CN113620701A - 一种超细晶耐高温高频锰锌铁氧体制备方法 - Google Patents
一种超细晶耐高温高频锰锌铁氧体制备方法 Download PDFInfo
- Publication number
- CN113620701A CN113620701A CN202111147571.4A CN202111147571A CN113620701A CN 113620701 A CN113620701 A CN 113620701A CN 202111147571 A CN202111147571 A CN 202111147571A CN 113620701 A CN113620701 A CN 113620701A
- Authority
- CN
- China
- Prior art keywords
- temperature
- zinc ferrite
- deformation
- manganese
- ball milling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2658—Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3239—Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Magnetic Ceramics (AREA)
- Soft Magnetic Materials (AREA)
Abstract
本发明公开了一种超细晶耐高温高频锰锌铁氧体制备方法,主要步骤为:以Fe2O3、MnO2、ZnO为主要原料,SnO2为辅助原料进行配料,一次球磨,预烧,掺杂CaCO3、V2O5、TiO2、Co2O3,二次球磨,添加PVA进行造粒,室温预加压成型,高温形变,高温加压成型,烧结,急冷降温,得到锰锌铁氧体。本发明以SnO2为辅助原料,Sn能够进入锰锌铁氧体晶格内部,阻碍电子在高温和高频下的跃迁,降低损耗;采用CaCO3、V2O5、TiO2、Co2O3进行掺杂,杂质元素富集在晶界中,增大晶界电阻率,降低损耗;采用高温压缩形变,提供形变储存能,增多晶粒形成位置,进而细化晶粒,降低损耗;采用急冷降温,降低降温过程中的元素扩散,增强铁氧体的高温特性。所得锰锌铁氧体具有超细晶、饱和磁感应强度高、耐高温、高频损耗低的优点。
Description
技术领域
本发明涉及高频锰锌铁氧体制备领域。
背景技术
5G时代,电子器件不断朝高频化发展,以锰锌铁氧体为代表的软磁铁氧体的高频特性及因器件发热产生的高温下的高频低损耗特性显得尤为重要。此外,提高工作频率有利于减小磁芯的体积及重量,有利于器件的小型化与轻量化。
目前,制备应用于2~4MHz的高频锰锌铁氧体成为技术难点。现有制备工艺制得锰锌铁氧体存在高频损耗大、高温特性差等缺陷。
发明内容
本发明克服以上缺点,提供了一种超细晶耐高温高频锰锌铁氧体制备方法,其特征在于,包括:
A、以Fe2O3、MnO2、ZnO为主要原料,SnO2为辅助原料进行配料;
B、将步骤A得到的原料进行一次球磨,转速220~250转/分钟,球磨时间2~3h;
C、将步骤B得到的原料进行预烧处理,预烧温度850~950℃,保温时间2~3h;
D、将步骤C得到的原料进行掺杂,掺杂元素为CaCO3、V2O5、TiO2、Co2O3;
E、将步骤D得到的原料进行二次球磨,转速220~250转/分钟,球磨时间3~5h;
F、将步骤E得到的原料添加10~15%PVA进行造粒;
G、将步骤F得到的原料进行室温预加压成型,所加压力为3~4MPa;
H、将步骤G得到的原料进行高温形变,温度为1000~1100℃;
I、将步骤H得到的原料进行高温加压成型,温度为1000~1100℃,所加压力为6~7MPa;
J、将步骤I得到的原料进行高温烧结,烧结温度为1140~1160℃,保温时间6h,氧分压为5%;
K、将步骤J得到的原料进行急冷降温,得到锰锌铁氧体。
本发明一种超细晶耐高温高频锰锌铁氧体制备方法的进一步改进在于,所述配料含量为,Fe2O3含量53-56mol%,MnO2含量33-36mol%,ZnO含量8-12mol%,SnO2含量0.001~0.005%wt%。
本发明一种超细晶耐高温高频锰锌铁氧体制备方法的进一步改进在于,所述掺杂元素含量为,CaCO3含量0.01~0.1wt%、V2O5含量0.001~0.01wt%、TiO2含量0.1~0.2wt%、Co2O3含量0.2~0.4wt%。
本发明一种超细晶耐高温高频锰锌铁氧体制备方法的进一步改进在于,所述高温形变为多次横向及纵向压缩形变,每次形变压缩率为5~15%。
本发明一种超细晶耐高温高频锰锌铁氧体制备方法的进一步改进在于,所述多次横向及纵向压缩形变过程为横向变形后交替进行纵向变形,变形次数为横向纵向各4~10次。
本发明一种超细晶耐高温高频锰锌铁氧体制备方法的进一步改进在于,所述急冷降温的降温速率为50~100℃/s。
本发明以SnO2为辅助原料,Sn能够进入锰锌铁氧体晶格内部,阻碍电子在高温和高频下的跃迁,降低损耗;采用CaCO3、V2O5、TiO2、Co2O3进行掺杂,杂质元素富集在晶界中,增大晶界电阻率,降低损耗;采用高温压缩形变,提供形变储存能,增多晶粒形成位置,进而细化晶粒,增多晶界,降低损耗;采用急冷降温,降低降温过程中的元素扩散,增强铁氧体的高温特性。本发明制备的锰锌铁氧体具有超细晶粒组织,高频损耗小、高温特性好的优点,有利于提高工作频率,减小磁芯的体积及重量,满足器件的小型化与轻量化需求。
具体实施方式
下面结合具体实施例对本发明作进一步的阐述,但本发明并不限于以下实施例。
实施例1:
以Fe2O3、MnO2、ZnO为主要原料,SnO2为辅助原料进行配料,Fe2O3含量53mol%,MnO2含量36mol%,ZnO含量11mol%,SnO2含量0.001wt%;配料完成后进行一次球磨,转速220转/分钟,球磨时间2h;将一次球磨后的原料进行预烧处理,预烧温度850℃,保温时间2h;完成后进行掺杂,掺杂CaCO3含量0.01wt%、V2O5含量0.01wt%、TiO2含量0.1wt%、Co2O3含量0.2wt%;将得到的原料进行二次球磨,转速220转/分钟,球磨时间3h;二次球磨完成后,添加10PVA进行造粒;之后进行室温预加压成型,所加压力为3MPa;之后进行横向及纵向交替的高温形变,温度为1000℃,形变压缩率为5%,形变次数为横向纵向各10次;之后进行高温加压成型,温度为1000℃,所加压力为6MPa;之后进行高温烧结,烧结温度为1160℃,保温时间6h,氧分压为5%;完成后进行急冷降温,降温速率为50℃/s,得到锰锌铁氧体。
实施例2:
以Fe2O3、MnO2、ZnO为主要原料,SnO2为辅助原料进行配料,Fe2O3含量56mol%,MnO2含量36mol%,ZnO含量8mol%,SnO2含量0.005wt%;配料完成后进行一次球磨,转速250转/分钟,球磨时间3h;将一次球磨后的原料进行预烧处理,预烧温度950℃,保温时间3h;完成后进行掺杂,掺杂CaCO3含量0.1wt%、V2O5含量0.001wt%、TiO2含量0.2wt%、Co2O3含量0.4wt%;将得到的原料进行二次球磨,转速250转/分钟,球磨时间5h;二次球磨完成后,添加15%PVA进行造粒;之后进行室温预加压成型,所加压力为4MPa;之后进行横向及纵向交替的高温形变,温度为1100℃,形变压缩率为15%,形变次数为横向纵向各4次;之后进行高温加压成型,温度为1100℃,所加压力为7MPa;之后进行高温烧结,烧结温度为1140℃,保温时间6h,氧分压为5%;完成后进行急冷降温,降温速率为100℃/s,得到锰锌铁氧体。
实施例3:
以Fe2O3、MnO2、ZnO为主要原料,SnO2为辅助原料进行配料,Fe2O3含量55mol%,MnO2含量33mol%,ZnO含量12mol%,SnO2含量0.003wt%;配料完成后进行一次球磨,转速230转/分钟,球磨时间2.5h;将一次球磨后的原料进行预烧处理,预烧温度900℃,保温时间2.5h;完成后进行掺杂,掺杂CaCO3含量0.05wt%、V2O5含量0.005wt%、TiO2含量0.15wt%、Co2O3含量0.3wt%;将得到的原料进行二次球磨,转速230转/分钟,球磨时间4h;二次球磨完成后,添加12%PVA进行造粒;之后进行室温预加压成型,所加压力为3.5MPa;之后进行横向及纵向交替的高温形变,温度为1050℃,形变压缩率为10%,形变次数为横向纵向各8次;之后进行高温加压成型,温度为1050℃,所加压力为6.5MPa;之后进行高温烧结,烧结温度为1150℃,保温时间6h,氧分压为5%;完成后进行急冷降温,降温速率为80℃/s,得到锰锌铁氧体。
实施例4:
以Fe2O3、MnO2、ZnO为主要原料,SnO2为辅助原料进行配料,Fe2O3含量54mol%,MnO2含量35mol%,ZnO含量11mol%,SnO2含量0.03wt%;配料完成后进行一次球磨,转速250转/分钟,球磨时间3h;将一次球磨后的原料进行预烧处理,预烧温度950℃,保温时间3h;完成后进行掺杂,掺杂CaCO3含量0.1wt%、V2O5含量0.004wt%、TiO2含量0.2wt%、Co2O3含量0.2wt%;将得到的原料进行二次球磨,转速250转/分钟,球磨时间5h;二次球磨完成后,添加15%PVA进行造粒;之后进行室温预加压成型,所加压力为4MPa;之后进行横向及纵向交替的高温形变,温度为1100℃,形变压缩率为15%,形变次数为横向纵向各10次;之后进行高温加压成型,温度为1100℃,所加压力为6MPa;之后进行高温烧结,烧结温度为1160℃,保温时间6h,氧分压为5%;完成后进行急冷降温,降温速率为100℃/s,得到锰锌铁氧体。
对比例(现有工艺):
以Fe2O3、MnO2、ZnO为原料进行配料,Fe2O3含量55mol%,MnO2含量35mol%,ZnO含量10mol%配料完成后进行一次球磨,转速250转/分钟,球磨时间3h;将一次球磨后的原料进行预烧处理,预烧温度950℃,保温时间3h;完成后进行掺杂,掺杂CaCO3、SiO2、Nb2O5、ZrO2、SnO2、TiO2、V2O5、P2O5、Ni2O3、Co2O3、MoO3、Ta2O5、Bi2O3中的三种以上;将得到的原料进行二次球磨,转速250转/分钟,球磨时间5h;二次球磨完成后,添加15%PVA进行造粒;之后加压成型,所加压力为6MPa;之后进行高温烧结,烧结温度为1150℃,保温时间6h,氧分压为5%;完成后进行降温,降温速率为300℃/h,得到锰锌铁氧体。
本发明锰锌铁氧体具有超细晶粒,具备高温特性及高频特性,性能测试如下:
最后需要说明的是,尽管在本文中已经对上述实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的保护范围之内。
Claims (6)
1.一种超细晶耐高温高频锰锌铁氧体制备方法,其特征在于:步骤如下:
A、以Fe2O3、MnO2、ZnO为主要原料,SnO2为辅助原料进行配料;
B、将步骤A得到的原料进行一次球磨,转速220~250转/分钟,球磨时间2~3h;
C、将步骤B得到的原料进行预烧处理,预烧温度850~950℃,保温时间2~3h;
D、将步骤C得到的原料进行掺杂,掺杂元素为CaCO3、V2O5、TiO2、Co2O3;
E、将步骤D得到的原料进行二次球磨,转速220~250转/分钟,球磨时间3~5h;
F、将步骤E得到的原料添加10~15%PVA进行造粒;
G、将步骤F得到的原料进行室温预加压成型,所加压力为3~4MPa;
H、将步骤G得到的原料进行高温形变,温度为1000~1100℃;
I、将步骤H得到的原料进行高温加压成型,温度为1000~1100℃,所加压力为6~7MPa;
J、将步骤I得到的原料进行高温烧结,烧结温度为1140~1160℃,保温时间6h,氧分压为5%;
K、将步骤J得到的原料进行急冷降温,得到锰锌铁氧体。
2.根据权利要求1所述的一种超细晶耐高温高频锰锌铁氧体制备方法,其特征在于:所述配料含量为,Fe2O3含量53-56mol%,MnO2含量33-36mol%,ZnO含量8-12mol%,SnO2含量0.001~0.005%wt%。
3.根据权利要求1所述的一种超细晶耐高温高频锰锌铁氧体制备方法,其特征在于:所述掺杂元素含量为,CaCO3含量0.01~0.1wt%、V2O5含量0.001~0.01wt%、TiO2含量0.1~0.2wt%、Co2O3含量0.2~0.4wt%。
4.根据权利要求1所述的一种超细晶耐高温高频锰锌铁氧体制备方法,其特征在于:所述高温形变为多次横向及纵向压缩形变,每次形变压缩率为5~15%。
5.根据权利要求4所述的一种超细晶耐高温高频锰锌铁氧体制备方法,其特征在于:所述多次横向及纵向压缩形变过程为横向变形后交替进行纵向变形,变形次数为横向纵向各4~10次。
6.根据权利要求1所述的一种超细晶耐高温高频锰锌铁氧体制备方法,其特征在于:所述急冷降温的降温速率为50~100℃/s。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111147571.4A CN113620701B (zh) | 2021-09-29 | 2021-09-29 | 一种超细晶耐高温高频锰锌铁氧体制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111147571.4A CN113620701B (zh) | 2021-09-29 | 2021-09-29 | 一种超细晶耐高温高频锰锌铁氧体制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113620701A true CN113620701A (zh) | 2021-11-09 |
CN113620701B CN113620701B (zh) | 2023-04-18 |
Family
ID=78390644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111147571.4A Active CN113620701B (zh) | 2021-09-29 | 2021-09-29 | 一种超细晶耐高温高频锰锌铁氧体制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113620701B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114195500A (zh) * | 2022-02-18 | 2022-03-18 | 天通控股股份有限公司 | 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法 |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2977263A (en) * | 1959-12-03 | 1961-03-28 | Western Electric Co | Magnetic cores and methods of making the same |
GB919176A (en) * | 1959-07-24 | 1963-02-20 | Standard Telephones Cables Ltd | Magnetic materials and applications |
CA1251621A (en) * | 1984-01-03 | 1989-03-28 | Ralph W. Scheidecker | Process of hot isostatic pressing of ferrite material |
US5433795A (en) * | 1993-09-20 | 1995-07-18 | General Motors Corporation | Fabrication of permanent magnets without loss in magnetic properties |
JPH11195548A (ja) * | 1997-12-26 | 1999-07-21 | Mitsubishi Materials Corp | Nd−Fe−B系磁石製造方法 |
US20060151068A1 (en) * | 2005-01-11 | 2006-07-13 | Lee Kee S | Production method of Fe-based soft magnetic powders for high frequency and soft magnetic core using the powders |
JP2007329250A (ja) * | 2006-06-07 | 2007-12-20 | Ulvac Japan Ltd | 永久磁石及び永久磁石の製造方法 |
JP2009043813A (ja) * | 2007-08-07 | 2009-02-26 | Ulvac Japan Ltd | 永久磁石及び永久磁石の製造方法 |
CN101560091A (zh) * | 2009-05-08 | 2009-10-21 | 海宁市联丰磁业有限公司 | 一种锰锌铁氧体材料及其制备方法 |
US20100119703A1 (en) * | 2007-05-01 | 2010-05-13 | Intermetallics Co., Ltd. | Method for making ndfeb sintered magnet |
CN102473517A (zh) * | 2009-07-23 | 2012-05-23 | 日立粉末冶金株式会社 | 压粉磁芯及其制造方法 |
JP2012180258A (ja) * | 2011-03-03 | 2012-09-20 | Tdk Corp | MnZn系フェライト粉末、MnZn系フェライト顆粒、MnZn系フェライトコアの製造方法およびMnZn系ファライトコア |
JP2012209442A (ja) * | 2011-03-30 | 2012-10-25 | Hitachi Metals Ltd | バルク磁石およびその製造方法 |
CN103123862A (zh) * | 2011-11-21 | 2013-05-29 | 中国科学院宁波材料技术与工程研究所 | 提高热压/热变形辐射取向钕铁硼永磁环性能及其轴向均匀性的方法 |
CN103496963A (zh) * | 2013-09-06 | 2014-01-08 | 江门安磁电子有限公司 | 一种不含Ni的兼具双重特性的MnZn铁氧体磁心及制造方法 |
CN103708818A (zh) * | 2013-12-12 | 2014-04-09 | 桐乡市耀润电子有限公司 | 二峰-20℃的高居里点高磁导率锰锌铁氧体材料及其制备方法 |
CN103928204A (zh) * | 2014-04-10 | 2014-07-16 | 重庆科技学院 | 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法 |
CN104609847A (zh) * | 2014-12-18 | 2015-05-13 | 余姚亿威电子科技有限公司 | 一种提高锰锌功率铁氧体材料电阻率的制备方法 |
JP2015126081A (ja) * | 2013-12-26 | 2015-07-06 | トヨタ自動車株式会社 | 希土類磁石とその製造方法 |
CN105788839A (zh) * | 2015-01-09 | 2016-07-20 | 现代自动车株式会社 | 稀土永磁体及其制造方法 |
US20170330658A1 (en) * | 2014-12-08 | 2017-11-16 | Lg Electronics Inc. | Hot-pressed and deformed magnet comprising nonmagnetic alloy and method for manufacturing same |
CN108022707A (zh) * | 2016-11-04 | 2018-05-11 | 上海交通大学 | 一种热变形或反向挤出Nd-Fe-B磁体的热处理工艺 |
US20180174722A1 (en) * | 2015-09-10 | 2018-06-21 | Yanshan University | Permanent magnet material and method for preparing the same |
JP2018107446A (ja) * | 2016-12-27 | 2018-07-05 | 有研稀土新材料股▲フン▼有限公司 | 希土類永久磁石材料及びその製造方法 |
CN108424136A (zh) * | 2018-03-21 | 2018-08-21 | 电子科技大学 | MHz级开关电源用MnZn功率铁氧体及其制备方法 |
CN109553407A (zh) * | 2018-12-29 | 2019-04-02 | 乳源东阳光磁性材料有限公司 | 一种高频低频兼容的锰锌功率材料及其制备方法和应用 |
-
2021
- 2021-09-29 CN CN202111147571.4A patent/CN113620701B/zh active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB919176A (en) * | 1959-07-24 | 1963-02-20 | Standard Telephones Cables Ltd | Magnetic materials and applications |
US2977263A (en) * | 1959-12-03 | 1961-03-28 | Western Electric Co | Magnetic cores and methods of making the same |
CA1251621A (en) * | 1984-01-03 | 1989-03-28 | Ralph W. Scheidecker | Process of hot isostatic pressing of ferrite material |
US5433795A (en) * | 1993-09-20 | 1995-07-18 | General Motors Corporation | Fabrication of permanent magnets without loss in magnetic properties |
JPH11195548A (ja) * | 1997-12-26 | 1999-07-21 | Mitsubishi Materials Corp | Nd−Fe−B系磁石製造方法 |
US20060151068A1 (en) * | 2005-01-11 | 2006-07-13 | Lee Kee S | Production method of Fe-based soft magnetic powders for high frequency and soft magnetic core using the powders |
JP2007329250A (ja) * | 2006-06-07 | 2007-12-20 | Ulvac Japan Ltd | 永久磁石及び永久磁石の製造方法 |
US20100119703A1 (en) * | 2007-05-01 | 2010-05-13 | Intermetallics Co., Ltd. | Method for making ndfeb sintered magnet |
JP2009043813A (ja) * | 2007-08-07 | 2009-02-26 | Ulvac Japan Ltd | 永久磁石及び永久磁石の製造方法 |
CN101560091A (zh) * | 2009-05-08 | 2009-10-21 | 海宁市联丰磁业有限公司 | 一种锰锌铁氧体材料及其制备方法 |
CN102473517A (zh) * | 2009-07-23 | 2012-05-23 | 日立粉末冶金株式会社 | 压粉磁芯及其制造方法 |
JP2012180258A (ja) * | 2011-03-03 | 2012-09-20 | Tdk Corp | MnZn系フェライト粉末、MnZn系フェライト顆粒、MnZn系フェライトコアの製造方法およびMnZn系ファライトコア |
JP2012209442A (ja) * | 2011-03-30 | 2012-10-25 | Hitachi Metals Ltd | バルク磁石およびその製造方法 |
CN103123862A (zh) * | 2011-11-21 | 2013-05-29 | 中国科学院宁波材料技术与工程研究所 | 提高热压/热变形辐射取向钕铁硼永磁环性能及其轴向均匀性的方法 |
CN103496963A (zh) * | 2013-09-06 | 2014-01-08 | 江门安磁电子有限公司 | 一种不含Ni的兼具双重特性的MnZn铁氧体磁心及制造方法 |
CN103708818A (zh) * | 2013-12-12 | 2014-04-09 | 桐乡市耀润电子有限公司 | 二峰-20℃的高居里点高磁导率锰锌铁氧体材料及其制备方法 |
JP2015126081A (ja) * | 2013-12-26 | 2015-07-06 | トヨタ自動車株式会社 | 希土類磁石とその製造方法 |
CN103928204A (zh) * | 2014-04-10 | 2014-07-16 | 重庆科技学院 | 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法 |
US20170330658A1 (en) * | 2014-12-08 | 2017-11-16 | Lg Electronics Inc. | Hot-pressed and deformed magnet comprising nonmagnetic alloy and method for manufacturing same |
CN104609847A (zh) * | 2014-12-18 | 2015-05-13 | 余姚亿威电子科技有限公司 | 一种提高锰锌功率铁氧体材料电阻率的制备方法 |
CN105788839A (zh) * | 2015-01-09 | 2016-07-20 | 现代自动车株式会社 | 稀土永磁体及其制造方法 |
US20180174722A1 (en) * | 2015-09-10 | 2018-06-21 | Yanshan University | Permanent magnet material and method for preparing the same |
CN108022707A (zh) * | 2016-11-04 | 2018-05-11 | 上海交通大学 | 一种热变形或反向挤出Nd-Fe-B磁体的热处理工艺 |
JP2018107446A (ja) * | 2016-12-27 | 2018-07-05 | 有研稀土新材料股▲フン▼有限公司 | 希土類永久磁石材料及びその製造方法 |
CN108424136A (zh) * | 2018-03-21 | 2018-08-21 | 电子科技大学 | MHz级开关电源用MnZn功率铁氧体及其制备方法 |
CN109553407A (zh) * | 2018-12-29 | 2019-04-02 | 乳源东阳光磁性材料有限公司 | 一种高频低频兼容的锰锌功率材料及其制备方法和应用 |
Non-Patent Citations (7)
Title |
---|
EQUIHUA-GUILLÉN F ET AL.: "Role of the austenite-ferrite transformation start temperature on the high-temperature ductility of electrical steels", 《JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE》 * |
文隽亿等: "铁磁纳米晶复合材料的制备及其高频特性", 《国际电子变压器》 * |
王明坤等: "热压/热变形NdFeB磁体研究的新进展", 《稀土》 * |
蒋秉植等: "磁性流体的制备,应用及其稳定性的解析", 《应用及其稳定性的解析》 * |
赵雨等: "锰锌铁氧体的磁损耗研究", 《上海交通大学学报》 * |
辛模良: "钕铁硼磁体的工艺技术", 《有色冶炼》 * |
都有为: "磁性材料进展概览", 《功能材料》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114195500A (zh) * | 2022-02-18 | 2022-03-18 | 天通控股股份有限公司 | 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法 |
CN114195500B (zh) * | 2022-02-18 | 2022-07-12 | 天通控股股份有限公司 | 充电桩用宽温高频高磁通密度锰锌软磁铁氧体及制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113620701B (zh) | 2023-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101037326B (zh) | 铁氧体烧结体和其制造方法 | |
CN102976741A (zh) | 一种含有改性纳米碳的锰锌MnZn软磁铁氧体材料的制备方法 | |
CN105198395B (zh) | 一种耐热冲击功率镍锌铁氧体及其制备方法 | |
CN107200574B (zh) | 一种低损耗软磁铁氧体材料 | |
CN113620701B (zh) | 一种超细晶耐高温高频锰锌铁氧体制备方法 | |
CN110372365A (zh) | 一种永磁铁氧体材料的制备方法 | |
CN113277840B (zh) | 一种高频高工作磁密低损耗锰锌铁氧体及其制备方法 | |
CN114605142B (zh) | 一种ltcf变压器用复合铁氧体基板材料及其制备方法 | |
CN104230321A (zh) | M型钙永磁铁氧体及其制备方法 | |
JP2005132715A (ja) | Ni−Cu−Zn系フェライト材料及びその製造方法 | |
CN102992746B (zh) | 一种高磁导率的锰锌MnZn软磁铁氧体材料的制备方法 | |
CN112125655A (zh) | 高温高频低损耗的铁氧体材料的制备方法 | |
CN115340372B (zh) | 一种低应力敏感的高频锰锌铁氧体材料及其制备方法 | |
CN114773047B (zh) | 一种宽频高阻抗的锰锌铁氧体材料及其制备方法和应用 | |
CN110835269A (zh) | 一种高强度高性能的软磁铁氧体材料的生产工艺 | |
CN115385678A (zh) | 一种软磁锰镍锌铜复合材料及其制备方法和用途 | |
JPH08169756A (ja) | 低損失Mn−Znフェライトコアおよびその製造方法 | |
JPS60262404A (ja) | Mn−Znフエライトの製造方法 | |
CN1304904A (zh) | 一种低温烧结材料 | |
CN102992751A (zh) | 一种含有改性树木灰烬的锰锌MnZn软磁铁氧体材料的制备方法 | |
CN117383924B (zh) | 一种宽频高阻抗高磁导率锰锌软磁铁氧体及其制备方法 | |
CN112479697B (zh) | 一种高频时兼具低温度系数和低损耗的MnZn铁氧体材料及制备方法 | |
CN113292330B (zh) | 高截止频率复合材料、制备方法及共模电感 | |
JP7426819B2 (ja) | 磁性体の製造方法及び磁性体を含むコイル部品 | |
CN107573051A (zh) | 一种不提高损耗改善MnZn功率铁氧体磁芯强度的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |