CN115448710A - 一种低频铁氧体吸波材料及其制备方法 - Google Patents

一种低频铁氧体吸波材料及其制备方法 Download PDF

Info

Publication number
CN115448710A
CN115448710A CN202211080096.8A CN202211080096A CN115448710A CN 115448710 A CN115448710 A CN 115448710A CN 202211080096 A CN202211080096 A CN 202211080096A CN 115448710 A CN115448710 A CN 115448710A
Authority
CN
China
Prior art keywords
wave
absorbing material
frequency
low
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211080096.8A
Other languages
English (en)
Inventor
鲜聪
王殿杰
黄小忠
孔伟
任仕晶
廖杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 9 Research Institute
Original Assignee
CETC 9 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 9 Research Institute filed Critical CETC 9 Research Institute
Priority to CN202211080096.8A priority Critical patent/CN115448710A/zh
Publication of CN115448710A publication Critical patent/CN115448710A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Magnetic Ceramics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种低频铁氧体吸波材料及其制备方法,属于磁性材料技术领域,按原料重量百分比计,主体配方为Fe2O3:56~59%、MnCO3:23~25%、ZnO:18~20%、Co2O3:0.5~0.9%;二次添加物为:SiO2:0.1~0.5wt%、CaCO3:0~0.05wt%;本发明的铁氧体吸波材料在低频下具有较好的吸波性能,当厚度为5.5mm时,低频端覆盖的频率相对于现有技术更低,在0.06~1GHz,都具有‑10dB的吸收强度,同时其主体为MnZn相,具有良好的化学稳定性(耐腐蚀盐碱),且成本低廉,可大规模批量化生产可广泛用于低频下的电磁波吸收。

Description

一种低频铁氧体吸波材料及其制备方法
技术领域
本发明涉及磁性材料技术领域,尤其涉及一种低频铁氧体吸波材料及其制备方法。
背景技术
吸波材料在国家安全和国民生活中占有重要的地位,其主要利用材料自身结构及物理属性,吸收、衰减电磁波,减少电磁波的反射,从而实现隐身、屏蔽、抗干扰等效果,主要的应用场景包括飞行器、舰艇、装甲车、电子设备等。
随着军事科技的进步,雷达波(当前雷达系统主要的工作频段在1~18GHz,)吸波材料的研发与应用已逐渐成熟。为了在战场上抢占先机,世界主要大国在宽频/多频段雷达技术进行了广泛研究,如超宽带雷达、超视距雷达和P波段雷达等,以P波段雷达为例,其探测距离达到了数千公里。如美国研发的铺路爪远程预警雷达工作频率450-420 MHz,探测距离一般为4800km,相比高频雷达波,低频段雷达波具有探测距离更远、覆盖面积更大、防御预警时间更短等优点,而目前的隐身技术并不具备对P波段雷达隐身的能力。同时,低频端在国民生活中的应用场景也越来越多。
因此,低频吸波材料的研究越来越受到人们的关注。但对于低频电磁波,频率越低,波长越长,因此吸波材料的厚度也会相应增加,这对实际的应用提出了挑战。
虽然,现有技术有较多的相关报道,比如中国专利公开号CN 108484155 A公开了一种磁性吸波砖及其制备方法,这种吸波砖当厚度为5.5mm时,在频率0.5~6GHz有较好的吸波性能,但其低频端覆盖频率最低仅能达到500MHz。中国专利公开号CN 108017384 A也类似,当材料厚度为5.5mm时,在频率0.5~2GHz吸波性能可达-23dB,其低频端覆盖频率最低仅能达到500MHz。;另外,NiZn铁氧体材料虽然在20~500MHz内具有较好的吸收性能,但其吸波带宽较窄,且原材料成本较高。中国专利公开号CN 114400457 A公开了一种双相软磁铁氧体低频吸波器件及其制备方法,该材料当厚度为3.5mm时,在频率约400MHz~1000MHz,吸波性能可达-10dB,最强吸收强度为30dB。上述报道虽然取得了不错的吸波性能,但其-10dB吸波性能无法覆盖整个P波段。
发明内容
本发明的目的之一,就在于提供一种低频铁氧体吸波材料,以解决上述问题。
为了实现上述目的,本发明采用的技术方案是这样的:一种低频铁氧体吸波材料,按原料重量百分比计,
主体配方为:
Fe2O3:56~59% ;
MnCO3:23~25%;
ZnO :18~20%;
Co2O3:0.5~0.9%;
二次添加物为:
SiO2:0.1~0.5wt%;
CaCO3:0~0.05wt%。
本发明通过对原料配方的改进,使得所得的铁氧体吸波材料当厚度为5.5mm时,在0.06~1GHz,都具有-10dB的吸收强度,覆盖整个P波段,接近覆盖整个兆赫兹频段,同时其主体为MnZn相,具有良好的化学稳定性(耐腐蚀盐碱),且成本低廉,可大规模批量化生产,可广泛用于低频下的电磁波吸收。
其中,本发明Co掺杂可以有效调控材料的截止频率和电磁参数;二次料SiO2、CaCO3可以增大晶粒间的磁滞损耗,增强吸波性能。
作为优选的技术方案:所述二次添加物为SiO2:0.25wt%;CaCO3: 0.05wt%,二次料加入过多会直接恶化材料的电磁性能。
本发明的目的之二,在于提供一种上述低频吸波材料的制备方法,在于的技术方案为,包括以下步骤:
(1) 按所述主体配方的含量称取原材料,加入水作为溶剂进行球磨,球磨时间4~12 h,然后烘干过筛,在900-1050 ℃进行预烧处理,冷却后,得到一次料;
(2) 将步骤(1)所得的一次料粉碎,加入水作为溶剂和二次添加物球磨4~12 h,烘干后,得到二次料;
(3)将胶合剂加入二次料中,过筛成型;
(4)将生坯装入惰性气体气氛烧结炉中进行烧结,烧结温度为1250-1350℃,保温3-5h,即得样品。
作为优选的技术方案:步骤(1)中的原材料为分析纯。
作为优选的技术方案:步骤(4)中的烧结流程为在空气氛围缓慢升至1100℃,在5%的氧分压升至1320℃保温4h,在0.8%氧分压下降至1000℃,在0.5%氧分压下降至850℃,在0.05%氧分压下降至600℃,在空气氛围下降至室温。采用传统的MnZn材料烧结工艺,其必须在N2或真空氛围烧结才行,否则材料会氧化变形。
与现有技术相比,本发明的优点在于:本发明的铁氧体吸波材料在低频下具有较好的吸波性能,当厚度为5.5mm时,低频端覆盖的频率相对于现有技术更低且带宽更宽,在0.06~1GHz,都具有-10dB的吸收强度,同时其主体为MnZn相,具有良好的化学稳定性(耐腐蚀盐碱),且成本低廉,可大规模批量化生产可广泛用于低频下的电磁波吸收。
附图说明
图1为实施例1-5的吸波材料的磁导率实部和虚部;
图2 为实施例1-5的吸波材料的介电常数实部和虚部;
图3 为实施例1-5的吸波材料的反射率损耗。
具体实施方式
下面将结合附图对本发明作进一步说明。
实施例1:
一种低频铁氧体吸波材料,其主体配方按质量比计:
Fe2O3: 56.9%
MnCO3:23.3%
ZnO: 19.2%
Co2O3: 0.6%,合计100%;
二次添加物,按质量百分比计:SiO2:0.25wt%;CaCO3: 0.05wt%
制备方法为:
(1) 按所述主体配方的含量称取原材料,加入溶剂进行球磨,球磨时间4 h,然后烘干过筛,在1000℃进行预烧处理,冷却后,得到一次料;
(2)将步骤(1)所得的一次料粉碎,加入溶剂和二次添加物球磨4 h,烘干后,得到二次料;
(3)将比例为8 wt%的聚乙烯醇胶合剂加入二次料中,过筛成型;
(4)将生坯装入N2气氛烧结炉中进行烧结,即得样品,烧结温度为1320℃保温4h,烧结流程为在空气氛围缓慢升至1100℃,在5%的氧分压升至1320℃保温4h,在0.8%氧分压下降至1000℃,在0.5%氧分压下降至850℃,在0.05%氧分压下降至600℃,在空气氛围下降至室温,即得。
实施例2:
一种低频铁氧体吸波材料配方主体如下:
Fe2O3: 56.5%
MnCO3:23.5%
ZnO: 19.4%
Co2O3: 0.6%
二次添加物,按质量百分比计:SiO2:0.25wt%;CaCO3: 0.05wt% 其制备方法与实施例1相同。
实施例3:
一种低频铁氧体吸波材料配方主体如下:
Fe2O3: 56.2%
MnCO3:23.7%
ZnO: 19.5%
Co2O3: 0.6%
二次添加物,按质量百分比计:SiO2:0.25wt%;CaCO3: 0.05wt%
其制备方法与实施例1相同。
实施例4:
一种低频铁氧体吸波材料配方主体如下:
Fe2O3: 56.1%
MnCO3:24.5%
ZnO: 18.7%
Co2O3: 0.7%
二次添加物,按质量百分比计:SiO2:0.25wt%;CaCO3: 0.05wt%
其制备方法与实施例1相同。
实施例5:
一种低频铁氧体吸波材料配方主体如下:
Fe2O3: 56%
MnCO3:24.45%
ZnO: 18.8%
Co2O3: 0.75%
二次添加物,按质量百分比计:SiO2:0.25wt%;CaCO3: 0.05wt%
其制备方法与实施例1相同。
将前述实施例1-5烧结出的样品进行磁谱、介电谱测试,结果如图1和2所示,从图中可以看出,本申请的吸波材料在低频(60MHz-1000 MHz)具有较高的磁损耗和介电损耗。根据图1、2的数据,可以得到反射率RL的结果,如图3所示,其中,上述的实施例4,当样品厚度为5.5mm时,-10dB有效吸收带宽达到60~1000MHz。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种低频铁氧体吸波材料,其特征在于:按原料重量百分比计,
主体配方为:
Fe2O3:56~59% ;
MnCO3:23~25%;
ZnO :18~20%;
Co2O3:0.5~0.9%;
二次添加物为:
SiO2:0.1~0.5wt%;
CaCO3:0~0.05wt%。
2.根据权利要求1所述的一种低频铁氧体吸波材料,其特征在于:所述二次添加物为SiO2:0.25wt%;CaCO3: 0.05wt%。
3.权利要求1或2所述的一种低频吸波材料的制备方法,其特征在于,包括以下步骤:
(1) 按所述主体配方的含量称取原材料,加入溶剂进行球磨,球磨时间4~12 h,然后烘干过筛,在900-1050 ℃进行预烧处理,冷却后,得到一次料;
(2) 将步骤(1)所得的一次料粉碎,加入溶剂和二次添加物球磨4~12 h,烘干后,得到二次料;
(3)将胶合剂加入二次料中,过筛成型;
(4)将生坯装入惰性气体气氛烧结炉中进行烧结,烧结温度为1250-1350℃,保温3-5h,即得样品。
4.根据权利要求3所述的制备方法,其特征在于:步骤(1)中的原材料为分析纯。
5.根据权利要求3所述的制备方法,其特征在于:步骤(4)中的烧结流程为在空气氛围缓慢升至1100℃,在5%的氧分压升至1320℃保温4h,在0.8%氧分压下降至1000℃,在0.5%氧分压下降至850℃,在0.05%氧分压下降至600℃,在空气氛围下降至室温。
CN202211080096.8A 2022-09-05 2022-09-05 一种低频铁氧体吸波材料及其制备方法 Pending CN115448710A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211080096.8A CN115448710A (zh) 2022-09-05 2022-09-05 一种低频铁氧体吸波材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211080096.8A CN115448710A (zh) 2022-09-05 2022-09-05 一种低频铁氧体吸波材料及其制备方法

Publications (1)

Publication Number Publication Date
CN115448710A true CN115448710A (zh) 2022-12-09

Family

ID=84302586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211080096.8A Pending CN115448710A (zh) 2022-09-05 2022-09-05 一种低频铁氧体吸波材料及其制备方法

Country Status (1)

Country Link
CN (1) CN115448710A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3574116A (en) * 1967-07-25 1971-04-06 Nippon Electric Co Manganese-zinc ferrite with cobalt additive for producing a desired temperature coefficient of initial permeability
JPH09180925A (ja) * 1995-12-27 1997-07-11 Kawasaki Steel Corp Mn−Zn系ソフトフェライト
US20040185289A1 (en) * 2003-02-14 2004-09-23 Mineba Co., Ltd. Electromagnetic wave absorber formed of Mn-Zn ferrite
US20100045505A1 (en) * 2006-10-19 2010-02-25 Hatachi Metals, Ltd. Radio wave absorption material and radio wave absorber
CN103922715A (zh) * 2014-03-13 2014-07-16 苏州天源磁业有限公司 一种低损耗MnZn铁氧体材料及其制备方法
CN105036726A (zh) * 2015-07-24 2015-11-11 天长市中德电子有限公司 一种高性能Mn-Zn铁氧体材料及制备方法
JP2016060656A (ja) * 2014-09-17 2016-04-25 Tdk株式会社 電波吸収体用のフェライト組成物および電波吸収体
CN106478087A (zh) * 2016-10-21 2017-03-08 山东中瑞电子股份有限公司 一种高频低功耗MnZn铁氧体材料及其制备方法
CN106518041A (zh) * 2016-11-10 2017-03-22 佛山蓝途科技有限公司 一种Mn‑Zn铁氧体磁性材料
CN110845228A (zh) * 2019-11-15 2020-02-28 苏州天源磁业股份有限公司 一种贫铁软磁铁氧体、电磁波吸收材料及其制备方法
WO2022110626A1 (zh) * 2020-11-30 2022-06-02 横店集团东磁股份有限公司 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3574116A (en) * 1967-07-25 1971-04-06 Nippon Electric Co Manganese-zinc ferrite with cobalt additive for producing a desired temperature coefficient of initial permeability
JPH09180925A (ja) * 1995-12-27 1997-07-11 Kawasaki Steel Corp Mn−Zn系ソフトフェライト
US20040185289A1 (en) * 2003-02-14 2004-09-23 Mineba Co., Ltd. Electromagnetic wave absorber formed of Mn-Zn ferrite
US20100045505A1 (en) * 2006-10-19 2010-02-25 Hatachi Metals, Ltd. Radio wave absorption material and radio wave absorber
CN103922715A (zh) * 2014-03-13 2014-07-16 苏州天源磁业有限公司 一种低损耗MnZn铁氧体材料及其制备方法
JP2016060656A (ja) * 2014-09-17 2016-04-25 Tdk株式会社 電波吸収体用のフェライト組成物および電波吸収体
CN105036726A (zh) * 2015-07-24 2015-11-11 天长市中德电子有限公司 一种高性能Mn-Zn铁氧体材料及制备方法
CN106478087A (zh) * 2016-10-21 2017-03-08 山东中瑞电子股份有限公司 一种高频低功耗MnZn铁氧体材料及其制备方法
CN106518041A (zh) * 2016-11-10 2017-03-22 佛山蓝途科技有限公司 一种Mn‑Zn铁氧体磁性材料
CN110845228A (zh) * 2019-11-15 2020-02-28 苏州天源磁业股份有限公司 一种贫铁软磁铁氧体、电磁波吸收材料及其制备方法
WO2022110626A1 (zh) * 2020-11-30 2022-06-02 横店集团东磁股份有限公司 一种电磁吸收与屏蔽的铁氧体材料、电磁波吸收体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
廖润华: "《环境治理功能材料》", 中国建材工业出版社, pages: 203 - 215 *

Similar Documents

Publication Publication Date Title
CN110156451B (zh) 一种高阻抗的贫铁锰锌铁氧体材料及其制备方法
CN110526702B (zh) 一种碳复合锰锌铁氧体宽频吸波材料的制备方法
JP6637959B2 (ja) 極超短波アンテナの使用のためのCo2Z−型のフェライト複合材料
JP4935824B2 (ja) 電波吸収材料及び電波吸収体
CN111892093B (zh) 一种微波吸收材料及其制备方法
CN111138181A (zh) 一种宽频高阻抗锰锌铁氧体材料及其制备方法
KR20160033037A (ko) 전파 흡수체용 페라이트 조성물 및 전파 흡수체
CN111302775B (zh) 一种具有高品质因数低介电常数的陶瓷材料及其制备方法
CN103011792B (zh) 一种毫米波段电磁波吸收剂的制备方法
KR101105595B1 (ko) 페라이트 제조방법
JP2004247603A (ja) MnZn系フェライト電波吸収体
CN110776314A (zh) 一种宽高频抗emi用锰锌铁氧体材料及其制备方法
WO1999016090A1 (fr) Absorbant d'ondes radioelectriques
CN115448710A (zh) 一种低频铁氧体吸波材料及其制备方法
CN113105226A (zh) 一种微波陶瓷介质材料及其制备方法
CN103242037B (zh) 在l波段内具有高磁损耗的六角铁氧体材料及制备方法
CN114773047B (zh) 一种宽频高阻抗的锰锌铁氧体材料及其制备方法和应用
CN111138179A (zh) 一种宽频高阻抗锰锌铁氧体材料及其制备方法
CN110205095B (zh) 一种针对2~18GHz频段的高效吸波剂及其制备方法
CN114956192A (zh) 一种镧钴共掺杂钡铁氧体双波段吸波粉体材料及其制备方法
JP2000021620A (ja) 複合磁性体及びその製造方法
JP2000331816A (ja) 六方晶系z型バリウムフェライトとその製造方法
JP2806528B2 (ja) 電波吸収体用マグネシウム−亜鉛系フェライト材
KR100379749B1 (ko) 전자파 흡수와 원적외선의 방사 기능을 갖는 세라믹 조성물 및 그 제조방법
JP4317276B2 (ja) 電波吸収体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination