CN111943658B - 一种宽温低损耗MnZn铁氧体材料及其制备方法 - Google Patents

一种宽温低损耗MnZn铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN111943658B
CN111943658B CN202010623130.6A CN202010623130A CN111943658B CN 111943658 B CN111943658 B CN 111943658B CN 202010623130 A CN202010623130 A CN 202010623130A CN 111943658 B CN111943658 B CN 111943658B
Authority
CN
China
Prior art keywords
sintering
mnzn ferrite
temperature
powder
ferrite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010623130.6A
Other languages
English (en)
Other versions
CN111943658A (zh
Inventor
王鸿健
邢冰冰
黄艳锋
张强原
张志新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDG Holding Co Ltd
Original Assignee
TDG Holding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDG Holding Co Ltd filed Critical TDG Holding Co Ltd
Priority to CN202010623130.6A priority Critical patent/CN111943658B/zh
Priority to PCT/CN2020/104997 priority patent/WO2022000663A1/zh
Publication of CN111943658A publication Critical patent/CN111943658A/zh
Priority to US17/483,844 priority patent/US11958779B2/en
Application granted granted Critical
Publication of CN111943658B publication Critical patent/CN111943658B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及MnZn铁氧体材料领域,尤其是一种宽温低损耗MnZn铁氧体材料及其制备方法,其包括主成分和辅助成分,主成分为:52.5‑53.8mol%的Fe2O3,8.8‑12mol%的ZnO,余量为MnO,辅助成分包括:0.35‑0.5wt%的Co2O3;0.03‑0.08wt%的CaSiO3;0.01‑0.04wt%的Nb2O5;0.05‑0.12wt%的TiO2;RE元素包括:0‑0.04wt%的Gd2O3;0‑0.02wt%的Ho2O3;0‑0.03wt%的Ce2O3中的一种或多种,以上辅助成分是相对于Fe2O3、MnO、ZnO的总量以重量百分比计算。其制备方法是将不同预烧条件获得的预烧料,按照一定比例进行混合,使不同预烧条件获得的预烧料分布均匀,将混合好的预烧料中加入辅助成分后一同研磨至平均粒径为1.2‑1.6μm。该方法制备锰锌铁氧体材料在25℃‑140℃温度范围内具有较低功率损耗、高磁导率、高饱和磁通密度。

Description

一种宽温低损耗MnZn铁氧体材料及其制备方法
技术领域
本发明涉及高性能功率铁氧体软磁材料制备技术与应用技术领域,具体领域为一种较宽温度范围(25℃-140℃)、低损耗MnZn功率铁氧体材料的制备方法。
背景技术
随着通讯、计算机、汽车电子以及诸如5G,新能源汽车,可穿戴电子设备等新兴产业的迅速发展,对磁性功能器件提出了更高的要求,对于占据软磁铁氧体总产量70%以上的MnZn铁氧体的研究得到了国内外学者的广泛关注。对MnZn铁氧体的性能要求往往不再单一,对与MnZn功率铁氧体材料在满足饱和磁通密度及高磁导率的情况下,不仅仅只需要其在工作温度附近具有低功耗,而是要在包括待机低功率状态下依然维持低功耗,这就对仅针对于特定温度区间具有低损耗特点的传统宽温材料提出挑战,尤其是像新能源汽车车载充电机、充电站/桩、移动通信基站等户外工作场景的应用对材料的宽温特性要求就更苛刻。
国外比较有代表性宽温材料如TDK PC95,25℃-100℃的损耗比较低,但不适合长期在100℃或更高温度下工作,其他公司的宽温材料也都侧重于某一温度段的损耗降低,造成材料整体的宽温特性较差。
专利CN109678486A公开了一种宽温低温度系数低功耗锰锌铁氧体材料,该锰锌铁氧体材料由主成分和辅助成分组成,其中所述主成分:Fe2O3为52.7~53.5mol%,ZnO为8.6~9.6mol%,GeO2为0.007~0.022mol%,MnO为余量;所述辅助成分:CaCO3为0.03~0.04wt%,K2O为0.02~0.03wt%,Cu2O3为0.4~0.5wt%。该专利通过调整主配方的构成和杂质添加方式,制备出了饱和磁通密度大于440mT、在100kHz下功耗Pcv系数在340kW/m3以下的MnZn铁氧体材料。该材料在整体温度范围内温度系数较低,高温段损耗较低,但25-100℃损耗性能不理想。
专利CN109836146 A公开了一种具有超低高温功率损耗MnZn铁氧体及其制备方法。以Fe2O3、MnO和ZnO为主要成分及添加剂辅助成分组成,主成分摩尔百分比:Fe2O3为52.9~53.4mol%,ZnO为9.0~9.8mol%,MnO为余量;按占主成分总重量计,其添加剂辅助成分各组分含量为:CaCO3为0.03~0.05%,Nb2O5为0.02~0.03%,Co2O3为0.3~0.4%,ZrO2为0.01~0.03%,KHCO3为0.0050~0.020%。预烧料经二次研磨与颗粒旋流分选,以及通过造粒、压力成型与气氛/温度控制条件下的烧结等过程,制备得到具有超低高温功率损耗MnZn铁氧体。其微结构致密、晶粒均匀,100~160℃的高温范围内具有较低的功率损耗,同时具备较高的饱和磁通密度和较高的磁导率。该材料在高温段损耗较低,Bs较高,但常温段损耗过高。
综上所述,研发一种高温段损耗较低同时又兼顾常温段损耗,并具有高的初始磁导率和饱和磁通密度的MnZn铁氧体材料具有重要的应用和市场价值。
发明内容
本发明的目的在于提供一种兼顾25-140℃范围内具有更加优异功耗特性的新型低功耗MnZn铁氧体材料及其制备方法。
本发明通过对主成分与掺杂杂质的配比优化,控制Fe2+含量,并与Co3+同时作用补偿各向异性常数K1,使其具有较高的初始磁导率,降低磁滞损耗。利用晶界相杂质及RE元素离子半径较大无法取代尖晶石A位或B位Fe3+,故在晶界偏聚起到提高电阻率,降低涡流损耗的作用。
本发明创造性的提出通过两种或以上不同预烧条件获得的预烧料进行混合,烧结时晶粒长大前期利用低活性预烧料对高活性预烧料晶粒生长的抑制作用,不易发生局部晶粒突变长大。随烧结温度提高,时间延长,晶粒长大后期,低活性预烧料获得足够的激活能,逐渐长大,达到预先生长晶粒的尺寸,并起到了填补大晶粒间隙作用,优化了显微组织,提高晶粒均匀度,降低气孔率。利用低活性预烧料对高活性预烧料的抑制作用,可以在配方上减少甚至替代阻止晶粒长大元素的加入,一方面,阻晶元素作为非磁性物质会引起Bs降低,另一方面,如加入量控制不当或发生局部团聚则会造成晶格畸变,产生微观应力,造成材料电磁性能下降。
具体的,本发明提供如下技术方案:
一种宽温低损耗MnZn铁氧体材料,包括主成分和辅助成分,主成分的组成为:52.5-53.8mol%的Fe2O3,8.8-12mol%的ZnO,余量为MnO;
其中,辅助成分包括:0.35-0.5wt%的Co2O3,0.03-0.08wt%的CaSiO3,0.01-0.04wt%的Nb2O5,0.05-0.12wt%的TiO2及RE元素组分;RE元素组分包括:0-0.04wt%的Gd2O3;0-0.02wt%的Ho2O3;0-0.03wt%的Ce2O3中的一种或多种;
以上辅助成分是相对于Fe2O3、MnO、ZnO的总质量以重量百分比计算。
该宽温低损耗MnZn铁氧体材料的制备方法,具体包括以下步骤:
(1)将主成分Fe2O3、MnO和ZnO按照各组分原料的计量配料,经过一次研磨混合得到均匀的混合粉料,在不同预烧条件下进行预烧,反应后得到尖晶石结构MnZn铁氧体预烧料,通过改变预烧条件得到具有活性跨度的预烧料;
(2)将不同预烧条件得到的至少两种预烧料,按照一定比例混合均匀;
(3)向步骤(2)制得的混合料中加入按计量设计的辅助成分,进行进一步研磨,控制粒径尺寸D50:1.2~1.6μm;
(4)将磨细后的浆料烘干,加入15%的PVA造粒,过筛,去除造粒不均匀颗粒,将造粒粉料于100℃~150℃下烘10-20min,得到流动性,填充性良好的粉料,并在300~350MPa下压制成25*15*8mm生坯环;
(5)将步骤(4)压制的生坯环于钟罩炉中烧结,得到MnZn铁氧体样环。
优选的,步骤(1)中,预烧温度选择700~1000℃之间,通过控制空气与氮气配比控制氧含量为5-20vol%,时间为2~3h,随炉冷却。
优选的,步骤(2)中,混合预烧料为2~4种预烧温度下所得的预烧料混合。混合方式可采用V型混粉机或五轴混粉机,也可采用加入溶剂后混合,溶剂可以是去离子水或乙醇,为提高混合均匀性可加入适量分散剂。
优选的,步骤(4)中,压制过程采用安装有振动装置的模具,利用高频率轻微振动使粉料在模腔内形成密集堆积填充,使粉末在模腔内具有较高的振实密度。
优选的,步骤(5)中,烧结保温温度在1260~1300℃,时间为4-8h,氧含量为3.5-4.6vol%。
与现有技术相比,本发明的有益效果是:
(1)该宽温低损耗材料适用于温度变化较大的场景,可同时兼顾高温高负载与低温低负载损耗,保持损耗曲线在整个应用温度范围内平缓。
(2)本材料在25℃Pcv≤220kW/m3;100℃Pcv≤250kW/m3;140℃Pcv≤330kW/m3,在兼顾宽温特性的同时,25℃Bs:540mT;100℃Bs:420mT,室温下的起始磁导率μi为3500±25%。
附图说明
图1为本发明对比实施例7*的金相显微结构图;
图2为本发明实施例14的金相显微结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1-5及对比实施例6*-8*
制备MnZn功率铁氧体材料,具体步骤为:
(1)采用市售纯度为Fe2O3(纯度≥99.3%)、MnO(Mn含量≥71%)、ZnO(纯度≥99.7%)的原材料按照主配方Fe2O3:52.5mol%,ZnO为8.8mol%,MnO为余量。
将配好的原料置于砂磨机中,按1:1的比例加入去离子水,加入2ml的乙二醇作为分散剂混合15min后,取出料浆烘干。
将烘干后的粉料用电阻炉进行预烧,预烧气氛为空气,时间为2h,预烧温度分别为700℃、900℃;预烧气氛氧含量20vol%。
(2)将预烧好的粉料按照表1所示方式进行配比,并用V型混粉机进行混合,时间为2h。
(3)向混合好的预烧料中掺入杂质:CaSiO3:500ppm;Nb2O5:200ppm;Co2O3:4000ppm;TiO2:800ppm;Gd2O3:350ppm,进行二次砂磨,按水与原料5:4比例加入去离子水,砂磨时间为60min,颗粒尺寸D50控制在1.2-1.5μm,砂磨好的料浆烘干,将水分完全排除。
(4)将烘干好的粉料破碎过40目筛网,加入15%PVA造粒后于130℃烘干15min,采用16吨压机双向压制成内径为15mm,外径为25mm,高8mm的生胚环,密度在3.1g/cm3左右。16吨压机安装有振动装置,利用高频率轻微振动使粉料在模腔内形成密集堆积填充,使粉末在模腔内具有较高的振实密度。
(5)最后在将生坯环在1280℃的烧结温度下烧结,保温6小时,氧分压3.8vol%在平衡气氛下冷却至120℃出炉,降温过程采用平衡氧分压。
将经上述步骤制得的样环在日本岩崎公司的SY8218仪器进行功耗Pcv及饱和磁通密度Bs的测试。测试条件分别为:在100kHz,200mT的条件下测试Pcv;在1kHz,1194A/m的条件下测试其性能记录于表1。
表1
Figure BDA0002563757990000051
注:编号带*号的方案为对比实施例。表1所示实施例中,1-5为本发明实施例,6*-8*为对比实施例。
由表1数据可知:
实施例1-5,向高活性预烧料中加入低活性预烧料的量在30%时,性能最佳,添加量各占50%时性能最差,甚至要比单一温度的预烧料性能还差。
对比实施例6*-8*,单一温度粉料比较适合的预烧温度在800℃,但整体损耗,尤其是高温段要差于实施例3。对比实施例7*的金相显微结构图见图1。
实施例9-17及对比实施例18*
制备MnZn功率铁氧体材料,具体步骤为:
(1)采用市售纯度为Fe2O3(纯度≥99.3%)、MnO(Mn含量≥71%)、ZnO(纯度≥99.7%)的实施例9-17原材料按照主配方Fe2O3:52.98mol%,ZnO为10.3mol%,MnO为余量。对比实施例18*原材料按照主配方Fe2O3:53.8mol%,ZnO为12mol%,MnO为余量。
(2)将配好的原料置于砂磨机中,按1:1比例加入去离子水,加入2ml的乙二醇作为分散剂后混合15min后,取出料浆烘干。
(3)将烘干后的粉料用电阻炉进行预烧,预烧气氛为空气,时间为2h,预烧温度分别为800℃、900℃;预烧气氛为氧含量20vol%(编号9-13,18*),氧含量15vol%(编号14-15),氧含量5vol%(编号16-17)。将预烧好的粉料按照表2所示方式进行配比,并用V型混粉机进行混合,时间为2h。
(4)向混合好的预烧料中掺入杂质:CaSiO3:500ppm;Nb2O5:200ppm;Co2O3:4000ppm;TiO2:650ppm;Ho2O3:150ppm,进行二次砂磨,按水与原料5:4加入去离子水,砂磨时间为60min,颗粒尺寸D50控制在1.2-1.5μm,砂磨好的料浆烘干,将水分完全排除。
(5)将烘干好的粉料破碎过40目筛网,加入15%PVA造粒后于130℃烘干15min,采用16吨压机双向压制成内径为15mm,外径为25mm,高8mm的生胚环,密度在3.1g/cm3左右。16吨压机安装有振动装置,利用高频率轻微振动使粉料在模腔内形成密集堆积填充,使粉末在模腔内具有较高的振实密度。
(6)最后在将生坯环在1280℃的烧结温度下烧结,保温6小时,氧分压3.8vol%在平衡气氛下冷却至120℃出炉,降温过程采用平衡氧分压。
将经上述步骤制得的样环在日本岩崎公司的SY8218仪器进行功耗Pcv及饱和磁通密度Bs的测试。测试条件分别为:在100kHz,200mT的条件下测试Pcv;在1kHz,1194A/m的条件下测试其性能记录于表2。
表2
Figure BDA0002563757990000071
由表2数据可知:
实施例9-13,减小预烧料温度跨度差,规律性与表1一致。实施例14-15降低预烧气氛含氧量有助于进一步降低损耗,但氧含量过低(实施例16-17)预烧了反应不充分,在随后烧结过程中容易异常长大,造成损耗有所上升。对比实施例18*增加主配方中Fe2O3比例,引起Fe2+量增加,电阻率降低,造成高温段损耗提高。实施例14的金相显微结构图见图2。采用了本发明的新工艺,晶粒尺寸更加均匀,颗粒尺寸在10-20μm左右,并且后长大晶粒起到了填充基体气孔作用。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (3)

1.一种宽温低损耗MnZn铁氧体材料,其特征在于:由主成分和辅助成分组成,所述主成分的组成为:52.98mol%的Fe2O3,10.3mol%的ZnO,余量为MnO;
所述辅助成分的组成为:0.4wt%的Co2O3,0.05wt%的CaSiO3,0.02wt%的Nb2O5,0.065wt%的TiO2及0.015wt%的Ho2O3
所述辅助成分均是相对于Fe2O3、MnO、ZnO总质量以重量百分比计算;
所述宽温低损耗MnZn铁氧体材料的制备方法,包括以下步骤:
(1)将主成分Fe2O3、MnO和ZnO按照各组分原料的计量配料,经过一次研磨混合得到均匀的混合粉料,在800℃和900℃预烧温度下进行预烧,通过控制空气与氮气配比控制氧含量为15vol%,时间为2h,随炉冷却,反应后得到具有活性跨度的尖晶石结构MnZn铁氧体预烧料;
(2)按重量百分比将70%的800℃预烧温度得到的预烧料和30%的900℃预烧温度得到的预烧料混合均匀;
(3)向步骤(2)制得的混合料中加入按计量设计的辅助成分,按水与原料的质量比5:4加入去离子水,进行进一步研磨,控制粒径尺寸D50:1.2~1.5μm;
(4)将磨细后的浆料烘干,加入15%的PVA造粒,过筛,去除造粒不均匀颗粒,将造粒粉料于130℃下烘15min,得到流动性、填充性良好的粉料,并用16吨压机双向压制成25*15*8mm生坯环,压制过程采用安装有振动装置的模具,利用高频率轻微振动使粉料在模腔内形成密集堆积填充,使粉末在模腔内具有较高的振实密度;
(5)将步骤(4)压制的生坯环于钟罩炉中烧结,得到MnZn铁氧体样环,烧结保温温度在1280℃,保温时间为6h,氧含量为3.8vol%。
2.根据权利要求1所述的宽温低损耗MnZn铁氧体材料,其特征在于:步骤(2)中,混合预烧料的混合方式采用V型混粉机或五轴混粉机。
3.根据权利要求2所述的宽温低损耗MnZn铁氧体材料,其特征在于:还加入有适量的分散剂。
CN202010623130.6A 2020-06-30 2020-06-30 一种宽温低损耗MnZn铁氧体材料及其制备方法 Active CN111943658B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010623130.6A CN111943658B (zh) 2020-06-30 2020-06-30 一种宽温低损耗MnZn铁氧体材料及其制备方法
PCT/CN2020/104997 WO2022000663A1 (zh) 2020-06-30 2020-07-28 一种宽温低损耗MnZn铁氧体材料及其制备方法
US17/483,844 US11958779B2 (en) 2020-06-30 2021-09-24 MnZn ferrite material with wide temperature range and low consumption, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010623130.6A CN111943658B (zh) 2020-06-30 2020-06-30 一种宽温低损耗MnZn铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111943658A CN111943658A (zh) 2020-11-17
CN111943658B true CN111943658B (zh) 2022-06-03

Family

ID=73337371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010623130.6A Active CN111943658B (zh) 2020-06-30 2020-06-30 一种宽温低损耗MnZn铁氧体材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111943658B (zh)
WO (1) WO2022000663A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113284731B (zh) * 2021-05-17 2022-08-02 湖北微硕电子科技有限公司 一种高频大磁场软磁铁氧体材料及其制备方法
CN113929445B (zh) * 2021-09-24 2023-07-21 横店集团东磁股份有限公司 一种永磁铁氧体预烧料的制备方法
CN115340372B (zh) * 2022-08-12 2023-06-20 横店集团东磁股份有限公司 一种低应力敏感的高频锰锌铁氧体材料及其制备方法
CN115385677B (zh) * 2022-09-02 2023-05-30 上海华源磁业股份有限公司 一种宽温低功耗锰锌铁氧体pf-2t材料及其制备工艺
CN115677337B (zh) * 2022-11-17 2023-10-03 横店集团东磁股份有限公司 一种功率铁氧体材料及其制备方法与应用
CN115710020A (zh) * 2022-11-21 2023-02-24 安徽龙磁金属科技有限公司 一种富铁配方锰锌铁氧体粉料的制备工艺
CN116217215A (zh) * 2023-03-17 2023-06-06 无锡斯贝尔磁性材料有限公司 一种高频低功耗JF51W MnZn铁氧体材料

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093790B2 (ja) * 2004-08-03 2012-12-12 Jfeフェライト株式会社 Mn−Zn系フェライトおよびその製造方法
JP2007070209A (ja) * 2005-09-09 2007-03-22 Tdk Corp MnZn系フェライトの製造方法
CN102795850B (zh) * 2012-09-13 2014-10-29 重庆材料研究院 一种宽温超低损耗锰锌功率铁氧体磁芯
CN103951412B (zh) * 2014-04-25 2015-12-02 湖州南浔龙强磁性材料有限公司 一种软磁锰锌铁氧体材料的制法
CN104591711B (zh) * 2014-12-19 2017-03-29 江门安磁电子有限公司 用于‑40~160℃的低损耗锰锌铁氧体材料及其制造方法
CN105036729A (zh) * 2015-07-24 2015-11-11 天长市中德电子有限公司 一种高导磁率高饱和磁感应强度的软磁铁氧体
JP6551057B2 (ja) * 2015-08-26 2019-07-31 Tdk株式会社 フェライトコア、電子部品、及び、電源装置
CN105330284A (zh) * 2015-11-27 2016-02-17 全椒君鸿软磁材料有限公司 一种宽温高导软磁铁氧体磁芯材料的制备方法
EP3441996A4 (en) * 2016-03-25 2019-08-14 Hitachi Metals, Ltd. METHOD FOR PRODUCING A FERRITE MAGNET FOR MN-ZN SYSTEM AND FERRITMAGNETKERN OF AN MN-ZN SYSTEM
CN106396661B (zh) * 2016-08-30 2018-08-28 南京新康达磁业股份有限公司 一种宽温低功耗锰锌铁氧体材料及其制备方法
CN106810233A (zh) * 2017-01-19 2017-06-09 东莞易力禾电子有限公司 高频低损耗锰锌铁氧体及其制造方法
CN107151137A (zh) * 2017-05-23 2017-09-12 安徽省东方磁磁铁制造有限公司 一种锰锌软磁铁氧体材料及其制备方法
CN107459344A (zh) * 2017-07-10 2017-12-12 横店集团东磁股份有限公司 一种宽温低损耗且高Bs的MnZn铁氧体材料及其制造方法
CN107555981A (zh) * 2017-08-24 2018-01-09 成都圻坊生物科技有限公司 一种低温烧结MnZn铁氧体材料及其制备烧结方法
CN108793991B (zh) * 2018-07-11 2020-10-30 横店集团东磁股份有限公司 一种MnZn铁氧体隔磁片及其制备方法和用途
CN109836146A (zh) * 2018-12-19 2019-06-04 天通控股股份有限公司 一种超低高温功率损耗MnZn铁氧体材料制备方法
CN109553408A (zh) * 2018-12-31 2019-04-02 天长市中德电子有限公司 一种稀土掺杂锰锌铁氧体材料的制备方法
CN109704745A (zh) * 2019-02-20 2019-05-03 三桥惠(佛山)新材料有限公司 一种宽温高磁导率低损耗MnZn功率铁氧体材料的制备方法
CN110078488B (zh) * 2019-05-13 2022-05-03 海宁联丰磁业股份有限公司 一种高Bs宽温低损耗软磁铁氧体材料及其制备方法

Also Published As

Publication number Publication date
CN111943658A (zh) 2020-11-17
WO2022000663A1 (zh) 2022-01-06

Similar Documents

Publication Publication Date Title
CN111943658B (zh) 一种宽温低损耗MnZn铁氧体材料及其制备方法
CN101859622B (zh) 一种中频低损耗MnZn铁氧体磁芯的制造方法
CN103693952B (zh) 一种超低损耗MnZn功率铁氧体材料的制造方法
CN110128124B (zh) 一种宽温超低损耗软磁铁氧体材料及其制备方法
CN108129143B (zh) 高叠加特性宽温低功耗锰锌软磁铁氧体及其制备方法
CN113998999B (zh) 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法
CN104591712B (zh) 用于‑20~140℃的低损耗锰锌铁氧体材料及其制造方法
CN112125657B (zh) 一种宽温大功率MnZn铁氧体材料及其制备方法
US11958779B2 (en) MnZn ferrite material with wide temperature range and low consumption, and preparation method thereof
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
CN108863339B (zh) 一种应用于高频大磁场变压器上的宽温低损耗MnZn铁氧体材料
CN112592170A (zh) 锰锌铁氧体材料及其制备方法和应用
CN112194482B (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
CN103664155B (zh) 一种超高Bs低损耗MnZn功率铁氧体材料及其制造方法
CN112898007A (zh) 超富铁高磁通密度的锰锌铁氧体材料及其制备方法和应用
CN113327736A (zh) 一种宽频、五高性能的软磁铁氧体材料及其制备方法
CN115677337B (zh) 一种功率铁氧体材料及其制备方法与应用
CN116375462A (zh) 一种宽温低功耗锰锌软磁铁氧体材料及其制备方法
CN113284731B (zh) 一种高频大磁场软磁铁氧体材料及其制备方法
CN110436911B (zh) 一种软磁材料及其制备方法和在汽车电子系统中的应用
CN115340372A (zh) 一种低应力敏感的高频锰锌铁氧体材料及其制备方法
CN112341179A (zh) 一种高频锰锌铁氧体材料、其制备方法和应用
JPWO2020189035A1 (ja) MnCoZn系フェライトおよびその製造方法
CN111825440A (zh) 锰锌铁氧体及其制备方法和应用
CN115536379B (zh) 一种高频低损软磁铁氧体材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant