其制备方法
WO2023045074A1 (zh) * 2021-09-24 2023-03-30 天通控股股份有限公司 一种超高频高磁导率低损耗锰锌软磁铁氧体及制备方法
WO2023093123A1 (zh) * 2021-11-26 2023-06-01 横店集团东磁股份有限公司 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130527A (ja) * 1993-11-08 1995-05-19 Matsushita Electric Ind Co Ltd 酸化物磁性材料
JPH07142222A (ja) * 1993-11-16 1995-06-02 Kawasaki Steel Corp 低損失Mn−Zn系ソフトフェライト
JPH11251132A (ja) * 1998-02-27 1999-09-17 Tokin Corp 低損失酸化物磁性材料
JP2001110618A (ja) * 1999-10-06 2001-04-20 Tdk Corp フェライト磁石の製造方法
EP1320108A2 (en) * 2001-12-12 2003-06-18 Spang & Company Ferrite materials, methods of preparing the same, and products formed therefrom
JP2005236069A (ja) * 2004-02-20 2005-09-02 Nippon Ceramic Co Ltd Mn−Znフェライト
CN1686929A (zh) * 2005-03-21 2005-10-26 乳源瑶族自治县东阳光实业发展有限公司 低损耗锰锌系铁氧体及其制备方法
JP2007297232A (ja) * 2006-04-28 2007-11-15 Nec Tokin Corp 酸化物磁性材料の製造方法
CN102194561A (zh) * 2010-03-17 2011-09-21 无锡斯贝尔磁性材料有限公司 一种软磁铁氧体材料及其制备工艺
CN102938281A (zh) * 2012-11-05 2013-02-20 天长市中德电子有限公司 一种高导磁率低磁芯损耗软磁铁氧体材料
CN105645945A (zh) * 2016-01-07 2016-06-08 天通控股股份有限公司 高频锰锌铁氧体材料
CN106830913A (zh) * 2017-03-22 2017-06-13 天通控股股份有限公司 一种高频低损耗高饱和磁通密度软磁铁氧体材料及其制备方法
CN107352992A (zh) * 2017-07-04 2017-11-17 浙江大学 一种宽频宽温低损耗锰锌铁氧体的粉末粒度控制方法
CN107540363A (zh) * 2017-09-21 2018-01-05 郴州市久隆旺高科电子有限公司 一种宽温高频低损耗锰锌软磁铁氧体材料及其制备方法
CN108885938A (zh) * 2016-03-25 2018-11-23 日立金属株式会社 MnZn铁氧体磁芯及其制备方法
CN111892395A (zh) * 2020-07-29 2020-11-06 天通控股股份有限公司 一种高频高阻抗锰锌铁氧体材料及其制备方法
JP2020202348A (ja) * 2019-06-13 2020-12-17 日立金属株式会社 MnZn系フェライト粉の製造方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130527A (ja) * 1993-11-08 1995-05-19 Matsushita Electric Ind Co Ltd 酸化物磁性材料
JPH07142222A (ja) * 1993-11-16 1995-06-02 Kawasaki Steel Corp 低損失Mn−Zn系ソフトフェライト
JPH11251132A (ja) * 1998-02-27 1999-09-17 Tokin Corp 低損失酸化物磁性材料
JP2001110618A (ja) * 1999-10-06 2001-04-20 Tdk Corp フェライト磁石の製造方法
EP1320108A2 (en) * 2001-12-12 2003-06-18 Spang & Company Ferrite materials, methods of preparing the same, and products formed therefrom
JP2005236069A (ja) * 2004-02-20 2005-09-02 Nippon Ceramic Co Ltd Mn−Znフェライト
CN1686929A (zh) * 2005-03-21 2005-10-26 乳源瑶族自治县东阳光实业发展有限公司 低损耗锰锌系铁氧体及其制备方法
JP2007297232A (ja) * 2006-04-28 2007-11-15 Nec Tokin Corp 酸化物磁性材料の製造方法
CN102194561A (zh) * 2010-03-17 2011-09-21 无锡斯贝尔磁性材料有限公司 一种软磁铁氧体材料及其制备工艺
CN102938281A (zh) * 2012-11-05 2013-02-20 天长市中德电子有限公司 一种高导磁率低磁芯损耗软磁铁氧体材料
CN105645945A (zh) * 2016-01-07 2016-06-08 天通控股股份有限公司 高频锰锌铁氧体材料
CN108885938A (zh) * 2016-03-25 2018-11-23 日立金属株式会社 MnZn铁氧体磁芯及其制备方法
CN106830913A (zh) * 2017-03-22 2017-06-13 天通控股股份有限公司 一种高频低损耗高饱和磁通密度软磁铁氧体材料及其制备方法
CN107352992A (zh) * 2017-07-04 2017-11-17 浙江大学 一种宽频宽温低损耗锰锌铁氧体的粉末粒度控制方法
CN107540363A (zh) * 2017-09-21 2018-01-05 郴州市久隆旺高科电子有限公司 一种宽温高频低损耗锰锌软磁铁氧体材料及其制备方法
JP2020202348A (ja) * 2019-06-13 2020-12-17 日立金属株式会社 MnZn系フェライト粉の製造方法
CN111892395A (zh) * 2020-07-29 2020-11-06 天通控股股份有限公司 一种高频高阻抗锰锌铁氧体材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
夏德贵等: "《软磁铁氧体制造原理与技术》", 31 December 2010, 陕西科学技术出版社 *
李元元: "《新型材料科学与技术 金属材料卷》", 30 September 2012, 华南理工大学出版社 *
王运正等: "《现代锰冶金》", 30 September 2015, 冶金工业出版社 *
苏桦;张怀武;唐晓莉;荆玉兰;: "MnO_2掺杂Ni-Zn铁氧体的微观结构及磁性能(英文)", TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023045074A1 (zh) * 2021-09-24 2023-03-30 天通控股股份有限公司 一种超高频高磁导率低损耗锰锌软磁铁氧体及制备方法
WO2023093123A1 (zh) * 2021-11-26 2023-06-01 横店集团东磁股份有限公司 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用
CN115340372A (zh) * 2022-08-12 2022-11-15 横店集团东磁股份有限公司 一种低应力敏感的高频锰锌铁氧体材料及其制备方法

Also Published As

Publication number Publication date
CN113277840B (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN113277840B (zh) 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法
CN107473727B (zh) 一种宽频宽温高功率密度低损耗锰锌软磁铁氧体材料及其制备方法
JP3108803B2 (ja) Mn−Znフェライト
CN112979301B (zh) 高频高温低损耗MnZn功率铁氧体材料及其制备方法
CN113563062B (zh) 一种超高频高磁导率低损耗锰锌软磁铁氧体及制备方法
CN110078488B (zh) 一种高Bs宽温低损耗软磁铁氧体材料及其制备方法
CN111362685B (zh) 一种高负温磁导率和低高温损耗的锰锌铁氧体及其制备方法
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
CN111039666A (zh) 一种超高饱和磁通密度锰锌铁氧体材料及其制备方法
CN113956032A (zh) 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用
CN112194480A (zh) 一种宽温高Bs低温度系数的锰锌铁氧体材料及其制备方法
JP3108804B2 (ja) Mn−Znフェライト
JP3907642B2 (ja) フェライト材料及びフェライト材料の製造方法
CN111116188B (zh) 一种锰锌高磁导率高居里温度高频高磁通材料及其制备方法
CN113284731B (zh) 一种高频大磁场软磁铁氧体材料及其制备方法
CN115677337A (zh) 一种功率铁氧体材料及其制备方法与应用
CN112441828B (zh) 一种铁氧体材料及其制备方法
CN112645702B (zh) 一种宽频宽温高磁导率Mn-Zn铁氧体材料及其制备方法与应用
CN115724656B (zh) 一种锰锌功率铁氧体材料及其制备方法、开关电源变压器
CN117902891B (zh) 一种单畴结构高频高工作磁密锰锌软磁铁氧体及制备方法
CN113956031B (zh) 一种低损耗MnZn功率铁氧体及其制备方法
CN112552037B (zh) 一种低损耗铁氧体材料及其制备方法
CN114685153B (zh) 宽温宽频MnZn功率铁氧体材料及制备方法
CN115536379B (zh) 一种高频低损软磁铁氧体材料及其制备方法和应用
JP3584437B2 (ja) Mn−Znフェライトの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant