CN113149630B - 一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法 - Google Patents

一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN113149630B
CN113149630B CN202110378103.1A CN202110378103A CN113149630B CN 113149630 B CN113149630 B CN 113149630B CN 202110378103 A CN202110378103 A CN 202110378103A CN 113149630 B CN113149630 B CN 113149630B
Authority
CN
China
Prior art keywords
stage
partial pressure
oxygen partial
mnzn ferrite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110378103.1A
Other languages
English (en)
Other versions
CN113149630A (zh
Inventor
孙科
王超
鞠登峰
黄辉
李春龙
余忠
邬传健
蒋晓娜
兰中文
刘弘景
叶宽
刘可文
吴涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
University of Electronic Science and Technology of China
Global Energy Interconnection Research Institute
State Grid Beijing Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
University of Electronic Science and Technology of China
Global Energy Interconnection Research Institute
State Grid Beijing Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, University of Electronic Science and Technology of China, Global Energy Interconnection Research Institute, State Grid Beijing Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202110378103.1A priority Critical patent/CN113149630B/zh
Publication of CN113149630A publication Critical patent/CN113149630A/zh
Application granted granted Critical
Publication of CN113149630B publication Critical patent/CN113149630B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

一种高磁导率高Bs高Tc的MnZn铁氧体材料,属于铁氧体材料制备技术领域。包括主料和掺杂剂,主料:51.5~53.5mol%Fe2O3、16~21mol%ZnO、25.5~32.5mol%MnO,掺杂剂:0.001~0.05wt%Cu2V2O7,0.001~0.05wt%Bi2O3,0.001~0.05wt%Sb2O5,0.001~0.08wt%P2O5,0.001~0.05wt%Nb2O5,0.001~0.1wt%MoO3。本发明得到的MnZn铁氧体兼具高μi(≥10000)、高Bs(≥500mT)以及高Tc(≥160℃)。

Description

一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法
技术领域
本发明属于铁氧体材料制备技术领域,具体涉及一种高磁导率(μi)、高饱和磁感应强度(Bs)、高居里温度(Tc)的MnZn铁氧体材料及其制备方法。
背景技术
MnZn铁氧体材料是现代电子信息产业的关键性支撑材料,广泛应用于开关电源、变压器、电感器、计算机OA设备、电力系统、消费电子、绿色照明以及新能源等领域。随着5G通讯的快速发展,各种电子设备和器件不断向小型化、集成化、轻量化、高稳定性的方向发展,这就要求应用在其中的MnZn铁氧体材料具备高磁导率(μi)、高饱和磁感应强度(Bs)以及高居里温度(Tc),高μi高 Bs能够分别提高电子设备和器件的电感值和功率密度,实现小型化、集成化和轻量化;而高Tc能够使电子设备和器件工作在较高的温度范围内,提高了器件应用的可靠性、稳定性。因此开发一种兼具高μi高Bs高Tc的MnZn铁氧体材料具有非常广阔的应用前景和重要的现实意义。
由于兼具高μi高Bs高Tc的MnZn铁氧体材料具有广阔的应用前景,近年来,已成为磁材料产业界关注的热点。对于磁导率10000的MnZn铁氧体材料,国内外产品众多,如横店东磁(DMEGC)的R10K材料,磁导率10000±30%(25℃, 10kHz,B<0.25mT),饱和磁感应强度400mT(25℃,50Hz,1194A/m),居里温度≥120℃;天通磁材(TDG)TS10材料,磁导率10000±30%(25℃,10kHz, B<0.25mT),饱和磁感应强度380mT(25℃,1194A/m),居里温度≥125℃;江益磁材(JPMF)JPH-10材料,磁导率10000±25%(25℃,10kHz,B<0.25mT),饱和磁感应强度420mT(25℃,1194A/m),居里温度≥120℃;TDK公司H5C2 材料,磁导率10000±30%(25℃,10kHz,10mV),饱和磁感应强度400mT(25℃, 1194A/m),居里温度≥120℃;原EPCOS公司T38材料,磁导率10000±30%(25℃, 10kHz,10mV),饱和磁感应强度430mT(25℃,1200A/m),居里温度>130℃; Ferroxcube公司3E10材料,磁导率10000±20%(25℃,10kHz,B<0.25mT),饱和磁感应强度460mT(25℃,1200A/m),居里温度≥130℃。此外,对于已公开的相关高磁导率MnZn铁氧体材料的专利也很多,如:日本专利JP2010120808A 公开了“MnZnフェライト、及びその製造方法”(MnZn铁氧体及其制造方法<翻译>),主料采用52.0~53.0mol%Fe2O3,19.0~23.5mol%ZnO,余量为MnO,掺杂剂采用0.002~0.025wt%SiO2,0.01~0.07wt%CaO,0.01~0.08wt%Bi2O3, 0.01~0.5wt%Sb2O5,0.02~0.3wt%MoO3,由此得到了μi≥12000(f=1kHz),但没有给出饱和磁感应强度和居里温度值。中国专利公开号为CN101259999A的“高磁导率软磁铁氧体材料及其制造方法”,主料采用50.0~56.0mol%Fe2O3, 20.0~26.0mol%ZnO,23.0~27.0mol%MnO,掺杂剂MoO3小于0.12wt%,Bi2O3小于0.15wt%,Nb2O5在0.01~0.1wt%之间,获得的样品μi≥9700(f=10kHz),居里温度Tc=135℃;专利公开号为CN104387050A的“一种高磁导率锰锌系铁氧体及其制备方法”,主料采用52.0~53.0mol%Fe2O3,20.0~22.0mol%ZnO, 25.0~28.0mol%MnO,掺杂剂采用0~0.025wt%CaO,0.01~0.07wt%Bi2O3, 0.01~0.1wt%MoO3,0~0.03wt%Nb2O5,0~0.04wt%Ti2O5,由此获得的样品μi≥ 12000(f=10kHz),Bs≥450mT,Tc=133℃。
由以上国内外典型磁性材料公司的相关产品以及已公开的相关专利,可以看出,以上产品和专利都不能同时兼顾磁导率μi≥10000,饱和磁感应强度Bs≥ 500mT,居里温度Tc≥160℃。
发明内容
本发明的目的在于,针对背景技术存在的现有MnZn铁氧体材料无法同时满足高μi(≥10000)、高Bs(≥500mT)以及高Tc(≥160℃)的技术难题,提出了一种兼具高μi、高Bs及高Tc特性的MnZn铁氧体材料及其制备方法。
本发明的核心思想是:MnZn铁氧体属于尖晶石立方晶系,居里温度依赖于磁性离子在A、B次晶格中的分布状态,即取决于A-B间超交换作用。本发明主料(主配方)采用富铁配方,构建A-B间强超交换作用,首先通过XRD Rietveld 精修确定离子在A、B次晶格中的占位,然后由离子占位计算布里渊函数明确分子场系数,进而推导出分子场系数与主料(主配方)之间的关系,获得居里温度表达式,最终获得主料(主配方)的大致范围。
磁导率、饱和磁感应强度,很大程度上依赖材料的低磁化阻力(aK1+bλs) 和高磁化动力(μ0HMs)间的平衡,而饱和磁感应强度Bs与饱和磁化强度Ms成正相关,与材料的离子占位密切相关,提高材料Bs,相应的也就增大了磁化动力。1)主料方面,适当调整非磁性离子(Zn2+)浓度,稀释或冲淡材料的磁各向异性,构建低磁化阻力的材料配方体系,提高磁导率,同时调控磁性离子和非磁性离子在亚晶格中的占位分布,增大材料的总磁矩,从而提高饱和磁感应强度; 2)掺杂剂方面,掺杂剂采用多种高低熔点复合掺杂技术,利用Cu2V2O7、Bi2O3、 Sb2O5、P2O5、Nb2O5、MoO3等掺杂剂的促晶和阻晶双重作用,严格调控其微结构演化过程中的阻力和动力关系,提高材料磁导率、饱和磁感应强度等特性;3) 烧结工艺方面,采用二次还原烧结技术,调节烧结过程的氧分压含量,调控其微结构演化过程中的阻力和动力关系,实现晶粒均匀致密化,提高材料密度,从而提高材料的饱和磁感应强度。
本发明所要解决的技术问题是,提供一种高磁导率(25℃,10kHz,B<0.25mT,μi≥10000)、高饱和磁感应强度(25℃,1kHz,1194A/m,Bs≥500mT)以及高居里温度(Tc≥160℃)的MnZn铁氧体材料及其制备方法。
本发明解决上述问题采用的技术方案如下:
一种高磁导率高Bs高Tc的MnZn铁氧体材料,其特征在于,包括主料和掺杂剂,所述主料包括:51.5~53.5mol%Fe2O3、16.0~21.0mol%ZnO、 25.5~32.5mol%MnO,其中,所述MnO为高比表面积,比表面积为10~15m2/g;
所述掺杂剂以预烧反应后的主料的质量为参照基准,按重量百分比,以氧化物计算,掺杂剂包括:0.001~0.05wt%Cu2V2O7,0.001~0.05wt%Bi2O3,0.001~0.05wt%Sb2O5,0.001~0.08wt%P2O5,0.001~0.05wt%Nb2O5,0.001~0.1wt%MoO3
一种高磁导率高Bs高Tc的MnZn铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、预烧料制备:
1.1以Fe2O3、ZnO和MnO作为原料,按照主料:51.5~53.5mol%Fe2O3、 16.0~21.0mol%ZnO、25.5~32.5mol%MnO的比例称取原料,然后进行一次球磨0.5~5h;
1.2将步骤1.1得到的一次球磨料烘干、过筛后,在750~1000℃温度下预烧0.5~3h,随炉冷却至室温后,取出,得到预烧料;
步骤2、掺杂:
以步骤1得到的预烧料为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:0.001~0.05wt%Cu2V2O7,0.001~0.05wt%Bi2O3,0.001~0.05wt%Sb2O5,0.001~0.08wt%P2O5,0.001~0.05wt%Nb2O5,0.001~0.1wt%MoO3,然后进行二次球磨1~6h,粉体粒度控制在0.7~0.9μm之间;
步骤3、成型:
将步骤2得到的二次球磨料按重量比加入5~12wt%的有机粘合剂,混合、造粒后,压制得到生坯;
步骤4、烧结:
将步骤3得到的生坯进行分阶段烧结处理,得到所述MnZn铁氧体材料:
第一阶段:从50℃升温到600~700℃,氧分压为21%,升温速率为1.5~2.5℃ /min,该阶段为增强排胶阶段;
第二阶段:继续升温到890~950℃,氧分压为21%,升温速率为1.3~3.0℃/min,该阶段为标准排胶阶段;
第三阶段:继续升温到保温温度,保温温度在1360~1410℃之间,氧分压为 0.005~0.1%,升温速率为1.5~3.0℃/min,该阶段为二次还原气氛烧结;
第四阶段:保温阶段,共计5h,前2h氧分压为6~7%,后3h氧分压为4~5%,该阶段同样控制Fe2+含量;
第五阶段:降温阶段,包括:1)保温温度~1250℃,氧分压为2~3%,降温速率为1.25~2.5℃/min;2)1250~1150℃,氧分压为0.1~0.4%,降温速率为1.5~2.5℃ /min;3)1150~50℃,氧分压为0~0.005%,降温速率为1.25~2.0℃/min。
本发明提供的一种高磁导率高Bs高Tc的MnZn铁氧体材料,主料中的MnO 为高比表面积高纯度的MnO,比表面积为10~15m2/g,增大了粉料接触面积,有助于在较低的温度下促进固相反应,保持较高的粉料活性;同时,主料中的ZnO 含量较低(最低为16.0mol%),能够增强超交换作用,提高材料居里温度。掺杂剂采用Cu2V2O7与Bi2O3、Sb2O5、P2O5、Nb2O5、MoO3,Cu2V2O7与其他掺杂剂的促晶与阻晶的双重协同作用,精确调控其微结构演化过程中的阻力和动力关系,提高材料的磁导率、饱和磁感应强度等性能。在制备过程中,采用二次还原烧结技术,精确控制不同阶段的氧分压,并且在保温阶段分别采用两种不同的氧分压,调控Fe2+含量,获得高性能的铁氧体材料。
与现有技术相比,本发明的有益效果为:
1、本发明提供的MnZn铁氧体材料的居里温度Tc≥160℃,能够适应绝大部分工作环境,提高了电子设备和器件的应用可靠性。
2、本发明MnZn铁氧体材料的磁导率μi和饱和磁感应强度Bs,同时满足μi≥10000,Bs≥500mT,能够进一步提高电子设备和器件的集成化、轻量化和小型化。
3、本发明通过对主配方和掺杂剂的精准调控,使得烧结样品的良品率大于 90%,即烧结样品满足高磁导率(25℃,10kHz,B<0.25mT,μi≥10000)、高饱和磁感应强度(25℃,1kHz,1194A/m,Bs≥500mT)以及高居里温度(Tc≥160℃),节约了生产成本。
附图说明
图1为本发明提供的一种高磁导率高Bs高Tc的MnZn铁氧体材料的制备工艺流程图;
图2为实施例1制得的MnZn铁氧体材料的磁滞回线图;
图3为实施例1制得的MnZn铁氧体材料的磁导率-温度关系图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
一种高磁导率高Bs高Tc的MnZn铁氧体材料的制备方法,包括以下步骤:
步骤1、预烧料制备:
1.1以Fe2O3、ZnO和MnO作为原料,按照主料:51.5~53.5mol%Fe2O3、 16.0~21.0mol%ZnO、25.5~32.5mol%MnO的比例称取原料;
1.2将步骤1.1称取的原料放入球磨机内,加入去离子水,进行一次球磨,球磨介质为高强度氧化锆球或钢球,球磨时间为0.5~5h;
1.3将步骤1.2得到的一次球磨料在烘箱中烘干,烘箱温度为70~90℃,然后在750~1000℃温度下预烧0.5~3h,随炉冷却至室温后,取出,得到预烧料;
步骤2、掺杂:
2.1以步骤1得到的预烧料为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:0.001~0.05wt%Cu2V2O7,0.001~0.05wt%Bi2O3,0.001~0.05wt%Sb2O5, 0.001~0.08wt%P2O5,0.001~0.05wt%Nb2O5,0.001~0.1wt%MoO3
2.2步骤2.1得到的混合粉料放入球磨机内,加入去离子水,进行二次球磨,球磨介质为高强度氧化锆球或钢球,球磨时间为1~6h,使粉料的粒度控制在0.70μm≤D50≤0.90μm;
步骤3、成型:
将步骤2得到的二次球磨料按重量比加入5~12wt%的有机粘合剂,混合、造粒后,在压机上将造粒后的粒状粉料压制成环形生坯;
步骤4、烧结:
将步骤3得到的环形生坯置于自动控制气氛钟罩炉内,进行分阶段烧结处理:
第一阶段:从50℃升温到600~700℃,氧分压保持在21%,升温速率为1.5~2.5℃/min,该阶段为增强排胶阶段;
第二阶段:从第一阶段最终温度升温到890~950℃,氧分压保持在21%,升温速率为1.3~3.0℃/min,该阶段为标准排胶阶段,缓慢升温,防止快速升温排胶而导致的气孔率增大;
第三阶段:从第三阶段最终温度升温到1360~1410℃,氧分压保持在 0.005~0.1%,升温速率为1.5~3.0℃/min,该阶段为二次还原气氛烧结,通过控制 Fe2+含量,使得磁晶各向异性常数K1和磁致伸缩系数λs接近0,以获得高磁导率;
第四阶段:保温阶段,在1360~1410℃下保温5h,前2h氧分压为6~7%,后3h氧分压为4~5%,该阶段同样控制Fe2+含量;
第五阶段:降温阶段,降温阶段对高导MnZn铁氧体性能的影响至关重要,本发明降温阶段分为:1)保温温度降至1250℃,氧分压保持在2~3%,降温速率为1.25~2.5℃/min;2)1250降至1150℃,氧分压保持在0.1~0.4%,降温速率为1.5~2.5℃/min;3)1150降至50℃,氧分压保持在0~0.005%,降温速率为 1.25~2.0℃/min。
步骤5、测试:
对步骤4得到的样品进行电磁性能测试;
采用同惠TH2826精密LCR测试仪测试样品的电感L,适当调整绕线两端电压值U,使其满足:U=4.44fNBAe(B<0.25mT),样品的起始磁导率
Figure BDA0003011614580000061
其中L为样品的电感值,单位H,N为绕线匝数,h为样品厚度,D为样品外径,d为样品内径,Ae为样品的有效截面积。测试条件为:频率f=10kHz,磁通密度峰值B<0.25mT,典型值10kHz,10mV。结合温控箱得出μi-T曲线图,使用外延法确定居里温度Tc
采用IWATSU SY-8232B-H分析仪测试样品的饱和磁感应强度Bs,测试条件:频率f=1kHz,外场H=1194A/m,温度T=25℃。
实施例
一种高磁导率高Bs高Tc的MnZn铁氧体材料的制备方法,包括以下步骤:
1)配方
实施例1-4及对比例1-2主配方见下表:
实施例 Fe<sub>2</sub>O<sub>3</sub>(mol%) ZnO(mol%) MnO(mol%)
实施例1 52.0 16.5 31.5
实施例2 52.8 20.5 26.7
实施例3 53.5 19.0 27.5
实施例4 53.5 21.0 25.5
对比例1 52.0 16.5 31.5
对比例2 52.5 21.5 26.0
2)一次球磨
将步骤1)实施例1-4及对比例1-2中的料粉分别放入不同的球磨机内,加入去离子水,球磨混合均匀,球磨介质为高强度钢球,球磨时间为2小时;
3)预烧
将步骤2)所得球磨料在烘箱中烘干,烘箱温度85℃,将烘干料在800℃下预烧2小时;
4)掺杂
以步骤3)所得料粉为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:
Figure BDA0003011614580000071
Figure BDA0003011614580000081
5)二次球磨
将步骤4)中加入掺杂剂的料粉分别放入不同的球磨机内,加入去离子水,球磨混合均匀,球磨介质为高强度钢球,球磨时间4小时,使粉料的粒度控制在 0.75μm≤D50≤0.80μm;
6)成型
将步骤5)所得料粉按重量比加入12wt%的有机粘合剂,混合,造粒后,在压机上将造粒后的粒状粉料压制成环形生坯;
7)气氛烧结
将步骤6)所得环形生坯置于自动控制气氛钟罩炉内。按以下烧结工艺烧结:
第一阶段:50~600℃,氧分压为21%,升温速率为2℃/min,该阶段为增强排胶阶段;
第二阶段:600~893℃,氧分压为21%,升温速率为1.3℃/min,该阶段为标准排胶阶段,缓慢升温,减小因快速升温排胶而增大气孔率;
第三阶段:893~1380℃,氧分压为0.1%,升温速率为2℃/min,该阶段为二次还原气氛烧结,通过控制Fe2+含量,使得磁晶各向异性常数K1和磁致伸缩系数λs接近0,以获得高磁导率;
第四阶段:保温温度1380℃保温5h,前2h氧分压为6%,后3h氧分压为 5%,该阶段同样控制Fe2+含量;
第五阶段:降温阶段,降温阶段对高导MnZn铁氧体性能的影响至关重要,本发明降温阶段包括三部分:1)1380~1250℃,氧分压为3%,降温速率为1.25℃ /min;2)1250~1150℃,氧分压为0.2%,降温速率为1.67℃/min;3)1150~50℃,氧分压为0.005%,降温速率为1.25℃/min。
经过以上步骤制备的高磁导率高Bs高Tc MnZn铁氧体材料的性能如下表:
实施例1-3及对比例1-2测试结果如下:
Figure BDA0003011614580000082
Figure BDA0003011614580000091

Claims (2)

1.一种高磁导率高Bs高Tc的MnZn铁氧体材料,其特征在于,包括主料和掺杂剂,所述主料包括:51.5~53.5mol%Fe2O3、16.0~21.0mol%ZnO、25.5~32.5mol%MnO,其中,所述MnO的比表面积为10~15m2/g;
按重量百分比,以氧化物计算,所述掺杂剂包括:0.001~0.05wt%Cu2V2O7,0.001~0.05wt%Bi2O3,0.001~0.05wt%Sb2O5,0.001~0.08wt%P2O5,0.001~0.05wt%Nb2O5,0.001~0.1wt%MoO3
2.一种高磁导率高Bs高Tc的MnZn铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、预烧料制备:
1.1以Fe2O3、ZnO和MnO作为原料,按照主料:51.5~53.5mol%Fe2O3、16.0~21.0mol%ZnO、25.5~32.5mol%MnO的比例称取原料,然后进行一次球磨0.5~5h;
1.2将步骤1.1得到的一次球磨料烘干、过筛后,在750~1000℃温度下预烧0.5~3h,随炉冷却至室温后,取出,得到预烧料;
步骤2、掺杂:
以步骤1得到的预烧料为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:0.001~0.05wt%Cu2V2O7,0.001~0.05wt%Bi2O3,0.001~0.05wt%Sb2O5,0.001~0.08wt%P2O5,0.001~0.05wt%Nb2O5,0.001~0.1wt%MoO3,然后进行二次球磨1~6h,粉体粒度控制在0.7~0.9μm之间;
步骤3、成型:
在步骤2得到的二次球磨料中加入有机粘合剂,混合、造粒后,压制得到生坯;
步骤4、烧结:
将步骤3得到的生坯进行分阶段烧结处理,得到所述MnZn铁氧体材料:
第一阶段:从50℃升温到600~700℃,氧分压为21%;
第二阶段:继续升温到890~950℃,氧分压为21%;
第三阶段:继续升温到保温温度,保温温度在1360~1410℃之间,氧分压为0.005~0.1%;
第四阶段:保温阶段,共计5h,前2h氧分压为6~7%,后3h氧分压为4~5%;
第五阶段:降温阶段,包括:1)保温温度~1250℃,氧分压为2~3%;2)1250~1150℃,氧分压为0.1~0.4%;3)1150~50℃,氧分压为0~0.005%。
CN202110378103.1A 2021-04-08 2021-04-08 一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法 Active CN113149630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110378103.1A CN113149630B (zh) 2021-04-08 2021-04-08 一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110378103.1A CN113149630B (zh) 2021-04-08 2021-04-08 一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113149630A CN113149630A (zh) 2021-07-23
CN113149630B true CN113149630B (zh) 2022-11-08

Family

ID=76889101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110378103.1A Active CN113149630B (zh) 2021-04-08 2021-04-08 一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113149630B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956028B (zh) * 2021-11-25 2023-03-17 横店集团东磁股份有限公司 一种高温低损耗MnZn功率铁氧体及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028997A1 (ja) * 2002-09-26 2004-04-08 Tdk Corporation フェライト材料
CN101259999A (zh) * 2008-03-31 2008-09-10 横店集团东磁股份有限公司 高磁导率软磁铁氧体材料及其制造方法
CN101412621A (zh) * 2008-10-23 2009-04-22 电子科技大学 高磁导率高饱和磁感应强度MnZn铁氧体材料及其制备方法
CN101859621A (zh) * 2009-04-08 2010-10-13 广东江粉磁材股份有限公司 一种高磁导率MnZn铁氧体材料及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773619B2 (en) * 2001-07-17 2004-08-10 Tdk Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028997A1 (ja) * 2002-09-26 2004-04-08 Tdk Corporation フェライト材料
CN101259999A (zh) * 2008-03-31 2008-09-10 横店集团东磁股份有限公司 高磁导率软磁铁氧体材料及其制造方法
CN101412621A (zh) * 2008-10-23 2009-04-22 电子科技大学 高磁导率高饱和磁感应强度MnZn铁氧体材料及其制备方法
CN101859621A (zh) * 2009-04-08 2010-10-13 广东江粉磁材股份有限公司 一种高磁导率MnZn铁氧体材料及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CuO 和V2O5 对MnZn 功率铁氧体性能的影响;刘娅;《压电与声光》;20110831;第33卷(第4期);第623-627页 *

Also Published As

Publication number Publication date
CN113149630A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN113087512B (zh) 高频率稳定性高磁导率的MnZn铁氧体材料及制备方法
TWI722151B (zh) 錳鋅系鐵氧體的製造方法及錳鋅系鐵氧體
CN108530050B (zh) 宽温低损耗高阻抗MnZn软磁铁氧体材料及制备方法
CN108558383B (zh) NiZn铁氧体材料及制备方法
CN102751065B (zh) 宽温宽频低损耗MnZn功率铁氧体材料及其制备方法
CN108275994B (zh) 宽温低功耗高直流叠加特性锰锌铁氧体及其制备方法
CN112430080A (zh) 一种高功率和高剩磁比的石榴石铁氧体材料及其制备方法
CN108610037B (zh) 一种宽温高叠加高居里温度的锰锌高磁导率材料及其制备方法
CN108863339B (zh) 一种应用于高频大磁场变压器上的宽温低损耗MnZn铁氧体材料
CN103382108B (zh) 一种低功耗软磁锰锌铁氧体材料及其制备方法
US20070205390A1 (en) Mn-Zn BASED FERRITE MATERIAL
CN114436636A (zh) 一种差共模电感用高磁导率锰锌铁氧体材料及其制备方法
JP5089963B2 (ja) MnZnNiフェライトの製造方法
CN113149630B (zh) 一种高磁导率高Bs高Tc的MnZn铁氧体材料及其制备方法
CN103382104B (zh) 一种稀土掺杂软磁铁氧体及其制备方法
CN103214233B (zh) 高T c、宽温超高B s MnZn铁氧体材料及制备方法
JP3588693B2 (ja) Mn−Zn系フェライトおよびその製造方法
CN109678483A (zh) 宽温低温度系数低功耗锰锌铁氧体材料的制备方法
CN109678486A (zh) 一种宽温低温度系数低功耗锰锌铁氧体材料
CN112898007A (zh) 超富铁高磁通密度的锰锌铁氧体材料及其制备方法和应用
JP3108804B2 (ja) Mn−Znフェライト
CN111116188B (zh) 一种锰锌高磁导率高居里温度高频高磁通材料及其制备方法
JPH08169756A (ja) 低損失Mn−Znフェライトコアおよびその製造方法
CN113636838A (zh) 一种镍锌铁氧体材料及制备方法和应用
JP3790606B2 (ja) Mn−Coフェライト材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant