CN114634356B - 一种1MHz下超低损耗锰锌铁氧体材料及其制备方法 - Google Patents

一种1MHz下超低损耗锰锌铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN114634356B
CN114634356B CN202210244782.8A CN202210244782A CN114634356B CN 114634356 B CN114634356 B CN 114634356B CN 202210244782 A CN202210244782 A CN 202210244782A CN 114634356 B CN114634356 B CN 114634356B
Authority
CN
China
Prior art keywords
powder
1mhz
main formula
ferrite material
zinc ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210244782.8A
Other languages
English (en)
Other versions
CN114634356A (zh
Inventor
张益冰
贾生文
李小平
孙小龙
王雨
李晓光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 9 Research Institute
Original Assignee
CETC 9 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 9 Research Institute filed Critical CETC 9 Research Institute
Priority to CN202210244782.8A priority Critical patent/CN114634356B/zh
Publication of CN114634356A publication Critical patent/CN114634356A/zh
Application granted granted Critical
Publication of CN114634356B publication Critical patent/CN114634356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种1MHz下超低损耗锰锌铁氧体材料及其制备方法,属于铁氧体材料技术领域,其组成为:主配方:Fe2O3:73.5%~74.5mol%、Mn3O4:18%~19mol%、ZnO:6.5%~8.5mol%,三者合计100mol%;辅助功能性添加剂:按所述主配方预烧后的粉料的重量计,CaCO3:1000~1100ppm、SiO2:0~150ppm、ZrO2:300~500ppm、Co2O3:1500~3500ppm;主配方修正剂:Fe2O3:1300~2100ppm、Mn3O4:1700‑2300ppm;本发明采用普通原料,成本低且原材料自主可控,工艺成熟便利,风险低,尤其针对在未来智能化信息化的新兴领域需求的1MHz频段,优化了1MHz下材料的功率损耗,提升材料1MHz下功率转化效率,具有高磁导率、高饱和磁通密度、低损耗的优点。

Description

一种1MHz下超低损耗锰锌铁氧体材料及其制备方法
技术领域
本发明涉及铁氧体材料技术领域,尤其涉及一种1MHz下超低损耗锰锌铁氧体材料及其制备方法。
背景技术
锰锌(MnZn)功率铁氧体具有高饱和磁感应强度(Bs)、高磁导率(μi)、高电阻率(ρ)、低损耗(Pcv)等特性,被广泛应用到各种元器件中,如功率变压器、扼流线圈、脉冲宽带变压器、磁偏转装置和传感器等。尤其,利用MnZn功率铁氧体高饱和磁化强度、高电阻率和低损耗等特性制成的开关电源变压器磁芯,已经成为计算机、通讯、彩电、录像机、办公自动化及其它电子设备中一种不可缺少的元件。
高频化是电力电子技术的重要标志,提高工作频率可以减小变压器的体积和重量,在相同磁通密度下,提高一倍的频率可以使变压器磁芯的截面积减小一半,典型的例子就是500kHz 75W的开关电源体积是100kHz 75W的开关电源体积的一半,这就大大节约的空间,达到了资源的有效利用。
随着第三代半导体SiC、GaN等宽禁带材料在变压器中的应用,使变压器中晶体管能够在MHz及以上的频率下工作,实现更高效的功率传输和转换,可以极大地促进开关电源小型化、高频化、节能化。
对应地,作为变压器核心部分的锰锌铁氧体磁心材料,也迫切需要匹配第三代半导体材料MHz级别的工作频段,若是也能将传统功率铁氧体的最佳应用频率从几百kHz提升至MHz,不仅在各类民生设备领域能够开发出超高效率的小型开关电源,提升各类电器的效率与品质;而且在军工设备领域甚至可以开发出体积超小,不需要散热装置的高效率电源,能够适应更多复杂的环境,提供更高转换效率,并极大减轻设备运输负担。
更重要的是,随新能源汽车、无线快充、物联网等未来新型技术领域的飞速发展,需要高效率、高密度的信号、能量转换和传递,还需要避开其他低频干扰信息,尤其追求一款能够在1MHz频段具有超低损耗、超高转换效率的MnZn铁氧体材料来实现。
为此,现有技术已经做出了很多努力探索,比如:
中国专利申请CN 101004962A公开了一种高频低损耗MnZn铁氧体材料制备方法,配方采用51~55 mol% Fe2O3,5~10 mol% ZnO,35~44 mol% MnCO3,经球磨、预烧、二次球磨、成型、烧结等步骤制成;但是,该方法二次球磨时间长达16小时,且所制得产品在1MHz,30mT,25-100℃条件下损耗≤170 kW/m3,存在制备周期长且损耗性能差的缺点;
中国专利申请CN 104261813A公开了一种高频低损耗锰锌铁氧体材料及其制备方法,配方采用51~57 mol% Fe2O3,6~12 mol% ZnO,余量MnO,经球磨、预烧、砂磨、喷雾造粒、成型、烧结等步骤得到的高频低功耗锰锌铁氧体材料, 该材料在1MHz,30mT,25~100℃条件下损耗≤80 kW/m3,损耗仍然偏高;
中国专利申请CN110517840A公开的一种高频宽温低损耗MnZn铁氧体材料及其制备方法,包含一次配料、一次烧结、二次配料、砂磨、喷雾造粒、成型、二次烧结等步骤,其中一次配料采用FeMnZnNi四元系铁氧体材料,需称取71~77.4 mol%的Fe2O3,2~13.8 mol%ZnO,0.001~1 mol% Ni2O3,余量为Mn3O4,其缺点包括:Ni2O3需要严格把控,过量Ni2O3会导致铁氧体材料性能恶化,在二次配料还需称取CaCO3:200~2000ppm、Nb2O5:0~500ppm、V2O5:0~500ppm、SnO2:0~1000ppm、TiO2:0~2000ppm、ZrO2:0~200ppm、Ta2O5:0~200ppm、GeO2:0~1000ppm、Co3O4:0~3000ppm、Bi2O3:0~1000ppm、SiO2:0~200ppm足足9种添加剂,包含了价格昂贵的Ta2O5,制备工艺相对复杂,成本高。
也就是说,一方面,无论是在军民领域开关电源的小型化进程中,还是在新能源汽车、无线快充、物联网等未来新型技术领域高频高效率发展的进程中,都一直缺乏一种与之匹配的在1MHz下具有超低损耗的锰锌铁氧体材料;另一方面,从现有技术来看,制备高频低损耗锰锌铁氧体材料普遍存在成本高、工艺复杂、损耗偏高等问题,性能优异、工艺稳定、成本低的高频低损耗锰锌铁氧体材料及其的制备方法还尚未成熟。
发明内容
本发明的目的之一,就在于提供一种在新能源汽车、无线充电、物联网等新型技术领域尤其缺乏的所需的1MHz下具有超低功率损耗的锰锌铁氧体材料,以解决上述问题。
为了实现上述目的,本发明采用的技术方案是这样的:一种1MHz下超低损耗锰锌铁氧体材料,其组成为:
主配方:Fe2O3:73.5%~74.5mol%、Mn3O4:18%~19mol%、ZnO:6.5%~8.5mol%,三者合计100mol%;
辅助功能性添加剂:选自CaCO3、SiO2、ZrO2、Co2O3中的至少三种,其中,所述辅助功能性添加剂,按所述主配方预烧后粉料的重量计,CaCO3:1000~1100ppm、SiO2:0~150ppm、ZrO2:300~500ppm、Co2O3:1500~3500ppm;以及主配方修正剂: Fe2O3:1300~2100ppm、Mn3O4:1700-2300ppm。
本发明的目的之二,在于提供一种上述的1MHz下超低损耗锰锌铁氧体材料的制备方法,采用的技术方案为,包括下述步骤:
(1)配料:按所述配比称取Fe2O3、Mn3O4、ZnO三种主配方;
(2)混料:将步骤(1)称好的主配方湿法球磨混合4~6小时,得到浆料;
(3)预烧:将步骤(2)混合后的浆料烘干,在空气气氛下850~980℃预烧保温2.5~3.5小时,并随炉冷却至室温,得到粉料;
(4)添加剂配料:称取步骤(3)预烧后的粉料,按重量比例称取辅助功能添加剂CaCO3、SiO2、ZrO2、Co2O3以及主配方修正剂Fe2O3、Mn3O4,得到掺杂粉料;
(5)磨料:将步骤(4)得到的掺杂粉料进行球磨,磨料时间90~150分钟;
(6)造粒:将步骤(5)磨料后的浆料烘干,加入8~12 wt%的聚乙烯醇溶液,充分使其与烘干后的粉料混合均匀;
(7)成型:将步骤(6)中得到的粉料过筛,取40~100目之间的粉料压制成实心环状生坯;
(8)烧结:将步骤(7)所得的生坯进行烧结,烧结温度1050~1150℃,保温时间3~5h,即得。
作为优选的技术方案:步骤(2)中球磨时为Φ6mm、Φ14mm、Φ22mm三种尺寸钢球1:1:1混搭,料球比为1:3。大中小三种尺寸钢球混搭可以使球磨时钢球与钢球之间的缝隙更少,不仅能有效将原材料混合均匀,而且还有利于原材料颗粒尺寸分布更为集中,避免成分偏析,提高粉体活性。
作为优选的技术方案:步骤(5)中球磨方式是行星式球磨,钢球为Φ4mm、Φ5mm两种尺寸钢球1:1混搭,料球比例为1:7。
行星式球磨运作方式是转盘的公转与罐体反方向的自转两部分同时进行,包含了球与球之间的碰撞、球与罐体间的碾磨以及球体在高点往低点掉落的砸击,对不同颗粒尺寸与不同硬度的粉料都能有效碾细,再搭配高料球比的两种不同质量的钢球,球磨时钢球碾磨可以覆盖整个罐体,而且优选每10分钟切换公转与自转方向,粉料与钢球的运动轨迹非单一方向,粉体任意部分都可以被碾磨到,相较于传统磨料方式,料球比1:2~3,单一方向的砂磨或球磨,采用高料球比的行星式球磨能有效在短时间内将粉料粒径磨细、粒度分布更窄更均匀。
在现有磨料工艺中,无论是传统磨料方式还是本发明中行星式球磨方式均无法避免钢球磨损导致的粉体中Fe元素成分增多,使主配方发生偏移,材料的磁导率、功率损耗、温度特性等性能与预期设计不符,难于控制。因此,本发明对现有工艺导致的主配方成分偏移通过加入适量的Fe2O3和、Mn3O4进行手动修正,采用合适的主配方配比,搭配合适的磨料工艺,添加对应适量的主配方修正剂,使得所制得的铁氧体材料在1MHz下的损耗显著降低。
作为优选的技术方案:步骤(6)中聚乙烯醇溶液浓度为7.5 wt%,人工混合后还使用压机预压粉体。能够促进聚乙烯醇溶液在粉体中的扩散,使粉体与聚乙烯醇溶液浓度混合更均匀。
作为优选的技术方案:步骤(7)中保证生坯密度大于3.0 g/cm3。使粉体颗粒接触更紧密,接触面积更大,有利于烧结。
作为优选的技术方案:步骤(8)保温阶段氧分压在1%~5%之间,降温阶段严格采用Morineau平衡气氛烧结。
保温阶段低的氧分压保证了部分Fe2+的生成,有利于提高锰锌铁氧体材料的磁导率及温度稳定性,降温阶段采用Morineau平衡气氛烧结,每个不同的温度对应着唯一的氧分压,能够使Fe2+与Fe3+离子浓度在降温阶段始终维持在平衡浓度,避免发生价态变化形成α-Fe2O3析出尖晶石结构,破坏铁氧体材料性能。本专利采用的Morineau平衡气氛烧结关系式为:logP(O2)=8.5–14210/T。
与现有技术相比,本发明的优点在于:
1.本发明所有原材料和辅助添加剂均采用市面可购买的一般材料,且不含价格昂贵的稀有金属氧化物如In2O(CN109095915A)、Ta2O5(CN110517840A)等,仅使用CaCO3、SiO2、ZrO2、Co2O3等少数几种普通常见氧化物作为添加物,成本低且原材料自主可控,风险低;
2.配合精益的制备工艺和严谨的烧结工艺,所得锰锌铁氧体材料起始磁导率;1000±25%,25℃饱和磁通密度≥500 mT,100℃饱和磁通密度≥400 mT;25℃、1MHz、50mT单位体积功率损耗≤85 kW/m3;25℃、1MHz、30mT单位体积功率损耗≤50 kW/m3;100℃、1MHz、50mT单位体积功率损耗≤90 kW/m3;100℃、1MHz、30mT单位体积功率损耗≤50 kW/m3。优化了1MHz下材料的功率损耗,提升材料1MHz下功率转化效率,具有高磁导率、高饱和磁通密度、低损耗的优点。
附图说明
图1是本发明实施例2所制备锰锌铁氧体材料的xrd图谱;
图2是本发明实施例2所制备锰锌铁氧体材料的sem图谱;
图3是本发明对比例1所制备锰锌铁氧体材料的sem图谱。
具体实施方式
下面将结合具体实施案例对本发明作进一步说明。
实施例1~5:
根据主配方中Fe2O3、Mn3O4、ZnO含量的不同,有实施例1、2、3、4、5:
首先,固定ZnO含量为7.5 mol%,实施例1采用Fe2O3、Mn3O4含量分别为73.5 mol%、19 mol%;实施例2采用Fe2O3、Mn3O4含量分别为74 mol%、18.5 mol%;实施例3采用Fe2O3、Mn3O4含量分别为74.5 mol%、18 mol%;
其次,增加ZnO含量有实施例4,Fe2O3、Mn3O4、ZnO含量分别为73.5 mol%、18 mol%、8.5 mol%;减少ZnO含量有实施例5,Fe2O3、Mn3O4、ZnO含量分别为74.5 mol%、19 mol%、6.5mol%;
实施例1~5制备方法具体为:
(1)配料:按上述配比称取Fe2O3、Mn3O4、ZnO三种原材料;
(2)混料:将步骤(1)称好的原材料料粉湿法球磨混合,选用Φ6mm、Φ14mm、Φ22mm三种尺寸钢球1:1:1混搭,料球比为1:3,得到浆料;
(3)预烧:将步骤(2)混合后的浆料烘干,在空气气氛下950℃预烧保温3小时,并随炉冷却至室温,得到粉料;
(4)添加剂配料:称取步骤(3)预烧后所得到的粉料,按重量比例称取分析纯的辅助功能添加剂CaCO3、SiO2、ZrO2、Co2O3以及主配方修正剂Fe2O3、Mn3O4,并掺入粉料中,得到掺杂粉料;其中,掺入比例为,以称取的步骤(3)所得到的粉料的重量为基准:1050 ppmCaCO3,100 ppm SiO2,400 ppm ZrO2,1700 ppm Fe2O3,2000 ppm Mn3O4
由于主配方中Fe2O3、ZnO含量的变化会直接影响到材料的温度特性,材料最佳性能温度区间会出现偏移,为使最佳性能温度区间始终落在25℃~100℃范围内,有同样改性作用的Co2O3添加剂掺杂量需根据实施案例1~5中Fe2O3、ZnO含量进行调整,实施案例1~5具体Co2O3添加剂掺杂量依次为:3500ppm、2500ppm、1500ppm、3000ppm、2000ppm;
(5)磨料:将步骤(4)得到的掺杂粉料置于行星式球磨机中湿法球磨120 min,钢球为Φ4mm、Φ5mm两种尺寸钢球1:1混搭,料球比为1:7,得到浆料;
(6)造粒:将步骤(5)磨料后的浆料烘干,加入10 wt%的聚乙烯醇(PVA)溶液,在研钵中混合后用压机预压成圆饼状,使聚乙烯醇(PVA)溶液与烘干后的粉料充分混合均匀;
(7)成型:将步骤(6)预压后的圆饼破碎后过筛,取40~100目之间的粉料压制成实心环状生坯,密度≥3.0g/cm3
(8)烧结:将步骤(7)所得的生坯在钟罩式气氛烧结炉中烧结,烧结温度1120℃,保温时间4小时,氧分压2%,得到圆环磁心样品。
将所得的样品用日本岩崎SY8218 B-H测试仪测试单位体积损耗Pcv,结果见表1,将实施例2的样品用日本理学SmartLab型X射线衍射分析仪测试XRD,用德国蔡司场发射扫描电镜测试微观形貌SEM,结果如图1、图2所示。
从图1的XRD衍射图谱可以看出:所有衍射峰均为锰锌铁氧体尖晶石结构衍射峰,无任何杂峰及原材料衍射峰,表明所有原材料均完全反应生成锰锌铁氧体材料,纯度高;锰锌铁氧体材料衍射峰强度高,峰型尖锐,表明制得锰锌铁氧体材料物相稳定,工艺可靠,稳定性好。从图2的SEM微观形貌图中可以看出:晶粒尺寸非常均一,在1~2μm之间,晶粒排布致密均匀,气孔率低,有“均匀细小晶粒”的微观形貌。
表1 实施例1~5所制备的样环测试数据:
Figure DEST_PATH_IMAGE002
实施例6~7:
以实施例2为基础,改变磨料时间,有实施案例6~7:
实施案例6磨料90分钟,钢球磨损掉铁较实施例2少,主配方修正剂Fe2O3、Mn3O4掺量为2100ppm和2300ppm;
实施例7磨料150分钟,钢球磨损掉铁多,主配方修正剂Fe2O3、Mn3O4掺量为1300ppm和1700ppm。所得的样品用日本岩崎SY8218 B-H测试仪测试单位体积损耗Pcv,结果见表2
表2 实施例6~7所制备的样环测试数据:
Figure DEST_PATH_IMAGE004
对比例1~4:
对比例1与前述的实施例2相比,步骤(5)中未采用行星式球磨,采用了传统磨料方式—砂磨,在同样料球比下湿法砂磨120分钟,所得的样品用德国蔡司场发射扫描电镜测试微观形貌SEM,结果如图3所示:
从图3可以看出:晶粒尺寸最小约1μm,最大超过4μm,晶粒尺寸大小不一,晶界存在多处气孔,致密性低。这说明传统砂磨工艺下,钢球仅能朝单一方向运动,运动也只能在搅拌棒的转动作用下进行小范围的挪动,对粉体碾磨所用方式单一,效率低。粉体还会沉积在砂磨机底部,存在研磨死角,无法达到混合与碾细的目的。砂磨后粉料粒径大小不一,粒径分布宽是造成所得样品微观形貌晶粒尺寸大小不一的主要原因。
对比例2~4与前述的实施例2相比,在步骤(4)中对比例2未添加主配方修正剂,对比例3仅添加了Fe2O3一种主配方修正剂,对比例4仅添加Mn3O4一种主配方修正剂。对比例1~4所得的样品测试数据如表3:
表3 对比例1~4所得样环测试数据
Figure DEST_PATH_IMAGE006
从表3可以看出,如果球磨方式采用传统砂磨,不采用行星式球磨,无论在损耗还是磁导率性能方面均存在明显不足;或者选用了不合适的主配方修正量,会使材料损耗温度性能出现变化,25℃、100℃损耗增大,而采用行星式球磨并搭配上合适的主配方修正工艺,可以使1MHz时的功率损耗显著降低。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种1MHz下超低损耗锰锌铁氧体材料,其特征在于,其组成为:
主配方:Fe2O3:73.5%~74.5mol%、Mn3O4:18%~19mol%、ZnO:6.5%~8.5mol%,三者合计100mol%;
辅助功能性添加剂:选自CaCO3、SiO2、ZrO2、Co2O3中的至少三种,其中,所述辅助功能性添加剂,按所述主配方预烧后的粉料重量计,CaCO3:1000~1100ppm、SiO2:0~150ppm、ZrO2:300~500ppm、Co2O3:1500~3500ppm;
以及,按所述主配方预烧后的粉料重量计的主配方修正剂: Fe2O3:1300~2100ppm、Mn3O4:1700-2300ppm;
上述材料的制备方法为:包括下述步骤:
(1)配料:按所述配比称取Fe2O3、Mn3O4、ZnO三种主配方;
(2)混料:将步骤(1)称好的主配方湿法球磨混合4~6小时,得到浆料;
(3)预烧:将步骤(2)混合后的浆料烘干,在空气气氛下850~980℃预烧保温2.5~3.5小时,并随炉冷却至室温,得到粉料;
(4)添加剂配料:称取步骤(3)预烧后的粉料,按重量比例称取辅助功能添加剂CaCO3、SiO2、ZrO2、Co2O3以及主配方修正剂Fe2O3、Mn3O4,得到掺杂粉料;
(5)磨料:将步骤(4)得到的掺杂粉料进行行星式球磨,磨料时间90~150分钟;
(6)造粒:将步骤(5)磨料后的浆料烘干,加入8~12 wt%的聚乙烯醇溶液,充分使其与烘干后的粉料混合均匀;
(7)成型:将步骤(6)中得到的粉料过筛,取40~100目之间的粉料压制成实心环状生坯;
(8)烧结:将步骤(7)所得的生坯进行烧结,烧结温度1050~1150℃,保温时间3~5h,即得。
2.根据权利要求1所述的制备方法,其特征在于:步骤(2)中球磨时为Φ6mm、Φ14mm、Φ22mm三种尺寸钢球1:1:1混搭,料球比为1:3。
3.根据权利要求1所述的1MHz下超低损耗锰锌铁氧体材料,其特征在于:步骤(5)中行星式球磨的钢球为Φ4mm、Φ5mm两种尺寸1:1混搭,料球比例为1:7。
4. 根据权利要求1所述的1MHz下超低损耗锰锌铁氧体材料:步骤(6)中聚乙烯醇溶液浓度为7.5 wt%,人工混合后还使用压机预压粉体。
5. 根据权利要求1所述的1MHz下超低损耗锰锌铁氧体材料:步骤(7)中调整粉料干湿度和成型压力保证生坯密度大于3.0 g/cm3
6.根据权利要求1所述的1MHz下超低损耗锰锌铁氧体材料:步骤(8)保温阶段氧分压在1%~5%之间,降温阶段严格采用Morineau平衡气氛烧结。
CN202210244782.8A 2022-03-14 2022-03-14 一种1MHz下超低损耗锰锌铁氧体材料及其制备方法 Active CN114634356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210244782.8A CN114634356B (zh) 2022-03-14 2022-03-14 一种1MHz下超低损耗锰锌铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210244782.8A CN114634356B (zh) 2022-03-14 2022-03-14 一种1MHz下超低损耗锰锌铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114634356A CN114634356A (zh) 2022-06-17
CN114634356B true CN114634356B (zh) 2023-06-02

Family

ID=81947439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210244782.8A Active CN114634356B (zh) 2022-03-14 2022-03-14 一种1MHz下超低损耗锰锌铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114634356B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115894005B (zh) * 2022-11-17 2023-09-08 横店集团东磁股份有限公司 一种镍锌铁氧体材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290827A (zh) * 2007-04-18 2008-10-22 天通控股股份有限公司 高性能功率锰锌铁氧体材料及其制造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251927A (ja) * 1993-02-23 1994-09-09 Tokin Corp 低損失酸化物磁性材料の製造方法
JPH06267729A (ja) * 1993-03-15 1994-09-22 Nippon Steel Corp 高周波用Mn−Znフェライト磁性材料
JPH06333726A (ja) * 1993-05-21 1994-12-02 Minebea Co Ltd 高密度Mn−Znフェライトの製造方法
CN101256866B (zh) * 2007-12-29 2010-05-19 电子科技大学 宽温超低损耗MnZn软磁铁氧体材料及制备方法
CN101859622B (zh) * 2009-04-08 2012-02-15 广东江粉磁材股份有限公司 一种中频低损耗MnZn铁氧体磁芯的制造方法
CN103896600A (zh) * 2012-12-28 2014-07-02 天津昊高磁材有限公司 一种齿轮磁芯烧结工艺
CN103693952B (zh) * 2013-12-04 2015-01-28 江门安磁电子有限公司 一种超低损耗MnZn功率铁氧体材料的制造方法
CN107417266A (zh) * 2017-08-07 2017-12-01 西南应用磁学研究所 一种无稀土石榴石铁氧体材料及其制备方法
CN107540363A (zh) * 2017-09-21 2018-01-05 郴州市久隆旺高科电子有限公司 一种宽温高频低损耗锰锌软磁铁氧体材料及其制备方法
CN107935579B (zh) * 2017-12-13 2021-06-29 上海宝钢磁业有限公司 一种控制宽温低温度系数锰锌铁氧体粉料谷点的方法
CN108766705A (zh) * 2018-06-28 2018-11-06 上海安费诺永亿通讯电子有限公司 一种无线充电用锰锌铁氧体磁片及其制备方法
CN110937887B (zh) * 2019-12-13 2021-02-12 横店集团东磁股份有限公司 一种高频低损耗MnZn铁氧体材料及其制备方法
CN112592169A (zh) * 2020-12-15 2021-04-02 山东凯通电子有限公司 一种led用宽温高频低损耗、高磁导率锰锌铁氧体及其制备方法
CN112592170A (zh) * 2020-12-17 2021-04-02 上海宝钢磁业有限公司 锰锌铁氧体材料及其制备方法和应用
CN113185276A (zh) * 2021-05-13 2021-07-30 湖北华磁电子科技有限公司 常温高标软磁铁氧体材料及材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290827A (zh) * 2007-04-18 2008-10-22 天通控股股份有限公司 高性能功率锰锌铁氧体材料及其制造方法

Also Published As

Publication number Publication date
CN114634356A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
CN101859622B (zh) 一种中频低损耗MnZn铁氧体磁芯的制造方法
CN102976739B (zh) 超低高频损耗功率MnZn铁氧体及其制备方法
US20060145118A1 (en) Sintered magnet and method for production thereof
CN111470857B (zh) 一种高频锰锌铁氧体材料及其制备方法
CN112851344B (zh) 一种中介电常数微波介质陶瓷及其制备方法
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
CN102311260A (zh) 一种新型掺杂MnZn系铁氧体材料及其制备方法
CN114634356B (zh) 一种1MHz下超低损耗锰锌铁氧体材料及其制备方法
US11958779B2 (en) MnZn ferrite material with wide temperature range and low consumption, and preparation method thereof
WO2024104324A1 (zh) 一种镍锌铁氧体材料及其制备方法和应用
CN113470912A (zh) 铁氧体烧结磁铁及旋转电机
JP3288113B2 (ja) Mn−Znフェライト磁性材料
CN114956800B (zh) 一种高性能微波多晶铁氧体材料
CN111466000B (zh) 铁氧体预烧体、铁氧体烧结磁体及其制造方法
CN113436823A (zh) 铁氧体烧结磁铁
CN113436822A (zh) 铁氧体烧结磁铁
CN113284731A (zh) 一种高频大磁场软磁铁氧体材料及其制备方法
US3561919A (en) Iron oxide-ferrite production process
JPH0661033A (ja) 低損失酸化物磁性材料
CN114477987B (zh) 一种宽温锰锌铁氧体材料的制备工艺
JP2002343616A (ja) 希土類元素含有酸化物の製造方法
US20240177896A1 (en) Ferrite sintered magnet and manufacturing method therefor
JP5541475B2 (ja) フェライト焼結体およびその製造方法並びに電子部品
KR100428559B1 (ko) 밀스케일을 사용한 단순화된 하드 페라이트 자성분말의제조방법
JP2003272941A (ja) フェライト焼結磁石の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant