CN116947475B - 一种自偏置环行器用高性能复合铁氧体的制备方法 - Google Patents

一种自偏置环行器用高性能复合铁氧体的制备方法 Download PDF

Info

Publication number
CN116947475B
CN116947475B CN202311020957.8A CN202311020957A CN116947475B CN 116947475 B CN116947475 B CN 116947475B CN 202311020957 A CN202311020957 A CN 202311020957A CN 116947475 B CN116947475 B CN 116947475B
Authority
CN
China
Prior art keywords
ferrite
powder
mol
magnetic field
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311020957.8A
Other languages
English (en)
Other versions
CN116947475A (zh
Inventor
泮敏翔
杨杭福
俞能君
吴琼
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202311020957.8A priority Critical patent/CN116947475B/zh
Publication of CN116947475A publication Critical patent/CN116947475A/zh
Application granted granted Critical
Publication of CN116947475B publication Critical patent/CN116947475B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/017Compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种自偏置环行器用高性能复合铁氧体的制备方法,属于磁性材料技术领域。该制备方法包括:(1)首先分别制备BaM铁氧体初始粉体和NiCuZnSn铁氧体初始粉体;(2)按比例将BaM铁氧体初始粉体NiCuZnSn铁氧体初始粉体和去离子水混合均匀并在高能球磨机内球磨,然后通过一次预烧、二次预烧及二次球磨处理后获得混合粉末;(3)随后通过低温磁场取向成型技术及磁场热处理,最终获得自偏置环行器用高性能复合铁氧体。本发明较好的通过复合BaM铁氧体粉体和NiCuZnSn铁氧体粉体,并通过高能球磨技术、低温磁场取向成型技术及磁场热处理技术增加了饱和磁化强度,改善了双相复合铁氧体的微结构与磁特性。

Description

一种自偏置环行器用高性能复合铁氧体的制备方法
技术领域
本发明涉及磁性材料技术领域,尤其涉及一种自偏置环行器用高性能复合铁氧体的制备方法。
背景技术
随着有源相控阵雷达在现代电子对抗中的广泛应用,具备高频、小尺寸、低损耗等特质的微波器件成为微波、毫米波技术的研究重点。微波环行器是Transmit/Receive(T/R)组件中不可或缺的重要元器件,而传统环行器需内置尺寸较大的永磁体来提供直流偏置场,以致收发系统难以实现整机的小型化。单轴六角铁氧体具有大的磁晶各向异性和高饱和磁化强度等特性,基于单轴六角铁氧体设计制备的微波环行器具备自偏置场,无需永磁体,这对实现微波环行器乃至T/R组件的小型化和平面化具有重要意义。
旋磁材料在微波领域的应用非常广泛,但随着微波器件及应用技术的提高,对旋磁材料的要求也越来越高,进一步提高旋磁材料的性能就显得极为迫切,尤其是宽带温度稳定性好同时损耗又小的材料。本专利创造性的通过复合BaM铁氧体粉体和NiCuZnSn铁氧体粉体,并通过高能球磨技术、低温磁场取向成型技术及磁场热处理技术,有效调控晶粒晶界特性,提高取向度,增加了饱和磁化强度,配合其他元素的掺入,改善了双相复合铁氧体的微结构与磁特性。
发明内容
针对现有技术中存在的问题,本发明目的在于提供一种自偏置环行器用高性能复合铁氧体的制备方法。
本发明的自偏置环行器用高性能复合铁氧体的制备方法,包括如下步骤:
(1)BaM铁氧体初始粉体制备:以BaCO3、La2O3、Fe2O3为原料,按照“5~15 mol%BaCO3、2~12 mol%La2O3、73~93 mol%Fe2O3”的比例称料,混料,得到BaM铁氧体初始粉体;
(2)NiCuZnSn铁氧体初始粉体制备:以NiO、ZnO、CuO、SnO2、Co2O3、Fe2O3为原料,按照“20~40 mol%NiO、5~30 mol%ZnO、2~10 mol%CuO、1~5 mol%SnO2、4~10 mol%Co2O3、5~68 mol%Fe2O3”的比例称料,混料,得到NiCuZnSn铁氧体初始粉体;
(3)将步骤(1)获得的BaM铁氧体初始粉体、步骤(2)获得的NiCuZnSn铁氧体初始粉体和去离子水按照质量比为1:0.1~1:3~5的比例混合均匀后获得混合粉体浆料,随后混合粉体浆料在高能球磨机内混合均匀,高能球磨的时间为1~3 h;
(4)将步骤(3)获得的球磨料粉体烘干,过筛,随后对粉体进行一次预烧和二次预烧处理后到混合粉末;
(5)将步骤(4)获得的混合粉末和去离子水按照质量比为1:3~5的比例混合均匀并进行二次高能球磨后获得粉体浆料,高能球磨的时间为0.5~1.5 h;
(6)将步骤(5)获得的粉体浆料进行低温磁场取向成型技术制备压坯,所述低温磁场取向成型技术的温度为50~150 ℃,压力为40~150 MPa,磁场强度为2~4 T;
(7)将步骤(6)获得的压坯进行磁场热处理,最终获得自偏置环行器用高性能复合铁氧体。
进一步的,步骤(4)中所述的一次预烧的烧结温度为1050~1350 ℃,升温速率为1~3 ℃/min,保温时间为2~7 h;所述的二次预烧的烧结温度为800~1000 ℃,升温速率为1~3℃/min,保温时间为1~4 h。
进一步的,步骤(7)中所述的磁场热处理的磁场强度为1~2 T,热处理温度为800~1100 ℃,升温速率为1~3 ℃/min,保温时间为2~6 h,随后急冷至室温。
与现有的技术相比,本发明具有如下优点和有益效果:本专利创造性的通过复合BaM铁氧体粉体和NiCuZnSn铁氧体粉体,并通过高能球磨技术、低温磁场取向成型技术及磁场热处理技术,有效调控晶粒晶界特性,提高取向度,增加了饱和磁化强度,配合其他元素的掺入,改善了双相复合铁氧体的微结构与磁特性。
实施方式
下面将结合实施例对本发明做进一步的详细说明,但本发明并不仅仅局限于以下实施例。
实施例1
(1)BaM铁氧体初始粉体制备:以BaCO3、La2O3、Fe2O3为原料,按照“5 mol%BaCO3、10mol%La2O3、85 mol%Fe2O3”的比例称料,混料,得到BaM铁氧体初始粉体;
(2)NiCuZnSn铁氧体初始粉体制备:以NiO、ZnO、CuO、SnO2、Co2O3、Fe2O3为原料,按照“20 mol%NiO、5 mol%ZnO、2 mol%CuO、1 mol%SnO2、4 mol%Co2O3、68 mol%Fe2O3”的比例称料,混料,得到NiCuZnSn铁氧体初始粉体;
(3)将步骤(1)获得的BaM铁氧体初始粉体、步骤(2)获得的NiCuZnSn铁氧体初始粉体和去离子水按照质量比为1:0.3:3的比例混合均匀后获得混合粉体浆料,随后混合粉体浆料在高能球磨机内混合均匀,高能球磨的时间为1 h;
(4)将步骤(3)获得的球磨料粉体烘干,过筛,随后对粉体进行一次预烧和二次预烧处理后到混合粉末,所述的一次预烧的烧结温度为1050 ℃,升温速率为1 ℃/min,保温时间为6 h;所述的二次预烧的烧结温度为1000 ℃,升温速率为3 ℃/min,保温时间为1 h;
(5)将步骤(4)获得的混合粉末和去离子水按照质量比为1:3的比例混合均匀并进行二次高能球磨后获得粉体浆料,高能球磨的时间为0.5 h;
(6)将步骤(5)获得的粉体浆料进行低温磁场取向成型技术制备压坯,所述低温磁场取向成型技术的温度为50 ℃,压力为150 MPa,磁场强度为2 T;
(7)将步骤(6)获得的压坯进行磁场热处理,磁场强度为1 T,热处理温度为1000℃,升温速率为3 ℃/min,保温时间为6 h,随后急冷至室温,最终获得复合铁氧体。
采用本发明制备的复合铁氧体经磁性能和矢量网络分析仪测试,饱和磁化强度4πMs为4850 Gs、剩磁比Mr/Ms为0.89、矫顽力Hc为4010 Oe、铁磁共振线宽ΔH为368 Oe、各向异性场Ha为14.10 kOe。
实施例2
(1)BaM铁氧体初始粉体制备:以BaCO3、La2O3、Fe2O3为原料,按照“10 mol%BaCO3、8mol%La2O3、82 mol%Fe2O3”的比例称料,混料,得到BaM铁氧体初始粉体;
(2)NiCuZnSn铁氧体初始粉体制备:以NiO、ZnO、CuO、SnO2、Co2O3、Fe2O3为原料,按照“30 mol%NiO、15 mol%ZnO、5 mol%CuO、3 mol%SnO2、7 mol%Co2O3、40 mol%Fe2O3”的比例称料,混料,得到NiCuZnSn铁氧体初始粉体;
(3)将步骤(1)获得的BaM铁氧体初始粉体、步骤(2)获得的NiCuZnSn铁氧体初始粉体和去离子水按照质量比为1:0.5:4的比例混合均匀后获得混合粉体浆料,随后混合粉体浆料在高能球磨机内混合均匀,高能球磨的时间为2 h;
(4)将步骤(3)获得的球磨料粉体烘干,过筛,随后对粉体进行一次预烧和二次预烧处理后到混合粉末,所述的一次预烧的烧结温度为1150 ℃,升温速率为2 ℃/min,保温时间为4 h;所述的二次预烧的烧结温度为900 ℃,升温速率为2 ℃/min,保温时间为2 h;
(5)将步骤(4)获得的混合粉末和去离子水按照质量比为1:4的比例混合均匀并进行二次高能球磨后获得粉体浆料,高能球磨的时间为1 h;
(6)将步骤(5)获得的粉体浆料进行低温磁场取向成型技术制备压坯,所述低温磁场取向成型技术的温度为100 ℃,压力为100 MPa,磁场强度为3 T;
(7)将步骤(6)获得的压坯进行磁场热处理,磁场强度为1.5 T,热处理温度为900℃,升温速率为2 ℃/min,保温时间为4 h,随后急冷至室温,最终获得复合铁氧体。
采用本发明制备的复合铁氧体经磁性能和矢量网络分析仪测试,饱和磁化强度4πMs为4910 Gs、剩磁比Mr/Ms为0.90、矫顽力Hc为4100 Oe、铁磁共振线宽ΔH为350 Oe、各向异性场Ha为13.93 kOe。
实施例3
(1)BaM铁氧体初始粉体制备:以BaCO3、La2O3、Fe2O3为原料,按照“15 mol%BaCO3、5mol%La2O3、80 mol%Fe2O3”的比例称料,混料,得到BaM铁氧体初始粉体;
(2)NiCuZnSn铁氧体初始粉体制备:以NiO、ZnO、CuO、SnO2、Co2O3、Fe2O3为原料,按照“40 mol%NiO、25 mol%ZnO、8 mol%CuO、5 mol%SnO2、9 mol%Co2O3、13 mol%Fe2O3”的比例称料,混料,得到NiCuZnSn铁氧体初始粉体;
(3)将步骤(1)获得的BaM铁氧体初始粉体、步骤(2)获得的NiCuZnSn铁氧体初始粉体和去离子水按照质量比为1:1:5的比例混合均匀后获得混合粉体浆料,随后混合粉体浆料在高能球磨机内混合均匀,高能球磨的时间为3 h;
(4)将步骤(3)获得的球磨料粉体烘干,过筛,随后对粉体进行一次预烧和二次预烧处理后到混合粉末,所述的一次预烧的烧结温度为1350 ℃,升温速率为3℃/min,保温时间为2 h;所述的二次预烧的烧结温度为800 ℃,升温速率为1 ℃/min,保温时间为4 h;
(5)将步骤(4)获得的混合粉末和去离子水按照质量比为1:5的比例混合均匀并进行二次高能球磨后获得粉体浆料,高能球磨的时间为1.5 h;
(6)将步骤(5)获得的粉体浆料进行低温磁场取向成型技术制备压坯,所述低温磁场取向成型技术的温度为150 ℃,压力为60 MPa,磁场强度为4 T;
(7)将步骤(6)获得的压坯进行磁场热处理,磁场强度为2 T,热处理温度为800℃,升温速率为1 ℃/min,保温时间为2 h,随后急冷至室温,最终获得复合铁氧体。
采用本发明制备的复合铁氧体经磁性能和矢量网络分析仪测试,饱和磁化强度4πMs为4978 Gs、剩磁比Mr/Ms为0.91、矫顽力Hc为4250 Oe、铁磁共振线宽ΔH为340 Oe、各向异性场Ha为13.55 kOe。

Claims (2)

1.一种自偏置环行器用高性能复合铁氧体的制备方法,其特征在于包括如下步骤:
(1)BaM铁氧体初始粉体制备:以BaCO3、La2O3、Fe2O3为原料,按照“5~15 mol%BaCO3、2~12mol%La2O3、73~93 mol%Fe2O3”的比例称料,混料,得到BaM铁氧体初始粉体;
(2)NiCuZnSn铁氧体初始粉体制备:以NiO、ZnO、CuO、SnO2、Co2O3、Fe2O3为原料,按照“20~40 mol%NiO、5~30 mol%ZnO、2~10 mol%CuO、1~5 mol%SnO2、4~10 mol%Co2O3、40~68 mol%Fe2O3”的比例称料,混料,得到NiCuZnSn铁氧体初始粉体;
(3)将步骤(1)获得的BaM铁氧体初始粉体、步骤(2)获得的NiCuZnSn铁氧体初始粉体和去离子水按照质量比为1:0.1~1:3~5的比例混合均匀后获得混合粉体浆料,随后混合粉体浆料在高能球磨机内混合均匀,高能球磨的时间为1~3 h;
(4)将步骤(3)获得的球磨料粉体烘干,过筛,随后对粉体进行一次预烧和二次预烧处理后到混合粉末;所述的一次预烧的烧结温度为1050~1350 ℃,升温速率为1~3 ℃/min,保温时间为2~7 h;所述的二次预烧的烧结温度为800~1000 ℃,升温速率为1~3 ℃/min,保温时间为1~4 h;
(5)将步骤(4)获得的混合粉末和去离子水按照质量比为1:3~5的比例混合均匀并进行二次高能球磨后获得粉体浆料,高能球磨的时间为0.5~1.5 h;
(6)将步骤(5)获得的粉体浆料进行低温磁场取向成型技术制备压坯,所述低温磁场取向成型技术的温度为50~150 ℃,压力为40~150 MPa,磁场强度为2~4 T;
(7)将步骤(6)获得的压坯进行磁场热处理,最终获得自偏置环行器用高性能复合铁氧体。
2. 根据权利要求1 所述的一种自偏置环行器用高性能复合铁氧体的制备方法,其特征在于:步骤(7)中所述的磁场热处理的磁场强度为1~2 T,热处理温度为800~1100 ℃,升温速率为1~3 ℃/min,保温时间为2~6 h,随后急冷至室温。
CN202311020957.8A 2023-08-15 2023-08-15 一种自偏置环行器用高性能复合铁氧体的制备方法 Active CN116947475B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311020957.8A CN116947475B (zh) 2023-08-15 2023-08-15 一种自偏置环行器用高性能复合铁氧体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311020957.8A CN116947475B (zh) 2023-08-15 2023-08-15 一种自偏置环行器用高性能复合铁氧体的制备方法

Publications (2)

Publication Number Publication Date
CN116947475A CN116947475A (zh) 2023-10-27
CN116947475B true CN116947475B (zh) 2024-02-23

Family

ID=88451268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311020957.8A Active CN116947475B (zh) 2023-08-15 2023-08-15 一种自偏置环行器用高性能复合铁氧体的制备方法

Country Status (1)

Country Link
CN (1) CN116947475B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329128A (zh) * 2011-06-11 2012-01-25 宜宾职业技术学院 一种钙永磁铁氧体及其制造方法
CN106431398A (zh) * 2016-09-28 2017-02-22 陕西科技大学 Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法
CN109485399A (zh) * 2018-12-20 2019-03-19 贵州振华红云电子有限公司 用于NFC和无线充电的NiCuZn铁氧体磁片
CN113539664A (zh) * 2021-07-27 2021-10-22 泮敏翔 一种Sm基各向异性复合磁体的制备方法
CN113716950A (zh) * 2021-11-01 2021-11-30 天通控股股份有限公司 一种低温烧结柔性磁片及其制备方法
CN113753958A (zh) * 2021-09-12 2021-12-07 汤春妹 一种利用制备高性能软硬磁复合材料的方法
CN115477534A (zh) * 2022-10-20 2022-12-16 电子科技大学 Ku波段自偏置器件用双相复合铁氧体材料及其制备方法
CN116496096A (zh) * 2023-06-20 2023-07-28 西南交通大学 一种增强软磁/硬磁复合铁氧体吸波性能的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329128A (zh) * 2011-06-11 2012-01-25 宜宾职业技术学院 一种钙永磁铁氧体及其制造方法
CN106431398A (zh) * 2016-09-28 2017-02-22 陕西科技大学 Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法
CN109485399A (zh) * 2018-12-20 2019-03-19 贵州振华红云电子有限公司 用于NFC和无线充电的NiCuZn铁氧体磁片
CN113539664A (zh) * 2021-07-27 2021-10-22 泮敏翔 一种Sm基各向异性复合磁体的制备方法
CN113753958A (zh) * 2021-09-12 2021-12-07 汤春妹 一种利用制备高性能软硬磁复合材料的方法
CN113716950A (zh) * 2021-11-01 2021-11-30 天通控股股份有限公司 一种低温烧结柔性磁片及其制备方法
CN115477534A (zh) * 2022-10-20 2022-12-16 电子科技大学 Ku波段自偏置器件用双相复合铁氧体材料及其制备方法
CN116496096A (zh) * 2023-06-20 2023-07-28 西南交通大学 一种增强软磁/硬磁复合铁氧体吸波性能的方法

Also Published As

Publication number Publication date
CN116947475A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
Harris et al. The self-biased circulator: Ferrite materials design and process considerations
CN111499369B (zh) 一种Ku波段用高功率旋矩铁氧体材料及其制备方法
CN111732427B (zh) 自偏置环行器用低铁磁共振线宽六角铁氧体材料及其制备方法
CN111825441A (zh) 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用
CN115385680B (zh) 一种高介低线宽微波旋磁铁氧体材料及其制备方法
CN116217217A (zh) 自偏置六角铁氧体旋磁材料及其制备方法
CN113860864A (zh) 高剩磁比高各向异性场SrM微波铁氧体材料及制备方法
CN112830776B (zh) 一种u型六角铁氧体材料及其制备方法
CN106848597B (zh) 一种具有替代原子调制特性的电磁波吸收材料及其制备方法
CN113078429A (zh) 一种准平面化复合基板微带环形器
CN116947475B (zh) 一种自偏置环行器用高性能复合铁氧体的制备方法
CN117326860A (zh) 一种单轴型小线宽六角铁氧体材料及其制备方法
CN115477534B (zh) Ku波段自偏置器件用双相复合铁氧体材料及其制备方法
CN115057697B (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN116986891B (zh) 一种双离子联合取代自偏置六角铁氧体的制备方法
CN112939590B (zh) 一种x波段准平面化器件用六角铁氧体材料及其制备方法
CN113845359A (zh) 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
CN113072369A (zh) 高剩磁比的u型六角铁氧体材料及制备方法
CN104891976A (zh) 一种低损耗镍锌铁氧体材料及其制备方法
CN112456993A (zh) 一种可用于铁氧体器件的微波铁氧体材料及制备方法
CN116396068B (zh) K~Ka波段自偏置环行器铁氧体基板材料及制备方法
HUANG et al. Low temperature sintering behavior of La-Co substituted M-type strontium hexaferrites for use in microwave LTCC technology
CN114409393B (zh) 一种高矫顽力低损耗复合六角铁氧体材料及其制备方法
CN116396069B (zh) 一种非磁场取向的织构化六角铁氧体材料的制备方法
CN116396068A (zh) K~Ka波段自偏置环行器铁氧体基板材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant