CN113845359A - 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法 - Google Patents

一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法 Download PDF

Info

Publication number
CN113845359A
CN113845359A CN202111003573.6A CN202111003573A CN113845359A CN 113845359 A CN113845359 A CN 113845359A CN 202111003573 A CN202111003573 A CN 202111003573A CN 113845359 A CN113845359 A CN 113845359A
Authority
CN
China
Prior art keywords
lizntimn
powder
loss
low
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111003573.6A
Other languages
English (en)
Inventor
廖宇龙
尹凯军
李金彦
李元勋
张怀武
陈文豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Haoze Electronic Technology Co ltd
University of Electronic Science and Technology of China
Original Assignee
Dongguan Haoze Electronic Technology Co ltd
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Haoze Electronic Technology Co ltd, University of Electronic Science and Technology of China filed Critical Dongguan Haoze Electronic Technology Co ltd
Priority to CN202111003573.6A priority Critical patent/CN113845359A/zh
Publication of CN113845359A publication Critical patent/CN113845359A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2616Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing lithium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明提供了一种低损耗LiZnTiMn旋磁铁氧体材料及其制备方法,属于磁性材料技术领域。所述旋磁铁氧体材料包括主料和复合助烧剂,其中主料的重量百分比为99.0%~99.5%,复合助烧剂的重量百分比为0.5%~1.0%;所述主料为Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4,所述复合助烧剂由Bi2O3与Nb2O5组成,其中Bi2O3和Nb2O5的质量比为5:(1~5)。本发明通过优化烧结工艺和添加复合助烧剂实现了LiZnTiMn的低温烧结,得到了具有低损耗的LiZnTiMn铁氧体材料,同时也降低材料的矫顽力,优化了材料性能。

Description

一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
技术领域
本发明属于磁性材料技术领域,具体涉及一种低温烧结具有低损耗的LiZnTiMn旋磁铁氧体材料及其制备方法。
背景技术
随着雷达技术的发展及应用领域的需求,相控阵雷达用移相器等微波/毫米波器件正朝着大功率、高精度、高频化方向发展。而具有高饱和磁化强度的Li系铁氧体材料能够很好地应用于Ka波段及其以上频段的铁氧体微波器件。LiZnTiMn旋磁铁氧体是Li系铁氧体材料的一种,其具有低矫顽力、高饱和磁化强度、高剩磁比等优点,在微波器件的制备中得到了广泛的应用。
作为制作铁氧体移相器的优良旋磁材料之一,当LiZnTiMn铁氧体应用于LTCF(低温共烧铁氧体)技术与银电极实现低温共烧(~960℃)时晶粒尺寸较小,气孔率较高,导致微波损耗特性(铁磁共振线宽和介电损耗)会急剧增大,从而导致铁氧体移相器的损耗变大,恶化相控阵雷达系统的性能。铁磁共振线宽常用于表征磁损耗的大小,铁磁共振线宽越大,铁磁性物质的磁损耗越大。因此,研究如何降低铁磁共振线宽以实现低损耗的LiZnTiMn铁氧体材料十分重要。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法。本发明通过优化烧结工艺和添加复合助烧剂实现了LiZnTiMn的低温烧结,得到了具有低损耗的LiZnTiMn铁氧体材料,同时也降低材料的矫顽力,优化了材料性能。
为实现上述目的,本发明采用的技术方案如下:
一种低损耗LiZnTiMn旋磁铁氧体材料,其特征在于,所述旋磁铁氧体材料包括主料和复合助烧剂,其中主料的重量百分比为99.0%~99.5%,复合助烧剂的重量百分比为0.5%~1.0%;所述主料为Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4,所述复合助烧剂由Bi2O3与Nb2O5组成,其中Bi2O3和Nb2O5的质量比为5:(1~5)。
本发明还提供了一种低损耗LiZnTiMn旋磁铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、以Fe2O3、ZnO、TiO2、Li2CO3、Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4分子式的比例称取原料,混料,得到主粉体;
步骤2、按照质量比主粉体:水:铁球=1:1.5:3的比例进行一次球磨,球磨时间为4~8h,球磨完成后,取出、在80~100℃下烘干,烘干后得到的粉料放入烧结炉内,以2℃/min的升温速率由室温升温至800~820℃并保温2~3h,然后随炉自然降温至室温,得到LiZnTiMn主料;
步骤3、将Bi2O3与Nb2O5组成的复合助烧剂加入步骤2得到的主料中,其中主料的重量百分比为99.0%~99.5%,复合助烧剂的重量百分比为0.5%~1.0%,复合助烧剂中Bi2O3和Nb2O5的质量比为5:(1~5);得到的粉料进行二次球磨,球磨时,粉料、水和铁球的重量比为1:1:3,球磨时间为6~8h,球磨转速为220r/min,球磨完成后,取出并在80~100℃下烘干;
步骤4、在步骤3得到的二次球磨料中加入聚乙烯醇(PVA)造粒成型并压制成坯件,再将坯件放入烧结炉中,先以2℃/min的升温速率升至450℃,保温2~3h,再以2℃/min的升温速率升至900~920℃下烧结2~4h,烧结完成后,以1℃/min的降温速率降温至600℃后随炉自然降温至室温,即得到所述低损耗LiZnTiMn旋磁铁氧体材料。
进一步地,步骤4中,所述压制成坯件时,压力为10Mpa,压力保持时间为10~20s。
本发明的有益效果为:
1、本发明提供了一种低温烧结LiZnTiMn旋磁铁氧体材料及其制备方法,LiZnTiMn铁氧体材料中加入了Bi2O3与Nb2O5复合助烧剂,通过Bi2O3助烧剂和Nb2O5助烧剂的协同作用实现了低温烧结工艺。其中,Bi2O3助烧剂能显著促进LiZnTiMn铁氧体晶粒的成核与晶粒生长,Nb2O5能提高晶粒生长的均匀性,两者的协同作用能促进LiZnTiMn铁氧体晶粒在低温下更有效地成核和均匀生长,最终实现了LiZnTiMn铁氧体在900~920℃的烧结和制备。
2、本发明中Bi2O3与Nb2O5复合助烧剂的加入使得在低温下(900~920℃)制备得到的LiZnTiMn旋磁铁氧体材料的铁磁共振线宽大大减小,降低了材料的损耗。其中,适量的Nb2O5可以抑制过大晶粒的生长,但也会导致整体晶粒尺寸偏小,影响材料的磁性能。Bi2O3可以显著的促进晶粒的生长,但在晶粒生长过程中可能会产生一些过大晶粒从而影响晶粒的均匀性,造成铁磁共振线宽和矫顽力的增大。多晶铁氧体材料的铁磁共振线宽ΔH多晶可以通过公式表示:ΔH多晶=ΔH单晶+ΔH表面+ΔH各向异性+ΔH气孔。ΔH单晶是内在线宽,相比ΔH各向异性和ΔH气孔,ΔH单晶基本可以被忽视,ΔH表面一般也受控,而ΔH各向异性和ΔH气孔与材料的微观结构关系很大,从而直接影响线宽。Bi2O3和Nb2O5的精巧的协同作用使得该LiZnTiMn铁氧体晶粒在低温下能有效且均匀地生长,从而有效的减小了铁磁共振线宽,降低了该LiZnTiMn铁氧体材料的损耗。
附图说明
图1为本发明实施例2与对比例3得到的铁氧体材料的扫描电镜图(SEM);其中,(a)为实施例2得到的铁氧体材料的SEM图,(b)为对比例3得到的铁氧体材料的SEM图。
具体实施方式
下面结合实施例和附图对本发明做进一步地说明。
实施例1
一种低损耗LiZnTiMn旋磁铁氧体材料的制备方法,包括以下步骤:
步骤1、以Fe2O3、ZnO、TiO2、Li2CO3、Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4分子式的比例称取原料,混料,得到主粉体;
步骤2、按照质量比主粉体:水:铁球=1:1.5:3的比例进行一次球磨,球磨时间为6h,球磨完成后,取出、在100℃下烘干,烘干后得到的粉料放入烧结炉内,以2℃/min的升温速率由室温升温至800℃并保温2h,然后随炉自然降温至室温,得到LiZnTiMn主料;
步骤3、将Bi2O3与Nb2O5组成的复合助烧剂加入步骤2得到的主料中,其中主料的重量百分比为99.4%,复合助烧剂的重量百分比为0.6%,复合助烧剂中Bi2O3和Nb2O5的质量比为5:1;得到的粉料进行二次球磨,球磨时,粉料、水和铁球的重量比为1:1:3,球磨时间为6h,球磨转速为220r/min,球磨完成后,取出并在100℃下烘干;
步骤4、在步骤3得到的二次球磨料中加入聚乙烯醇(PVA)造粒成型并压制成坯件,成型压力为10Mpa,再将坯件放入烧结炉中,先以2℃/min的升温速率升至450℃,保温2h,再以2℃/min的升温速率升至900℃下烧结2h,烧结完成后,以1℃/min的降温速率降温至600℃后随炉自然降温至室温,即得到所述低损耗LiZnTiMn旋磁铁氧体材料。
实施例1制备得到的LiZnTiMn旋磁铁氧体材料的性能为:样品密度:4.65g/cm3;饱和磁感应强度:307mT;铁磁共振线宽:286Oe;矫顽力:256A/m;矩形比:0.90。
实施例2
实施例2与实施例1相比,区别在于:步骤4的过程为:在步骤3得到的二次球磨料中加入聚乙烯醇(PVA)造粒成型并压制成坯件,成型压力为10Mpa,再将坯件放入烧结炉中,先以2℃/min的升温速率升至450℃,保温2h,再以2℃/min的升温速率升至920℃下烧结2h,烧结完成后,以1℃/min的降温速率降温至600℃后随炉自然降温至室温,即得到所述低损耗LiZnTiMn旋磁铁氧体材料。
实施例2制备得到的LiZnTiMn旋磁铁氧体材料的性能为:样品密度:4.70g/cm3;饱和磁感应强度:328mT;铁磁共振线宽:161Oe;矫顽力:152A/m;矩形比:0.87。
对比例1
一种低损耗LiZnTiMn旋磁铁氧体材料的制备方法,包括以下步骤:
步骤1、以Fe2O3、ZnO、TiO2、Li2CO3、Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4分子式的比例称取原料,混料,得到主粉体;
步骤2、按照质量比主粉体:水:铁球=1:1.5:3的比例进行一次球磨,球磨时间为6h,球磨完成后,取出、在100℃下烘干,烘干后得到的粉料放入烧结炉内,以2℃/min的升温速率由室温升温至800℃并保温2h,然后随炉自然降温至室温,得到LiZnTiMn主料;
步骤3、将Bi2O3助烧剂加入步骤2得到的主料中,其中主料的重量百分比为99.5%,Bi2O3助烧剂的重量百分比为0.5%;得到的粉料进行二次球磨,球磨时,粉料、水和铁球的重量比为1:1:3,球磨时间为6h,球磨转速为220r/min,球磨完成后,取出并在100℃下烘干;
步骤4、在步骤3得到的二次球磨料中加入聚乙烯醇(PVA)造粒成型并压制成坯件,成型压力为10Mpa,再将坯件放入烧结炉中,先以2℃/min的升温速率升至450℃,保温2h,再以2℃/min的升温速率升至900℃下烧结2h,烧结完成后,以1℃/min的降温速率降温至600℃后随炉自然降温至室温,即得到所述低损耗LiZnTiMn旋磁铁氧体材料。
对比例1制备得到的LiZnTiMn旋磁铁氧体材料的性能为:样品密度:4.62g/cm3;饱和磁感应强度:299mT;铁磁共振线宽:340Oe;矫顽力:314A/m;矩形比:0.91。
对比例2
对比例2与对比例1相比,区别在于:步骤4的过程为:在步骤3得到的二次球磨料中加入聚乙烯醇(PVA)造粒成型并压制成坯件,成型压力为10Mpa,再将坯件放入烧结炉中,先以2℃/min的升温速率升至450℃,保温2h,再以2℃/min的升温速率升至920℃下烧结2h,烧结完成后,以1℃/min的降温速率降温至600℃后随炉自然降温至室温,即得到所述低损耗LiZnTiMn旋磁铁氧体材料。
对比例2制备得到的LiZnTiMn旋磁铁氧体材料的性能为:样品密度:4.65g/cm3;饱和磁感应强度:327mT;铁磁共振线宽:263Oe;矫顽力:218A/m;矩形比:0.88。
对比例3
一种低损耗LiZnTiMn旋磁铁氧体材料的制备方法,包括以下步骤:
步骤1、以Fe2O3、ZnO、TiO2、Li2CO3、Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4分子式的比例称取原料,混料,得到主粉体;
步骤2、按照质量比主粉体:水:铁球=1:1.5:3的比例进行一次球磨,球磨时间为6h,球磨完成后,取出、在100℃下烘干,烘干后得到的粉料放入烧结炉内,以2℃/min的升温速率由室温升温至800℃并保温2h,然后随炉自然降温至室温,得到LiZnTiMn主料;
步骤3、在步骤2处理后得到的粉料中加入聚乙烯醇(PVA)造粒成型并压制成坯件,成型压力为10Mpa,再将坯件放入烧结炉中,先以2℃/min的升温速率升至450℃,保温2h,再以2℃/min的升温速率升至920℃下烧结2h,烧结完成后,以1℃/min的降温速率降温至600℃后随炉自然降温至室温,即得到LiZnTiMn旋磁铁氧体材料。
对比例3制备得到的LiZnTiMn旋磁铁氧体材料的性能为:样品密度:4.15g/cm3;饱和磁感应强度:150mT;铁磁共振线宽:749Oe;矫顽力:620A/m;矩形比:0.80。
图1为本发明实施例2与对比例3得到的铁氧体材料的扫描电镜图(SEM)。由图1可知,本发明加入Bi2O3和Nb2O5复合助烧剂后得到的LiZnTiMn旋磁铁氧体材料的晶粒明显生长,且晶粒均匀,表面致密。由实施例2和对比例3的性能对比可知,本发明LiZnTiMn旋磁铁氧体材料相比对比例得到的LiZnTiMn旋磁铁氧体材料的铁磁共振线宽大大的降低,材料的损耗降低。

Claims (3)

1.一种低损耗LiZnTiMn旋磁铁氧体材料,其特征在于,所述旋磁铁氧体材料包括主料和复合助烧剂,其中主料的重量百分比为99.0%~99.5%,复合助烧剂的重量百分比为0.5%~1.0%;所述主料为Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4,所述复合助烧剂由Bi2O3与Nb2O5组成,其中Bi2O3和Nb2O5的质量比为5:(1~5)。
2.一种低损耗LiZnTiMn旋磁铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、以Fe2O3、ZnO、TiO2、Li2CO3、Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4分子式的比例称取原料,混料,得到主粉体;
步骤2、将步骤1得到的主粉体进行一次球磨,球磨时间为4~8h,球磨完成后,取出、烘干,得到的粉料放入烧结炉内,由室温升温至800~820℃并保温2~3h,然后随炉自然降温至室温,得到LiZnTiMn主料;
步骤3、将Bi2O3与Nb2O5组成的复合助烧剂加入步骤2得到的主料中,其中主料的重量百分比为99.0%~99.5%,复合助烧剂的重量百分比为0.5%~1.0%,复合助烧剂中Bi2O3和Nb2O5的质量比为5:(1~5);得到的粉料进行二次球磨,球磨时间为6~8h,球磨完成后,取出、烘干;
步骤4、将步骤3得到的二次球磨料造粒成型并压制成坯件,再将坯件放入烧结炉中,先升至450℃,保温2~3h,再升至900~920℃下烧结2~4h,烧结完成后,降温至600℃后随炉自然降温至室温,即得到所述低损耗LiZnTiMn旋磁铁氧体材料。
3.根据权利要求2所述的低损耗LiZnTiMn旋磁铁氧体材料的制备方法,其特征在于,步骤4中,所述压制成坯件时,压力为10Mpa,压力保持时间为10~20s。
CN202111003573.6A 2021-08-30 2021-08-30 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法 Pending CN113845359A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111003573.6A CN113845359A (zh) 2021-08-30 2021-08-30 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111003573.6A CN113845359A (zh) 2021-08-30 2021-08-30 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法

Publications (1)

Publication Number Publication Date
CN113845359A true CN113845359A (zh) 2021-12-28

Family

ID=78976475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111003573.6A Pending CN113845359A (zh) 2021-08-30 2021-08-30 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法

Country Status (1)

Country Link
CN (1) CN113845359A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956800A (zh) * 2022-05-23 2022-08-30 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种高性能微波多晶铁氧体材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256729A (ja) * 1986-04-30 1987-11-09 Fuji Elelctrochem Co Ltd リチウム系フエライト
CN101552072A (zh) * 2008-12-31 2009-10-07 电子科技大学 移相器用低损耗LiZn铁氧体材料及制备方法
CN104529425A (zh) * 2014-12-19 2015-04-22 江门安磁电子有限公司 一种宽温高磁导率MnZn铁氧体材料及其制造方法
CN104788090A (zh) * 2014-05-30 2015-07-22 安徽华林磁电科技有限公司 一种高性能LiZn铁氧体材料
CN105884342A (zh) * 2016-02-23 2016-08-24 电子科技大学 Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN112239358A (zh) * 2020-10-30 2021-01-19 成都子之源绿能科技有限公司 微波LiZnTiMn旋磁铁氧体材料及其制备方法
CN112390638A (zh) * 2020-11-30 2021-02-23 横店集团东磁股份有限公司 一种低饱和窄线宽旋磁材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256729A (ja) * 1986-04-30 1987-11-09 Fuji Elelctrochem Co Ltd リチウム系フエライト
CN101552072A (zh) * 2008-12-31 2009-10-07 电子科技大学 移相器用低损耗LiZn铁氧体材料及制备方法
CN104788090A (zh) * 2014-05-30 2015-07-22 安徽华林磁电科技有限公司 一种高性能LiZn铁氧体材料
CN104529425A (zh) * 2014-12-19 2015-04-22 江门安磁电子有限公司 一种宽温高磁导率MnZn铁氧体材料及其制造方法
CN105884342A (zh) * 2016-02-23 2016-08-24 电子科技大学 Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN112239358A (zh) * 2020-10-30 2021-01-19 成都子之源绿能科技有限公司 微波LiZnTiMn旋磁铁氧体材料及其制备方法
CN112390638A (zh) * 2020-11-30 2021-02-23 横店集团东磁股份有限公司 一种低饱和窄线宽旋磁材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
解飞: "毫米波旋磁生瓷料带及LTCF移相器基础研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》 *
许方: "有机无机复合材料电磁性能调控及柔性电子器件研究", 《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅰ辑》 *
魏克珠 等: "《微波铁氧体新技术与用用》", 31 January 2013, 国防工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956800A (zh) * 2022-05-23 2022-08-30 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种高性能微波多晶铁氧体材料

Similar Documents

Publication Publication Date Title
KR101904269B1 (ko) 전자 애플리케이션을 위한 조성 및 물질에서 희토류 금속에 대한 효과적인 치환
CN112679204B (zh) 一种高饱和高介电常数低线宽微波铁氧体材料及其制备方法
CN109867518B (zh) 一种高温度稳定性的石榴石铁氧体及其制备方法
CN111499369B (zh) 一种Ku波段用高功率旋矩铁氧体材料及其制备方法
CN115385680B (zh) 一种高介低线宽微波旋磁铁氧体材料及其制备方法
TW202012312A (zh) 具有高居里溫度及介電常數之磁性材料
CN110156453A (zh) 一种高功率稀土钇铁石榴石复合铁氧体材料的制备方法
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN110105063A (zh) 一种5g通信用自旋铁氧体材料及其制备方法
CN116217217A (zh) 自偏置六角铁氧体旋磁材料及其制备方法
CN112194482B (zh) 一种超低损耗的宽温功率MnZn铁氧体、制备方法及其5G通讯领域应用
CN113072369B (zh) 高剩磁比的u型六角铁氧体材料及制备方法
CN113845359A (zh) 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
CN117326860A (zh) 一种单轴型小线宽六角铁氧体材料及其制备方法
CN115057697B (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN114956800B (zh) 一种高性能微波多晶铁氧体材料
CN114702310A (zh) 低损耗尖晶石微波铁氧体材料及其制备方法
JP4706837B2 (ja) Li系フェライト焼結体の製造方法及びLi系フェライト焼結体
CN116396069B (zh) 一种非磁场取向的织构化六角铁氧体材料的制备方法
CN116621571B (zh) 微波铁氧体材料及制备方法和介电常数调节方法
CN116947475B (zh) 一种自偏置环行器用高性能复合铁氧体的制备方法
CN115594498B (zh) 一种低温粘结z型铁氧体材料及其制备方法与应用
CN114890779B (zh) 高机械强度高功率低共振线宽的石榴石铁氧体及制备方法
JPH10233308A (ja) 多結晶セラミックス磁性体材料とその製造方法およびこれを用いた非可逆回路素子
CN116477936A (zh) 一种微波用铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211228

RJ01 Rejection of invention patent application after publication