CN114195500A - 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法 - Google Patents

充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法 Download PDF

Info

Publication number
CN114195500A
CN114195500A CN202210148390.1A CN202210148390A CN114195500A CN 114195500 A CN114195500 A CN 114195500A CN 202210148390 A CN202210148390 A CN 202210148390A CN 114195500 A CN114195500 A CN 114195500A
Authority
CN
China
Prior art keywords
temperature
wide
sintering
charging pile
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210148390.1A
Other languages
English (en)
Other versions
CN114195500B (zh
Inventor
张志新
聂建文
缪思敏
邢冰冰
张强原
张芹
魏凌霄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDG Holding Co Ltd
Original Assignee
TDG Holding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDG Holding Co Ltd filed Critical TDG Holding Co Ltd
Priority to CN202210148390.1A priority Critical patent/CN114195500B/zh
Publication of CN114195500A publication Critical patent/CN114195500A/zh
Application granted granted Critical
Publication of CN114195500B publication Critical patent/CN114195500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明属于磁性材料技术领域,公开了一种充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法。本发明材料包含主成分和辅助成分,主成分包括Fe2O3、ZnO、SnO2、Mn3O4,辅助成分包括CaCO3、Nb2O5、TiO2、Co2O3、Ta2O5。本发明的锰锌铁氧体,采用四元主配方技术,在主配方加入SnO2取代部分Fe2O3,并结合对粉料的二次烧结技术,可以提高材料电阻率和改善温度特性,降低涡流损耗和高温损耗,还可以使晶粒大小均匀和改善晶格缺陷,进而使矫顽力降低,减小磁滞损耗,得到在500kHz,100mT和1MHz,100mT,在‑20℃~140℃条件下具有宽温高频高磁通密度的锰锌软磁铁氧体。

Description

充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法
技术领域
本发明涉及一种充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法,属于磁性材料技术领域,具体领域为一种宽温度范围(-20℃-140℃)、高频低损耗MnZn功率铁氧体的制备方法。
背景技术
随着电动汽车普及及快速发展,与之相配套的充电装置成了社会所关注的焦点问题。主要包括站桩比、充电时长等重要问题。充电桩的输出电压与频率成正比(Vm=KfBmAN,其中K为波形因子,Bm为工作磁感应强度,f为频率,A为磁芯截面积,N为绕组匝数),因此要提升充电桩的充电效率就要提高工作频率和工作磁通密度,就需要进一步提高铁氧体磁性元器件的工作频率和工作磁通密度,而有助于这一目标实现的关键技术之一就是高频高磁通密度铁氧体材料技术。另外,考虑到充电桩主要在室外工作,周边环境温度容易对充电桩的充电效率产生较大影响,这就要求内部的功率铁氧体磁性元器件在零下几十度到一百度以上范围内具有稳定的工作效率。市场上传统软磁功率铁氧体的损耗随温度变化很大,仅能在很窄的温度范围内实现低损耗。因此,具体到软磁材料层面来说,需要锰锌功率铁氧体磁性元器件具有高功率密度、高效率、低温升和高可靠性,在高磁通密度和高频率下及很宽的工作温度范围内具有低损耗等特点。因此,十分有必要研发出能够在-20℃-140℃温度下,具有高频高磁通密度低功耗的MnZn功率铁氧体材料。
授权公告号为CN107473727B的中国专利公开了一种宽频宽温高功率密度低损耗锰锌软磁铁氧体材料及其制备方法,该发明的材料在100KHz~500KHz,100~200mT条件下,从-20~ 120℃温度范围内有着较低损耗,但其配方和工艺与本发明相差大,且使用频率较低,损耗相对较差。公开号为CN106278228A的中国专利中,通过TiO2及Co3O4掺杂实现了-20℃~120℃温度范围内,100KHz与500KHz条件下的低损耗,但只是在比较低的磁通密度下实现,测试条件为30mT。公开号为CN1627454的中国专利公开了一种低损耗软磁铁氧体,涉及SnO2二次掺杂技术降低材料损耗,该发明主要通过对比SnO2和CaCO3等掺杂的一次和二次掺杂对损耗的影响,没有提及改善温度特性且SnO2的掺杂并不影响主配方中Fe含量,与本发明不同之处在于本发明通过四元主配方技术,在主配方加入合适的SnO2取代部分Fe2O3,生成稳定的Sn4+-Fe2+,抑制Fe2+和Fe3+之间电子跃迁,增加电阻率,同时通过补偿K改善温度特性,因此两者中SnO2的作用原理不同,说明两者的技术方案不同。公开号为CN112142458A一种高致密锰锌铁氧体的制备方法,该发明材料所提到的一次和二次烧结与本发明明显不同,该发明的一次烧结和二次烧结本质是预烧和烧结,本发明的一次烧结和二次烧结是对预烧后砂磨粉料的烧结和压制成型后的烧结,故两者的技术方案明显不同。
发明内容
本发明的目的在于提供一种充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法。本发明通过四元主配方技术,在主配方加入合适的SnO2取代部分Fe2O3,并结合对粉料的二次烧结技术,即对预烧后砂磨粉料的烧结和压制成型后的烧结,可以提高电阻率和改善材料的温度特性,降低涡流损耗和高温损耗,还可以使晶粒大小均匀和改善晶格缺陷,进而使矫顽力降低,减小磁滞损耗,得到宽温高频高磁通密度锰锌软磁铁氧体。
为实现上述目的,本发明采用的技术方案如下:
步骤1:配料:按照比例称重Fe2O3:68.2~71.5wt%,ZnO:4.5~8.5 wt%,SnO2:0.1~0.3 wt%,其余为Mn3O4,然后进行湿法砂磨混合,混合时间为10~20min;
步骤2:预烧:对步骤1中所得混合料烘干后进行预烧,在空气中进行预烧,预烧温度为800~1000℃,升温速率为3~5℃/min;
步骤3:砂磨:对步骤2所得预烧料振磨,然后按照主成分重量计算辅助成分比例:CaCO3:300~1200ppm、Nb2O5:50~350ppm、TiO2:500~1000ppm、Co2O3:1500~5000ppm、Ta2O5:500~2000ppm,砂磨且砂磨时间是30~90min;
步骤4:一次烧结:对步骤3所得粉料在一托钟罩炉中以平衡氧分压方式进行烧结,一次烧结温度900~1100℃,保温时间为1~4h,保温氧含量1.0~2.0%;
步骤5:造粒:对烧结后的粉料过筛并造粒;
步骤6:压制成型:压制成尺寸为Φ12.5mm*Φ7.5mm*7mm环形生坯;
步骤7:二次烧结:对毛坯进行烧结,烧结温度为1100~1300℃,保温时间为4~8h,平衡氧含量为1.5~3.0%。
优选的,材料主成分包括Fe2O3:69.5~70.8wt%,ZnO:4.5~6.5wt%,SnO2:0.12~0.25 wt%,其余为Mn3O4
优选的,步骤4中,一次烧结温度是950~1050℃,保温时间为2~4h,平衡氧含量为1.3~1.8%。
优选的,步骤7中,二次烧结温度为1150~1250℃,保温时间为4~6h,平衡氧含量为1.5~3.0%。
本发明通过四元主配方技术,在主配方加入合适的SnO2取代部分Fe2O3,生成稳定的Sn4+--Fe2+,抑制Fe2+和Fe3+之间电子跃迁,且SnO2可在晶粒内和晶界上均匀分布,对提高材料的电阻率有明显作用,减小材料涡流损耗,同时SnO2掺杂还可以改善材料的温度特性,使材料具有宽温低损耗特性。
由于原材料在空气中预烧后粉料活性较高,且存在明显的晶格缺陷,因此对砂磨粉料在钟罩炉内以平衡氧分压方式在900~1100℃进行一次烧结,各掺杂物发生初步反应及原材料进一步反应,改善材料经预烧后产生尖晶石结构的晶格缺陷,降低粉料活性,这样可以减小材料在二次烧结时晶粒异常长大出现的机率,使材料晶粒更加均匀。
与现有技术相比,本发明的有益效果为:
1、该高频材料适用于-20℃-140℃温度范围内应用,使其在宽温范围内保持低损耗,损耗曲线在-20℃-140℃应用温度范围内平缓。
2、该宽温材料适用于500~1000kHz的应用频率,可适应当下电子信息技术小型化、一致性、稳定性的需求。
3、本发明的锰锌软磁铁氧体,在500kHz~1MHz 100mT条件下具有宽温低损耗等特点,达到技术性能、指标和参数如下:
(1)初始磁导率μi≥1200(T=25℃,B<0.25mT);
(2)磁损耗 Pcv≤400kW/m3(T=-20℃,f=500kHz,B=100mT);
Pcv≤350kW/m3(T=25℃,f=500kHz,B=100mT);
Pcv≤330kW/m3(T=60℃,f=500kHz,B=100mT);
Pcv≤350kW/m3(T=100℃,f=500kHz,B=100mT);
Pcv≤370kW/m3(T=140℃,f=500kHz,B=100mT);
Pcv≤850kW/m3(T=-20℃,f=1MHz,B=100mT);
Pcv≤830kW/m3(T=25℃,f=1MHz,B=100mT);
Pcv≤800kW/m3(T=60℃,f=500kHz,B=100mT);
Pcv≤860kW/m3(T=100℃,f=1MHz,B=100mT);
Pcv≤950kW/m3(T=140℃,f=1MHz,B=100mT);
(3)饱和磁感应强度Bs≥510mT(25℃,H=1194A/m);Bs≥430mT(100℃,H=1194A/m)。
本发明的宽温中高频高磁通密度低损耗锰锌铁氧体具有宽温化、高频化和低损耗化等优良磁性特点,应当下电子、信息技术的需求,满足小型化、一致性、稳定性,可应用于汽车充电桩等领域。
附图说明
图1为实施例1、实施例2、比较例1、比较例2 的材料在500kHz条件下损耗变化曲线;
图2为实施例1、实施例3、实施例4、比较例3、比较例4、比较例5 的材料在500kHz条件下损耗变化曲线;
图3为实施例1材料的SEM照片;
图4为比较例3材料的SEM照片。
具体实施方式
下面通过具体的实施案例,对本发明所制备的一种充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备工艺进一步具体说明。根据以下制备方法制备出实施例1、实施例2、实施例3和实施例4四种MnZn铁氧体材料以及比较例1、比较例2、比较例3、比较例4和比较例5五种MnZn铁氧体材料。
实施例1:充电桩用宽温高频高磁通密度锰锌软磁铁氧体,由主成分和辅助成分组成,制备方法如下:
步骤1:配料:按照比例称重Fe2O3:70.3wt%,ZnO:5.25 wt%,SnO2:0.18 wt%,其余为Mn3O4。然后进行湿法砂磨混合,混合时间为10~20min;
步骤2:预烧:对步骤1中所得混合料烘干后进行预烧,在空气中进行预烧,预烧温度为900℃,升温速率为3℃/min;
步骤3:砂磨:对步骤2所得预烧料振磨,然后按照主成分重量计算辅助成分比例:CaCO3:1000ppm、Nb2O5:300ppm、TiO2:600ppm、Co2O3:3000ppm、Ta2O5:800ppm ,砂磨且砂磨时间是70min;
步骤4:一次烧结:在一托钟罩炉内以平衡氧分压方式烧结,烧结温度1000℃,保温时间为2h,保温氧含量1.2%;
步骤5:造粒:对烧结后的粉料过筛并造粒;
步骤6:压制成型:压制成尺寸为Φ12.5mm*Φ7.5mm*7mm环形生坯。
步骤7:二次烧结,烧结温度为1180℃,保温时间为6h,平衡氧含量为2.0%;
实施例2:充电桩用宽温高频高磁通密度锰锌软磁铁氧体,由主成分和辅助成分组成,与实施例1相比,不同之处在于,步骤1的配料中主成分Fe2O3:70.60wt%,ZnO:5.75 wt%,SnO2:0.23 wt%,其余为Mn3O4
实施例3:充电桩用宽温高频高磁通密度锰锌软磁铁氧体,由主成分和辅助成分组成,与实施例1相比,不同之处在于,步骤4热处理1050℃。
实施例4:充电桩用宽温高频高磁通密度锰锌软磁铁氧体,由主成分和辅助成分组成,与实施例1相比,不同之处在于,步骤4热处理1100℃。
比较例1:充电桩用宽温高频高磁通密度锰锌软磁铁氧体,由主成分和辅助成分组成,与实施例1相比,不同之处在于,步骤1的配料中主成分Fe2O3:70.48wt%,ZnO:5.25 wt%,其余为Mn3O4
比较例2:充电桩用宽温高频高磁通密度锰锌软磁铁氧体,由主成分和辅助成分组成,制备方法如下:
步骤1:配料:按照比例称重Fe2O3:70.48wt%,ZnO:5.25 wt%,其余为Mn3O4。然后进行湿法砂磨混合,混合时间为10~20min;
步骤2:预烧:对步骤1中所得混合料烘干后进行预烧,在空气中进行预烧,预烧温度为900℃,升温速率为3℃/min;
步骤3:砂磨:对步骤2所得预烧料振磨,然后按照主成分重量计算辅助成分比例:CaCO3:1000ppm、Nb2O5:300ppm、TiO2:600ppm、Co2O3:3000ppm、SnO2:1800ppm、Ta2O5:800ppm ,砂磨且砂磨时间是70min;
步骤4:一次烧结:在一托钟罩炉内以平衡氧分压方式烧结,烧结温度1000℃,保温时间为2h,保温氧含量1.2%;
步骤5:造粒:对烧结后的粉料过筛并造粒;
步骤6:压制成型:压制成尺寸为Φ12.5mm*Φ7.5mm*7mm环形生坯;
步骤7:二次烧结,烧结温度为1180℃,保温时间为6h,平衡氧含量为2.0%。
比较例3:充电桩用宽温高频高磁通密度锰锌软磁铁氧体,由主成分和辅助成分组成,与实施例1相比,不同之处在于,省略步骤4一次烧结。
比较例4:充电桩用宽温高频高磁通密度锰锌软磁铁氧体,由主成分和辅助成分组成,与实施例1相比,不同之处在于,步骤4一次烧结温度是800℃。
比较例5:充电桩用宽温高频高磁通密度锰锌软磁铁氧体,由主成分和辅助成分组成,与实施例1相比,不同之处在于,步骤4一次烧结温度是1300℃。
将经上述步骤制得的样环在日本岩崎公司的SY8218仪器进行功耗Pcv及饱和矫顽力Hc的测试。测试条件分别为:在500kHz,100mT和1MHz 100mT的条件下测试Pcv,在1kHz,1194A/m的条件下测试其Hc,性能记录于下表。
Figure 582089DEST_PATH_IMAGE002
通过对比实施例与比较例表明:通过四元主配方技术,在主配方中加入SnO2取代Fe2O3,并结合二次烧结工艺,即对预烧后砂磨粉料的烧结和压制成型后的烧结,对材料的矫顽力、损耗和电阻率有明显改善。通过上表和图1可以看出,采用SnO2普通掺杂工艺或未掺杂SnO2工艺时,材料电阻率较小,且损耗高,而采用四元主配方技术,在主配方中加入SnO2以取代Fe2O3时,材料的上述性能都有所改善;通过上表和图2可以看出,对砂磨粉料在合适的温度区间进行一次烧结后,在压制成型后再对其进行二次烧结,材料的矫顽力、损耗和电阻率都有所改善。进一步通过对比图3和图4,可以看出,采用四元主配方技术,在主配方中加入SnO2以取代Fe2O3,并对砂磨粉料在合适的温度区间进行一次烧结,晶粒大小会更加均匀且有所减小,材料矫顽力、损耗和电阻率都有所改善。
以上所述仅为本发明的一些实施方式,但本发明的保护范围并不局限于此。

Claims (7)

1.充电桩用宽温高频高磁通密度低损耗锰锌软磁铁氧体的制备方法,其特征在于,包括以下步骤:
步骤1:配料:按照比例称重Fe2O3:68.2~71.5wt%,ZnO:4.5~8.5 wt%,SnO2:0.1~0.3wt%,其余为Mn3O4,然后进行湿法砂磨混合;
步骤2:预烧:对步骤1中所得混合料烘干后进行预烧,在空气中进行预烧;
步骤3:砂磨:对步骤2所得预烧料振磨,然后加入辅助成分CaCO3、Nb2O5、TiO2、Co2O3、Ta2O5后,进行砂磨;
步骤4:一次烧结:对步骤3所得粉料以平衡氧分压方式进行烧结,一次烧结温度900~1100℃,保温时间为1~4h,保温氧含量1.0~2.0%;
步骤5:造粒:对烧结后的粉料过筛并造粒;
步骤6:压制成型:压制成尺寸为环形生坯;
步骤7:二次烧结:对生坯进行烧结,烧结温度为1100~1300℃,保温时间为4~8h,平衡氧含量为1.5~3.0%。
2.由权利要求1所述制备方法制造的充电桩用宽温高频高磁通密度低损耗锰锌软磁铁氧体,其特征在于,铁氧体材料包含主成分和辅助成分,其中,主成分包括Fe2O3:69.5~70.8wt%,ZnO:4.5~6.5wt%,SnO2:0.12~0.25 wt%,其余为Mn3O4,辅助成分包括: CaCO3:300~1200ppm、Nb2O5:50~350ppm、TiO2:500~1000ppm、Co2O3:1500~5000ppm、Ta2O5:500~2000ppm,按照主成分总重量计算。
3.根据权利要求1所述充电桩用宽温高频高磁通密度低损耗锰锌软磁铁氧体的制备方法,其特征在于,所述步骤2中的预烧温度为800~1000℃,升温速率为3~5℃/min。
4.根据权利要求1所述充电桩用宽温高频高磁通密度低损耗锰锌软磁铁氧体的制备方法,其特征在于,所述步骤1中的混合时间为10~20min。
5.根据权利要求1所述充电桩用宽温高频高磁通密度低损耗锰锌软磁铁氧体的制备方法,其特征在于,所述步骤3中的砂磨时间是30~90min。
6.根据权利要求1所述充电桩用宽温高频高磁通密度低损耗锰锌软磁铁氧体的制备方法,其特征在于,所述步骤4中是在一托钟罩炉内烧结,烧结温度是950~1050℃,保温时间为2~4h,平衡氧含量为1.3~1.8%。
7.根据权利要求1所述充电桩用宽温高频高磁通密度低损耗锰锌软磁铁氧体的制备方法,其特征在于,所述步骤7中,二次烧结温度为1150~1250℃,保温时间为4~6h,平衡氧含量为1.5~3.0%。
CN202210148390.1A 2022-02-18 2022-02-18 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法 Active CN114195500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210148390.1A CN114195500B (zh) 2022-02-18 2022-02-18 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210148390.1A CN114195500B (zh) 2022-02-18 2022-02-18 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法

Publications (2)

Publication Number Publication Date
CN114195500A true CN114195500A (zh) 2022-03-18
CN114195500B CN114195500B (zh) 2022-07-12

Family

ID=80645661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210148390.1A Active CN114195500B (zh) 2022-02-18 2022-02-18 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法

Country Status (1)

Country Link
CN (1) CN114195500B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536381A (zh) * 2022-10-19 2022-12-30 安徽龙磁金属科技有限公司 一种高饱和磁通密度低损耗锰锌铁氧体材料
CN117902891A (zh) * 2024-03-15 2024-04-19 天通控股股份有限公司 一种单畴结构高频高工作磁密锰锌软磁铁氧体及制备方法
CN118422141A (zh) * 2024-04-08 2024-08-02 南通冠优达磁业股份有限公司 一种新能源电力系统用宽温高频软磁铁氧体材料的制备方法
CN118675877A (zh) * 2024-08-22 2024-09-20 天通控股股份有限公司 一种高频无线充电用铁氧体及其制备方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004196658A (ja) * 2004-02-16 2004-07-15 Minebea Co Ltd Mn−Znフェライトおよびその製造方法
CN1627454A (zh) * 2003-12-12 2005-06-15 浙江天通电子股份有限公司 低损耗软磁锰锌铁氧体
CN101004961A (zh) * 2006-12-11 2007-07-25 电子科技大学 高频大功率铁氧体材料的制备方法
CN101412621A (zh) * 2008-10-23 2009-04-22 电子科技大学 高磁导率高饱和磁感应强度MnZn铁氧体材料及其制备方法
CN102745981A (zh) * 2012-06-29 2012-10-24 电子科技大学 较高磁导率宽温低损耗MnZn铁氧体材料及制备方法
CN103396111A (zh) * 2013-08-12 2013-11-20 江苏省晶石磁性材料与器件工程技术研究有限公司 一种高频宽温低损耗锰锌铁氧体及其制造工艺
CN105601263A (zh) * 2015-12-23 2016-05-25 苏州冠达磁业有限公司 一种高性能功率锰锌软磁铁氧体材料及其制备方法
CN107473727A (zh) * 2017-09-21 2017-12-15 郴州市久隆旺高科电子有限公司 一种宽频宽温高功率密度低损耗锰锌软磁铁氧体材料及其制备方法
CN108424136A (zh) * 2018-03-21 2018-08-21 电子科技大学 MHz级开关电源用MnZn功率铁氧体及其制备方法
CN111039667A (zh) * 2019-12-09 2020-04-21 天长市华磁磁电有限公司 一种宽温低损耗铁氧体及其制备方法
CN111517776A (zh) * 2020-04-23 2020-08-11 眉山市宇泰电子设备有限公司 一种锰锌软磁铁氧体材料的制备方法
CN112142458A (zh) * 2020-09-27 2020-12-29 南通冠优达磁业有限公司 一种高致密锰锌铁氧体的制备方法
CN112694323A (zh) * 2020-12-29 2021-04-23 日照亿鑫电子材料有限公司 一种宽温高Bs锰锌铁氧体磁性材料及其制备方法
CN113620701A (zh) * 2021-09-29 2021-11-09 海安南京大学高新技术研究院 一种超细晶耐高温高频锰锌铁氧体制备方法
CN113998999A (zh) * 2022-01-04 2022-02-01 天通控股股份有限公司 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1627454A (zh) * 2003-12-12 2005-06-15 浙江天通电子股份有限公司 低损耗软磁锰锌铁氧体
JP2004196658A (ja) * 2004-02-16 2004-07-15 Minebea Co Ltd Mn−Znフェライトおよびその製造方法
CN101004961A (zh) * 2006-12-11 2007-07-25 电子科技大学 高频大功率铁氧体材料的制备方法
CN101412621A (zh) * 2008-10-23 2009-04-22 电子科技大学 高磁导率高饱和磁感应强度MnZn铁氧体材料及其制备方法
CN102745981A (zh) * 2012-06-29 2012-10-24 电子科技大学 较高磁导率宽温低损耗MnZn铁氧体材料及制备方法
CN103396111A (zh) * 2013-08-12 2013-11-20 江苏省晶石磁性材料与器件工程技术研究有限公司 一种高频宽温低损耗锰锌铁氧体及其制造工艺
CN105601263A (zh) * 2015-12-23 2016-05-25 苏州冠达磁业有限公司 一种高性能功率锰锌软磁铁氧体材料及其制备方法
CN107473727A (zh) * 2017-09-21 2017-12-15 郴州市久隆旺高科电子有限公司 一种宽频宽温高功率密度低损耗锰锌软磁铁氧体材料及其制备方法
CN108424136A (zh) * 2018-03-21 2018-08-21 电子科技大学 MHz级开关电源用MnZn功率铁氧体及其制备方法
CN111039667A (zh) * 2019-12-09 2020-04-21 天长市华磁磁电有限公司 一种宽温低损耗铁氧体及其制备方法
CN111517776A (zh) * 2020-04-23 2020-08-11 眉山市宇泰电子设备有限公司 一种锰锌软磁铁氧体材料的制备方法
CN112142458A (zh) * 2020-09-27 2020-12-29 南通冠优达磁业有限公司 一种高致密锰锌铁氧体的制备方法
CN112694323A (zh) * 2020-12-29 2021-04-23 日照亿鑫电子材料有限公司 一种宽温高Bs锰锌铁氧体磁性材料及其制备方法
CN113620701A (zh) * 2021-09-29 2021-11-09 海安南京大学高新技术研究院 一种超细晶耐高温高频锰锌铁氧体制备方法
CN113998999A (zh) * 2022-01-04 2022-02-01 天通控股股份有限公司 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536381A (zh) * 2022-10-19 2022-12-30 安徽龙磁金属科技有限公司 一种高饱和磁通密度低损耗锰锌铁氧体材料
CN117902891A (zh) * 2024-03-15 2024-04-19 天通控股股份有限公司 一种单畴结构高频高工作磁密锰锌软磁铁氧体及制备方法
CN117902891B (zh) * 2024-03-15 2024-05-28 天通控股股份有限公司 一种单畴结构高频高工作磁密锰锌软磁铁氧体及制备方法
CN118422141A (zh) * 2024-04-08 2024-08-02 南通冠优达磁业股份有限公司 一种新能源电力系统用宽温高频软磁铁氧体材料的制备方法
CN118675877A (zh) * 2024-08-22 2024-09-20 天通控股股份有限公司 一种高频无线充电用铁氧体及其制备方法

Also Published As

Publication number Publication date
CN114195500B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN114195500B (zh) 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法
CN113563062B (zh) 一种超高频高磁导率低损耗锰锌软磁铁氧体及制备方法
CN111233452B (zh) 一种高频高阻抗的贫铁锰锌铁氧体及其制备方法
TWI722151B (zh) 錳鋅系鐵氧體的製造方法及錳鋅系鐵氧體
CN113998999B (zh) 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法
CN109485403A (zh) 一种高Bs低损耗软磁铁氧体材料及其制备方法
CN108610037B (zh) 一种宽温高叠加高居里温度的锰锌高磁导率材料及其制备方法
CN112194482B (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
TWI771395B (zh) 錳鋅系鐵氧體燒結體
CN113277840A (zh) 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法
CN114436636A (zh) 一种差共模电感用高磁导率锰锌铁氧体材料及其制备方法
CN111116188B (zh) 一种锰锌高磁导率高居里温度高频高磁通材料及其制备方法
JP3597673B2 (ja) フェライト材料
JP2005330126A (ja) MnZnフェライト及びその製造方法
JP2004247370A (ja) MnZnフェライト
CN115448714A (zh) 锰锌铁氧体材料及制备方法和应用
CN114773047A (zh) 一种宽频高阻抗的锰锌铁氧体材料及其制备方法和应用
CN112441828B (zh) 一种铁氧体材料及其制备方法
JP3790606B2 (ja) Mn−Coフェライト材料
CN113845359A (zh) 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
JP2004247371A (ja) MnZnフェライト
CN112341179A (zh) 一种高频锰锌铁氧体材料、其制备方法和应用
CN117902891B (zh) 一种单畴结构高频高工作磁密锰锌软磁铁氧体及制备方法
JP2007031210A (ja) MnZnフェライト
CN112552037B (zh) 一种低损耗铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant