CN106396661B - 一种宽温低功耗锰锌铁氧体材料及其制备方法 - Google Patents

一种宽温低功耗锰锌铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN106396661B
CN106396661B CN201610767923.9A CN201610767923A CN106396661B CN 106396661 B CN106396661 B CN 106396661B CN 201610767923 A CN201610767923 A CN 201610767923A CN 106396661 B CN106396661 B CN 106396661B
Authority
CN
China
Prior art keywords
temperature
component
power consumption
principal component
pcv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610767923.9A
Other languages
English (en)
Other versions
CN106396661A (zh
Inventor
陈小林
赵光
李庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ma'anshan Xinkangda Magnetic Industry Co ltd
Original Assignee
NANJING NEW CONDA MAGNETIC INDUSTRIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING NEW CONDA MAGNETIC INDUSTRIAL Co Ltd filed Critical NANJING NEW CONDA MAGNETIC INDUSTRIAL Co Ltd
Priority to CN201610767923.9A priority Critical patent/CN106396661B/zh
Publication of CN106396661A publication Critical patent/CN106396661A/zh
Application granted granted Critical
Publication of CN106396661B publication Critical patent/CN106396661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及宽温低功耗锰锌铁氧体材料,由主成分和辅助成分组成,其中所述主成分的各组分的摩尔百分比为:Fe2O3为52.7~53.5mol%,ZnO为8.6~9.6mol%,MnO为余量;按占主成分总重量计,辅助成分各组分含量为:CaCO3为0.03~0.04%,Nb2O5为0.02~0.03%,Co2O3为0.4~0.5%,SnO2为0.05~0.15%,NaO2为0.0074~0.022%(以碳酸氢钠的形式添加)。在烧结降温阶段的1200℃进行控制气氛的保温处理。本发明的铁氧体材料在25~140℃温度范围内有很低的功耗,同时兼有高饱和磁通密度和较高的磁导率。

Description

一种宽温低功耗锰锌铁氧体材料及其制备方法
技术领域
本发明属于高性能软磁铁氧体材料先进制备与应用领域,涉及一种宽温(25℃~140℃)低功耗锰锌功率铁氧体材料及其基于Na掺杂微观结构调控的制备工艺。
背景技术
锰锌铁氧体是一类广泛应用于通讯、新能源、汽车电子、电磁兼容、IT、家电、绿色照明以及国防科技等领域中的氧化物软磁材料。在新能源汽车车载充电机、充电站/桩、移动通信基站等户外电子设备中,变压器、电感器、扼流圈等磁性元器件通常在很宽的环境温度范围内工作。许多输出功率变化的开关电源,变压器的温升亦会随着负载的轻重而显著变化,传统的锰锌低功耗铁氧体材料的功耗随温度的变化很大,仅能在很窄的温度范围内实现低功耗。为了追求高效率、低温升、高功率密度和高可靠性,希望使用的磁性元器件在很宽的工作温度范围内能够保持低功耗。近十多年来,以TDK公司PC95材料为代表的国内外一系列宽温低功耗铁氧体材料获得了广泛的应用,但是对于部分特殊应用而言,这一代材料在更高(120~140℃)、更低(室温及以下)的温度区间功耗仍然偏高。市场迫切需要具有更平坦的功耗~温度特性曲线的新一代宽温低功耗铁氧体材料。对于软磁材料制备厂商而言,也希望开发更多的工艺调控手段,来比较容易而稳定地制备高性能的铁氧体材料。
研究表明,铁氧体材料各项磁性能参数存在着复杂的相互制约关系,强烈地依赖于材料的化学组成及微观结构,这些又取决于材料的配方及制备工艺。锰锌铁氧体通过化学组成、微量添加剂掺杂及微观结构的调控可实现宽温低功耗,同时兼顾较高的的起始磁导率和饱和磁通密度的要求。由于受到磁晶各向异性常数K1强温度依赖特性的影响,MnZn铁氧体材料仅能在磁晶各向异性常数K1补偿为零的温度点附近实现低磁滞损耗和高磁导率。
CN102693802A发明公开了一种宽温MnZn功率铁氧体材料及其制备方法,由主成分和辅助成分组成,其中主成分及含量以氧化物计算为:Fe2O3为52.1~52.6mol%、ZnO为9~11.5mol%、MnO为余量;辅助成分为CaCO3、ZrO2、Nb2O5、SnO2和Co2O3。该材料温度在25~140℃范围损耗比较低,但饱和磁通密度偏低,且缺乏Na作为微量添加物对微观结构的调控作用。
CN103588472A发明公开了一种宽温MnZn功率铁氧体材料及其制备方法,由主成分和辅助成分组成,其中所述主成分的各组分的摩尔百分比为:Fe2O3为52.45~52.6mol%,ZnO为9.2~9.7mol%,MnO为余量;按占主成分总重量计,辅助成分各组分含量为:CaCO3:0.05~0.06%,ZrO2:0.02~0.03%,Nb2O5:0.03~0.04%,Co2O3:0.35~0.4%。该材料在25~140℃温度范围内损耗较低,但缺乏Na作为微量添加物对微观结构的调控作用。
CN102693803A发明公开了一种宽温低损耗MnZn功率铁氧体材料及其制备方法。由主成分和辅助成分组成,其中主成分及含量以氧化物计算为:Fe2O3:51~54mol%、MnO:35~38mol%、ZnO:9~13mol%;按主成分总重量计的辅助成分为:CaCO3:0.03~0.1wt%、SnO2:0.02~0.1wt%、Nb2O5:0.01~0.04wt%、ZrO2:0.01~0.05wt%、Co2O3:0.1~0.5wt%中的四种以上。该材料缺乏120℃以上的损耗信息,且缺乏Na作为微量添加物对微观结构的调控作用。
发明内容
本发明目的是提出一种高性能宽温低功耗锰锌铁氧体材料及其制备工艺。
本发明的技术方案是,一种宽温低功耗锰锌铁氧体材料,其主成分的各组分的摩尔百分比为:Fe2O3为52.7~53.5mol%,ZnO为8.6~9.6mol%,MnO为余量;按占主成分总重量计,其辅助成分各组分含量为:CaCO3为0.03~0.04%,Nb2O5为0.02~0.03%,Co2O3为0.4~0.5%,SnO2为0.05~0.15%,NaO2为0.0074~0.022%(以碳酸氢钠的形式添加)。
进一步,Na以易溶于水的碳酸氢钠(NaHCO3)的形式进行添加。添加量按占主成分总重量计为0.01~0.03%。
本发明中,称取主成分各组分,砂磨混合后进行喷雾干燥,再在回转窑内进行预烧,向预烧料中加入辅助成分各组分,进行砂磨粉碎,再进行喷雾干燥造粒,然后压制成坯件,把坯件在氮气保护气氛下烧结后获得铁氧体磁心;所述烧结过程包括升温阶段、恒温阶段和降温阶段;烧结升温温度为1200±10℃,然后降温,氧含量控制在0.8~1.0%,保温45~75分钟;再降温至920℃以下时,控制氧含量在0.005%以下,直到降至室温。烧结升温温度为1200±10℃,保持时间为200~280分钟,氧含量控制在3~5%。
上述成份的材料在烧结降温阶段的1200℃进行控制气氛的保温处理。本发明的铁氧体材料在25~140℃温度范围内有很低的功耗,同时兼有较高的饱和磁通密度和磁导率。所述宽温低功耗锰锌铁氧体材料在25~140℃温度范围内,尤其是在100~140℃高温区内,功耗较现有大多数低功耗锰锌铁氧体材料更低。在100kHz、200mT条件下的功耗Pcv为:
25℃Pcv≤320kW/m3
60℃Pcv≤310kW/m3
100℃Pcv≤300kW/m3
120℃Pcv≤320kW/m3
140℃Pcv≤380kW/m3
在1194A/m、50Hz条件下的饱和磁通密度Bs为:
25℃Bs≥540mT
100℃Bs≥420mT
在25℃下的起始磁导率μi为3300±20%。
所述的宽温低功耗锰锌铁氧体材料的制备方法为:称取主成分各组分,其摩尔百分比为:Fe2O3为52.7~53.5mol%,ZnO为8.6~9.6mol%,MnO为余量;经砂磨混合后进行喷雾干燥,再在回转窑内进行预烧,预烧温度为900±30℃,时间为120±30分钟;在预烧料中加入按主成分总重量计的辅助成分,其含量为:CaCO3为0.03~0.04%,Nb2O5为0.02~0.03%,Co2O3为0.4~0.5%,SnO2为0.05~0.15%,NaO2为0.0074~0.022%(以碳酸氢钠的形式添加);进行砂磨粉碎,时间为120±30分钟,砂磨料平均粒径约为0.9μm;对此砂磨料进行喷雾造粒,用成型机压制成坯件;把坯件在氮气保护气氛下烧结,烧结过程包括升温阶段、恒温阶段和降温阶段。恒温阶段烧结温度为1280±20℃,时间为200~280分钟,氧含量控制在3~5%;降温至1200±10℃时的氧含量控制在0.8~1.0%,并保温45~75分钟;再降温至920℃以下时,控制氧含量在0.005%以下,直到降至室温。
预烧的条件是,Fe2O3、ZnO、MnO经砂磨混合和喷雾干燥后预烧,预烧温度为900±30℃,时间为120±30分钟;在预烧料中加入按比例称取的辅助成分原料,按主成分总重量计的辅助成分含量为CaCO3:0.04%,Nb2O5:0.03%,Co2O3:0.4%,SnO2:0.1%,NaHCO3:0.02%,进行砂磨粉碎,时间为120±30分钟,砂磨料平均粒径为0.9μm;然后对此砂磨料进行喷雾造粒,用成型机压制试样;制备MnZn铁氧体。
由于受到磁晶各向异性常数K1强温度依赖特性的影响,锰锌铁氧体材料仅能在K1补偿为零的温度点附近实现低磁滞损耗和高磁导率。本发明基于深入研究影响磁晶各异性常数K1温度依赖特性的机理和其它各种影响因素,通过对材料化学组成、微量添加剂掺杂、烧结工艺及微观结构的深入研究,创新性的地将磁晶各向异性常数K1补偿为零的温度由通常单一温度点分成高、低两个温度点,从而大大降低了材料磁晶各向异性对温度的依赖性,使锰锌铁氧体材料在较宽的温度范围内具有平坦的功耗~温度特性。
软磁铁氧体材料功耗Pcv由磁滞损耗Ph、涡流损耗Pe和剩余损耗Pr三部分构成。通常认为在500kHz以下频段,Pr可以忽略,所以有Pcv=Ph+Pe。本发明基于大量研究表明,锰锌铁氧体材料功耗与多晶材料的微观结构有密切的关系。经烧结产生均匀、细密的晶粒,气孔较少且分布在晶界,磁心密度较高,这样的微观结构不仅有利于在外加磁场作用下的畴壁位移和磁畴转动,减少了磁化所需能量,即减少了磁滞损耗,同时也减少了交变磁场在晶粒内感生出的涡流,从而减少了涡流损耗。但是,形成均匀而细密的晶粒和实现高密度在烧结工艺上往往是矛盾的。通过掺加有助于细化晶粒的微量添加剂,如Na等,易于得到均匀、细密且密度较高的微观结构,从而低磁滞损耗及涡流损耗。另外,通过烧结不同阶段气氛中氧分压(氧含量)的适当控制,特别是在降温阶段特定温度下进行控制气氛中氧含量的保温处理,有利于高电阻物质如CaSiO3等在晶界处偏析,从而提高晶界电阻率,降低材料的涡流损耗。
本发明的有益效果,该宽温低功耗锰锌铁氧体材料尤其适用于车载、户外等环境温度变化很大的应用场合,如新能源汽车车载充电机、充电站/桩、车载DC-DC变换器、移动通信基站、屋顶光伏微型逆变器等。该材料也适用于高功率密度模块式开关电源,对器件的小型化与高密度集成具有重要的应用价值。在制备技术上,本发明利用微量添加物Na对烧结形成的材料微观结构的调控作用,得到细密、均匀且密度较高的微观结构,降低了材料的磁滞损耗及涡流损耗,同时提高了饱和磁通密度;通过在降温阶段特定温度下进行控制气氛中氧含量的保温处理,提高了材料的电阻率,从而降低了涡流损耗。本发明能够解决宽温低功耗铁氧体材料制备和应用方面的部分现有技术问题,当然预料处理工艺也有所不同,对最终产品性能也有着意义。
附图说明
图1未掺加Na试样的微观结构;
图2本发明掺加0.02%NaHCO3试样的微观结构;
图3实施例2和比较例2样品功耗Pcv与温度的关系(功耗随温度变化的曲线);
图4实施例2试样磁滞损耗Ph、涡流损耗Pe与温度的关系;
图5实施例3和比较例3样品涡流损耗Pe与温度的关系。
具体实施方式
实施例1:按下述主成分含量称取主成分原料:Fe2O3含量为53.1mol%、ZnO含量为9.2mol%、MnO含量为37.7mol%,经砂磨混合和喷雾干燥后预烧,预烧温度为900℃,时间为120分钟。在预烧料中加入按比例称取的辅助成分原料。按主成分总重量计的辅助成分含量为:CaCO3:0.04%,Nb2O5:0.03%,Co2O3:0.4%,SnO2:0.1%,NaHCO3:0.02%,进行砂磨粉碎,时间为120分钟,砂磨料平均粒径为0.9μm。然后对此砂磨料进行喷雾造粒,用成型机压制H25/15/10环形试样。
比较例1:按下述主成分含量称取主成分原料:Fe2O3含量为53.1mol%、ZnO含量为9.2mol%、MnO含量为37.7mol%,经砂磨混合和喷雾干燥后预烧,预烧温度为900℃,时间为120分钟。在预烧料中加入按比例称取的辅助成分原料。按主成分总重量计的辅助成分含量为CaCO3:0.04%,Nb2O5:0.03%,Co2O3:0.4%,SnO2:0.1%,进行砂磨粉碎,时间为120分钟,砂磨料平均粒径为0.9μm。然后对此砂磨料进行喷雾造粒,用成型机压制H25/15/10环形试样。
将实施例1和比较例1中的环形试样在相同条件下烧结,烧结温度为1280℃,时间为240分钟,氧含量控制在4%,然后降温。降温至1200℃时的氧含量控制在0.8~1.0%,并保温60分钟,再降温至920℃以下,控制氧含量在0.005%以下直到降至室温。如此得到的铁氧体环形磁心样品特性比较结果见表1。
表1
从表1可以看出,通过加入Na,材料的功耗明显降低,同时饱和磁通密度明显增高,其主要原因是在烧结过程中Na离子可以改善材料的微观结构,均匀化及细化晶粒,可以在较低的烧结温度下得到较高的烧结密度,有效地降低了材料的涡流损耗,其微观结构比较如图1及图2。
实施例2:按下述主成分含量称取主成分原料:Fe2O3含量为53.1mol%、ZnO含量为9.2mol%、MnO含量为37.7mol%,经砂磨混合和喷雾干燥后预烧,预烧温度为900℃,时间为120分钟;在预烧料中加入按比例称取的辅助成分原料,按主成分总重量计的辅助成分含量为CaCO3:0.04%,Nb2O5:0.03%,Co2O3:0.4%,SnO2:0.1%,NaHCO3:0.02%,进行砂磨粉碎,时间为120分钟,砂磨料平均粒径为0.9μm。然后对此砂磨料进行喷雾造粒,用成型机压制H25/15/10环形试样。
比较例2:按下述主成分含量称取主成分原料:Fe2O3含量为53.1mol%、ZnO含量为9.2mol%、MnO含量为37.7mol%,经砂磨混合和喷雾干燥后预烧,预烧温度为900℃,时间为120分钟;在预烧料中加入按比例称取的辅助成分原料(按主成分总重量计的辅助成分含量为:CaCO3:0.04%,Nb2O5:0.03%,Co2O3:0.4%,NaHCO3:0.02%,进行砂磨粉碎,时间为120分钟,砂磨料平均粒径为0.9μm,然后对此砂磨料进行喷雾造粒,用成型机压制H25*15*10环形试样。
将实施例2和比较例2中的环形试样在相同条件下烧结,烧结温度为1280℃,时间为240分钟,氧含量控制在4%。然后降温,降温至1200℃时的氧含量控制在0.8~1.0%,并保温60分钟,再降温至920℃以下,控制氧含量在0.005%以下直到降至室温。如此得到的铁氧体环形磁心样品特性比较结果见表2。
表2
功耗随温度变化的曲线见图3。图3实施例2和比较例2样品功耗Pcv与温度的关系。
从表2及图3可以看出,通过加入0.1%的SnO2,材料功耗与温度关系曲线形状有所改变,低温及高温的功耗同时降低。
通过对实施例2试样的功耗构成进行分离分析,结果如图4。
图4实施例2试样磁滞损耗Ph、涡流损耗Pe与温度的关系;从图4可以看出,材料的磁滞损耗Ph呈现相对平坦的温度特性,并出现高、低温两个功耗最低点,这对应K1的两个补偿零点。实施例的涡流损耗Pe也比较低。
实施例3:按下述主成分含量称取主成分原料:Fe2O3含量为53.1mol%、ZnO含量为9.2mol%、MnO含量为37.7mol%,经砂磨混合和喷雾干燥后预烧,预烧温度为900℃,时间为120分钟;在预烧料中加入按比例称取的辅助成分原料(按主成分总重量计的辅助成分含量为:CaCO3:0.04%,Nb2O5:0.03%,Co2O3:0.4%,SnO2:0.1%,NaHCO3:0.02%,进行砂磨粉碎,时间为120分钟,砂磨料平均粒径为0.9μm。然后对此砂磨料进行喷雾造粒,用成型机压制H25/15/10环形试样,烧结降温至1200℃时保温60分钟。
比较例3:按下述主成分含量称取主成分原料:Fe2O3含量为53.1mol%、ZnO含量为9.2mol%、MnO含量为37.7mol%,经砂磨混合和喷雾干燥后预烧,预烧温度为900℃,时间为120分钟;在预烧料中加入按比例称取的辅助成分原料(按主成分总重量计的辅助成分含量为:CaCO3:0.04%,Nb2O5:0.03%,Co2O3:0.4%,SnO2:0.1%,NaHCO3:0.02%,进行砂磨粉碎,时间为120分钟,砂磨料平均粒径为0.9μm。然后对此砂磨料进行喷雾造粒,用成型机压制H25/15/10环形试样,烧结降温至1200℃时不做保温处理。
试样电阻率测量结果表明,在1200℃保温60分钟可提高材料电阻率,从而降低涡流损耗,结果如表3。
表3
电阻率(Ω·m)
实施例3 6.7
比较例3 5.0
实施例3和比较例3样品的涡流损耗比较如图5。

Claims (3)

1.一种宽温低功耗锰锌铁氧体材料,其特征是由主成分和辅助成分组成,其中所述主成分的各组分的摩尔百分比为:Fe2O3为53.1mol%,ZnO为9.2mol%,MnO为37.7mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO3为0.04%,Nb2O5为0.03%,Co2O3为0.4%,SnO2为0.1%,NaHCO3为0.02%;
制备时称取主成分各组分,砂磨混合后进行喷雾干燥,再在回转窑内进行预烧,向预烧料中加入辅助成分各组分,进行砂磨粉碎,再进行喷雾干燥造粒,然后压制成坯件,把坯件在氮气保护气氛下烧结后获得铁氧体磁心;所述烧结过程包括升温阶段、恒温阶段和降温阶段;在温度至1200±10℃时,氧含量控制在0.8~1.0 %,保温45~75分钟;再降温至920℃以下时,控制氧含量在0.005%以下,直到降至室温。
2.一种根据权利要求1所述的宽温低功耗锰锌铁氧体材料的制备方法,其特征是称取主成分各组分,砂磨混合后进行喷雾干燥,再在回转窑内进行预烧,向预烧料中加入辅助成分各组分,进行砂磨粉碎,再进行喷雾干燥造粒,然后压制成坯件;
所述主成分的各组分的摩尔百分比为:Fe2O3为53.1mol%,ZnO为9.2mol%,MnO为37.7mol%;按占主成分总重量计,辅助成分各组分含量为:CaCO3为0.04%,Nb2O5为0.03%,Co2O3为0.4%,SnO2为0.1%,NaHCO3为0.02%;
将坯件在氮气保护气氛下烧结后获得铁氧体磁心;所述烧结过程包括升温阶段、恒温阶段和降温阶段;在温度至1200±10℃时,氧含量控制在0.8~1.0%,保温45~75分钟;再降温至920℃以下时,控制氧含量在0.005%以下,直到降至室温。
3.根据权利要求2所述的宽温低功耗锰锌铁氧体材料制备方法,其特征是制出的材料在25~140℃宽温范围内、100kHz、200mT条件下的功耗Pcv为:
25℃Pcv≤320kW/m3
60℃Pcv≤310kW/m3
100℃Pcv≤300kW/m3
120℃Pcv≤320kW/m3
140℃Pcv≤380kW/m3
在1194A/m、50Hz条件下的饱和磁通密度Bs为:
25℃Bs≥540mT
100℃Bs≥420mT
在25℃下的起始磁导率μi为3300±20%。
CN201610767923.9A 2016-08-30 2016-08-30 一种宽温低功耗锰锌铁氧体材料及其制备方法 Active CN106396661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610767923.9A CN106396661B (zh) 2016-08-30 2016-08-30 一种宽温低功耗锰锌铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610767923.9A CN106396661B (zh) 2016-08-30 2016-08-30 一种宽温低功耗锰锌铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106396661A CN106396661A (zh) 2017-02-15
CN106396661B true CN106396661B (zh) 2018-08-28

Family

ID=58002897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610767923.9A Active CN106396661B (zh) 2016-08-30 2016-08-30 一种宽温低功耗锰锌铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106396661B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522482A (zh) * 2017-08-15 2017-12-29 南京新康达磁业股份有限公司 一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法
CN109836146A (zh) * 2018-12-19 2019-06-04 天通控股股份有限公司 一种超低高温功率损耗MnZn铁氧体材料制备方法
CN109678486A (zh) * 2019-02-26 2019-04-26 南通华兴磁性材料有限公司 一种宽温低温度系数低功耗锰锌铁氧体材料
CN111943658B (zh) * 2020-06-30 2022-06-03 天通控股股份有限公司 一种宽温低损耗MnZn铁氧体材料及其制备方法
CN112194482B (zh) * 2020-10-29 2022-06-03 南京新康达磁业股份有限公司 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
CN112573912A (zh) * 2020-11-27 2021-03-30 天通控股股份有限公司 一种中宽频宽温低损耗MnZn铁氧体材料制备方法
CN112851328B (zh) * 2021-03-30 2022-06-24 横店集团东磁股份有限公司 一种锰锌铁氧体、其制备方法及用途
CN113956031B (zh) * 2021-11-25 2023-02-21 横店集团东磁股份有限公司 一种低损耗MnZn功率铁氧体及其制备方法
CN115677337B (zh) * 2022-11-17 2023-10-03 横店集团东磁股份有限公司 一种功率铁氧体材料及其制备方法与应用
CN115650718A (zh) * 2022-11-18 2023-01-31 浙江工业大学 一种兼具超宽温低功耗和磁导率温度稳定性的锰锌铁氧体材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857427A (zh) * 2009-04-08 2010-10-13 广东江粉磁材股份有限公司 一种高频低损耗MnZn铁氧体材料及其制造方法
CN102219486A (zh) * 2011-04-16 2011-10-19 江门安磁电子有限公司 一种高温低损耗MnZn铁氧体磁心及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101857427A (zh) * 2009-04-08 2010-10-13 广东江粉磁材股份有限公司 一种高频低损耗MnZn铁氧体材料及其制造方法
CN102219486A (zh) * 2011-04-16 2011-10-19 江门安磁电子有限公司 一种高温低损耗MnZn铁氧体磁心及其制造方法

Also Published As

Publication number Publication date
CN106396661A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106396661B (zh) 一种宽温低功耗锰锌铁氧体材料及其制备方法
CN103058643B (zh) 宽温高叠加低功耗Mn-Zn软磁铁氧体材料及制备方法
CN107129291B (zh) 具有高频低温度系数低损耗MnZn软磁铁氧体材料及其制备方法
CN103951411A (zh) 宽温低功耗高居里温度锰锌铁氧体材料及制备方法
CN101236819B (zh) 一种镍铜锌铁氧体及其制造方法
CN110156451B (zh) 一种高阻抗的贫铁锰锌铁氧体材料及其制备方法
CN102693803B (zh) 一种宽温低损耗MnZn功率铁氧体及其制备方法
CN104529423B (zh) 一种低温度因数抗应力镍锌铁氧体及其制备方法
CN108424136B (zh) MHz级开关电源用MnZn功率铁氧体及其制备方法
CN101090017A (zh) 一种高饱和磁通密度低损耗MnZn功率铁氧体及其制备方法
M’nassri et al. Magnetocaloric properties in ordered double-perovskite Ba 2 Fe 1− x Cr x MoO 6 (0≤ x≤ 1)
CN104402424B (zh) 高饱和磁通密度、高直流叠加、高居里温度的镍锌铁氧体材料及其制备方法
CN107352993A (zh) 一种高频锰锌软磁铁氧体材料及其制备方法
Zhu et al. Influence of B2O3–MoO3 addition on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites
CN110668806A (zh) 一种高频率用软磁铁氧体的制备方法
CN107619271A (zh) NiCuZn铁氧体材料及其制备方法、应用
CN107352991A (zh) 一种核壳结构锰锌/镍锌复合铁氧体及其制备方法
CN103102148A (zh) 宽频高磁导率锰-锌铁氧体材料的制备方法
CN110078488A (zh) 一种高Bs宽温低损耗软磁铁氧体材料及其制备方法
CN109851349A (zh) 一种高性能环保型六角永磁铁氧体材料及其制备方法
CN104891977A (zh) 一种高频细晶粒软磁铁氧体磁体材料及其制备方法
CN106904956A (zh) 一种高介高磁的镍掺杂钡铁氧体陶瓷材料及其制备方法
CN104409189B (zh) 复合软磁材料及其制备方法
CN103295766B (zh) 一种含有改性碳化铝的铁磁芯的制作方法
CN109678486A (zh) 一种宽温低温度系数低功耗锰锌铁氧体材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230616

Address after: 243000 No.1, Cishan Road, Yushan Economic Development Zone, Yushan District, Ma'anshan, Anhui Province

Patentee after: MAANSHAN NEW CONDA MAGNETIC INDUSTRIAL CO.,LTD.

Address before: No. 8, Tianhe Road, Qilin Area, Tangshan Industrial Cluster, Jiangning District, Nanjing, Jiangsu 211135

Patentee before: NANJING NEW CONDA MAGNETIC INDUSTRIAL Co.,Ltd.

TR01 Transfer of patent right
CP01 Change in the name or title of a patent holder

Address after: 243000 No.1, Cishan Road, Yushan Economic Development Zone, Yushan District, Ma'anshan, Anhui Province

Patentee after: Ma'anshan Xinkangda Magnetic Industry Co.,Ltd.

Address before: 243000 No.1, Cishan Road, Yushan Economic Development Zone, Yushan District, Ma'anshan, Anhui Province

Patentee before: MAANSHAN NEW CONDA MAGNETIC INDUSTRIAL CO.,LTD.

CP01 Change in the name or title of a patent holder