WO2023093123A1 - 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用 - Google Patents

一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用 Download PDF

Info

Publication number
WO2023093123A1
WO2023093123A1 PCT/CN2022/110189 CN2022110189W WO2023093123A1 WO 2023093123 A1 WO2023093123 A1 WO 2023093123A1 CN 2022110189 W CN2022110189 W CN 2022110189W WO 2023093123 A1 WO2023093123 A1 WO 2023093123A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
preparation
power ferrite
wide
mnzn power
Prior art date
Application number
PCT/CN2022/110189
Other languages
English (en)
French (fr)
Inventor
张小杭
吕飞雨
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Priority to EP22897218.8A priority Critical patent/EP4365149A1/en
Publication of WO2023093123A1 publication Critical patent/WO2023093123A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the embodiments of the present application relate to the field of soft magnetism, such as a ferrite and its preparation method and application, especially a wide temperature low loss high strength MnZn power ferrite and its preparation method and application.
  • MnZn ferrite With the rapid development of electronic information industries such as communications, computers and networks, the demand for high-performance soft ferrite is increasing day by day. At present, the output of MnZn ferrite ranks first in the industrial production of soft ferrite materials, accounting for more than 60%. As MnZn ferrite, which is widely used in various communication and electronic fields, the wide temperature and low loss of its traditional power materials can no longer fully meet the requirements of electronic products, especially in the field of automotive electronics, which has high requirements for strength. Therefore, how to improve the strength performance of the MnZn power ferrite while maintaining a wide temperature range and low loss to meet the comprehensive performance requirements of the material has become an urgent problem to be solved.
  • the service temperature range and strength of the material can be improved to a certain extent, and the loss can be reduced.
  • a lot of experiments and improvements are still needed to control and improve the comprehensive performance.
  • CN 107129291A discloses a method for preparing MnZn soft magnetic ferrite material with high frequency, low temperature coefficient and low loss.
  • the material is mainly composed of Fe 2 O 3 : 68-72wt%, ZnO: 5-9wt%, and MnO: the balance. It is prepared by secondary sintering and other steps.
  • the obtained MnZn soft magnetic ferrite material with high frequency, low temperature coefficient and low loss can work at the highest frequency of 5Mz, and has high temperature stability and low power loss.
  • CN 103496963A discloses a Ni-free MnZn power ferrite core with dual characteristics of high temperature, high Bs, wide temperature and low loss, and a manufacturing method thereof.
  • the ferrite magnetic core includes a main component and an auxiliary component, and the main material is 53-54 mol% iron oxide based on Fe2O3 , 39-42 mol% manganese oxide based on MnO , 4-7 mol% based on ZnO Zinc oxide;
  • the auxiliary component includes Co 2 O 3 or CoO or Co 3 O 4 as the first auxiliary component, and SiO 2 and CaCO 3 as the second auxiliary component, selected from MoO 3 , TiO 2 , SnO 2 , Any one or more of Nb 2 O 5 , V 2 O 5 , Sm 2 O 3 , and ZrO 2 is used as the third auxiliary component.
  • the obtained MnZn power ferrite core with dual characteristics has a unit volume loss Pcv (100kHz, 200mT) of less than 350kW/m 3 from 25-120°C, and a minimum loss of less than 300kW/m 3 near 90°C.
  • CN 107573051A discloses a method for improving the strength of MnZn power ferrite core without increasing loss, adding 200-400ppm CaCO 3 , 240-410ppm V 2 O 5 , and 100-200ppm ZrO 2 can effectively increase the core strength of the ferrite without increasing the loss.
  • CN 107129291A has the defect of insufficient control of loss and operating temperature range in its material
  • CN 107573051A has the defect of insufficient strength in its material
  • CN 107573051A does not involve the method of simultaneously increasing the operating temperature range of the material and reducing loss.
  • the embodiment of the present application provides a wide temperature low loss high strength MnZn power ferrite and its preparation method and application, through the addition of specific mass auxiliary components, the wide temperature low loss high strength MnZn power ferrite can be prepared Guarantee not only low power loss but also high strength performance over a wide temperature range.
  • the embodiment of the present application provides a wide temperature low loss high strength MnZn power ferrite
  • the wide temperature low loss high strength MnZn power ferrite is composed of a main component and an auxiliary component; the auxiliary component The mass is 0.165-0.61wt% of the main component;
  • the main components include: Fe 2 O 3 : 51-54 mol%, MnO: 35-38 mol%, and ZnO: 8-14 mol%;
  • the auxiliary components include a first auxiliary component and a second auxiliary component; based on the total mass of the main component, the first auxiliary component is Co 2 O 3 : 0.1-0.4wt%; the second auxiliary component Including at least three of CaCO 3 , Nb 2 O 5 , V 2 O 5 and MoO 3 .
  • the present application adjusts the composition of the MnZn power ferrite to prepare the MnZn power ferrite meeting the requirements of low loss and high strength devices under the temperature condition of 25-120°C.
  • the mass of the auxiliary component is 0.165-0.61wt% of the main component, such as 0.165wt%, 0.17wt%, 0.2wt%, 0.25wt%, 0.3wt%, 0.35wt%, 0.4wt% %, 0.45wt%, 0.5wt%, 0.55wt%, 0.6wt% or 0.61wt%, but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the mole percentage of Fe2O3 in the main component is 51-54 mol%, such as 51 mol%, 51.5 mol%, 52 mol%, 52.5 mol%, 53 mol%, 53.5 mol% or 54 mol%, but not limited to the listed values, other unlisted values within the range of values are also applicable, preferably 52-53 mol%.
  • the mole percentage of MnO in the main component is 35-38 mol%, such as 35 mol%, 35.5 mol%, 36 mol%, 36.5 mol%, 37 mol%, 37.5 mol% or 38 mol%, but not limited to
  • the enumerated numerical values, other unenumerated numerical values within the numerical range are also applicable, preferably 36-38 mol%.
  • the mole percentage of ZnO in the main component is 8-14 mol%, such as 8 mol%, 8.5 mol%, 9 mol%, 9.5 mol%, 10 mol%, 10.5 mol%, 11 mol%, 11.5 mol% , 12mol%, 13mol% or 14mol%, but not limited to the listed values, other unlisted values within the range of values are also applicable, preferably 9-12mol%.
  • the first auxiliary component described in this application is Co 2 O 3 , based on the total mass of the main component, the content of the first auxiliary component Co 2 O 3 is 0.1-0.4 wt%, for example, it can be 0.1 wt%, 0.15 wt%, 0.2wt%, 0.25wt%, 0.3wt%, 0.35wt% or 0.4wt%, but not limited to the listed values, other unlisted values within the range of values are also applicable, preferably 0.1-0.35wt%.
  • the first auxiliary component described in this application includes at least three of CaCO 3 , Nb 2 O 5 , V 2 O 5 and MoO 3 , typical but non-limiting combinations include the combination of calcium carbonate and niobium oxide, niobium oxide and vanadium oxide combination of vanadium oxide and molybdenum oxide, calcium titanate, niobium oxide and vanadium oxide, niobium oxide, niobium oxide and molybdenum oxide, or calcium carbonate, niobium oxide, vanadium oxide and molybdenum oxide.
  • the second auxiliary component includes CaCO 3 : 0.03-0.07wt%, Nb 2 O 5 : 0.01-0.04wt%, V 2 O 5 : 0.02-0.07wt% % with MoO 3 : 0.005-0.03 wt%.
  • the content of CaCO in the second auxiliary component is 0.03-0.07wt%, such as 0.03wt%, 0.035wt%, 0.04wt%, 0.045wt%, 0.048wt% %, 0.05wt%, 0.055wt%, 0.06wt%, 0.065wt% or 0.07wt%, but not limited to the listed values, other unlisted values within the range of values are also applicable, preferably 0.035-0.048wt%.
  • the content of Nb 2 O 5 in the second auxiliary component is 0.01-0.04wt%, such as 0.01wt%, 0.015wt%, 0.02wt%, 0.025wt%, 0.03wt%, 0.035wt% or 0.04wt%, but not limited to the listed values, other unlisted values within the range of values are also applicable, preferably 0.02-0.04wt%.
  • the content of V 2 O 5 in the second auxiliary component is 0.02-0.07wt%, such as 0.02wt%, 0.025wt%, 0.03wt%, 0.04wt%, 0.042wt%, 0.045wt%, 0.048wt%, 0.05wt%, 0.055wt%, 0.06wt%, 0.065wt% or 0.07wt%, but not limited to the listed values, other unlisted values within the range of values are also applicable , preferably 0.042-0.07wt%.
  • the content of MoO in the second auxiliary component is 0.005-0.03wt %, such as 0.005wt%, 0.01wt%, 0.015wt%, 0.02wt%, 0.025wt% % or 0.03 wt%, but not limited to the listed values, other unlisted values within the range of values are also applicable, preferably 0.01-0.03 wt%.
  • the embodiment of the present application provides a method for preparing MnZn power ferrite with wide temperature, low loss and high strength as described in the first aspect, the preparation method comprising:
  • step (3) The secondary sand abrasive obtained in step (2) is subjected to secondary spray granulation, molding and sintering in sequence to obtain the MnZn power ferrite with wide temperature, low loss and high strength.
  • the preparation method provided by the application has simple process, low production cost and stable process, and can prepare MnZn power ferrite with characteristics of wide temperature, low loss and high strength.
  • the sanding time in step (1) is 20-60min, such as 20min, 25min, 30min, 35min, 40min, 45min, 50min, 55min or 60min, but not limited to the listed values, the values Other unlisted values within the range are also applicable, preferably 40-60 min.
  • the mass ratio of the main component preparation raw material to the solvent during the first sand grinding in step (1) is (1.8-2.2):1, for example, it can be 1.8:1, 1.9:1, 2:1, 2.1:1 or 2.2:1, but not limited to the listed values, other unlisted values within the numerical range are also applicable.
  • the solvent includes deionized water.
  • the particle size after the first sanding in step (1) is 0.6-1.5 ⁇ m, such as 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m, 1.0 ⁇ m, 1.1 ⁇ m, 1.2 ⁇ m, 1.3 ⁇ m, 1.4 ⁇ m or 1.5 ⁇ m, but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the particle size of 0.6-1.5 ⁇ m in this application means that the minimum particle size is above 0.6 ⁇ m and the maximum particle size is below 1.5 ⁇ m.
  • the primary granulation in step (1) is prepared into granular material.
  • the pre-burning temperature in step (1) is 800-1030°C, such as 800°C, 850°C, 900°C, 940°C, 960°C, 980°C, 1000°C, 1010°C, 1020°C or 1030°C °C, but not limited to the listed values, other unlisted values within the range of values are also applicable, preferably 960-1020 °C.
  • the pre-burning time in step (1) is 3-9h, such as 3h, 4h, 5h, 6h, 7h, 8h or 9h, but not limited to the listed values, other unlisted values within the range Values likewise apply, preferably 3-6h.
  • the mass ratio of the mixture to the solvent during the secondary sand grinding in step (2) is 2:(0.9-1.1), such as 2:0.9, 2:0.95, 2:1, 2:1.05 or 2 : 1.1, but not limited to the listed values, other unlisted values within the range of values are also applicable.
  • the solvent includes deionized water or distilled water.
  • the time for the second sanding in step (2) is 1-3h, for example, it can be 1h, 1.5h, 2h, 2.5h or 3h, but not limited to the listed values, other unlisted values within the range Numerical values likewise apply, preferably 2-3h.
  • the average particle size of the secondary sand grinding in step (2) is 1.05-1.30 ⁇ m, such as 1.05 ⁇ m, 1.10 ⁇ m, 1.15 ⁇ m, 1.20 ⁇ m, 1.25 ⁇ m or 1.30 ⁇ m, but not limited to the listed Numerical values, other unrecited numerical values within the numerical range also apply.
  • the particle size of the secondary spray granulation in step (3) is 50-200 ⁇ m, such as 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, 120 ⁇ m, 140 ⁇ m, 150 ⁇ m, 160 ⁇ m, 180 ⁇ m or 200 ⁇ m, but Not limited to the listed numerical values, other unlisted numerical values within the numerical range are also applicable, preferably 80-150 ⁇ m.
  • the particle size of secondary granulation in this application is 50-200 ⁇ m means that the minimum particle size is above 50 ⁇ m and the maximum particle size is below 200 ⁇ m.
  • the step (3) of the present application is formed into a blank, and the height of the blank is 20-30mm, such as 20mm, 21mm, 22mm, 23mm, 24mm, 25mm, 26mm, 27mm, 28mm, 29mm or 30mm. It is 12-18mm, but not limited to the listed values, other unlisted values in the range of values are also applicable, for example, it can be 12mm, 13mm, 14mm, 15mm, 16mm, 17mm or 18mm, but not limited to the listed values, the values Other unlisted values within the range are also applicable, and the width is 5-10mm, such as 5mm, 6mm, 7mm, 8mm, 9mm or 10mm, but not limited to the listed values, other unlisted values within the range are also applicable.
  • the sintering temperature in step (3) is 1290-1360°C, such as 1290°C, 1300°C, 1310°C, 1320°C, 1330°C, 1340°C, 1350°C or 1360°C, but not limited to the listed
  • the numerical value of , other unlisted numerical values in the numerical range are also applicable, preferably 1300-1360°C.
  • the sintering time in step (3) is 28-32h, for example, 28h, 29h, 30h, 31h or 32h, but not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the sintering described in this application includes heating and holding process, and the sintering time refers to the holding time after the temperature is raised to 1290-1360°C.
  • the sintering process in step (3) is carried out under a mixed gas environment.
  • the mixed gas includes oxygen and nitrogen.
  • the partial pressure of oxygen in the mixed gas is 0.01-1.5% in the densification region, for example, it can be 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0%, 1.1%, 1.2%, 1.3%, 1.4% or 1.5%, but not limited to the listed values, other unlisted values in the range of values are also applicable, preferably 0.05- 1.5%.
  • the temperature range of 950-1100°C in the sintering heating process of the present application is the densification region described in the sintering process.
  • the preparation method comprises:
  • step (3) The secondary sand and abrasive material obtained in step (2) is subjected to secondary spray granulation into particles with a particle size of 50-200 ⁇ m, formed into a blank, and then sintered at 1290-1360 ° C to obtain the wide temperature, low loss and high strength MnZn power ferrite; the sintering is carried out in a mixed atmosphere of oxygen and nitrogen, and the partial pressure of oxygen in the mixed atmosphere is 0.01-1.5%.
  • the embodiment of the present application provides an application of the wide temperature low loss high strength MnZn power ferrite as described in the first aspect, and the wide temperature low loss high strength MnZn power ferrite is used in a transformer.
  • a wide temperature, low loss and high strength MnZn power ferrite is obtained by adjusting the composition and improving the preparation method.
  • the power consumption of the wide temperature, low loss and high strength MnZn power ferrite is ⁇ 350mW/cm 3 at 25°C and ⁇ 350mW/cm 3 at 120°C; under the conditions of 1194A/m and 50Hz, The saturation magnetic flux density at 25°C is ⁇ 535mT.
  • the application can well meet the requirements of the device on the MnZn power ferrite with wide temperature, low loss and high strength, and the production process has the advantages of low production cost and stable process.
  • This embodiment provides a wide temperature low loss high strength MnZn power ferrite
  • the wide temperature low loss high strength MnZn power ferrite is composed of a main component and an auxiliary component
  • the mass of the auxiliary component is the main component 0.49wt% of the composition
  • the main components are Fe2O3 : 52.5mol%, MnO: 37mol%, ZnO : 10.5mol%
  • the auxiliary components are divided into the first auxiliary component and the second auxiliary component
  • the first auxiliary component is Co 2 O 3 : 0.35wt%
  • the second auxiliary component is CaCO 3 : 0.04wt%, Nb 2 O 5 : 0.03wt%, V 2 O 5 : 0.05 wt%, MoO 3 : 0.02 wt%.
  • the preparation method of the wide temperature low loss high strength MnZn power ferrite comprises the following steps:
  • step (3) The secondary sand abrasive obtained in step (2) is subjected to secondary spray granulation to form particles with an average particle size of 100 ⁇ m, which is formed into a blank (H25 ⁇ 15 ⁇ 8), and then sintered at 1320° C. to obtain the wide temperature range.
  • This embodiment provides a wide temperature low loss high strength MnZn power ferrite
  • the wide temperature low loss high strength MnZn power ferrite is composed of a main component and an auxiliary component
  • the mass of the auxiliary component is the main component 0.407wt% of the composition
  • the main components are Fe 2 O 3 : 52mol%, MnO: 36mol%, ZnO: 12mol%
  • the auxiliary components are divided into the first auxiliary component and the second auxiliary component
  • the first auxiliary component is Co 2 O 3 : 0.3wt%
  • the second auxiliary component is CaCO 3 : 0.035wt%, Nb 2 O 5 : 0.02wt%, V 2 O 5 : 0.042 wt%, MoO 3 : 0.01 wt%.
  • the preparation method of the wide temperature low loss high strength MnZn power ferrite comprises the following steps:
  • step (3) The secondary sand abrasive obtained in step (2) is subjected to secondary spray granulation into particles with an average particle diameter of 80 ⁇ m, formed into a blank (H25 ⁇ 15 ⁇ 8), and then sintered at 1300° C. to obtain the wide temperature range Low-loss high-strength MnZn power ferrite; the sintering is carried out in a mixed atmosphere of oxygen and nitrogen, and the partial pressure of oxygen in the mixed atmosphere is 0.05%.
  • This embodiment provides a wide temperature low loss high strength MnZn power ferrite
  • the wide temperature low loss high strength MnZn power ferrite is composed of a main component and an auxiliary component
  • the mass of the auxiliary component is the main component 0.538wt% of the composition
  • the main components are Fe2O3 : 53mol %, MnO: 37.5mol%, ZnO: 9.5mol%
  • the auxiliary components are divided into the first auxiliary component and the second auxiliary component
  • the first auxiliary component is Co 2 O 3 : 0.37wt%
  • the second auxiliary component is CaCO 3 : 0.048wt%, Nb 2 O 5 : 0.035wt%, V 2 O 5 : 0.06 wt%, MoO 3 : 0.025 wt%.
  • the preparation method of the wide temperature low loss high strength MnZn power ferrite comprises the following steps:
  • step (3) The secondary sand abrasive obtained in step (2) is subjected to secondary spray granulation to form particles with an average particle diameter of 150 ⁇ m, which is formed into a blank (H25 ⁇ 15 ⁇ 8), and then sintered at 1360° C. to obtain the wide temperature range Low-loss high-strength MnZn power ferrite; the sintering is carried out under a mixed atmosphere of oxygen and nitrogen, and the partial pressure of oxygen in the mixed atmosphere is 1%.
  • This embodiment provides a wide temperature low loss high strength MnZn power ferrite
  • the wide temperature low loss high strength MnZn power ferrite is composed of a main component and an auxiliary component
  • the mass of the auxiliary component is the main component 0.61wt% of the composition
  • the main components are Fe 2 O 3 : 54mol%, MnO: 38mol%, ZnO: 8mol%
  • the auxiliary components are divided into the first auxiliary component and the second auxiliary component
  • the first auxiliary component is Co 2 O 3 : 0.4wt%
  • the second auxiliary component is CaCO 3 : 0.07wt%, Nb 2 O 5 : 0.04wt%, V 2 O 5 : 0.07 wt%, MoO 3 : 0.03 wt%.
  • the preparation method of the wide temperature low loss high strength MnZn power ferrite comprises the following steps:
  • step (3) The secondary sand and abrasive material obtained in step (2) is subjected to secondary spray granulation to form particles with an average particle size of 200 ⁇ m, which is formed into a blank (H30 ⁇ 18 ⁇ 10), and then sintered at 1360° C. to obtain the wide temperature range.
  • This embodiment provides a kind of MnZn power ferrite with wide temperature , low loss and high strength, except when taking the mass of the main component as the benchmark, the content of Co2O3 in the first auxiliary component is 0.36wt% of the main component, and the auxiliary component The quality of is except the 0.5wt% of described main component, all the other ingredients and content are identical with embodiment 1.
  • This embodiment provides a MnZn power ferrite with wide temperature, low loss and high strength, except that when the mass of the main component is used as the benchmark, the content of Co2O3 in the first auxiliary component is 0.3wt% of the main component, and the auxiliary component The quality of is except the 0.44wt% of described main component, all the other ingredients and content are identical with embodiment 1.
  • This embodiment provides a kind of MnZn power ferrite with wide temperature, low loss and high strength. Except when the mass of the main component is taken as the benchmark, the content of V 2 O 5 in the second auxiliary component is 0.04wt% of the main component, and the auxiliary component The quality of is except the 0.54wt% of described main component, all the other ingredients and content are identical with embodiment 1.
  • This embodiment provides a kind of MnZn power ferrite with wide temperature, low loss and high strength, except when taking the mass of the main component as the benchmark, the content of V 2 O 5 in the second auxiliary component is 0.075wt% of the main component, and the auxiliary component The quality of is except the 0.465wt% of described main component, all the other ingredients and content are identical with embodiment 1.
  • This embodiment provides a kind of MnZn power ferrite with wide temperature, low loss and high strength.
  • the content of MoO in the second auxiliary component is 0.005wt% of the main component
  • the content of the auxiliary component is Quality is 0.475wt% of described main component, all the other components and content are identical with embodiment 1.
  • This embodiment provides a kind of MnZn power ferrite with wide temperature, low loss and high strength.
  • the content of MoO in the second auxiliary component is 0.035wt% of the main component
  • the content of the auxiliary component is The mass is 0.455wt% of the main component, and all the other components and contents are the same as in Example 1.
  • This embodiment provides a wide temperature low loss high strength MnZn power ferrite, the composition of the wide temperature low loss high strength MnZn power ferrite is the same as the first embodiment.
  • the process parameters of the other preparation methods of the wide-temperature low-loss high-strength MnZn power ferrite are the same as those in Example 1.
  • This embodiment provides a wide temperature low loss high strength MnZn power ferrite, the composition of the wide temperature low loss high strength MnZn power ferrite is the same as the first embodiment.
  • the process parameters of the other preparation methods of the wide-temperature low-loss high-strength MnZn power ferrite are the same as those in Example 1.
  • This embodiment provides a wide temperature low loss high strength MnZn power ferrite, the composition of the wide temperature low loss high strength MnZn power ferrite is the same as the first embodiment.
  • This embodiment provides a wide temperature low loss high strength MnZn power ferrite, the composition of the wide temperature low loss high strength MnZn power ferrite is the same as the first embodiment.
  • This comparative example provides a kind of MnZn power ferrite with wide temperature , low loss and high strength, except when taking the mass of the main component as the benchmark, the content of Co2O3 in the first auxiliary component is 0.45wt% of the main component, and the auxiliary component The quality of is except the 0.59wt% of described main component, all the other ingredients and content are identical with embodiment 1.
  • This comparative example provides a MnZn power ferrite with wide temperature, low loss and high strength. Except that it does not contain the first auxiliary component Co 2 O 3 , and the mass of the auxiliary component is 0.14wt% of the main component, the remaining components and content Same as Example 1.
  • This comparative example provides a MnZn power ferrite with wide temperature range, low loss and high strength, except that Ni 2 O 3 of equal mass is used instead of Co 2 O 3 , the other components and contents are the same as those in Example 1.
  • This comparative example provides a MnZn power ferrite with wide temperature, low loss and high strength, except that Cr 2 O 3 of equal mass is used instead of V 2 O 5 , and the other components and contents are the same as those in Example 1.
  • This comparative example provides a MnZn power ferrite with wide temperature, low loss and high strength, except that Cr 2 O 3 of equal mass is used instead of MoO 3 , and the other components and contents are the same as those in Example 1.
  • the wide-temperature low-loss high-strength MnZn power ferrite provided by Examples 1-14 and Comparative Examples 1-5 uses an X-ray fluorescence analyzer to detect that the composition of the ferrite is consistent with the composition of the raw materials, and test the saturation magnetic flux density (Bs) , power consumption and strength.
  • Bs saturation magnetic flux density
  • Use the IWATSU-8218 AC B-H analyzer to test the power consumption of ferrite under the conditions of 100kHz and 200mT.
  • Use the NK-500 strength tester to test the strength of ferrite under the conditions of 20mm/min and M method, and the results are shown in Table 1.
  • Example 5 From the comparison of Examples 5 and 6 with Example 1, it can be seen that the performance of the wide temperature low loss high strength MnZn power ferrite prepared in Example 5 is similar to that of Example 1, and the wide temperature low loss high strength MnZn ferrite prepared in Example 6 The performance of the power ferrite is not as good as that of Example 1.
  • the content of the auxiliary component Co 2 O 3 exceeds the preferred range of 0.35-0.4 wt%, the power consumption increases and the strength decreases.
  • Example 11 From the comparison of Examples 11 and 12 with Example 1, it can be seen that the wide temperature, low loss and high strength MnZn power ferrite prepared in Example 11 has higher power consumption and lower strength than that of Example 1, and the wide temperature and low loss ferrite prepared in Example 12 The strength of the high-strength MnZn power ferrite is lower than that of Example 1.
  • the sintering temperature exceeds the preferred range of 1290-1360° C., the power consumption of the obtained wide-temperature low-loss high-strength MnZn power ferrite increases or the strength decreases.
  • Example 13 From the comparison of Examples 13 and 14 with Example 1, it can be seen that the performance of the wide temperature, low loss and high strength MnZn power ferrite prepared in Examples 13 and 14 is not as good as that of Example 1. It can be seen that when the oxygen partial pressure exceeds 0.01-1.5 %, the power consumption of the obtained wide-temperature low-loss high-strength MnZn power ferrite increases or the strength decreases.
  • this application obtains power consumption at 25°C ⁇ 350mW/cm 3 , low loss at wide temperature 25-120°C, power consumption at high flux density ⁇ 350mW/cm 3 ; at 1194A/m and 50Hz, saturation flux density at 25°C ⁇ 535mT ; and the strength is increased by more than 10% wide temperature low loss high strength MnZn power ferrite, which meets the performance requirements of automotive electronic products for wide temperature low loss and high strength.
  • the present application illustrates the detailed structural features of the present application through the above-mentioned embodiments, but the present application is not limited to the above-mentioned detailed structural features, that is, it does not mean that the present application must rely on the above-mentioned detailed structural features to be implemented.
  • Those skilled in the art should understand that any improvement to the application, equivalent replacement of the components selected in the application, addition of auxiliary components, selection of specific methods, etc., all fall within the scope of protection and disclosure of the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用,该宽温低损耗高强度MnZn功率铁氧体由主成分和辅助成分组成;辅助成分的质量为主成分的0.165-0.61wt%;主成分包括氧化铁、氧化锰与氧化锌;辅助成分包括第一辅助成分与第二辅助成分,第一辅助成分为氧化钴;第二辅助成分包括碳酸钙、氧化铌、氧化钒或氧化钼中的至少三种。通过辅助成分的添加,尤其是特定质量氧化钴的添加,实现对Fe 2+与Co 2+特定比例的协同调节,保证在不受温度变化影响下功耗有效降低,从而使制备得到的宽温低损耗高强度MnZn功率铁氧体能够在25-120℃下具有低损耗、高磁通密度且强度提升10%以上的特点。

Description

一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用 技术领域
本申请实施例涉及软磁领域,例如一种铁氧体及其制备方法与应用,尤其涉及一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用。
背景技术
随着通讯、计算机和网络等电子信息产业的高速发展,高性能软磁铁氧体的需求量与日俱增。目前,MnZn铁氧体的产量在工业化生产的软磁铁氧体材料中当居首位,占60%以上。作为广泛应用于各通讯及电子领域的MnZn铁氧体,其传统功率材料的宽温低损耗已经不能完全满足电子产品的要求,尤其在汽车电子领域,对强度有很高的要求。因此,如何在MnZn功率铁氧体保持宽温低损耗的同时,提高强度性能以满足对材料的综合性能要求,成为目前亟待解决的问题。
目前通过优化材料的成分配方并采用合适的制备方法可以在一定程度上提高材料的使用温度范围与强度,并降低损耗,然而对综合性能的控制和提升仍需要进行大量的实验和改进。
CN 107129291A公开了一种具有高频低温度系数低损耗MnZn软磁铁氧体材料的制备方法。该材料以Fe 2O 3:68-72wt%、ZnO:5-9wt%、MnO:余量为主成分,通过一次球磨、一次烧结、二次配料、二次球磨、造粒、压制成型、二次烧结等步骤制备而成。所得具有高频低温度系数低损耗MnZn软磁铁氧体材料最高可以在5Mz的频率下工作,且具有较高的温度稳定性和较低功率损耗。
CN 103496963A公开了一种不含Ni的兼具高温高Bs和宽温低损耗双重特性的MnZn功率铁氧体磁心及其制造方法。所述铁氧体磁心包括主成分和辅助成分,所述主料为以Fe 2O 3计53-54mol%的氧化铁、以MnO计39-42mol%的氧化锰、以ZnO计4-7mol%的氧化锌;所述辅助成分包括以Co 2O 3或CoO或Co 3O 4作为第一辅助成分,以SiO 2、CaCO 3作为第二辅助成分,选自MoO 3、TiO 2、SnO 2、Nb 2O 5、V 2O 5、Sm 2O 3、ZrO 2中任一种或几种作为第三辅助成分。所得兼具双重特性的MnZn功率铁氧体磁心从25-120℃的单位体积损耗Pcv(100kHz,200mT)都小于350kW/m 3,在90℃附近最低损耗低于300kW/m 3
CN 107573051A公开了一种不提高损耗改善MnZn功率铁氧体磁芯强度的方法,在制备MnZn功率铁氧体时添加200-400ppm的CaCO 3,240-410ppm的V 2O 5,和100-200ppm的ZrO 2,能够在不提高损耗的前提下,有效提高铁氧体的磁芯强度。
上述技术方案均在传统的功率材料上进行了性能的改进,然而无法综合性地改善与提升相关性能。例如,CN 107129291A其材料存在对损耗以及使用温度范围的控制不足的缺陷;CN 107573051A其材料存在强度不足的缺陷;CN 107573051A没有涉及同时提高材料的使用温度范围并降低损耗的方法。
因此,需要提供一种MnZn功率铁氧体的制备方法,使该制备方法得到的MnZn功率铁氧体具有较高温度稳定性与较低功率损耗的同时,还能够在较高的强度下进行工作。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用,通过特定质量辅助成分的添加,使制备得到所述宽温低损耗高强度MnZn功率铁氧体保证在较宽的温度范围内不仅具备较低的功率损耗,而且具有较高的强度性能。
第一方面,本申请实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,所述宽温低损耗高强度MnZn功率铁氧体由主成分和辅助成分组成;所述辅助成分的质量为所述主成分的0.165-0.61wt%;
以摩尔百分数计,所述主成分包括:Fe 2O 3:51-54mol%,MnO:35-38mol%以及ZnO:8-14mol%;
所述辅助成分包括第一辅助成分与第二辅助成分;以所述主成分的总质量为基准,所述第一辅助成分为Co 2O 3:0.1-0.4wt%;所述第二辅助成分包括CaCO 3、Nb 2O 5、V 2O 5及MoO 3中至少三种。
本申请通过调整MnZn功率铁氧体的组成,制备得到在25-120℃的温度条件下满足低损耗和高强度器件要求的MnZn功率铁氧体。
具体的,所述辅助成分的质量为所述主成分的0.165-0.61wt%,例如可以是 0.165wt%、0.17wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%、0.4wt%、0.45wt%、0.5wt%、0.55wt%、0.6wt%或0.61wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
以摩尔百分数计,所述主成分中Fe 2O 3的摩尔百分数为51-54mol%,例如可以是51mol%、51.5mol%、52mol%、52.5mol%、53mol%、53.5mol%或54mol%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为52-53mol%。
以摩尔百分数计,所述主成分中MnO的摩尔百分数为35-38mol%,例如可以是35mol%、35.5mol%、36mol%、36.5mol%、37mol%、37.5mol%或38mol%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为36-38mol%。
以摩尔百分数计,所述主成分中ZnO的摩尔百分数为8-14mol%,例如可以是8mol%、8.5mol%、9mol%、9.5mol%、10mol%、10.5mol%、11mol%、11.5mol%、12mol%、13mol%或14mol%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为9-12mol%。
本申请所述第一辅助成分为Co 2O 3,以主成分的总质量为基准,所述第一辅助成分Co 2O 3的含量为0.1-0.4wt%,例如可以是0.1wt%、0.15wt%、0.2wt%、0.25wt%、0.3wt%、0.35wt%或0.4wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为0.1-0.35wt%。
通过上述质量分数Co 2O 3的添加,实现了对所述MnZn功率铁氧体中Fe 2+与Co 2+的特定比例含量的协同调节,使最终所得MnZn功率铁氧体在不受温度变化的影响下有效降低磁滞损耗,保证了所述MnZn功率铁氧体在25-120℃的宽温条件下具有较低的损耗。
以主成分的总质量为基准,当Co 2O 3的含量超过本申请所述范围时,制备得到的MnZn铁氧体的功耗增加或者强度降低。
本申请所述第一辅助成分包括CaCO 3、Nb 2O 5、V 2O 5及MoO 3中至少三种,典型但非限制性的组合包括碳酸钙与氧化铌的组合,氧化铌与氧化钒的组合,氧化钒与氧化钼的组合,钛酸钙、氧化铌与氧化钒的组合,氧化铌、氧化法与氧化钼的组合,或碳酸钙、氧化铌、氧化钒与氧化钼的组合。
优选地,以所述主成分的总质量为基准,所述第二辅助成分包括CaCO 3: 0.03-0.07wt%,Nb 2O 5:0.01-0.04wt%,V 2O 5:0.02-0.07wt%与MoO 3:0.005-0.03wt%。
以所述主成分的总质量为基准,所述第二辅助成分中CaCO 3的含量为0.03-0.07wt%,例如可以是0.03wt%、0.035wt%、0.04wt%、0.045wt%、0.048wt%、0.05wt%、0.055wt%、0.06wt%、0.065wt%或0.07wt%但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为0.035-0.048wt%。
以所述主成分的总质量为基准,所述第二辅助成分中Nb 2O 5的含量为0.01-0.04wt%,例如可以是0.01wt%、0.015wt%、0.02wt%、0.025wt%、0.03wt%、0.035wt%或0.04wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为0.02-0.04wt%。
以所述主成分的总质量为基准,所述第二辅助成分中V 2O 5的含量为0.02-0.07wt%,例如可以是0.02wt%、0.025wt%、0.03wt%、0.04wt%、0.042wt%、0.045wt%、0.048wt%、0.05wt%、0.055wt%、0.06wt%、0.065wt%或0.07wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为0.042-0.07wt%。
以所述主成分的总质量为基准,所述第二辅助成分中MoO 3的含量为0.005-0.03wt%,例如可以是0.005wt%、0.01wt%、0.015wt%、0.02wt%、0.025wt%或0.03wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为0.01-0.03wt%。
第二方面,本申请实施例提供了一种如第一方面所述宽温低损耗高强度MnZn功率铁氧体的制备方法,所述制备方法包括:
(1)按配方量称取主成分制备原料,对主成分制备原料进行一次砂磨、一次喷雾造粒和预烧,得到预烧料;
(2)按配方量称量辅助成分,与步骤(1)所得预烧料混合后得到混合料,进行二次砂磨,得到二次砂磨料;
(3)步骤(2)所得二次砂磨料依次进行二次喷雾造粒、成型与烧结,得到所述宽温低损耗高强度MnZn功率铁氧体。
本申请提供的制备方法工艺简单、生产成本低且工艺稳定,能制备出具有宽温低损耗高强度特性的MnZn功率铁氧体。
优选地,步骤(1)中所述一次砂磨的时间为20-60min,例如可以是20min、 25min、30min、35min、40min、45min、50min、55min或60min,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为40-60min。
优选地,步骤(1)所述一次砂磨时主成分制备原料与溶剂的质量比为(1.8-2.2):1,例如可以是1.8:1、1.9:1、2:1、2.1:1或2.2:1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,所述溶剂包括去离子水。
优选地,步骤(1)所述一次砂磨后的粒度为0.6-1.5μm,例如可以是0.6μm、0.7μm、0.8μm、0.9μm、1.0μm、1.1μ1.2μm、1.3μm、1.4μm或1.5μm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
本申请所述粒度为0.6-1.5μm是指,最小粒度在0.6μm以上,最大粒度在1.5μm以下。
优选地,步骤(1)所述一次造粒制备成颗粒料。
优选地,步骤(1)所述预烧的温度为800-1030℃,例如可以是800℃、850℃、900℃、940℃、960℃、980℃、1000℃、1010℃、1020℃或1030℃,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为960-1020℃。
优选地,步骤(1)所述预烧的时间为3-9h,例如可以是3h、4h、5h、6h、7h、8h或9h,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为3-6h。
优选地,步骤(2)所述二次砂磨时混合料与溶剂的质量比为2:(0.9-1.1),例如可以是2:0.9、2:0.95、2:1、2:1.05或2:1.1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,所述溶剂包括去离子水或蒸馏水。
优选地,步骤(2)所述二次砂磨的时间为1-3h,例如可以是1h、1.5h、2h、2.5h或3h,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为2-3h。
优选地,步骤(2)所述二次砂磨的平均粒径为1.05-1.30μm,例如可以是1.05μm、1.10μm、1.15μm、1.20μm、1.25μm或1.30μm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,步骤(3)所述二次喷雾造粒的粒径为50-200μm,例如可以是50μm、60μm、70μm、80μm、90μm、100μm、120μm、140μm、150μm、160μm、180μm 或200μm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为80-150μm。
本申请二次造粒的粒径为50-200μm是指,最小粒度在50μm以上,最大粒度在200μm以下。
本申请步骤(3)所述成型为坯件,所述坯件的高为20-30mm,例如可以是20mm、21mm、22mm、23mm、24mm、25mm、26mm、27mm、28mm、29mm或30mm,长为12-18mm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,例如可以是12mm、13mm、14mm、15mm、16mm、17mm或18mm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,宽为5-10mm,例如可以是5mm、6mm、7mm、8mm、9mm或10mm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
优选地,步骤(3)所述烧结的温度为1290-1360℃,例如可以是1290℃、1300℃、1310℃、1320℃、1330℃、1340℃、1350℃或1360℃,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为1300-1360℃。
当烧结温度超过本申请范围时,所制备得到的MnZn功率铁氧体的损耗增大或强度降低。
优选地,步骤(3)所述烧结的时间为28-32h,例如可以是28h、29h、30h、31h或32h,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
本申请所述烧结包括升温以及保温过程,所述烧结时间是指升温至1290-1360℃后的保温时间。
优选地,步骤(3)所述烧结过程混合气体环境下进行。
优选地,所述混合气体包括氧气和氮气。
优选地,所述混合气体中氧气的分压在致密化区域段为0.01-1.5%,例如可以是0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%或1.5%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用,优选为0.05-1.5%。
本申请烧结升温过程中的950-1100℃温度区间为烧结过程中所述的致密化区域段,通过控制该致密化区域段的氧气分压为0.01-1.5%,使制备而得的MnZn铁氧体综合性能优异,当氧分压高于1.5%,所制备得到的MnZn功率铁氧体的损耗增大且强度降低。
作为本申请第二方面所述制备方法的优选技术方案,所述制备方法包括:
(1)按配方量称取主成分制备原料,一次砂磨20-60min使粒度为0.6-1.5μm,再一次喷雾造粒制备得到颗粒料,在800-1030℃预烧3-9h,得到预烧料;
(2)按配方量称量辅助成分,与步骤(1)所得预烧料混合添加溶剂后,二次砂磨1-3h,得到平均粒径为1.05-1.3μm的二次砂磨料;
(3)步骤(2)所得二次砂磨料进行二次喷雾造粒成粒径为50-200μm的颗粒,成型为坯件,然后于1290-1360℃烧结,得到所述宽温低损耗高强度MnZn功率铁氧体;所述烧结在氧气和氮气的混合气氛下进行,混合气氛中氧气的分压为0.01-1.5%。
第三方面,本申请实施例提供了一种如第一方面所述宽温低损耗高强度MnZn功率铁氧体的应用,所述宽温低损耗高强度MnZn功率铁氧体用于变压器。
本申请所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
与相关技术相比,本申请实施例的有益效果为:
本申请实施例通过调节组成成分和改善制备方法得到一种宽温低损耗高强度MnZn功率铁氧体。该宽温低损耗高强度MnZn功率铁氧体在100kHz、200mT的条件下,25℃功耗≤350mW/cm 3,120℃功耗≤350mW/cm 3;在1194A/m、50Hz的条件下,25℃的饱和磁通密度≥535mT。本申请能很好的满足器件对MnZn功率铁氧体宽温低损耗高强度要求且生产工艺具有生产成本低、工艺稳定的优点。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
下面结合通过具体实施方式来进一步说明本申请的技术方案。但下述的实例仅仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请的保护范围以权利要求书为准。
实施例1
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,所述宽温低损耗高强度MnZn功率铁氧体由主成分和辅助成分组成,所述辅助成分的质量为 所述主成分的0.49wt%,所述主成分为Fe 2O 3:52.5mol%、MnO:37mol%、ZnO:10.5mol%;所述辅助成分分为第一辅助成分与第二辅助成分;以所述主成分的总质量为基准,所述第一辅助成分为Co 2O 3:0.35wt%,所述第二辅助成分为CaCO 3:0.04wt%、Nb 2O 5:0.03wt%、V 2O 5:0.05wt%、MoO 3:0.02wt%。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法包括如下步骤:
(1)按配方量称取主成分制备原料,一次砂磨50min使粒度为0.6-1.5μm,再一次喷雾造粒制备得到颗粒料,在990℃预烧5h,得到预烧料;
(2)按配方量称量辅助成分,与步骤(1)所得预烧料混合添加溶剂后,二次砂磨2h,得到平均粒径为1.15μm的二次砂磨料;
(3)步骤(2)所得二次砂磨料进行二次喷雾造粒成平均粒径为100μm的颗粒,成型为坯件(H25×15×8),然后于1320℃烧结,得到所述宽温低损耗高强度MnZn功率铁氧体;所述烧结在氧气和氮气的混合气氛下进行,混合气氛中氧气的分压为0.5%。
实施例2
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,所述宽温低损耗高强度MnZn功率铁氧体由主成分和辅助成分组成,所述辅助成分的质量为所述主成分的0.407wt%,所述主成分为Fe 2O 3:52mol%、MnO:36mol%、ZnO:12mol%;所述辅助成分分为第一辅助成分与第二辅助成分;以所述主成分的总质量为基准,所述第一辅助成分为Co 2O 3:0.3wt%,所述第二辅助成分为CaCO 3:0.035wt%、Nb 2O 5:0.02wt%、V 2O 5:0.042wt%、MoO 3:0.01wt%。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法包括如下步骤:
(1)按配方量称取主成分制备原料,一次砂磨40min使粒度为0.6-1.5μm,再一次喷雾造粒制备得到颗粒料,在960℃预烧6h,得到预烧料;
(2)按配方量称量辅助成分,与步骤(1)所得预烧料混合添加溶剂后,二次砂磨1.5h,得到平均粒径为1.1μm的二次砂磨料;
(3)步骤(2)所得二次砂磨料进行二次喷雾造粒成平均粒径为80μm的颗粒,成型为坯件(H25×15×8),然后于1300℃烧结,得到所述宽温低损耗高强度MnZn功率铁氧体;所述烧结在氧气和氮气的混合气氛下进行,混合气氛中氧气的分压为0.05%。
实施例3
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,所述宽温低损耗高强度MnZn功率铁氧体由主成分和辅助成分组成,所述辅助成分的质量为所述主成分的0.538wt%,所述主成分为Fe 2O 3:53mol%、MnO:37.5mol%、ZnO:9.5mol%;所述辅助成分分为第一辅助成分与第二辅助成分;以所述主成分的总质量为基准,所述第一辅助成分为Co 2O 3:0.37wt%,所述第二辅助成分为CaCO 3:0.048wt%、Nb 2O 5:0.035wt%、V 2O 5:0.06wt%、MoO 3:0.025wt%。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法包括如下步骤:
(1)按配方量称取主成分制备原料,一次砂磨55min使粒度为0.6-1.5μm,再一次喷雾造粒制备得到颗粒料,在1020℃预烧4h,得到预烧料;
(2)按配方量称量辅助成分,与步骤(1)所得预烧料混合添加溶剂后,二次砂磨2.5h,得到平均粒径为1.2μm的二次砂磨料;
(3)步骤(2)所得二次砂磨料进行二次喷雾造粒成平均粒径为150μm的颗粒,成型为坯件(H25×15×8),然后于1360℃烧结,得到所述宽温低损耗高强度MnZn功率铁氧体;所述烧结在氧气和氮气的混合气氛下进行,混合气氛中氧气的分压为1%。
实施例4
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,所述宽温低损耗高强度MnZn功率铁氧体由主成分和辅助成分组成,所述辅助成分的质量为所述主成分的0.61wt%,所述主成分为Fe 2O 3:54mol%、MnO:38mol%、ZnO:8mol%;所述辅助成分分为第一辅助成分与第二辅助成分;以所述主成分的总质量为基准,所述第一辅助成分为Co 2O 3:0.4wt%,所述第二辅助成分为CaCO 3:0.07wt%、Nb 2O 5:0.04wt%、V 2O 5:0.07wt%、MoO 3:0.03wt%。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法包括如下步骤:
(1)按配方量称取主成分制备原料,一次砂磨60min使粒度为0.6-1.5μm,再一次喷雾造粒制备得到颗粒料,在1030℃预烧3h,得到预烧料;
(2)按配方量称量辅助成分,与步骤(1)所得预烧料混合添加溶剂后,二次砂磨3h,得到平均粒径为1.3μm的二次砂磨料;
(3)步骤(2)所得二次砂磨料进行二次喷雾造粒成平均粒径为200μm的颗粒,成型为坯件(H30×18×10),然后于1360℃烧结,得到所述宽温低损耗高强度MnZn功率铁氧体;所述烧结在氧气和氮气的混合气氛下进行,混合气氛中 氧气的分压为1.5%。
实施例5
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,除了以主成分的质量为基准时,第一辅助成分中Co 2O 3的含量为主成分的0.36wt%,辅助成分的质量为所述主成分的0.5wt%外,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
实施例6
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,除了以主成分的质量为基准时,第一辅助成分中Co 2O 3的含量为主成分的0.3wt%,辅助成分的质量为所述主成分的0.44wt%外,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
实施例7
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,除了以主成分的质量为基准时,第二辅助成分中V 2O 5的含量为主成分的0.04wt%,辅助成分的质量为所述主成分的0.54wt%外,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
实施例8
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,除了以主成分的质量为基准时,第二辅助成分中V 2O 5的含量为主成分的0.075wt%,辅助成分的质量为所述主成分的0.465wt%外,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
实施例9
本实施例了提供一种宽温低损耗高强度MnZn功率铁氧体,除了以主成分的质量为基准时,第二辅助成分中MoO 3的含量为主成分的0.005wt%外,辅助成分的质量为所述主成分的0.475wt%,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
实施例10
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,除了以主成分的质量为基准时,第二辅助成分中MoO 3的含量为主成分的0.035wt%外,辅助成分的质量为所述主成分的0.455wt%,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
实施例11
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,所述宽温低损耗高强度MnZn功率铁氧体的组成与实施例1相同。
除了制备方法中的烧结温度为1250℃外,所述宽温低损耗高强度MnZn功率铁氧体的其余制备方法的工艺参数均与实施例1相同。
实施例12
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,所述宽温低损耗高强度MnZn功率铁氧体的组成与实施例1相同。
除了制备方法中的烧结温度为1390℃外,所述宽温低损耗高强度MnZn功率铁氧体的其余制备方法的工艺参数均与实施例1相同。
实施例13
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,所述宽温低损耗高强度MnZn功率铁氧体的组成与实施例1相同。
除了制备方法中除氧气分压为2%外,所述宽温低损耗高强度MnZn功率铁氧体的其余制备方法的工艺参数均与实施例1相同。
实施例14
本实施例提供了一种宽温低损耗高强度MnZn功率铁氧体,所述宽温低损耗高强度MnZn功率铁氧体的组成与实施例1相同。
除了制备方法中氧气分压为4%外,所述宽温低损耗高强度MnZn功率铁氧体的其余制备方法的工艺参数均与实施例1相同。
对比例1
本对比例提供了一种宽温低损耗高强度MnZn功率铁氧体,除了以主成分的质量为基准时,第一辅助成分中Co 2O 3的含量为主成分的0.45wt%,辅助成分的质量为所述主成分的0.59wt%外,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
对比例2
本对比例提供了一种宽温低损耗高强度MnZn功率铁氧体,除了不含有第一辅助成分Co 2O 3,辅助成分的质量为所述主成分的0.14wt%外,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
对比例3
本对比例提供了一种宽温低损耗高强度MnZn功率铁氧体,除用等质量的Ni 2O 3替代Co 2O 3外,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
对比例4
本对比例提供了一种宽温低损耗高强度MnZn功率铁氧体,除用等质量的Cr 2O 3替代V 2O 5外,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
对比例5
本对比例提供了一种宽温低损耗高强度MnZn功率铁氧体,除用等质量的Cr 2O 3替代MoO 3外,其余成分与含量与实施例1相同。
所述宽温低损耗高强度MnZn功率铁氧体的制备方法的工艺参数与实施例1相同。
对实施例1-14以及对比例1-5提供的宽温低损耗高强度MnZn功率铁氧体使用X荧光分析仪,检测铁氧体的组成与原料组成一致,测试饱和磁通密度(Bs)、功耗以及强度。使用IWATSU-8258交流B-H分析仪在50Hz、1194A/m条件下 测试的宽温低损耗高强度MnZn功率铁氧体的饱和磁通密度。使用IWATSU-8218交流B-H分析仪在100kHz、200mT条件下测试铁氧体的功耗。使用NK-500强度测试仪在20mm/min、M法条件下测试铁氧体的强度,所得结果如表1所示。
表1
Figure PCTCN2022110189-appb-000001
由表1的实施例1-4可知,本申请提供的一种宽温低损耗高强度MnZn功率铁氧体的制备方法能够得到在25-120℃范围内具有336mW/cm 3以下的低损耗和102N以上的高强度的宽温低损耗高强度MnZn功率铁氧体。
由实施例5、6与实施例1的比较可知,实施例5制备的宽温低损耗高强度 MnZn功率铁氧体与实施例1的性能相似,实施例6制备的宽温低损耗高强度MnZn功率铁氧体性能不如实施例1,当辅助成分Co 2O 3添加含量超出0.35-0.4wt%优选范围时,功耗增加且强度降低。
由实施例7、8与实施例1的比较可知,当辅助成分V 2O 5添加含量超出0.042-0.07wt%的优选范围时,所得宽温低损耗高强度MnZn功率铁氧体的功耗增加且强度降低。
由实施例9、10与实施例1的比较可知,实施例9、10所得宽温低损耗高强度MnZn功率铁氧体的性能较实施例1差,辅助成分MoO 3的优选添加量为主成分的0.01-0.03wt%,当MoO 3的添加量超出范围时,所得宽温低损耗高强度MnZn功率铁氧体的功耗增加且强度降低。
由实施例11、12与实施例1的比较可知,实施例11制备的宽温低损耗高强度MnZn功率铁氧体较实施例1功耗高且强度低,实施例12制备的宽温低损耗高强度MnZn功率铁氧体较实施例1强度低,当烧结温度超出1290-1360℃的优选范围时,所得宽温低损耗高强度MnZn功率铁氧体的功耗增加或者强度降低。
由实施例13、14与实施例1的比较可知,实施例13、14制备的宽温低损耗高强度MnZn功率铁氧体性能不如实施例1,由此可知,当氧气分压超出0.01-1.5%的优选范围时,所得宽温低损耗高强度MnZn功率铁氧体的功耗增加或者强度降低。
由对比例1-3与实施例1的比较可知,对比例1-3制备的宽温低损耗高强度MnZn功率铁氧体性能远不如实施例1,且对比例2和3的性能不如对比例1,辅助成分中Co 2O 3需要控制为主成分的0.1-0.4wt%,优选为0.1-0.35wt%。同时,当辅助成分中不添加Co 2O 3时,所得宽温低损耗高强度MnZn功率铁氧体的性能最差。
由对比例4、5与实施例1的比较可知,辅助成分中的V、Mo与Co、Ca或Nb存在协同作用,使用其它元素对V与Mo进行等质量替换,所得得宽温低损耗高强度MnZn功率铁氧体的性能降低。
综上所述,本申请通过对宽温低损耗高强度MnZn功率铁氧体中特定含量的辅助成分的添加及其协同作用,得到能够在100kHz及200mT的条件下,25℃ 时的功耗≤350mW/cm 3,宽温25-120℃下具有低损耗、高磁通密度时的功耗≤350mW/cm 3;在1194A/m及50Hz的条件下,25℃时的饱和磁通密度≥535mT;并且强度提升10%以上的宽温低损耗高强度MnZn功率铁氧体,满足汽车电子产品对宽温低损耗以及高强度的性能要求。
本申请通过上述实施例来说明本申请的详细结构特征,但本申请并不局限于上述详细结构特征,即不意味着本申请必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (14)

  1. 一种宽温低损耗高强度MnZn功率铁氧体,其中,所述宽温低损耗高强度MnZn功率铁氧体由主成分和辅助成分组成;
    所述辅助成分的质量为所述主成分的0.165-0.61wt%;
    以摩尔百分数计,所述主成分包括:
    Fe 2O 3  51-54mol%
    MnO    35-38mol%
    ZnO    8-14mol%;
    所述辅助成分包括第一辅助成分与第二辅助成分;以所述主成分的总质量为基准,所述第一辅助成分为Co 2O 3:0.1-0.4wt%;所述第二辅助成分包括CaCO 3、Nb 2O 5、V 2O 5及MoO 3中的至少三种。
  2. 根据权利要求1所述的宽温低损耗高强度MnZn功率铁氧体,其中,以摩尔百分数计,所述主成分包括:
    Fe 2O 3  52-53mol%
    MnO    36-38mol%
    ZnO    9-12mol%。
  3. 根据权利要求1或2所述的宽温低损耗高强度MnZn功率铁氧体,其中,以所述主成分的总质量为基准,所述第二辅助成分包括:
    Figure PCTCN2022110189-appb-100001
  4. 根据权利要求1-3任一项所述的宽温低损耗高强度MnZn功率铁氧体,其中,以所述主成分的总质量为基准,所述辅助成分包括:
    Figure PCTCN2022110189-appb-100002
  5. 一种如权利要求1-4任一项所述宽温低损耗高强度MnZn功率铁氧体的制备方法,其包括:
    (1)按配方量称取主成分制备原料,对主成分制备原料进行一次砂磨、一 次喷雾造粒和预烧,得到预烧料;
    (2)按配方量称量辅助成分,与步骤(1)所得预烧料混合后得到混合料,进行二次砂磨,得到二次砂磨料;
    (3)步骤(2)所得二次砂磨料依次进行二次喷雾造粒、成型与烧结,得到所述宽温低损耗高强度MnZn功率铁氧体。
  6. 根据权利要求5所述的制备方法,其中,步骤(1)中所述一次砂磨的时间为20-60min,优选为40-60min。
  7. 根据权利要求5或6所述的制备方法,其中,步骤(1)所述一次砂磨时主成分制备原料与溶剂的质量比为(1.8-2.2):1。
  8. 根据权利要求5-7任一项所述的制备方法,其中,所述溶剂包括去离子水。
  9. 根据权利要求5-8任一项所述的制备方法,其中,步骤(1)所述一次砂磨后的粒度为0.6-1.5μm;
    优选地,步骤(1)所述一次喷雾造粒制备成颗粒料。
  10. 根据权利要求5-9任一项所述的制备方法,其中,步骤(1)所述预烧的温度为800-1030℃,优选为960-1020℃;
    优选地,步骤(1)所述预烧的时间为3-9h,优选为3-6h。
  11. 根据权利要求5-10任一项所述的制备方法,其中,步骤(2)所述二次砂磨时混合料与溶剂的质量比为2:(0.9-1.1);
    优选地,所述溶剂包括去离子水或蒸馏水;
    优选地,步骤(2)所述二次砂磨的时间为1-3h,优选为2-3h;
    优选地,步骤(2)所述二次砂磨的平均粒径为1.05-1.30μm。
  12. 根据权利要求5-11任一项所述的制备方法,其中,步骤(3)所述二次喷雾造粒的平均粒径为50-200μm,优选为80-150μm;
    优选地,步骤(3)所述烧结的温度为1290-1360℃,优选为1300-1360℃;
    优选地,步骤(3)所述烧结的时间为28-32h;
    优选地,步骤(3)所述烧结过程在混合气体环境下进行;
    优选地,所述混合气体包括氧气和氮气;
    优选地,所述混合气体中氧气的分压在致密化区域段为0.01-1.5%,优选为0.05-1.5%。
  13. 根据权利要求5-12任一项所述的制备方法,其包括:
    (1)按配方量称取主成分制备原料,一次砂磨20-60min使粒度为0.6-1.5μm,然后,经一次喷雾造粒制备得到颗粒料,在800-1030℃预烧3-9h,得到预烧料;
    (2)按配方量称量辅助成分,与步骤(1)所得预烧料混合添加溶剂后,二次砂磨1-3h,得到平均粒径为1.05-1.30μm的二次砂磨料;
    (3)步骤(2)所得二次砂磨料进行二次喷雾造粒成平均粒径为50-200μm的颗粒,成型,然后于1290-1360℃烧结,得到所述宽温低损耗高强度MnZn功率铁氧体;所述烧结在氧气和氮气的混合气氛下进行,混合气氛中氧气的分压为0.01-1.5%。
  14. 一种如权利要求1-4任一项所述宽温低损耗高强度MnZn功率铁氧体的应用,其中,所述宽温低损耗高强度MnZn功率铁氧体用于变压器。
PCT/CN2022/110189 2021-11-26 2022-08-04 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用 WO2023093123A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22897218.8A EP4365149A1 (en) 2021-11-26 2022-08-04 Wide-temperature low-loss high-strength mnzn power ferrite, and preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111420511.5 2021-11-26
CN202111420511.5A CN113956032B (zh) 2021-11-26 2021-11-26 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023093123A1 true WO2023093123A1 (zh) 2023-06-01

Family

ID=79472154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110189 WO2023093123A1 (zh) 2021-11-26 2022-08-04 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用

Country Status (3)

Country Link
EP (1) EP4365149A1 (zh)
CN (1) CN113956032B (zh)
WO (1) WO2023093123A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956032B (zh) * 2021-11-26 2023-06-02 横店集团东磁股份有限公司 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用
CN115073158B (zh) * 2022-07-07 2023-05-30 横店集团东磁股份有限公司 一种锰锌铁氧体材料及其制备方法与应用
CN115677337B (zh) * 2022-11-17 2023-10-03 横店集团东磁股份有限公司 一种功率铁氧体材料及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259316A (ja) * 1995-03-27 1996-10-08 Ngk Insulators Ltd マンガン−亜鉛系フェライトの製造方法
JP2009218314A (ja) * 2008-03-10 2009-09-24 Tdk Corp 電波吸収体
CN103496963A (zh) 2013-09-06 2014-01-08 江门安磁电子有限公司 一种不含Ni的兼具双重特性的MnZn铁氧体磁心及制造方法
CN107129291A (zh) 2017-06-15 2017-09-05 浙江大学 具有高频低温度系数低损耗MnZn软磁铁氧体材料及其制备方法
CN107573051A (zh) 2017-09-20 2018-01-12 横店集团东磁股份有限公司 一种不提高损耗改善MnZn功率铁氧体磁芯强度的方法
CN111978079A (zh) * 2020-07-21 2020-11-24 横店集团东磁股份有限公司 一种智能手表用无线充电磁芯及其制备方法
CN113277840A (zh) * 2021-05-10 2021-08-20 天通控股股份有限公司 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法
CN113314289A (zh) * 2021-05-28 2021-08-27 苏州威斯东山电子技术有限公司 一种宽温宽频应用锰锌低功率铁氧体材料及制备方法
CN113956032A (zh) * 2021-11-26 2022-01-21 横店集团东磁股份有限公司 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1308561A (fr) * 1960-03-14 1962-11-09 Siemens Ag Procédé de fabrication d'une ferrite magnétique à caractère isoperme
JP2005213092A (ja) * 2004-01-29 2005-08-11 Fdk Corp フェライト材料
CN102693807B (zh) * 2012-02-23 2015-04-08 横店集团东磁股份有限公司 一种超宽温低损耗高磁通密度MnZn功率铁氧体及其制备方法
CN102693803B (zh) * 2012-02-23 2017-02-15 横店集团东磁股份有限公司 一种宽温低损耗MnZn功率铁氧体及其制备方法
CN103771849B (zh) * 2014-01-06 2015-07-01 苏州冠达磁业有限公司 高频低损耗开关电源变压器用高性能软磁体
JP6472674B2 (ja) * 2015-02-03 2019-02-20 Fdk株式会社 NiMnZn系フェライト
CN104934181B (zh) * 2015-04-22 2017-09-22 横店集团东磁股份有限公司 一种软磁MnZn系功率铁氧体
CN108911733A (zh) * 2018-07-10 2018-11-30 横店集团东磁股份有限公司 一种低功耗高Bs高频MnZn铁氧体材料及其制备方法
CN109678485A (zh) * 2018-12-19 2019-04-26 南京中电熊猫磁电科技有限公司 一种具有较高强度的锰锌软磁铁氧体材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259316A (ja) * 1995-03-27 1996-10-08 Ngk Insulators Ltd マンガン−亜鉛系フェライトの製造方法
JP2009218314A (ja) * 2008-03-10 2009-09-24 Tdk Corp 電波吸収体
CN103496963A (zh) 2013-09-06 2014-01-08 江门安磁电子有限公司 一种不含Ni的兼具双重特性的MnZn铁氧体磁心及制造方法
CN107129291A (zh) 2017-06-15 2017-09-05 浙江大学 具有高频低温度系数低损耗MnZn软磁铁氧体材料及其制备方法
CN107573051A (zh) 2017-09-20 2018-01-12 横店集团东磁股份有限公司 一种不提高损耗改善MnZn功率铁氧体磁芯强度的方法
CN111978079A (zh) * 2020-07-21 2020-11-24 横店集团东磁股份有限公司 一种智能手表用无线充电磁芯及其制备方法
CN113277840A (zh) * 2021-05-10 2021-08-20 天通控股股份有限公司 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法
CN113314289A (zh) * 2021-05-28 2021-08-27 苏州威斯东山电子技术有限公司 一种宽温宽频应用锰锌低功率铁氧体材料及制备方法
CN113956032A (zh) * 2021-11-26 2022-01-21 横店集团东磁股份有限公司 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用

Also Published As

Publication number Publication date
CN113956032B (zh) 2023-06-02
EP4365149A1 (en) 2024-05-08
CN113956032A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2023093123A1 (zh) 一种宽温低损耗高强度MnZn功率铁氧体及其制备方法与应用
EP2383242B1 (en) MnZn FERRITE CORE AND MANUFACTURING METHOD THEREFOR
WO2022000663A1 (zh) 一种宽温低损耗MnZn铁氧体材料及其制备方法
JP2007070209A (ja) MnZn系フェライトの製造方法
JP2018517288A (ja) 軟磁性MnZn系電力フェライト
JP5767135B2 (ja) Mn−Zn系フェライトおよびトランス用磁心
JP2007238339A (ja) Mn−Zn系フェライト材料
WO2024104324A1 (zh) 一种镍锌铁氧体材料及其制备方法和应用
JP3597673B2 (ja) フェライト材料
WO2024103757A1 (zh) 一种功率铁氧体材料及其制备方法与应用
JP2004247370A (ja) MnZnフェライト
CN111362680A (zh) 一种高频低损耗FeMnZnNi铁氧体材料及其制备方法
JP5560436B2 (ja) MnZnNi系フェライト
JP2007311387A (ja) 酸化物磁性材料
KR20160022409A (ko) 페라이트 조성물, 이를 이용하는 페라이트 자성체 및 페라이트 자성체의 제조 방법
US20240051880A1 (en) Manganese zinc ferrite, preparation method therefor and use thereof
JPH07142222A (ja) 低損失Mn−Zn系ソフトフェライト
JP3597665B2 (ja) Mn−Niフェライト材料
JP2004247371A (ja) MnZnフェライト
JP2007031210A (ja) MnZnフェライト
JP2000327411A (ja) Ni−Zn系フェライトの製造方法
JP5458298B2 (ja) Mn−Zn系フェライト材料
JP2008169072A (ja) Mn−Zn系フェライト
JP3584437B2 (ja) Mn−Znフェライトの製造方法
EP4245738A1 (en) Sintered mnzn ferrite and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022897218

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022897218

Country of ref document: EP

Effective date: 20240130