CN112552037B - 一种低损耗铁氧体材料及其制备方法 - Google Patents

一种低损耗铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN112552037B
CN112552037B CN202011442105.4A CN202011442105A CN112552037B CN 112552037 B CN112552037 B CN 112552037B CN 202011442105 A CN202011442105 A CN 202011442105A CN 112552037 B CN112552037 B CN 112552037B
Authority
CN
China
Prior art keywords
main component
ferrite material
powder
temperature
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011442105.4A
Other languages
English (en)
Other versions
CN112552037A (zh
Inventor
豆小明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A-CORE JIANGMEN ELECTRONICS CO LTD
Original Assignee
A-CORE JIANGMEN ELECTRONICS CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A-CORE JIANGMEN ELECTRONICS CO LTD filed Critical A-CORE JIANGMEN ELECTRONICS CO LTD
Priority to CN202011442105.4A priority Critical patent/CN112552037B/zh
Publication of CN112552037A publication Critical patent/CN112552037A/zh
Application granted granted Critical
Publication of CN112552037B publication Critical patent/CN112552037B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明涉及一种低损耗铁氧体材料,由主成分、辅助成分、分散剂、粘合剂和水制得;所述主成分由摩尔分数如下的成分组成:Fe2O3,占主成分的52.0‑53.0mol%;ZnO,占主成分的0.1‑3.5mol%;Mn3O4,余量;所述辅助成分包括Co2O3;以及CaCO3、Nb2O5、ZrO2中的至少一种。本发明还提供了上述低损耗铁氧体材料的制备方法。本发明使得铁氧体材料满足在500‑1000kHz、30‑50mT的高频大磁场的应用需求,可以与常规功率材质共烧,同时具有生产成本低的优势。

Description

一种低损耗铁氧体材料及其制备方法
技术领域
本发明涉及铁氧体材料领域,具体涉及一种低损耗铁氧体材料及其制备方法。
背景技术
应用需求是驱动软磁材料发展的动力。物联网、人工智能、5G移动通讯、机器人、新能源汽车等都促进下一代高性能在材料的发展。因此,快速响应和满足应用领域的需求,是磁性材料行业发展的正确途径。
第三代SiC、GaN器件的应用,大大地加速了电源的高频化、高功率密度化和高效率化,覆盖了传统硅器件的所有的应用领域。采用SiCMOSFET的中、高功率电源工作频率达到400kHz,GaNMOSFET的中功率电源工作频率达到800kHz,小功率DC-DC变换器达1MHz,工作磁通密度达到50mT。变压器的传输功率(P=C*f*ΔB*Ae*Wd),正比于频率和工作磁通密度振幅(f*ΔB),同时也正比于磁心的有效截面积Ae、以及绕组的相关的一个参数Wd。所以不断提高变压器磁心的工作频率和应用磁场,以减小磁路的体积和重量来减小器件的体积,以使这类器件实现小型化、集成化,为更小体积的电子线路的发展提供条件。
目前,此类铁氧体材料,主成分中通常添加比例较多的ZnO,组成锰锌铁氧体固溶体以降损耗,提高其饱和磁通密度Bs,使磁心处于正常工作状态时不易饱和。如CN200810059432公开了一种高Bs低损耗MnZn铁氧体及其制作方法,其在100kHz、200mT条件下,100℃的损耗为550-750kW/m3;CN201310648515公开了一种高Bs低功耗锰锌功率铁氧体材料及其制备方法,所述铁氧体材料在100kHz,200mT条件下,100℃的损耗为360kW/m3。这些材料的缺陷在于:应用于频率在100kHz下损耗较高。
因此,亟需找到一种新型铁氧体材料,能够克服上述缺陷。
发明内容
本发明需要解决的技术问题是提供一种低损耗铁氧体材料及其制备方法,使得铁氧体材料满足在500-1000kHz、30-50mT的高频大磁场的应用需求,可以与常规功率材质共烧,同时具有生产成本低的优势。本发明还公开了上述低损耗铁氧体材料的制备方法。
本发明的一个目的在于提供一种新型低损耗铁氧体材料,其通过以下技术手段得以实现。
一种低损耗铁氧体材料,由主成分、辅助成分、分散剂、粘合剂和水制得;其中
所述主成分由摩尔分数如下的成分组成:
Fe2O3,占主成分的52.0-53.0mol%;
ZnO,占主成分的0.1-3.5mol%;
Mn3O4,余量;
所述辅助成分包括Co2O3
以及CaCO3、Nb2O5、ZrO2中的至少一种。
进一步地,所述辅助成分中,Co2O3为主成分的0.1-0.5wt%;CaCO3为主成分的0.01-0.1wt%;Nb2O5为主成分的0.01-0.05wt%;ZrO2为主成分的0.01-0.05wt%。
进一步地,所述有机粘合剂为聚乙烯醇。
进一步地,所述分散剂选自聚丙烯酸、葡萄糖酸或柠檬酸的一种。
本发明的另一个目的在于提供上述低损耗铁氧体材料的制备方法,包括以下步骤:
S1.将主成分湿磨并烘干,得到前驱体;
S2.将前驱体煅烧,得到预产物;
S3.将预产物、辅助成分、分散剂和水混合球磨,得到粉料;
S4.将粉料和粘合剂混合物得到颗粒料,并压制成样品;
S5.将样品烧结并保温,然后降温,得到成品,所述烧结的温度为1120-1320℃。
进一步地,所述粉料的平均粒径为0.8±0.1μm。
进一步地,所述粘合剂是粉料的7-12wt%。
进一步地,步骤S5中,所述保温的氧分压为2-10%。
进一步地,步骤S2中,煅烧的温度为820-920℃。
进一步地,步骤S5中,所述降温过程采用平衡氧分压,所述平衡氧分压P(O2)与温度T的关系为:LgP(O2)=a-b/T;
其中,T为绝对温度,a的取值为5-10;b的取值为10000-15000。
本发明有益效果为:
本发明通过主成分的优化,ZnO比例少,烧结过程晶界和晶粒局部变形小,使得生坯样品烧结可以适应1120-1320℃的烧结温度范围,实现与常规功率材质共烧。
本发明且由于ZnO比例少,不会发生由于锌的挥发引起的产生异常膨胀,导致产品烧结裂纹现象。
本发明主成分中昂贵的ZnO比例少,仅占主成分的0.1-3.5mol%,从而大幅度降低了生产的成本。
本发明通过添加辅助成分Co2O3,可以生成K1正值很大的CoFe2O4,利用Co2+和Fe2+同时补偿的方法可在很宽的温度范围内获得低损耗特性;添加CaCO3、Nb2O5、ZrO2中的至少一种,起到降低烧结温度,促使晶粒细化,提高电阻率、降低涡流损耗、提高材料共振频率作用,使得铁氧体材料在25-100℃范围实现低损耗的特性,而且损耗低谷在100℃附近,更加实用;从而使得铁氧体材料满足在500-1000kHz、30-50mT的高频大磁场的应用需求,可以与常规功率材质共烧,同时具有生产成本低的优势。
具体实施方式
为更好地理解本发明,下面结合实施例对本发明作进一步的说明。但本发明所要求的保护范围并不局限于本发明实施例所涉及的范围。除非特别提及,否则本专利公开的实施例中所提及的成分和测试方法均为本领域技术人员所知的常规方法。
实施例1
一种铁氧体材料,由主成分、辅助成分、聚丙烯酸、聚乙烯醇和水制得;其中
所述主成分包括Fe2O3、ZnO和Mn3O4;Fe2O3的摩尔分数为主成分的52.5mol%,ZnO的摩尔分数为主成分的2.5mol%,余量为Mn3O4
辅助成分中,所含成分为:Co2O3为主成分的0.3wt%;CaCO3为主成分的0.08wt%;Nb2O5为主成分的0.02wt%。
上述铁氧体材料的制备方法包括以下步骤:
S1.将主成分按上述摩尔分数称量,用砂磨机湿磨并烘干,得到前驱体;
S2.用箱式电阻炉,将前驱体在840℃下煅烧2h,得到预产物;
S3.将预产物、辅助成分、聚丙烯酸和水混合球磨,得到粉料;其中水占主成分的70wt%;聚丙烯酸占主成分的1wt%;
S4.将粉料和聚乙烯醇混合造粒得到颗粒料,在50MPa下压制成生坯样品;其中聚乙烯醇占粉料的8wt%;所述粉料的平均粒径为0.8±0.1μm。
S5.将样品在1240℃下烧结并保温4.5h,设定保温的氧分压为6.8%,然后降温,降温过程采用平衡氧分压。在降温程序中,从最高温度下降到950℃的降温速度为1.67℃/min,然后从950℃降至500℃的降温速度为2.8℃/min,直至降温到180℃后出炉,得到成品;
所述降温过程采用平衡氧分压,所述平衡氧分压P(O2)与温度T的关系为:Lg(P(O2))=a-b/T;
其中,T为绝对温度,a的取值为5;b的取值为10000。
实施例2
一种铁氧体材料,由主成分、辅助成分、聚葡萄糖、聚乙烯醇和水制得;其中
所述主成分包括Fe2O3、ZnO和Mn3O4;Fe2O3的摩尔分数为主成分的52.0mol%,ZnO的摩尔分数为主成分的0.1mol%,余量为Mn3O4
辅助成分中,所含成分为:Co2O3为主成分的0.2wt%;Nb2O5为主成分的0.04wt%。
上述铁氧体材料的制备方法包括以下步骤:
S1.将主成分按上述摩尔分数称量,用砂磨机湿磨并烘干,得到前驱体;
S2.用箱式电阻炉,将前驱体在920℃下煅烧2h,得到预产物;
S3.将预产物、辅助成分、聚葡萄糖和水混合球磨,得到粉料;其中水占主成分的70wt%;聚葡萄糖占主成分的1wt%;
S4.将粉料和聚乙烯醇混合造粒得到颗粒料,在200MPa下压制成生坯样品;其中聚乙烯醇占粉料的12wt%;所述粉料的平均粒径为0.8±0.1μm。
S5.将样品在1180℃下烧结并保温4.5h,设定保温的氧分压为10%,然后降温,降温过程采用平衡氧分压。在降温程序中,从最高温度下降到950℃的降温速度为1.67℃/min,然后从950℃降至500℃的降温速度为2.8℃/min,直至降温到180℃后出炉,得到成品;
所述降温过程采用平衡氧分压,所述平衡氧分压P(O2)与温度T的关系为:Lg(P(O2))=a-b/T;
其中,T为绝对温度,a的取值为10;b的取值为15000。
实施例3
一种铁氧体材料,由主成分、辅助成分、柠檬酸、聚乙烯醇和水制得;其中
所述主成分包括Fe2O3、ZnO和Mn3O4;Fe2O3的摩尔分数为主成分的52.0mol%,ZnO的摩尔分数为主成分的0.1mol%,余量为Mn3O4
辅助成分中,所含成分为:Co2O3为主成分的0.4wt%;Nb2O5为主成分的0.03wt%;ZrO2为主成分的0.02wt%。
上述铁氧体材料的制备方法包括以下步骤:
S1.将主成分按上述摩尔分数称量,用砂磨机湿磨并烘干,得到前驱体;
S2.用箱式电阻炉,将前驱体在820℃下煅烧2h,得到预产物;
S3.将预产物、辅助成分、柠檬酸和水混合球磨,得到粉料;其中水占主成分的70wt%;柠檬酸占主成分的1wt%;
S4.将粉料和聚乙烯醇混合造粒得到颗粒料,在100MPa下压制成生坯样品;其中聚乙烯醇占粉料的7wt%;所述粉料的平均粒径为0.8±0.1μm。
S5.将样品在1320℃下烧结并保温4.5h,设定保温的氧分压为5%,然后降温,降温过程采用平衡氧分压。在降温程序中,从最高温度下降到950℃的降温速度为1.67℃/min,然后从950℃降至500℃的降温速度为2.8℃/min,直至降温到180℃后出炉,得到成品;
所述降温过程采用平衡氧分压,所述平衡氧分压P(O2)与温度T的关系为:Lg(P(O2))=a-b/T;
其中,T为绝对温度,a的取值为7;b的取值为12000。
实施例4
一种铁氧体材料,由主成分、辅助成分、聚丙烯酸、聚乙烯醇和水制得;其中
所述主成分包括Fe2O3、ZnO和Mn3O4;Fe2O3的摩尔分数为主成分的53.0mol%,ZnO的摩尔分数为主成分的3.5mol%,余量为Mn3O4
辅助成分中,Co2O3为主成分的0.2wt%;CaCO3为主成分的0.03wt%;Nb2O5为主成分的0.02wt%;ZrO2为主成分的0.01wt%。
上述铁氧体材料的制备方法包括以下步骤:
S1.将主成分按上述摩尔分数称量,用砂磨机湿磨并烘干,得到前驱体;
S2.用箱式电阻炉,将前驱体在850℃下煅烧2h,得到预产物;
S3.将预产物、辅助成分、聚丙烯酸和水混合球磨,得到粉料;其中水占主成分的70wt%;聚丙烯酸占主成分的1wt%;
S4.将粉料和聚乙烯醇混合造粒得到颗粒料,在100MPa下压制成生坯样品;其中聚乙烯醇占粉料的9wt%;所述粉料的平均粒径为0.8±0.1μm。
S5.将样品在1180℃下烧结并保温4.5h,设定保温氧分压为5%,然后降温,降温过程采用平衡氧分压。在降温程序中,从最高温度下降到950℃的降温速度为1.67℃/min,然后从950℃降至500℃的降温速度为2.8℃/min,直至降温到180℃后出炉,得到成品;
所述降温过程采用平衡氧分压,所述平衡氧分压P(O2)与温度T的关系为:Lg(P(O2))=a-b/T;
其中,T为绝对温度,a的取值为8;b的取值为13000。
对比例1
对比例1与实施例1所用成分、含量和制备方法均相同,唯一不同在于对比例1的制备方法中,主成分Fe2O3的摩尔分数为主成分的56.0mol%,ZnO的摩尔分数为主成分的2.5mol%,余量为Mn3O4
对比例2
对比例2与实施例1所用成分、含量和制备方法均相同,唯一不同在于对比例2的制备方法中,辅助成分Co2O3质量百分比为主成分的0.6wt%。
对比例3
对比例3与实施例1所用成分、含量和制备方法均相同,唯一不同在于对比例3的制备方法中,步骤S5所述烧结的温度为1340℃。
测试例
将上述实施例1-4、对比例1-3所制得的铁氧体材料,制成OR12.5×5-7.5mm的标准样环,依据中华人民共和国电子行业军用标准《SJ20966-2013软磁铁氧体材料测量方法》,使用日本岩崎SY-8218BH分析仪,对电磁性能进行检测。
检测结果列在表1中所示。
表1实施例1-4、对比例1-3所制得的铁氧体材料的性能数据
从表1可以看出,只有严格按照本发明的主成分、辅助成分范围及工艺条件的铁氧体都具有低损耗特性。
如同实施例1-4所述,设置主成分,并且通过添加辅助成分Co2O3,可以生成K1正值很大的CoFe2O4,利用Co2+和Fe2+同时补偿的方法可在很宽的温度范围内获得低损耗特性;再添加适量的CaCO3、Nb2O5、ZrO2中的至少一种,可以起到降低烧结温度,促使晶粒细化,提高电阻率、降低涡流损耗、提高材料共振频率作用,使得铁氧体材料在25-100℃范围实现低损耗的特性,而且损耗低谷在100℃附近,更加实用。
比较对比例1-2中,主成分Fe2O3或辅助成分Co2O3超出本发明的优化范围,都会导致铁氧体材料在损耗恶化。
比较对比例3中,烧结温度影响着晶粒的生长和材料的微观结构,烧结温度过高,晶粒越大,晶界越薄,电阻率越低,损耗越大,超出范围的工艺条件也会导致铁氧体材料的损耗低谷偏移,引起损耗、磁导率指标一起恶化。
从上述结果可以看出,相比现有技术制造的铁氧体材料,本发明的铁氧体材料表现出高于800的起始磁导率;在50mT,500kHz条件下,25-120℃的损耗低于80kW/m3;在30mT,1000kHz条件下,25-120℃的损耗低于60kW/m3;在50mT,1000kHz条件下,25-120℃的损耗低于140kW/m3,在满足500-1000kHz、30-50mT高频大磁场的应用需求的同时,还可以与常规功率材质共烧,具有生产成本低的优势。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (1)

1.一种低损耗铁氧体材料,其特征在于,由主成分、辅助成分、聚葡萄糖、聚乙烯醇和水制得;其中
所述主成分由摩尔分数如下的成分组成:
Fe2O3,占主成分的52.0mol%;
ZnO,占主成分的0.1mol%;
Mn3O4,余量;
辅助成分中,所含成分为:Co2O3为主成分的0.2wt%;Nb2O5为主成分的0.04wt%,
所述低损耗铁氧体材料的制备方法,包括以下步骤:
S1.将主成分按上述摩尔分数称量,用砂磨机湿磨并烘干,得到前驱体;
S2.用箱式电阻炉,将前驱体在920℃下煅烧2h,得到预产物;
S3.将预产物、辅助成分、聚葡萄糖和水混合球磨,得到粉料;其中水占主成分的70wt%;聚葡萄糖占主成分的1wt%;
S4.将粉料和聚乙烯醇混合造粒得到颗粒料,在200MPa下压制成生坯样品;其中聚乙烯醇占粉料的12wt%;所述粉料的平均粒径为0.8±0.1μm;
S5.将生坯样品在1180℃下烧结并保温4.5h,设定保温的氧分压为10%,然后降温,降温过程采用平衡氧分压,在降温程序中,从最高温度下降到950℃的降温速度为1.67℃/min,然后从950℃降至500℃的降温速度为2.8℃/min,直至降温到180℃后出炉,得到成品;
所述降温过程采用平衡氧分压,所述平衡氧分压P(O2)与温度T的关系为:Lg(P(O2))=a-b/T;
其中,T为绝对温度,a的取值为10;b的取值为15000。
CN202011442105.4A 2020-12-11 2020-12-11 一种低损耗铁氧体材料及其制备方法 Active CN112552037B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011442105.4A CN112552037B (zh) 2020-12-11 2020-12-11 一种低损耗铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011442105.4A CN112552037B (zh) 2020-12-11 2020-12-11 一种低损耗铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112552037A CN112552037A (zh) 2021-03-26
CN112552037B true CN112552037B (zh) 2024-05-24

Family

ID=75062387

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011442105.4A Active CN112552037B (zh) 2020-12-11 2020-12-11 一种低损耗铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112552037B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219486A (zh) * 2011-04-16 2011-10-19 江门安磁电子有限公司 一种高温低损耗MnZn铁氧体磁心及其制造方法
CN102219488A (zh) * 2011-04-16 2011-10-19 江门安磁电子有限公司 一种高温高Bs低损耗MnZn铁氧体材料及其制造方法
CN102682946A (zh) * 2012-05-30 2012-09-19 江门安磁电子有限公司 一种兼具双重特性的MnZn铁氧体磁心及制造方法
CN103664158A (zh) * 2013-12-04 2014-03-26 江门安磁电子有限公司 一种高Bs低功耗锰锌功率铁氧体材料及其制造方法
WO2016169385A1 (zh) * 2015-04-22 2016-10-27 横店集团东磁股份有限公司 一种软磁MnZn系功率铁氧体
CN106830913A (zh) * 2017-03-22 2017-06-13 天通控股股份有限公司 一种高频低损耗高饱和磁通密度软磁铁氧体材料及其制备方法
CN107459344A (zh) * 2017-07-10 2017-12-12 横店集团东磁股份有限公司 一种宽温低损耗且高Bs的MnZn铁氧体材料及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219486A (zh) * 2011-04-16 2011-10-19 江门安磁电子有限公司 一种高温低损耗MnZn铁氧体磁心及其制造方法
CN102219488A (zh) * 2011-04-16 2011-10-19 江门安磁电子有限公司 一种高温高Bs低损耗MnZn铁氧体材料及其制造方法
CN102682946A (zh) * 2012-05-30 2012-09-19 江门安磁电子有限公司 一种兼具双重特性的MnZn铁氧体磁心及制造方法
CN103664158A (zh) * 2013-12-04 2014-03-26 江门安磁电子有限公司 一种高Bs低功耗锰锌功率铁氧体材料及其制造方法
WO2016169385A1 (zh) * 2015-04-22 2016-10-27 横店集团东磁股份有限公司 一种软磁MnZn系功率铁氧体
CN106830913A (zh) * 2017-03-22 2017-06-13 天通控股股份有限公司 一种高频低损耗高饱和磁通密度软磁铁氧体材料及其制备方法
CN107459344A (zh) * 2017-07-10 2017-12-12 横店集团东磁股份有限公司 一种宽温低损耗且高Bs的MnZn铁氧体材料及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林其壬.《铁氧体工艺原理》.上海科学技术出版社,1987,第156-157页. *

Also Published As

Publication number Publication date
CN112552037A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
CN107473727B (zh) 一种宽频宽温高功率密度低损耗锰锌软磁铁氧体材料及其制备方法
CN107555984B (zh) 一种高频宽温低损耗MnZn铁氧体的烧结过程气氛控制方法
CN112979301B (zh) 高频高温低损耗MnZn功率铁氧体材料及其制备方法
CN111233452B (zh) 一种高频高阻抗的贫铁锰锌铁氧体及其制备方法
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
CN108863339B (zh) 一种应用于高频大磁场变压器上的宽温低损耗MnZn铁氧体材料
CN102751065A (zh) 宽温宽频低损耗MnZn功率铁氧体材料及其制备方法
CN114195500B (zh) 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法
CN113277840A (zh) 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法
CN113024235A (zh) 一种变频宽温低损耗高磁通密度MnZn功率铁氧体及其制备方法
CN114436636A (zh) 一种差共模电感用高磁导率锰锌铁氧体材料及其制备方法
JP3588693B2 (ja) Mn−Zn系フェライトおよびその製造方法
CN112441828B (zh) 一种铁氧体材料及其制备方法
CN109678483A (zh) 宽温低温度系数低功耗锰锌铁氧体材料的制备方法
JP3418827B2 (ja) Mn−Znフェライトおよびその製造方法
CN112552037B (zh) 一种低损耗铁氧体材料及其制备方法
CN114573334B (zh) 高功率高居里温度低线宽石榴石铁氧体及制备方法
CN111362680A (zh) 一种高频低损耗FeMnZnNi铁氧体材料及其制备方法
JPH113813A (ja) フェライト材料
CN113149630B (zh) 一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法
JP6732159B1 (ja) MnCoZn系フェライトおよびその製造方法
CN112041952B (zh) MnZn系铁氧体及其制造方法
CN112041951B (zh) MnCoZn系铁氧体及其制造方法
CN112041953B (zh) MnZn系铁氧体及其制造方法
WO2013002143A1 (ja) フェライト材料、及びノイズ吸収部品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant