WO2024104324A1 - 一种镍锌铁氧体材料及其制备方法和应用 - Google Patents

一种镍锌铁氧体材料及其制备方法和应用 Download PDF

Info

Publication number
WO2024104324A1
WO2024104324A1 PCT/CN2023/131446 CN2023131446W WO2024104324A1 WO 2024104324 A1 WO2024104324 A1 WO 2024104324A1 CN 2023131446 W CN2023131446 W CN 2023131446W WO 2024104324 A1 WO2024104324 A1 WO 2024104324A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
zinc ferrite
optionally
ferrite material
ppm
Prior art date
Application number
PCT/CN2023/131446
Other languages
English (en)
French (fr)
Inventor
陈军林
张利康
Original Assignee
横店集团东磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横店集团东磁股份有限公司 filed Critical 横店集团东磁股份有限公司
Publication of WO2024104324A1 publication Critical patent/WO2024104324A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present application relates to the technical field of soft ferrites, for example, a nickel-zinc ferrite material and a preparation method and application thereof.
  • Nickel-zinc (NiZn) power ferrite has the characteristics of high saturation magnetic induction intensity (Bs), high resistivity ( ⁇ ), low loss (Pcv), etc., and is widely used in various components, such as power transformers, choke coils, pulse broadband transformers, magnetic deflection devices and sensors.
  • the switching power supply transformer core made of NiZn power ferrite with high saturation magnetic induction intensity, high resistivity and low loss has become an indispensable component in computers, communications, color TVs, video recorders, office automation and other electronic equipment.
  • transistors in transformers can operate at frequencies of MHz and above, achieving more efficient power transmission and conversion, which can greatly promote the miniaturization, high frequency and energy saving of switching power supplies.
  • the nickel-zinc ferrite core material which is the core part of the transformer, also urgently needs to match the MHz-level operating frequency band of the third-generation semiconductor material.
  • the optimal application frequency of traditional power ferrite can be increased from several hundred kHz to MHz, not only can ultra-high-efficiency small switching power supplies be developed in various fields of civilian equipment to improve the efficiency and quality of various electrical appliances; but also in the field of military equipment, it can even develop ultra-small, high-efficiency power supplies that do not require heat dissipation devices, can adapt to more complex environments, provide higher conversion efficiency, and greatly reduce the burden of equipment transportation.
  • NiZn ferrite material with ultra-low loss and ultra-high conversion efficiency in the 13.56MHz frequency band is sought to be achieved.
  • CN105198396A discloses a NiCuZn ferrite material and a manufacturing method thereof, wherein the formula is composed of 47-49 mol% Fe2O3 , 15-22 mol% NiO , 25-30 mol% ZnO, 4-7 mol% CuO and 0.1-0.5 mol% Co2O3 .
  • the ferrite material has severe power loss at 13.56 MHz and is not suitable for practical applications.
  • CN109095915A discloses a method for preparing high-performance MnZn ferrite by combining In (Cd, Ga), Ni, Ti, and Co ions.
  • In the selected main component one or more secondary components including Ni, Ti, and Co are added; one or more secondary components including In, Cd, and Ga elements are added; and one or more secondary components including Ca and Si elements are added. It uses precious rare metals, which is expensive and not conducive to actual production.
  • the present application provides a nickel-zinc ferrite material and a preparation method and application thereof.
  • the present application adopts a suitable main formula correction process and adds appropriate low-cost correctors and functional additives to the ferrite material, which can significantly reduce the power loss of the prepared nickel-zinc ferrite material at 13.56MHz.
  • the present application provides a nickel-zinc ferrite material, the nickel -zinc ferrite material comprising a main material, a functional additive and a modifier, the main material comprising Fe2O3 , Ni2O3 , ZnO and CuO, the functional additive comprising any three or at least four of Mn3O4 , TiO2 , Ta2O5 , Co2O3 or Sm2O3
  • the amendment comprises Fe 2 O 3 and Ni 2 O 3 .
  • the raw materials and auxiliary additives in the nickel-zinc ferrite material described in this application are all general materials available on the market, and do not contain expensive rare metal oxides. Only a few common oxides such as Mn 3 O 4 , TiO 2 , Ta 2 O 5 , Co 2 O 3 , etc. are used as additives. The cost is low, the raw materials are independently controllable, and the risk is low. The power loss of the material at 13.56 MHz is optimized, and the power conversion efficiency of the material at 13.56 MHz is improved. It has the advantages of high magnetic permeability, high saturation magnetic flux density, and low loss.
  • the molar fraction of Fe 2 O 3 is 47.5-49.9%, for example, 47.5%, 47.8%, 48%, 49% or 49.9%.
  • the molar fraction of Ni 2 O 3 is 18.5-22.5%, for example, 18.5%, 19%, 19.5%, 20%, 21% or 22.5%.
  • the molar fraction of ZnO is 21.5-25.5%, for example, 21.5%, 22%, 23%, 24% or 25.5%.
  • the molar fraction of CuO is 3.5-7.5%, for example, 3.5%, 4%, 5%, 6% or 7.5%.
  • the added amount of Mn 3 O 4 is 1000-1100 ppm, for example, 1000 ppm, 1020 ppm, 1050 ppm, 1080 ppm or 1100 ppm.
  • the amount of TiO2 added is 0 to 150 ppm, for example, 0 ppm, 10 ppm, 20 ppm, 50 ppm, 100 ppm or 150 ppm.
  • the addition amount of Ta 2 O 5 is 300-500 ppm, for example, 300 ppm, 350 ppm, 400 ppm, 480 ppm or 500 ppm.
  • the addition amount of Co 2 O 3 is 1500-3500 ppm, for example, 1500 ppm, 1800 ppm, 2000 ppm, 2500 ppm or 3500 ppm.
  • the amount of Sm 2 O 3 added is 500-1200 ppm, for example, 500 ppm, 600 ppm, 800 ppm, 1000 ppm or 1200 ppm.
  • the added amount of Fe 2 O 3 is 1300-2100 ppm, for example, 1300 ppm, 1500 ppm, 1800 ppm, 2000 ppm or 2100 ppm.
  • the addition amount of Ni 2 O 3 is 1700-2300 ppm, for example, 1700 ppm, 1800 ppm, 2000 ppm, 2100 ppm or 2300 ppm.
  • the present application provides a method for preparing the nickel-zinc ferrite material as described in the first aspect, the preparation method comprising the following steps:
  • step (3) The material obtained after the granulation treatment in step (2) is pressed and sintered to obtain the nickel-zinc ferrite material.
  • neither the traditional abrasive method nor the planetary ball milling method in this application can avoid the increase of Zr element content in the powder caused by zirconium ball wear, which causes the main formula to shift, and the material's magnetic permeability, power loss , temperature characteristics and other properties are inconsistent with the expected design and difficult to control.
  • This application manually corrects the main formula component deviation caused by the related process by adding appropriate amounts of Fe2O3 and Ni2O3 , adopts a suitable main formula ratio, matches a suitable abrasive process, and adds a corresponding amount of main formula corrector, so that the loss of the prepared ferrite material at 13.56MHz is significantly reduced.
  • the wet mixing in step (1) comprises wet ball milling.
  • the zirconium balls used in the ball mill include three types: ⁇ 6 mm, ⁇ 14 mm, and ⁇ 22 mm. Various sizes of zirconium balls are mixed in a 1:1:1 ratio.
  • Mixing large, medium and small sized steel balls can reduce the gaps between zirconium balls during ball milling, which can not only effectively mix the raw materials evenly, but also help to make the particle size distribution of the raw materials more concentrated, avoid component segregation, and improve powder activity.
  • the ball milling comprises a planetary ball milling.
  • the ball-to-material ratio of the ball mill is 1:(2-4), for example: 1:2, 1:2.5, 1:3, 1:3.5 or 1:4, etc.
  • the operation mode of planetary ball mill is that the turntable revolves and the tank rotates in the opposite direction at the same time, which includes the collision between balls, the grinding between balls and tank body, and the impact of balls falling from high points to low points. Powders of different particle sizes and hardnesses can be effectively ground, and two different qualities of zirconium balls with high material-to-ball ratio are used.
  • the steel ball grinding can cover the entire tank body during ball milling, and the revolution and rotation directions can be switched every 10 minutes. The movement trajectories of powders and steel balls are not in a single direction, and any part of the powder can be ground.
  • the material-to-ball ratio is 1:2 ⁇ 3, and the sand milling or ball milling in a single direction, the planetary ball milling with a high material-to-ball ratio can effectively grind the powder particle size finely in a short time, and the particle size distribution is narrower and more uniform.
  • the pre-calcination temperature in step (1) is 850-980°C, for example, 850°C, 880°C, 900°C, 950°C or 980°C.
  • the pre-burning time is 2.5 to 3.5 hours, for example, 2.5 hours, 2.8 hours, 3 hours, 3.2 hours or 3.5 hours.
  • the pre-firing is followed by furnace cooling to room temperature.
  • the wet grinding time in step (2) is 90 to 150 min, for example, 90 min, 100 min, 120 min, 140 min or 150 min.
  • the mass concentration of the polyvinyl alcohol solution is 8-12 wt%, for example, 8 wt%, 9 wt%, 10 wt%, 11 wt% or 12 wt%.
  • the pressing in step (3) is preceded by screening.
  • the mesh size of the sieve for the sieving treatment is 40 to 100 meshes, for example, 40 meshes, 50 meshes, 60 meshes, 80 meshes or 100 meshes.
  • the density of the pressed material is ⁇ 3.0 g/cm 3 .
  • the sintering temperature in step (3) is 1050-1150°C, for example, 1050°C, 1080°C, 1100°C, 1120°C or 1150°C.
  • the sintering treatment time is 3 to 5 hours, for example: 3 hours, 3.5 hours, 4 hours, 4.5 hours or 5 hours.
  • the present application provides an application of the nickel-zinc ferrite as described in the first aspect, wherein the nickel-zinc ferrite material is used in the field of new energy vehicles, wireless charging or Internet of Things technology at 13.56 MHz.
  • the present application adopts a suitable main formula correction process and adds a suitable corrector to the ferrite material, which can significantly reduce the power loss of the prepared nickel-zinc ferrite material at 13.56 MHz.
  • the initial magnetic permeability of the nickel-zinc ferrite described in the present application is within the range of 100 ⁇ 25%, the saturation magnetic flux density at 25°C is ⁇ 420mT, the saturation magnetic flux density at 100°C is ⁇ 360mT, and the core loss at 13.56MHz, 30mT/25°C, can reach below 346kW/m3, the core loss at 20mT/25°C can reach below 279kW/ m3 , the core loss at 30mT/100°C can reach below 436kW/ m3 , and the core loss at 20mT/100°C can reach below 388kW/ m3 .
  • This embodiment provides a nickel-zinc ferrite material, wherein the main material composition of the nickel-zinc ferrite material is ZnO: 23.5 mol%, Fe 2 O 3 : 49.5 mol%, Ni 2 O 3 : 20.5 mol%, and CuO: 6.5 mol%.
  • the preparation method of the nickel-zinc ferrite material is as follows:
  • Fe 2 O 3 , Ni 2 O 3 , ZnO and CuO are weighed and mixed according to the above ratio, and then wet ball milled and mixed, and zirconium balls of three sizes of ⁇ 6 mm, ⁇ 14 mm and ⁇ 22 mm are selected and mixed in a ratio of 1:1:1, and the material-ball ratio is 1:3 to obtain slurry, and the slurry is dried, pre-calcined at 950° C. for 3 h in an air atmosphere, and cooled to room temperature with the furnace to obtain powder;
  • step (3) According to the weight ratio of the powder obtained after pre-calcination in step (3), analytically pure auxiliary functional additives Mn 3 O 4 , TiO 2 , Ta 2 O 5 , Co 2 O 3 and main formula modifiers Fe 2 O 3 , Ni 2 O 3 are weighed and added to the powder to obtain a doped powder; wherein the adding ratio is, based on the weight of the powder obtained in step (3), 1050ppm Mn 3 O 4 , 100ppm TiO 2 , 400ppm Ta 2 O 5 , 2500ppm Co 2 O 3 , 1700ppm Fe 2 O 3 , 2000ppm Ni 2 O 3
  • the obtained material was placed in a planetary ball mill for wet ball milling for 120 minutes.
  • the zirconium balls were ⁇ 4 mm and ⁇ 5 mm steel balls in a 1:1 ratio, and the material-ball ratio was 1:7 to obtain a slurry.
  • a 10 wt% polyvinyl alcohol (PVA) solution was added. After mixing in a mortar, the mixture was pre-pressed into a round cake shape using a press to fully mix the polyvinyl alcohol (PVA) solution and the dried powder.
  • the obtained powder is passed through an 80-mesh sieve and then pressed into a solid annular green body with a density ⁇ 3.0 g/cm 3.
  • the obtained green body is sintered in a bell-type air sintering furnace at a sintering temperature of 1040° C. and a holding time of 4 h to obtain the nickel-zinc ferrite material.
  • the difference between this embodiment and embodiment 1 is that the contents of Fe 2 O 3 , Ni 2 O 3 and CuO are 49 mol%, 22.5 mol% and 5 mol% respectively. Since the change of the contents of Fe 2 O 3 and ZnO in the main formula will directly affect the temperature characteristics of the material, the temperature range of the best performance of the material will be offset. The temperature always falls within the range of 25-100°C.
  • the doping amount of the Co 2 O 3 additive having the same modification effect needs to be adjusted according to the embodiment, so the addition amount of cobalt is changed to 2500ppm.
  • the other conditions and parameters are exactly the same as those in embodiment 1.
  • the difference between this embodiment and embodiment 1 is that the contents of Fe 2 O 3 , Ni 2 O 3 and CuO used are 47.5 mol%, 22.0 mol% and 7 mol% respectively. Since the changes in the contents of Fe 2 O 3 and ZnO in the main formula will directly affect the temperature characteristics of the material, the temperature range of the best performance of the material will be offset. In order to make the temperature range of the best performance always fall within the range of 25 to 100° C., the doping amount of the Co 2 O 3 additive with the same modification effect needs to be adjusted according to the embodiment, so the addition amount of cobalt is changed to 1500 ppm. The other conditions and parameters are exactly the same as those in embodiment 1.
  • the difference between this embodiment and embodiment 1 is that the contents of Fe 2 O 3 , Ni 2 O 3 , ZnO and CuO used are 49.5 mol%, 18.6 mol%, 25.5 mol% and 6.4 mol%, respectively. Since the changes in the contents of Fe 2 O 3 and ZnO in the main formula will directly affect the temperature characteristics of the material, the temperature range of the best performance of the material will be offset. In order to make the temperature range of the best performance always fall within the range of 25 to 100° C., the doping amount of the Co 2 O 3 additive with the same modification effect needs to be adjusted according to the embodiment, so the addition amount of cobalt is changed to 3000 ppm. The other conditions and parameters are exactly the same as those in embodiment 1.
  • the difference between this embodiment and embodiment 1 is that the contents of Fe 2 O 3 , Ni 2 O 3 , ZnO and CuO used are 49.9 mol%, 22.5 mol%, 21.5 mol% and 6.1 mol%, respectively. Since the changes in the contents of Fe 2 O 3 and ZnO in the main formula will directly affect the temperature characteristics of the material, the temperature range of the best performance of the material will be offset. In order to make the temperature range of the best performance always fall within the range of 25 to 100° C., the doping amount of the Co 2 O 3 additive with the same modification effect needs to be adjusted according to the embodiment, so the addition amount of cobalt is changed to 2000 ppm. The other conditions and parameters are exactly the same as those in embodiment 1.
  • the wet ball milling time in step (2) is 90 minutes
  • the zirconium ball wears out less iron than that in embodiment 2
  • the main formula modifiers Fe2O3 and Ni2O3 are added in amounts of 1300ppm and 1700ppm, and the other conditions and parameters are exactly the same as those in embodiment 1.
  • the wet ball milling time in step (2) is 150 minutes
  • the zirconium ball wears out less iron than that in embodiment 2
  • the main formula modifiers Fe2O3 and Ni2O3 are added in amounts of 2100ppm and 2300ppm, and the other conditions and parameters are exactly the same as those in embodiment 1.
  • Example 2 The only difference between this comparative example and Example 2 is that no correcting agent is added, and the other conditions and parameters are exactly the same as those of Example 1.
  • Example 2 The only difference between this comparative example and Example 2 is that Fe 2 O 3 is added as a correcting agent, and the other conditions and parameters are exactly the same as those of Example 1.
  • Example 2 The only difference between this comparative example and Example 2 is that Ni 2 O 3 is added as a correcting agent, and the other conditions and parameters are exactly the same as those of Example 1.
  • Example 2 The only difference between this comparative example and Example 2 is that no functional additive is added, and other conditions and parameters are exactly the same as those of Example 1.
  • Example 2 The difference between this comparative example and Example 2 is that only two functional additives, Mn 3 O 4 and Co 2 O 3, are added, and other conditions and parameters are exactly the same as those in Example 1.
  • Example 1-7 and Comparative Examples 1-2 were tested for their actual magnetic permeability at 1 KHz/0.25 V, their magnetic flux density at 25 and 100 ° C was tested respectively, and the unit volume loss Pcv was tested using a Japanese Iwasaki SY8218 B-H tester. Then, Example 8 and Comparative Examples 1-5 were selectively tested to obtain the initial magnetic permeability and the core loss at 30 mT of the samples. The test results are shown in Table 1:
  • the initial magnetic permeability of the nickel-zinc ferrite described in the present application is within the range of 100 ⁇ 25%
  • the saturation magnetic flux density at 25°C is ⁇ 420mT
  • the saturation magnetic flux density at 100°C is ⁇ 360mT
  • the core loss at 13.56MHz , 30mT/25°C can reach below 346kW/m3
  • the core loss at 20mT/25°C can reach below 279kW/ m3
  • the core loss at 30mT/100°C can reach below 436kW/ m3
  • the core loss at 20mT/100°C can reach below 388kW/ m3 .
  • Example 1 By comparing Example 1 with Examples 6-7, it can be seen that the present application can adjust the amount of the corrector added by the ball milling time, the method is flexible and controllable, and the effect is very obvious.
  • Example 2 By comparing Example 2 and Example 8, it can be seen that in the preparation process of the nickel-zinc ferrite described in the present application, the grinding method has a very obvious effect on the obtained ferrite. If the ball milling method adopts traditional sand milling instead of planetary ball milling, there are obvious deficiencies in both loss and magnetic permeability performance.
  • the planetary ball mill with a high material-to-ball ratio used in the present application can effectively grind the powder particle size into finer particles in a short time and make the particle size distribution narrower and more uniform.
  • Example 2 By comparing Example 2 with Comparative Examples 1-3 , it can be seen that in the absence of Fe2O3 and/or Ni2O3 correction, the loss temperature performance of the nickel-zinc ferrite material obtained changes, and the loss at 25 °C and 100°C increases.
  • the present application adopts a suitable main formula correction process to significantly reduce the power loss at 13.56MHz.
  • Example 2 From the comparison between Example 2 and Comparative Examples 4-5, it can be seen that the present application appropriately adds a variety of functional additives to the nickel-zinc ferrite material, among which adding an appropriate amount of Mn 3 O 4 can greatly increase the resistivity and improve the power consumption characteristics; adding an appropriate amount of TiO 2 can curb the participation of Fe 2+ in the conductive mechanism, reduce material loss, and reduce the sintering temperature without promoting grain growth, thereby improving the comprehensive magnetic properties; adding a small amount of Co 2 O 3 can improve the frequency and loss characteristics of the material, among which Co 2+ forms uniaxial anisotropy, causing a deep energy valley, freezing the domain wall, thereby increasing the domain wall resonance frequency; adding an appropriate amount of Sm 2 O 3 can effectively control the magnetostriction coefficient of the material; and adding an appropriate amount of Ta 2 O 5 can make the temperature curve flatter.
  • adding an appropriate amount of Mn 3 O 4 can greatly increase the resistivity and improve the power consumption characteristics
  • adding an appropriate amount of TiO 2 can curb the participation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本申请提供了一种镍锌铁氧体材料及其制备方法和应用,所述镍锌铁氧体材料包括主材、功能添加剂和修正剂,所述主材包括Fe2O3、Ni2O3、ZnO和CuO,所述功能添加剂包括Mn3O4、TiO2、Ta2O5、Co2O3或Sm2O3中的任意三种或至少四种的组合,所述修正剂包括Fe2O3和Ni2O3,本申请采用合适的主配方修正工艺,在铁氧体材料中加入适当的廉价修正剂和功能添加剂,可以使制得镍锌铁氧体材料在13.56MHz时的功率损耗显著降低。

Description

一种镍锌铁氧体材料及其制备方法和应用 技术领域
本申请涉及软磁铁氧体技术领域,例如一种镍锌铁氧体材料及其制备方法和应用。
背景技术
镍锌(NiZn)功率铁氧体具有高饱和磁感应强度(Bs)、高电阻率(ρ)、低损耗(Pcv)等特性,被广泛应用到各种元器件中,如功率变压器、扼流线圈、脉冲宽带变压器、磁偏转装置和传感器等。尤其,利用NiZn功率铁氧体高饱和磁化强度、高电阻率和低损耗等特性制成的开关电源变压器磁芯,已经成为计算机、通讯、彩电、录像机、办公自动化及其它电子设备中一种不可缺少的元件。
高频化是电力电子技术的重要标志,提高工作频率可以减小变压器的体积和重量,在相同磁通密度下,提高一倍的频率可以使变压器磁芯的截面积减小一半,典型的例子就是6.78MHz 75W的开关电源体积是13.56MHz 75W的开关电源体积的一半,这就大大节约的空间,达到了资源的有效利用。
随着第三代半导体SiC、GaN等宽禁带材料在变压器中的应用,使变压器中晶体管能够在MHz及以上的频率下工作,实现更高效的功率传输和转换,可以极大地促进开关电源小型化、高频化、节能化。
对应地,作为变压器核心部分的镍锌铁氧体磁心材料,也迫切需要匹配第三代半导体材料MHz级别的工作频段,若是也能将传统功率铁氧体的最佳应用频率从几百kHz提升至MHz,不仅在各类民生设备领域能够开发出超高效率的小型开关电源,提升各类电器的效率与品质;而且在军工设备领域甚至可以开发出体积超小,不需要散热装置的高效率电源,能够适应更多复杂的环境,提供更高转换效率,并极大减轻设备运输负担。
更重要的是,随新能源汽车、无线快充、物联网等未来新型技术领域的飞速发展,需要高效率、高密度的信号、能量转换和传递,还需要避开其他低频干扰信息,尤其追求一款能够在13.56MHz频段具有超低损耗、超高转换效率的NiZn铁氧体材料来实现。
CN105198396A公开了一种NiCuZn系铁氧体材料及其制造方法,配方采用47~49mol%Fe2O3,15~22mol%NiO,25~30mol%ZnO,4~7mol%CuO和0.1-0.5mol%的Co2O3组成。其所述铁氧体材料在13.56MHz下功率损耗严重,不适用于实际应用。
CN109095915A公开了一种制备高性能MnZn铁氧体的In(Cd,Ga)、Ni、Ti、Co离子联合替代方法。在选定的主成分中,添加包含Ni、Ti、Co一种或多种的副成分;添加包含In、Cd、Ga元素一种或多种的副成分;添加包含Ca、Si元素一种或多种的副成分。其采用贵重的稀有金属,造价较高不利于实际生产。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种镍锌铁氧体材料及其制备方法和应用,本申请采用合适的主配方修正工艺,在铁氧体材料中加入适当的廉价修正剂和功能添加剂,可以使制得镍锌铁氧体材料在13.56MHz时的功率损耗显著降低。
第一方面,本申请提供了一种镍锌铁氧体材料,所述镍锌铁氧体材料包括主材、功能添加剂和修正剂,所述主材包括Fe2O3、Ni2O3、ZnO和CuO,所述功能添加剂包括Mn3O4、TiO2、Ta2O5、Co2O3或Sm2O3中的任意三种或至少四 种的组合,所述修正剂包括Fe2O3和Ni2O3
本申请所述镍锌铁氧体材料中的原材料和辅助添加剂均采用市面可购买的一般材料,且不含价格昂贵的稀有金属氧化物,仅使用Mn3O4、TiO2、Ta2O5、Co2O3等少数几种普通常见氧化物作为添加物,成本低且原材料自主可控,风险低,优化了13.56MHz下材料的功率损耗,提升材料13.56MHz下功率转化效率,具有高磁导率、高饱和磁通密度、低损耗的优点。
在一个实施方式中,以所述主材的摩尔量为100%计,所述Fe2O3的摩尔分数为47.5~49.9%,例如:47.5%、47.8%、48%、49%或49.9%等。
在一个实施方式中,所述Ni2O3的摩尔分数为18.5~22.5%,例如:18.5%、19%、19.5%、20%、21%或22.5%等。
在一个实施方式中,所述ZnO的摩尔分数为21.5~25.5%,例如:21.5%、22%、23%、24%或25.5%等。
在一个实施方式中,所述CuO的摩尔分数为3.5~7.5%,例如:3.5%、4%、5%、6%或7.5%等。
在一个实施方式中,以所述主材预烧后的总重量计,所述Mn3O4的添加量为1000~1100ppm,例如:1000ppm、1020ppm、1050ppm、1080ppm或1100ppm等。
在一个实施方式中,所述TiO2的添加量为0~150ppm,例如:0ppm、10ppm、20ppm、50ppm、100ppm或150ppm等。
在一个实施方式中,所述Ta2O5的添加量为300~500ppm,例如:300ppm、350ppm、400ppm、480ppm或500ppm等。
在一个实施方式中,所述Co2O3的添加量为1500~3500ppm,例如:1500ppm、1800ppm、2000ppm、2500ppm或3500ppm等。
在一个实施方式中,所述Sm2O3的添加量为500~1200ppm,例如:500ppm、600ppm、800ppm、1000ppm或1200ppm等。
在一个实施方式中,以所述主材预烧后的总重量计,所述Fe2O3的添加量为1300~2100ppm,例如:1300ppm、1500ppm、1800ppm、2000ppm或2100ppm等。
在一个实施方式中,所述Ni2O3的添加量为1700~2300ppm,例如:1700ppm、1800ppm、2000ppm、2100ppm或2300ppm等。
第二方面,本申请提供了一种如第一方面所述镍锌铁氧体材料的制备方法,所述制备方法包括以下步骤:
(1)将主材湿法混合得到浆料,将所述浆料干燥后进行预烧处理,得到粉料;
(2)将功能添加剂和修正剂与粉料混合,湿法研磨后烘干,加入聚乙烯醇溶液,进行造粒处理;
(3)将步骤(2)所述造粒处理后得到的物料压制后,经烧结处理得到所述镍锌铁氧体材料。
在相关磨料工艺中,无论是传统磨料方式还是本申请中行星式球磨方式均无法避免锆球磨损导致的粉体中Zr元素成分增多,使主配方发生偏移,材料的磁导率、功率损耗、温度特性等性能与预期设计不符,难于控制。本申请针对相关工艺导致的主配方成分偏移通过加入适量的Fe2O3和Ni2O3进行手动修正,采用合适的主配方配比,搭配合适的磨料工艺,添加对应适量的主配方修正剂,使得所制得的铁氧体材料在13.56MHz下的损耗显著降低。
在一个实施方式中,步骤(1)所述湿法混合包括湿法球磨。
在一个实施方式中,所述球磨使用的锆球包括Φ6mm、Φ14mm、Φ22mm三 种尺寸锆球1∶1∶1混搭。
大中小三种尺寸钢球混搭可以使球磨时锆球与锆球之间的缝隙更少,不仅能有效将原材料混合均匀,而且还有利于原材料颗粒尺寸分布更为集中,避免成分偏析,提高粉体活性。
在一个实施方式中,所述球磨包括行星式球磨。
在一个实施方式中,所述球磨的球料比为1∶(2~4),例如:1∶2、1∶2.5、1∶3、1∶3.5或1∶4等。
行星式球磨运作方式是转盘的公转与罐体反方向的自转两部分同时进行,包含了球与球之间的碰撞、球与罐体间的碾磨以及球体在高点往低点掉落的砸击,对不同颗粒尺寸与不同硬度的粉料都能有效碾细,再搭配高料球比的两种不同质量的锆球,球磨时钢球碾磨可以覆盖整个罐体,而且可选每10min切换公转与自转方向,粉料与钢球的运动轨迹非单一方向,粉体任意部分都可以被碾磨到,相较于传统磨料方式,料球比1∶2~3,单一方向的砂磨或球磨,采用高料球比的行星式球磨能有效在短时间内将粉料粒径磨细、粒度分布更窄更均匀。
在一个实施方式中,步骤(1)所述预烧的温度为850~980℃,例如:850℃、880℃、900℃、950℃或980℃等。
在一个实施方式中,所述预烧的时间为2.5~3.5h,例如:2.5h、2.8h、3h、3.2h或3.5h等。
在一个实施方式中,所述预烧后随炉冷却至室温。
在一个实施方式中,步骤(2)所述湿法研磨的时间为90~150min,例如:90min、100min、120min、140min或150min等。
在一个实施方式中,所述聚乙烯醇溶液的质量浓度为8~12wt%,例如:8wt%、9wt%、10wt%、11wt%或12wt%等。
在一个实施方式中,步骤(3)所述压制前进行过筛处理。
在一个实施方式中,所述过筛处理的筛网目数为40~100目,例如:40目、50目、60目、80目或100目等。
在一个实施方式中,所述压制后物料的密度≥3.0g/cm3
在一个实施方式中,步骤(3)所述烧结处理的温度为1050~1150℃,例如:1050℃、1080℃、1100℃、1120℃或1150℃等。
在一个实施方式中,所述烧结处理的时间为3~5h,例如:3h、3.5h、4h、4.5h或5h等。
第三方面,本申请提供了一种如第一方面所述镍锌铁氧体的应用,所述镍锌铁氧体材料用于13.56MHz下的新能源汽车、无线充电或物联网技术领域。
相对于相关技术,本申请具有以下有益效果:
(1)本申请采用合适的主配方修正工艺,在铁氧体材料中加入适当的修正剂,可以使制得镍锌铁氧体材料在13.56MHz时的功率损耗显著降低。
(2)本申请所述镍锌铁氧体的起始磁导率处在100±25%范围内,25℃饱和磁通密度≥420mT,100℃饱和磁通密度≥360mT,13.56MHz,30mT/25℃下磁心损耗可达346kW/m3以下,20mT/25℃下磁心损耗可达279kW/m3以下,30mT/100℃下磁心损耗可达436kW/m3以下,20mT/100℃下磁心损耗可达388kW/m3以下。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种镍锌铁氧体材料,所述镍锌铁氧体材料的主材组成为ZnO:23.5mol%,Fe2O3:49.5mol%,Ni2O3:20.5mol%,CuO:6.5mol%,所述镍锌铁氧体材料的制备方法如下:
(1)按上述配比称取Fe2O3、Ni2O3、ZnO、CuO四种原材料混合后湿法球磨混合,选用Φ6mm、Φ14mm、Φ22mm三种尺寸锆球1∶1∶1混搭,料球比为1∶3,得到浆料,将浆料烘干,在空气气氛下950℃预烧保温3h,并随炉冷却至室温,得到粉料;
(2)按步骤(3)预烧后所得到的粉料的重量比例称取分析纯的辅助功能添加剂Mn3O4、TiO2、Ta2O5、Co2O3以及主配方修正剂Fe2O3、Ni2O3,并掺入粉料中,得到掺杂粉料;其中,掺入比例为,以称取的步骤(3)所得到的粉料的重量为基准:1050ppmMn3O4、100ppm TiO2、400ppmTa2O5、2500ppmCo2O3,1700ppm Fe2O3,2000ppm Ni2O3,将得到的物料置于行星式球磨机中湿法球磨120min,锆球为Φ4mm、Φ5mm两种尺寸钢球1∶1混搭,料球比为1∶7,得到浆料,烘干后加入10wt%的聚乙烯醇(PVA)溶液,在研钵中混合后用压机预压成圆饼状,使聚乙烯醇(PVA)溶液与烘干后的粉料充分混合均匀;
(3)将得到的粉料过80目筛后压制成密度≥3.0g/cm3的实心环状生坯,将所得的生坯在钟罩式空气烧结炉中烧结,烧结温度1040℃,保温时间4h,得到所述镍锌铁氧体材料。
实施例2
本实施例与实施例1区别仅在于,采用Fe2O3、Ni2O3、CuO含量分别为49mol%、22.5mol%、5mol%,由于主配方中Fe2O3、ZnO含量的变化会直接影响到材料的温度特性,材料最佳性能温度区间会出现偏移,为使最佳性能温度区 间始终落在25~100℃范围内,有同样改性作用的Co2O3添加剂掺杂量需根据实施例调整,故钴的添加量变为2500ppm,其他条件与参数与实施例1完全相同。
实施例3
本实施例与实施例1区别仅在于,采用Fe2O3、Ni2O3、CuO含量分别为47.5mol%、22.0mol%、7mol%,由于主配方中Fe2O3、ZnO含量的变化会直接影响到材料的温度特性,材料最佳性能温度区间会出现偏移,为使最佳性能温度区间始终落在25~100℃范围内,有同样改性作用的Co2O3添加剂掺杂量需根据实施例调整,故钴的添加量变为1500ppm,其他条件与参数与实施例1完全相同。
实施例4
本实施例与实施例1区别仅在于,采用Fe2O3、Ni2O3、ZnO、CuO含量分别为49.5mol%、18.6mol%、25.5mol%、6.4mol%,由于主配方中Fe2O3、ZnO含量的变化会直接影响到材料的温度特性,材料最佳性能温度区间会出现偏移,为使最佳性能温度区间始终落在25~100℃范围内,有同样改性作用的Co2O3添加剂掺杂量需根据实施例调整,故钴的添加量变为3000ppm,其他条件与参数与实施例1完全相同。
实施例5
本实施例与实施例1区别仅在于,采用Fe2O3、Ni2O3、ZnO、CuO含量分别为49.9mol%、22.5mol%、21.5mol%、6.1mol%,由于主配方中Fe2O3、ZnO含量的变化会直接影响到材料的温度特性,材料最佳性能温度区间会出现偏移,为使最佳性能温度区间始终落在25~100℃范围内,有同样改性作用的Co2O3添加剂掺杂量需根据实施例调整,故钴的添加量变为2000ppm,其他条件与参数与实施例1完全相同。
实施例6
本实施例与实施例2区别仅在于,步骤(2)所述湿法球磨的时间为90min,锆球磨损掉铁较实施例2少,主配方修正剂Fe2O3、Ni2O3掺量为1300ppm和1700ppm,其他条件与参数与实施例1完全相同。
实施例7
本实施例与实施例2区别仅在于,步骤(2)所述湿法球磨的时间为150min,锆球磨损掉铁较实施例2少,主配方修正剂Fe2O3、Ni2O3掺量为2100ppm和2300ppm,其他条件与参数与实施例1完全相同。
实施例8
本实施例与实施例2区别仅在于,步骤(2)所述湿法球磨换为传统的砂磨,其他条件与参数与实施例1完全相同。
对比例1
本对比例与实施例2区别仅在于,不加入修正剂,其他条件与参数与实施例1完全相同。
对比例2
本对比例与实施例2区别仅在于,加入Fe2O3一种修正剂,其他条件与参数与实施例1完全相同。
对比例3
本对比例与实施例2区别仅在于,加入Ni2O3一种修正剂,其他条件与参数与实施例1完全相同。
对比例4
本对比例与实施例2区别仅在于,不加入功能添加剂,其他条件与参数与实施例1完全相同。
对比例5
本对比例与实施例2区别仅在于,仅加入Mn3O4和Co2O3两种功能添加剂,其他条件与参数与实施例1完全相同。
性能测试:
对实施例1-7和对比例1-2得到的样品,在1KHz/0.25V下测试其其实磁导率,分别测试其在25和100℃下的磁通密度并采用日本岩崎SY8218 B-H测试仪测试单位体积损耗Pcv,再选择性的测试实施例8和对比例1-5得到样品的起始磁导率和30mT下的磁芯损耗,测试结果如表1所示:
表1

由表1可以看出,由实施例1-7可得,本申请所述镍锌铁氧体的起始磁导率处在100±25%范围内,25℃饱和磁通密度≥420mT,100℃饱和磁通密度≥360mT,13.56MHz,30mT/25℃下磁心损耗可达346kW/m3以下,20mT/25℃下磁心损耗可达279kW/m3以下,30mT/100℃下磁心损耗可达436kW/m3以下,20mT/100℃下磁心损耗可达388kW/m3以下。
由实施例1和实施例6-7对比可得,本申请可以通过球磨时间来调整修正剂的添加量,方法灵活可控,且效果十分明显。
由实施例2和实施例8对比可得,本申请所述镍锌铁氧体的制备过程中,研磨方式对制得铁氧体的影响非常明显,如果球磨方式采用传统砂磨,不采用行星式球磨,无论在损耗还是磁导率性能方面均存在明显不足,本申请采用高料球比的行星式球磨能有效在短时间内将粉料粒径磨细、粒度分布更窄更均匀。
由实施例2和对比例1-3对比可得,再缺少Fe2O3和/或Ni2O3修正的情况下,制得镍锌铁氧体材料损耗温度性能出现变化,25℃、100℃损耗增大,本申请采用合适的主配方修正工艺,可以使13.56MHz时的功率损耗显著降低。
由实施例2和对比例4-5对比可以看出,本申请在镍锌铁氧体材料中适当加入多种功能添加剂,其中添加适量Mn3O4可以大幅度提高电阻率,改善功耗特性;添加适量TiO2能遏制Fe2+参与导电机制,降低材料损耗,并能降低烧结温度而不促使晶粒的生长,从而改善综合磁性能;添加少量的Co2O3可以改善材料的频率和损耗特性,其中Co2+形成单轴各向异性,造成很深的能谷,冻结畴壁,从而提高畴壁共振频率;添加适量的Sm2O3可以有效控制材料的磁致伸缩系数;而适量添加Ta2O5则可以使温度曲线更趋平坦。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种镍锌铁氧体材料,其中,所述镍锌铁氧体材料包括主材、功能添加剂和修正剂,所述主材包括Fe2O3、Ni2O3、ZnO和CuO,所述功能添加剂包括Mn3O4、TiO2、Ta2O5、Co2O3或Sm2O3中的任意三种或至少四种的组合,所述修正剂包括Fe2O3和Ni2O3
  2. 如权利要求1所述的镍锌铁氧体材料,其中,以所述主材的摩尔量为100%计,所述Fe2O3的摩尔分数为47.5~49.9%。
  3. 如权利要求1或2所述的镍锌铁氧体材料,其中,以所述主材的摩尔量为100%计,所述Ni2O3的摩尔分数为18.5~22.5%。
  4. 如权利要求1-3任一项所述的镍锌铁氧体材料,其中,以所述主材的摩尔量为100%计,所述ZnO的摩尔分数为21.5~25.5%。
  5. 如权利要求1-4任一项所述的镍锌铁氧体材料,其中,所述CuO的摩尔分数为3.5~7.5%。
  6. 如权利要求1-5任一项所述的镍锌铁氧体材料,其中,以所述主材预烧后的总重量计,所述Mn3O4的添加量为1000~1100ppm;
    可选地,所述TiO2的添加量为0~150ppm;
    可选地,所述Ta2O5的添加量为300~500ppm;
    可选地,所述Co2O3的添加量为1500~3500ppm;
    可选地,所述Sm2O3的添加量为500~1200ppm。
  7. 如权利要求1-6任一项所述的镍锌铁氧体材料,其中,以所述主材预烧后的总重量计,所述Fe2O3的添加量为1300~2100ppm;
    可选地,所述Ni2O3的添加量为1700~2300ppm。
  8. 一种如权利要求1-7任一项所述镍锌铁氧体材料的制备方法,其包括以下步骤:
    (1)将主材湿法混合得到浆料,将所述浆料干燥后进行预烧处理,得到粉料;
    (2)将功能添加剂和修正剂与粉料混合,湿法研磨后烘干,加入聚乙烯醇溶液,进行造粒处理;
    (3)将步骤(2)所述造粒处理后得到的物料压制后,经烧结处理得到所述镍锌铁氧体材料。
  9. 如权利要求8所述的制备方法,其中,步骤(1)所述湿法混合包括湿法球磨。
  10. 如权利要求9所述的制备方法,其中,所述球磨使用的锆球包括Φ6mm、Φ14mm、Φ22mm三种尺寸锆球1∶1∶1混搭;
    可选地,所述球磨包括行星式球磨;
    可选地,所述球磨的球料比为1∶(2~4)。
  11. 如权利要求8-10任一项所述的制备方法,其中,步骤(1)所述预烧的温度为850~980℃;
    可选地,所述预烧的时间为2.5~3.5h;
    可选地,所述预烧后随炉冷却至室温。
  12. 如权利要求8-11任一项所述的制备方法,其中,步骤(2)所述湿法研磨的时间为90~150min;
    可选地,所述聚乙烯醇溶液的质量浓度为8~12wt%。
  13. 如权利要求8-12任一项所述的制备方法,其中,步骤(3)所述压制前进行过筛处理;
    可选地,所述过筛处理的筛网目数为40~100目;
    可选地,所述压制后物料的密度≥3.0g/cm3
  14. 如权利要求8-13任一项所述的制备方法,其中,所述烧结处理的温度为1050~1150℃;
    可选地,所述烧结处理的时间为3~5h。
  15. 一种如权利要求1-7任一项所述镍锌铁氧体材料的应用,其中,所述镍锌铁氧体材料用于13.56MHz下的新能源汽车、无线充电或物联网技术领域。
PCT/CN2023/131446 2022-11-17 2023-11-14 一种镍锌铁氧体材料及其制备方法和应用 WO2024104324A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211458597.5 2022-11-17
CN202211458597.5A CN115894005B (zh) 2022-11-17 2022-11-17 一种镍锌铁氧体材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024104324A1 true WO2024104324A1 (zh) 2024-05-23

Family

ID=86483632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131446 WO2024104324A1 (zh) 2022-11-17 2023-11-14 一种镍锌铁氧体材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115894005B (zh)
WO (1) WO2024104324A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894005B (zh) * 2022-11-17 2023-09-08 横店集团东磁股份有限公司 一种镍锌铁氧体材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101386530A (zh) * 2008-10-16 2009-03-18 广东风华高新科技股份有限公司 一种镍锌软磁铁氧体材料及其制备方法
KR20090061555A (ko) * 2007-12-11 2009-06-16 루유안 동양구앙 마그네틱 머티리얼 컴퍼니 리미티드 일종의 니켈 동 아연 페라이트 및 그 제조방법
CN101552074A (zh) * 2009-01-04 2009-10-07 贵阳晶华电子材料有限公司 一种NiZnCu铁氧体材料及其制备方法
CN108164260A (zh) * 2018-01-15 2018-06-15 上海安费诺永亿通讯电子有限公司 一种无线充电用镍锌软磁铁氧体及其制备方法、应用
CN113636838A (zh) * 2021-09-15 2021-11-12 横店集团东磁股份有限公司 一种镍锌铁氧体材料及制备方法和应用
CN114634356A (zh) * 2022-03-14 2022-06-17 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种1MHz下超低损耗锰锌铁氧体材料及其制备方法
CN115894005A (zh) * 2022-11-17 2023-04-04 横店集团东磁股份有限公司 一种镍锌铁氧体材料及其制备方法和应用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1562444A (en) * 1975-12-27 1980-03-12 Nix Steingroeve Elektro Physik Method of calibrating magnetic layerthickness gauges
JP3256460B2 (ja) * 1997-03-12 2002-02-12 川崎製鉄株式会社 酸化物磁性材料およびその製造方法
FR2867774B1 (fr) * 2004-03-19 2007-08-10 Saint Gobain Composition de verre silico-sodo-calcique gris fonce destinee a la fabrication de vitrages
CN101308718B (zh) * 2007-05-18 2011-07-20 北京有色金属研究总院 一种稀土-铁超磁致伸缩材料
CN102690109B (zh) * 2012-03-19 2014-06-04 横店集团东磁股份有限公司 一种软磁镍铜锌铁氧体材料及其制备方法
CN102723158B (zh) * 2012-07-06 2015-12-02 白皞 含稀土的高磁导率Ni-Fe软磁合金及其制备方法和用途
KR101783831B1 (ko) * 2016-03-25 2017-10-11 삼화콘덴서공업주식회사 온도보상용 내환원성 세라믹 유전체 조성물, 그의 제조방법 및 이를 이용한 적층 세라믹 커패시터의 제조방법
CN106587977B (zh) * 2016-11-17 2019-07-09 横店集团东磁股份有限公司 一种功率型镍锌铁氧体材料及其制备方法
CN107778001B (zh) * 2017-10-10 2018-12-28 浙江大学 一种生成纳米晶界高电阻率膜降低镍锌铁氧体功率损耗的方法
CN110128124B (zh) * 2019-05-13 2021-12-07 海宁联丰磁业股份有限公司 一种宽温超低损耗软磁铁氧体材料及其制备方法
CN110803920A (zh) * 2019-09-11 2020-02-18 横店集团东磁股份有限公司 一种高频低功耗NiZn软磁铁氧体材料的制备方法
CN116375462A (zh) * 2023-03-22 2023-07-04 无锡斯贝尔磁性材料有限公司 一种宽温低功耗锰锌软磁铁氧体材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090061555A (ko) * 2007-12-11 2009-06-16 루유안 동양구앙 마그네틱 머티리얼 컴퍼니 리미티드 일종의 니켈 동 아연 페라이트 및 그 제조방법
CN101386530A (zh) * 2008-10-16 2009-03-18 广东风华高新科技股份有限公司 一种镍锌软磁铁氧体材料及其制备方法
CN101552074A (zh) * 2009-01-04 2009-10-07 贵阳晶华电子材料有限公司 一种NiZnCu铁氧体材料及其制备方法
CN108164260A (zh) * 2018-01-15 2018-06-15 上海安费诺永亿通讯电子有限公司 一种无线充电用镍锌软磁铁氧体及其制备方法、应用
CN113636838A (zh) * 2021-09-15 2021-11-12 横店集团东磁股份有限公司 一种镍锌铁氧体材料及制备方法和应用
CN114634356A (zh) * 2022-03-14 2022-06-17 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种1MHz下超低损耗锰锌铁氧体材料及其制备方法
CN115894005A (zh) * 2022-11-17 2023-04-04 横店集团东磁股份有限公司 一种镍锌铁氧体材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115894005B (zh) 2023-09-08
CN115894005A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
JP4919636B2 (ja) 酸化物磁性材料および焼結磁石
WO2011001831A1 (ja) フェライト焼結磁石の製造方法及びフェライト焼結磁石
CN110156451B (zh) 一种高阻抗的贫铁锰锌铁氧体材料及其制备方法
CN111233452B (zh) 一种高频高阻抗的贫铁锰锌铁氧体及其制备方法
WO2018216594A1 (ja) フェライト焼結磁石
CN102603279A (zh) 一种高强度高Bs镍锌铁氧体及其制备方法
CN102603280B (zh) 一种起始磁导率为70的高q值镍锌铁氧体及其制备方法
WO2024104324A1 (zh) 一种镍锌铁氧体材料及其制备方法和应用
JP2012209295A (ja) フェライト焼結磁石
CN113563062A (zh) 一种超高频高磁导率低损耗锰锌软磁铁氧体及制备方法
JP2001151565A (ja) Mn−Znフェライトおよびその製造方法
JP6379577B2 (ja) 六方晶フェライト焼結体、及びこれを用いた高周波磁性部品
CN114195500B (zh) 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法
JP5521622B2 (ja) 酸化物磁性材料、フェライト焼結磁石及びフェライト焼結磁石の製造方法
CN1587193A (zh) 低温度系数、低损耗和高饱和磁通密度铁氧体材料及制备方法
JPWO2019123681A1 (ja) MnCoZn系フェライトおよびその製造方法
CN108774056B (zh) 一种NiZn铁氧体磁片及其制备方法和用途
US11289250B2 (en) Sintered ferrite magnet
JP5804370B2 (ja) 酸化物磁性材料の製造方法
JP2005330126A (ja) MnZnフェライト及びその製造方法
CN114634356B (zh) 一种1MHz下超低损耗锰锌铁氧体材料及其制备方法
WO2012151714A1 (zh) 一种高磁导率NiCuZn铁氧体材料
JP7468009B2 (ja) フェライト仮焼体、フェライト焼結磁石及びその製造方法
KR101931635B1 (ko) 페라이트 코어 제조 방법 및 그 페라이트 코어