CN106431398A - Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法 - Google Patents

Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法 Download PDF

Info

Publication number
CN106431398A
CN106431398A CN201610859432.7A CN201610859432A CN106431398A CN 106431398 A CN106431398 A CN 106431398A CN 201610859432 A CN201610859432 A CN 201610859432A CN 106431398 A CN106431398 A CN 106431398A
Authority
CN
China
Prior art keywords
powder
composite
layered electromagnetic
preparation
electromagnetic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610859432.7A
Other languages
English (en)
Inventor
蒲永平
王亚茹
师裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201610859432.7A priority Critical patent/CN106431398A/zh
Publication of CN106431398A publication Critical patent/CN106431398A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/208Magnetic, paramagnetic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding

Abstract

本发明公开了一种Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法,分别将Ba0.9Ca0.1Ti0.9Zr0.1O3粉体、Co0.8Ni0.1Zn0.1Fe2O4粉体造粒之后,按照2‑2复合的垒层叠加的排列方式在模具中压制成型,然后排出PVA粘合剂,在1100℃~1150℃的温度下烧结,得到层状磁电复合材料。本发明将Ba0.9Ca0.1Ti0.9Zr0.1O3粉体和Ba0.9Ca0.1Ti0.9Zr0.1O3粉体按照2‑2的复合方式进行制备,在无有机粘结剂的情况下,将两相进行共烧,最终的得到两相之间结合较好的层状复合材料,有效的控制了两相之间的反应和元素之间的互扩散,使材料在具有铁电性能和铁磁性能的同时,还具有高的磁电耦合系数。

Description

Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料 及其制备方法
技术领域
本发明属于材料科学领域,具体涉及一种Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法。
背景技术
由磁电材料的发展历史可以看出,根据物相组成不同,磁电材料可以分成单相磁电材料和磁电复合材料两大类。尽管目前以BiFeO3为代表的单相多铁性磁电材料形成研究热潮,但目前寻找室温以上具有大的磁电耦合效应的单相磁电材料仍面临很多挑战。
磁电复合材料利用复合材料中的铁磁相的磁致伸缩效应和铁电相的压电效应的乘积效应来实现磁电转换,可以通过选择具有高磁致伸缩系数和高压电系数的材料进行复合,而且具有较大的设计自由度和良好的室温磁电响应,因此磁电复合材料被广泛关注。
块状磁电复合材料根据连通模式,可以分为0-3型颗粒复合材料、2-2型层状复合材料以及1-3型棒状阵列复合材料。2-2型层状磁电复合材料由于克服了铁磁层和铁电层间的化学反应且具有高电阻消除了泄漏电流,此外层状结构更容易在电场下极化,因而具有较大的磁电耦合效应。
磁电复合材料无论从基础理论研究角度还是在未来技术应用方面均具备多重优势,受到了各国研究学者的高度重视。几十年来,多铁材料的研究进步明显:材料基本属性的改善方面,一定程度上提高了材料的铁电性或铁磁性;近几年,研究发现磁电复合材料在阻变随机存储领域也存在独特的发展优势,进一步拓宽了开发空间。但是,研究中存在一些问题:首先,材料的多种性能仍不能被稳定操控,有关不同结构多铁材料的铁电性和铁磁性来源尚无明确定论;其次,材料在电场、磁场下的响应行为有待进一步稳定和提高;最后,多铁材料在阻变随机存储领域的研究仍处于起步阶段,相关效应及机理解释仍需要大量实验进行验证。截止目前为止,多铁材料距离应用到实际生活中还有很长。
发明内容
本发明的目的在于提供一种Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法,以克服上述现有技术存在的缺陷,本发明将铁电、铁磁相共烧在一起,可以有效的避免两相之间的化学反应和元素之间的互扩散,使所制备的层状磁电复合材料同时具有铁电性能、铁磁性能和磁电耦合性能。
为达到上述目的,本发明采用如下技术方案:
Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料,该层状磁电复合材料的化学式为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.1≤x≤0.5。
进一步地,该层状磁电复合材料的化学式为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.2≤x≤0.5。
进一步地,该层状磁电复合材料的化学式为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.3≤x≤0.5。
进一步地,该层状磁电复合材料的化学式为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.4≤x≤0.5。
一种Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料的制备方法,包括以下步骤:
(1)按化学式Ba0.9Ca0.1Ti0.9Zr0.1O3将分析纯的BaCO3,CaCO3,ZrO2和TiO2配制后通过球磨混合均匀,然后烘干、过筛、压块,再经1150~1200℃预烧2~3小时,得到块状固体,将块状固体粉碎后加入烧结助剂,再次进行球磨,得到产品,然后将产品过120目筛得到Ba0.9Ca0.1Ti0.9Zr0.1O3粉体;其中,烧结助剂为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的0.5wt%;
(2)按化学式Co0.8Ni0.1Zn0.1Fe2O4将分析纯的Co2O3,NiO,ZnO和Fe2O3配制后通过球磨混合均匀,然后烘干、过筛、压块,再经1050~1100℃预烧2~3小时,得到块状产品,然后将块状产品粉碎后过120目筛,得到Co0.8Ni0.1Zn0.1Fe2O4粉体;
(3)向Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末;
向Co0.8Ni0.1Zn0.1Fe2O4粉体中加入PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Co0.8Ni0.1Zn0.1Fe2O4粉末;
(4)按化学式(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.1≤x≤0.5,将步骤(3)得到的粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末和Co0.8Ni0.1Zn0.1Fe2O4粉末按照2-2型复合材料的垒层叠加排列方式在模具中压制成型;
(5)排除PVA粘合剂后再于1100~1150℃下烧结2~4小时成瓷,得到Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料。
进一步地,所述步骤(1)、步骤(2)中球磨时间均为4~5小时。
进一步地,所述步骤(1)中烧结助剂为Li2CO3;步骤(3)中Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入PVA粘合剂的质量为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的10%~15%;向Co0.8Ni0.1Zn0.1Fe2O4粉体中加入PVA粘合剂的质量为Co0.8Ni0.1Zn0.1Fe2O4粉体质量的10%~15%。
进一步地,所述的PVA粘合剂为质量分数为8%的聚乙烯醇水溶液。
进一步地,所述步骤(4)中2-2复合的垒层叠加排列方式具体为:从上到下按照Ba0.9Ca0.1Ti0.9Zr0.1O3粉末、Co0.8Ni0.1Zn0.1Fe2O4粉末、Ba0.9Ca0.1Ti0.9Zr0.1O3粉末的顺序垒叠在一起。
进一步地,所述步骤(5)中排除PVA粘合剂的具体条件为:550-600℃下保温2~4小时。
与现有技术相比,本发明具有以下有益的技术效果:
本发明分别将Ba0.9Ca0.1Ti0.9Zr0.1O3粉体、Co0.8Ni0.1Zn0.1Fe2O4粉体造粒之后,按照2-2复合的垒层叠加排列方式在模具中压制成型,然后排出PVA粘合剂,在1100~1150℃下烧结,即可得到层状磁电复合材料。本发明中由于Ba0.9Ca0.1Ti0.9Zr0.1O3粉体、Co0.8Ni0.1Zn0.1Fe2O4粉体按照2-2复合的垒层叠加排列方式,将铁电相和铁磁相以层状复合的方式共烧在一起,可以有效抑制两相之间的互相反应从而保持各自的特性,使其既具有良好的铁电性,也具有优秀的铁磁性能。采用共烧的方式,避免了现有技术中直接将两相混合从而产生不可预料相的问题,进而提高磁电复合材料的性能,并且该方法仅仅将两种粉末压制成型后,排除PVA粘合剂,然后烧结,即可得产品,所以制备方法简单易行。
本发明制得的磁电复合材料具有优异的铁电、介电以及磁电性能。当频率为100赫兹时,复合材料介电常数达到756.31~1673.28,介电损耗为0.20~0.50。
另外,本发明采用的原料中由于不存在铅,所以制备方法不会造成污染,Ba0.9Ca0.1Ti0.9Zr0.1O3粉末和Co0.8Ni0.1Zn0.1Fe2O4粉末按照2-2复合的垒层叠加排列方式烧结在一起,层与层之间不需要粘合剂,因而应力应变的传递可以高效直接的完成。本发明通过将铁电相粉体和铁磁相粉体按照垒层叠加的方式使其共烧在一起,得到电磁复合材料,该电磁复合材料中可较大范围调整压磁相的含量,使磁电电压系数得到大幅度提高。由于电阻率很高的铁电相层可以完全阻断磁性相层的连通,使得材料整体的漏电流较小,有利于材料磁电性能的提高。本发明制得的材料致密性良好,无明显大气孔存在,两相晶粒尺寸均匀,均在亚微米数量级,无明显的界面原子扩散现象,界面耦合较好,所以本发明能够保证磁电复合材料直接高效的磁-电-力转换效率,从而提高了复合材料的磁电转换性能。
附图说明
图1为2-2型(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中当x=0.1,0.2,0.3,0.4,0.5时,复合陶瓷烧结时磁电复合材料的垒层叠加排列方式示意图;
图2为2-2型(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4复合陶瓷组分中当x=0.1,0.2,0.3,0.4,0.5时,Ba0.9Ca0.1Ti0.9Zr0.1O3和Co0.8Ni0.1Zn0.1Fe2O4的XRD图谱;
图3为2-2型(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4复合陶瓷组分中x=0.3时,陶瓷断面的八种元素的EDS能谱图;
图4为2-2型(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4复合陶瓷组分中当x=0.1,0.2,0.3,0.4,0.5时的相对介电常数与损耗角正切值随着频率变化图谱;
图5为2-2型(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4复合陶瓷组分中当x=0.1,0.2,0.3,0.4,0.5时的电滞回线图谱;
图6为2-2型(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4复合陶瓷组分中当x=0.1,0.2,0.3,0.4,0.5时的磁滞回线图谱;
图7为2-2型(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4复合陶瓷组分中当x=0.1,0.2,0.3,0.4,0.5时,在测试频率为40kHz的条件下,磁电耦合系数随磁场变化的图谱。
具体实施方式
下面结合附图及实施例对本发明做进一步详细描述:
Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料,该层状磁电复合材料的化学式为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.1≤x≤0.5或0.2≤x≤0.5或0.3≤x≤0.5或0.4≤x≤0.5。
一种Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料的制备方法,包括以下步骤:
(1)按化学式Ba0.9Ca0.1Ti0.9Zr0.1O3将分析纯的BaCO3,CaCO3,ZrO2和TiO2配制后通过4~5小时球磨混合均匀,然后烘干、过筛、压块,再经1150~1200℃预烧2~3小时,得到块状固体,将块状固体粉碎后加入烧结助剂Li2CO3,再次进行球磨4~5小时,得到产品,然后将产品过120目筛得到Ba0.9Ca0.1Ti0.9Zr0.1O3粉体;其中,Li2CO3为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的0.5wt%;
(2)按化学式Co0.8Ni0.1Zn0.1Fe2O4将分析纯的Co2O3,NiO,ZnO和Fe2O3配制后通过4~5小时球磨混合均匀,然后烘干、过筛、压块,再经1050~1100℃预烧2~3小时,得到块状产品,然后将块状产品粉碎后过120目筛,得到Co0.8Ni0.1Zn0.1Fe2O4粉体;
(3)向Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末,其中Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入PVA粘合剂的质量为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的10%~15%;
向Co0.8Ni0.1Zn0.1Fe2O4粉体中加入PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Co0.8Ni0.1Zn0.1Fe2O4粉末,其中Co0.8Ni0.1Zn0.1Fe2O4粉体中加入PVA粘合剂的质量为Co0.8Ni0.1Zn0.1Fe2O4粉体质量的10%~15%;
PVA粘合剂为质量分数为8%的聚乙烯醇水溶液;
(4)按化学式(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.1≤x≤0.5,将步骤(3)得到的粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末和Co0.8Ni0.1Zn0.1Fe2O4粉末按照2-2型复合材料的垒层叠加排列方式在模具中压制成型,2-2复合的垒层叠加排列方式具体为:从上到下按照Ba0.9Ca0.1Ti0.9Zr0.1O3粉末、Co0.8Ni0.1Zn0.1Fe2O4粉末、Ba0.9Ca0.1Ti0.9Zr0.1O3粉末的顺序垒叠在一起;
(5)550-600℃下保温2~4小时排除PVA粘合剂后再于1100~1150℃下烧结2~4小时成瓷,得到Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料。
本发明中,2-2型磁电复合材料采用了垒层叠加,排列方式为:从上到下依次为铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3、铁磁相Co0.8Ni0.1Zn0.1Fe2O4、铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3的顺序垒叠在一起。
实施例1
层状磁电复合材料的化学式为:(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且x=0.1。
上述层状磁电复合材料的制备方法,包括以下步骤:
(1)按化学式Ba0.9Ca0.1Ti0.9Zr0.1O3将分析纯的BaCO3,CaCO3,TiO2,ZrO2配制后通过4小时球磨混合均匀,然后烘干、过筛、压块,再经1200℃预烧2小时,得到块状产品,将块状粉体粉碎后加入Li2CO3作为烧结助剂,再进行二次球磨,得到产品,然后将产品过120目筛,得到Ba0.9Ca0.1Ti0.9Zr0.1O3粉体;其中,将Li2CO3作为烧结助剂加入到Ba0.9Ca0.1Ti0.9Zr0.1O3中,质量为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的0.5wt%;
(2)按化学式Co0.8Ni0.1Zn0.1Fe2O4将分析纯的Co2O3,NiO,ZnO和Fe2O3配制后通过4小时球磨混合均匀,然后烘干、过筛、压块,再经1050℃预烧2小时,得到块状产品,然后将块状产品粉碎后过120目筛,得到Co0.8Ni0.1Zn0.1Fe2O4粉体;
(3)向Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的10%的PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末;向Co0.8Ni0.1Zn0.1Fe2O4粉体中加入Co0.8Ni0.1Zn0.1Fe2O4粉体质量的10%的PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Co0.8Ni0.1Zn0.1Fe2O4粉末;其中,PVA粘合剂为质量分数8%的聚乙烯醇水溶液。
(4)按照化学式(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且x=0.1,将Ba0.9Ca0.1Ti0.9Zr0.1O3粉末和Co0.8Ni0.1Zn0.1Fe2O4粉末按照2-2型磁电复合材料的垒层叠加的排列方式在模具中压制成型;其中2-2磁电复合材料的垒层叠加的排列方式具体为:从上到下依次为铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3、铁磁相Co0.8Ni0.1Zn0.1Fe2O4、铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3的顺序垒叠在一起。
(5)在温度为600℃下保温2小时排除PVA粘合剂之后,在于1100℃下烧结2小时成瓷,得到Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料。
图1为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x=0.1时,复合陶瓷在1100℃烧结时的2-2型复合的垒层叠加排列方式示意图。
由图4可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.1,频率为100Hz时,介电常数为1673.28,介电损耗为0.20。
由图5和图6可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.1时,饱和极化强度Ps为20.75Μc/cm2,饱和磁化强度Ms为6.16emu/g。
由图7可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.1时,在磁场强度为1100Oe时,磁电耦合系数为2.23Mv/cm·Oe。
实施例2
层状磁电复合材料的化学式为:(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且x=0.2。
上述层状磁电复合材料的制备方法,包括以下步骤:
(1)按化学式Ba0.9Ca0.1Ti0.9Zr0.1O3将分析纯的BaCO3,CaCO3,TiO2,ZrO2配制后通过5小时球磨混合均匀,然后烘干、过筛、压块,再经1150℃预烧3小时,得到块状产品,将块状粉体粉碎后加入Li2CO3作为烧结助剂,再进行二次球磨,得到产品,然后将产品过120目筛,得到Ba0.9Ca0.1Ti0.9Zr0.1O3粉体;其中,将Li2CO3作为烧结助剂加入到Ba0.9Ca0.1Ti0.9Zr0.1O3中,质量为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的0.5wt%;
(2)按化学式Co0.8Ni0.1Zn0.1Fe2O4将分析纯的Co2O3,NiO,ZnO和Fe2O3配制后通过4小时球磨混合均匀,然后烘干、过筛、压块,再经1060℃预烧2小时,得到块状产品,然后将块状产品粉碎后过120目筛,得到Co0.8Ni0.1Zn0.1Fe2O4粉体;
(3)向Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的12%的PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末;向Co0.8Ni0.1Zn0.1Fe2O4粉体中加入Co0.8Ni0.1Zn0.1Fe2O4粉体质量的12%的PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Co0.8Ni0.1Zn0.1Fe2O4粉末;其中,PVA粘合剂为质量分数8%的聚乙烯醇水溶液。
(4)按照化学式(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且x=0.2,将Ba0.9Ca0.1Ti0.9Zr0.1O3粉末和Co0.8Ni0.1Zn0.1Fe2O4粉末按照2-2型磁电复合材料的垒层叠加的排列方式在模具中压制成型;其中2-2磁电复合材料的垒层叠加的排列方式具体为:从上到下依次为铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3、铁磁相Co0.8Ni0.1Zn0.1Fe2O4、铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3的顺序垒叠在一起。
(5)在温度为560℃下保温2.5小时排除PVA粘合剂之后,在于1120℃下烧结2.5小时成瓷,得到Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料。
图1为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x=0.2时,复合陶瓷在1120℃烧结时的2-2型复合的垒层叠加排列方式示意图。
由图4可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.2,频率为100Hz时,介电常数为1268.31,介电损耗为0.24。
由图5和图6可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.2时,饱和极化强度Ps为16.89Μc/cm2,饱和磁化强度Ms为11.99emu/g。
由图7可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.2时,在磁场强度为1100Oe时,磁电耦合系数为4.98Mv/cm·Oe。
实施例3
层状磁电复合材料的化学式为:(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且x=0.3。
上述层状磁电复合材料的制备方法,包括以下步骤:
(1)按化学式Ba0.9Ca0.1Ti0.9Zr0.1O3将分析纯的BaCO3,CaCO3,TiO2,ZrO2配制后通过4.5小时球磨混合均匀,然后烘干、过筛、压块,再经1180℃预烧2.5小时,得到块状产品,将块状粉体粉碎后加入Li2CO3作为烧结助剂,再进行二次球磨,得到产品,然后将产品过120目筛,得到Ba0.9Ca0.1Ti0.9Zr0.1O3粉体;其中,将Li2CO3作为烧结助剂加入到Ba0.9Ca0.1Ti0.9Zr0.1O3中,质量为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的0.5wt%;
(2)按化学式Co0.8Ni0.1Zn0.1Fe2O4将分析纯的Co2O3,NiO,ZnO和Fe2O3配制后通过4.5小时球磨混合均匀,然后烘干、过筛、压块,再经1070℃预烧2.5小时,得到块状产品,然后将块状产品粉碎后过120目筛,得到Co0.8Ni0.1Zn0.1Fe2O4粉体;
(3)向Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的13%的PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末;向Co0.8Ni0.1Zn0.1Fe2O4粉体中加入Co0.8Ni0.1Zn0.1Fe2O4粉体质量的13%的PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Co0.8Ni0.1Zn0.1Fe2O4粉末;其中,PVA粘合剂为质量分数8%的聚乙烯醇水溶液。
(4)按照化学式(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且x=0.3,将Ba0.9Ca0.1Ti0.9Zr0.1O3粉末和Co0.8Ni0.1Zn0.1Fe2O4粉末按照2-2型磁电复合材料的垒层叠加的排列方式在模具中压制成型;其中2-2磁电复合材料的垒层叠加的排列方式具体为:从上到下依次为铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3、铁磁相Co0.8Ni0.1Zn0.1Fe2O4、铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3的顺序垒叠在一起。
(5)在温度为580℃下保温3小时排除PVA粘合剂之后,在于1130℃下烧结3小时成瓷,得到Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料。
图1为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x=0.3时,复合陶瓷在1130℃烧结时的2-2型复合的垒层叠加排列方式示意图。
由图4可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.3,频率为100Hz时,介电常数为1208.32,介电损耗为0.32。
由图5和图6可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.3时,饱和极化强度Ps为15.83Μc/cm2,饱和磁化强度Ms为16.03emu/g。
由图7可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.3时,在磁场强度为1100Oe时,磁电耦合系数为9.69Mv/cm·Oe。
实施例4
层状磁电复合材料的化学式为:(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且x=0.4。
上述层状磁电复合材料的制备方法,包括以下步骤:
(1)按化学式Ba0.9Ca0.1Ti0.9Zr0.1O3将分析纯的BaCO3,CaCO3,TiO2,ZrO2配制后通过4小时球磨混合均匀,然后烘干、过筛、压块,再经1190℃预烧2小时,得到块状产品,将块状粉体粉碎后加入Li2CO3作为烧结助剂,再进行二次球磨,得到产品,然后将产品过120目筛,得到Ba0.9Ca0.1Ti0.9Zr0.1O3粉体;其中,将Li2CO3作为烧结助剂加入到Ba0.9Ca0.1Ti0.9Zr0.1O3中,质量为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的0.5wt%;
(2)按化学式Co0.8Ni0.1Zn0.1Fe2O4将分析纯的Co2O3,NiO,ZnO和Fe2O3配制后通过5小时球磨混合均匀,然后烘干、过筛、压块,再经1080℃预烧3小时,得到块状产品,然后将块状产品粉碎后过120目筛,得到Co0.8Ni0.1Zn0.1Fe2O4粉体;
(3)向Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的15%的PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末;向Co0.8Ni0.1Zn0.1Fe2O4粉体中加入Co0.8Ni0.1Zn0.1Fe2O4粉体质量的15%的PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Co0.8Ni0.1Zn0.1Fe2O4粉末;其中,PVA粘合剂为质量分数8%的聚乙烯醇水溶液。
(4)按照化学式(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且x=0.4,将Ba0.9Ca0.1Ti0.9Zr0.1O3粉末和Co0.8Ni0.1Zn0.1Fe2O4粉末按照2-2型磁电复合材料的垒层叠加的排列方式在模具中压制成型;其中2-2磁电复合材料的垒层叠加的排列方式具体为:从上到下依次为铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3、铁磁相Co0.8Ni0.1Zn0.1Fe2O4、铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3的顺序垒叠在一起。
(5)在温度为550℃下保温4小时排除PVA粘合剂之后,在于1150℃下烧结4小时成瓷,得到Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料。
图1为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x=0.4时,复合陶瓷在1150℃烧结时的2-2型复合的垒层叠加排列方式示意图。
由图4可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.4,频率为100Hz时,介电常数为1165.26,介电损耗为0.43。
由图5和图6可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.4时,饱和极化强度Ps为12.85Μc/cm2,饱和磁化强度Ms为17.2emu/g。
由图7可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.4时,在磁场强度为1100Oe时,磁电耦合系数为10.93Mv/cm·Oe。
实施例5
层状磁电复合材料的化学式为:(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且x=0.5。
上述层状磁电复合材料的制备方法,包括以下步骤:
(1)按化学式Ba0.9Ca0.1Ti0.9Zr0.1O3将分析纯的BaCO3,CaCO3,TiO2,ZrO2配制后通过5小时球磨混合均匀,然后烘干、过筛、压块,再经1170℃预烧3小时,得到块状产品,将块状粉体粉碎后加入Li2CO3作为烧结助剂,再进行二次球磨,得到产品,然后将产品过120目筛,得到Ba0.9Ca0.1Ti0.9Zr0.1O3粉体;其中,将Li2CO3作为烧结助剂加入到Ba0.9Ca0.1Ti0.9Zr0.1O3中,质量为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的0.5wt%;
(2)按化学式Co0.8Ni0.1Zn0.1Fe2O4将分析纯的Co2O3,NiO,ZnO和Fe2O3配制后通过4小时球磨混合均匀,然后烘干、过筛、压块,再经1100℃预烧2小时,得到块状产品,然后将块状产品粉碎后过120目筛,得到Co0.8Ni0.1Zn0.1Fe2O4粉体;
(3)向Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的10%的PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末;向Co0.8Ni0.1Zn0.1Fe2O4粉体中加入Co0.8Ni0.1Zn0.1Fe2O4粉体质量的10%的PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Co0.8Ni0.1Zn0.1Fe2O4粉末;其中,PVA粘合剂为质量分数8%的聚乙烯醇水溶液。
(4)按照化学式(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且x=0.5,将Ba0.9Ca0.1Ti0.9Zr0.1O3粉末和Co0.8Ni0.1Zn0.1Fe2O4粉末按照2-2型磁电复合材料的垒层叠加的排列方式在模具中压制成型;其中2-2磁电复合材料的垒层叠加的排列方式具体为:从上到下依次为铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3、铁磁相Co0.8Ni0.1Zn0.1Fe2O4、铁电相Ba0.9Ca0.1Ti0.9Zr0.1O3的顺序垒叠在一起。
(5)在温度为600℃下保温2小时排除PVA粘合剂之后,在于1100℃下烧结2小时成瓷,得到Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料。
图1为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x=0.5时,复合陶瓷在1100℃烧结时的2-2型复合的垒层叠加排列方式示意图。
由图4可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.5,频率为100Hz时,介电常数为756.31,介电损耗为0.50。
由图5和图6可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.5时,饱和极化强度Ps为9.85Μc/cm2,饱和磁化强度Ms为18.3emu/g。
由图7可以看出,复合材料(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4组分中x=0.5时,在磁场强度为1100Oe时,磁电耦合系数为20.85Mv/cm·Oe。
本发明所制得的2-2型磁电复合材料,通过将铁电相粉体和铁磁相粉体按照垒层叠加的排列方式使两相共烧在一起的磁电复合材料。此种结构改善了颗粒型磁电复合材料铁磁相弥散的问题,与此同时,保持了复合材料中铁磁、铁电相各自的磁致伸缩效应和压电效应,并且在两种材料之间不存在反应和互相的扩散,从而使材料获得了较大的磁电耦合系数。

Claims (10)

1.Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料,其特征在于,该层状磁电复合材料的化学式为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.1≤x≤0.5。
2.根据权利要求1所述的Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料,其特征在于,该层状磁电复合材料的化学式为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.2≤x≤0.5。
3.根据权利要求1所述的Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料,其特征在于,该层状磁电复合材料的化学式为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.3≤x≤0.5。
4.根据权利要求1所述的Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料,其特征在于,该层状磁电复合材料的化学式为(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.4≤x≤0.5。
5.一种Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料的制备方法,其特征在于,包括以下步骤:
(1)按化学式Ba0.9Ca0.1Ti0.9Zr0.1O3将分析纯的BaCO3,CaCO3,ZrO2和TiO2配制后通过球磨混合均匀,然后烘干、过筛、压块,再经1150~1200℃预烧2~3小时,得到块状固体,将块状固体粉碎后加入烧结助剂,再次进行球磨,得到产品,然后将产品过120目筛得到Ba0.9Ca0.1Ti0.9Zr0.1O3粉体;其中,烧结助剂为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的0.5wt%;
(2)按化学式Co0.8Ni0.1Zn0.1Fe2O4将分析纯的Co2O3,NiO,ZnO和Fe2O3配制后通过球磨混合均匀,然后烘干、过筛、压块,再经1050~1100℃预烧2~3小时,得到块状产品,然后将块状产品粉碎后过120目筛,得到Co0.8Ni0.1Zn0.1Fe2O4粉体;
(3)向Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末;
向Co0.8Ni0.1Zn0.1Fe2O4粉体中加入PVA粘合剂后造粒,再经80目和120目筛网过筛,取80目与120目筛网之间的粉体,得到粒径均匀的Co0.8Ni0.1Zn0.1Fe2O4粉末;
(4)按化学式(1-x)Ba0.9Ca0.1Ti0.9Zr0.1O3/xCo0.8Ni0.1Zn0.1Fe2O4,其中x为Co0.8Ni0.1Zn0.1Fe2O4的摩尔百分数,且0.1≤x≤0.5,将步骤(3)得到的粒径均匀的Ba0.9Ca0.1Ti0.9Zr0.1O3粉末和Co0.8Ni0.1Zn0.1Fe2O4粉末按照2-2型复合材料的垒层叠加排列方式在模具中压制成型;
(5)排除PVA粘合剂后再于1100~1150℃下烧结2~4小时成瓷,得到Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料。
6.根据权利要求5所述的Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4层状磁电复合材料的制备方法,其特征在于,所述步骤(1)、步骤(2)中球磨时间均为4~5小时。
7.根据权利要求5所述的Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料的制备方法,其特征在于,所述步骤(1)中烧结助剂为Li2CO3;步骤(3)中Ba0.9Ca0.1Ti0.9Zr0.1O3粉体中加入PVA粘合剂的质量为Ba0.9Ca0.1Ti0.9Zr0.1O3粉体质量的10%~15%;向Co0.8Ni0.1Zn0.1Fe2O4粉体中加入PVA粘合剂的质量为Co0.8Ni0.1Zn0.1Fe2O4粉体质量的10%~15%。
8.根据权利5或权利7所述的Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料的制备方法,其特征在于,所述的PVA粘合剂为质量分数为8%的聚乙烯醇水溶液。
9.根据权利5所述的Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料的制备方法,其特征在于,所述步骤(4)中2-2复合的垒层叠加排列方式具体为:从上到下按照Ba0.9Ca0.1Ti0.9Zr0.1O3粉末、Co0.8Ni0.1Zn0.1Fe2O4粉末、Ba0.9Ca0.1Ti0.9Zr0.1O3粉末的顺序垒叠在一起。
10.根据权利5所述的Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料的制备方法,其特征在于,所述步骤(5)中排除PVA粘合剂的具体条件为:550-600℃下保温2~4小时。
CN201610859432.7A 2016-09-28 2016-09-28 Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法 Pending CN106431398A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610859432.7A CN106431398A (zh) 2016-09-28 2016-09-28 Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610859432.7A CN106431398A (zh) 2016-09-28 2016-09-28 Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106431398A true CN106431398A (zh) 2017-02-22

Family

ID=58170783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610859432.7A Pending CN106431398A (zh) 2016-09-28 2016-09-28 Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106431398A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467318A (zh) * 2018-12-07 2019-03-15 陕西科技大学 一种bgsfmc/cnfo多铁性复合薄膜及其制备方法
CN116947475A (zh) * 2023-08-15 2023-10-27 中国计量大学 一种自偏置环行器用高性能复合铁氧体的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436307B1 (en) * 1999-06-29 2002-08-20 Thomson-Csf Low loss ferrites
US20070231614A1 (en) * 2006-03-14 2007-10-04 Nec Tokin Corporation Ferrite material, ferrite film formed thereof, and radio frequency identification tag with ferrite film
CN102815938A (zh) * 2012-08-27 2012-12-12 天津大学 一种钛酸钡基无铅电致伸缩陶瓷及其制备方法
CN103641470A (zh) * 2013-11-20 2014-03-19 陕西科技大学 一种Ba0.9Ca0.1Ti0.9Zr0.1O3 纳米无铅压电陶瓷的制备方法
CN104119073A (zh) * 2014-08-15 2014-10-29 中国地质大学(武汉) 一种BaTiO3基陶瓷及其制备方法
CN104557027A (zh) * 2015-01-14 2015-04-29 陕西科技大学 一种CoFe2O4/BaTiO3层状磁电复合材料及其制备方法
CN104761260A (zh) * 2015-03-18 2015-07-08 中国科学院福建物质结构研究所 一种(BaxCa1-x)(TiyM1-y)O3体系压电陶瓷材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436307B1 (en) * 1999-06-29 2002-08-20 Thomson-Csf Low loss ferrites
US20070231614A1 (en) * 2006-03-14 2007-10-04 Nec Tokin Corporation Ferrite material, ferrite film formed thereof, and radio frequency identification tag with ferrite film
CN102815938A (zh) * 2012-08-27 2012-12-12 天津大学 一种钛酸钡基无铅电致伸缩陶瓷及其制备方法
CN103641470A (zh) * 2013-11-20 2014-03-19 陕西科技大学 一种Ba0.9Ca0.1Ti0.9Zr0.1O3 纳米无铅压电陶瓷的制备方法
CN104119073A (zh) * 2014-08-15 2014-10-29 中国地质大学(武汉) 一种BaTiO3基陶瓷及其制备方法
CN104557027A (zh) * 2015-01-14 2015-04-29 陕西科技大学 一种CoFe2O4/BaTiO3层状磁电复合材料及其制备方法
CN104761260A (zh) * 2015-03-18 2015-07-08 中国科学院福建物质结构研究所 一种(BaxCa1-x)(TiyM1-y)O3体系压电陶瓷材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A.REYES-MONTERO ET AL.: "Lead-free Ba0.9Ca0.1Ti0.9Zr0.1O3 piezoelectric ceramics processed below 1300℃", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
HAIBO YANG ET AL.: "Enhanced magnetoelectric properties of the laminated BaTiO3/CoFe2O4 composites", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
K.CHANDRA MOULI ET AL.: "Synthesis and Magnetic Studies of Co-Ni-Zn Ferrite Nano Crystals", 《JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY》 *
颜爱国: "尖晶石型铁氧体纳米晶的控制合成、结构和性能表征", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467318A (zh) * 2018-12-07 2019-03-15 陕西科技大学 一种bgsfmc/cnfo多铁性复合薄膜及其制备方法
CN116947475A (zh) * 2023-08-15 2023-10-27 中国计量大学 一种自偏置环行器用高性能复合铁氧体的制备方法
CN116947475B (zh) * 2023-08-15 2024-02-23 中国计量大学 一种自偏置环行器用高性能复合铁氧体的制备方法

Similar Documents

Publication Publication Date Title
Zhao et al. Enhanced energy storage efficiency by modulating field-induced strain in BaTiO3-Bi (Ni2/3Ta1/3) O3 lead-free ceramics
CN103058643B (zh) 宽温高叠加低功耗Mn-Zn软磁铁氧体材料及制备方法
Pandey et al. Structural and dielectric characterization on multiferroic xNi0. 9Zn0. 1Fe2O4/(1− x) PbZr0. 52Ti0. 48O3 particulate composite
CN104557027B (zh) 一种 CoFe2O4/BaTiO3 层状磁电复合材料及其制备方法
CN106431398A (zh) Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4层状磁电复合材料及其制备方法
CN102850045B (zh) 兼具巨介电常数和高磁化强度的铁氧体复合材料及其制备方法
CN102850051B (zh) 一种YFeO3 基双相磁电复合材料及其制备方法
CN104557030B (zh) 一种 SrTiO3 基高频层状磁电复合材料及其制备方法
CN104556996B (zh) 一种制备 BaFe12O19/CoFe2O4 永磁复合陶瓷材料及其制备方法
Darvade et al. Structural and multiferroic properties of trilayer green magnetoelectric Co0. 8Ni0. 2Fe2O4/K0. 25Na0. 75NbO3/Co0. 8Ni0. 2Fe2O4 composite structure
CN104557008B (zh) Ba(Fe0.5Nb0.5)O3/Bi0.2Y2.8Fe5O12 层状磁电复合材料及其制备方法
CN106478095A (zh) Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4层状磁电复合材料及其制备方法
CN104591715B (zh) 一种 BaFe12O19/CoFe2O4 层状永磁复合材料及其制备方法
CN104557028A (zh) 一种层状磁电复合材料及其制备方法
CN103183504B (zh) 一种双层织构化钴铁氧体-锆钛酸铅多铁性复合膜材料及制备方法
Yao et al. The effects of magnetic field and polarization on the permeability and permittivity of (1–x) Ni0. 4Zn0. 6Fe2O4+ xPb (Zr0. 53Ti0. 47) O3 composites at high frequency
CN104591723A (zh) 一种层状磁电复合材料及其制备方法
CN104591734B (zh) 一种Ca(Zn1/3Nb2/3)O3基高频层状磁电复合材料及其制备方法
Wu et al. Crystal structure, dielectric relaxation and magnetic properties of Ba5NdNiNb9O30 ceramics
CN106278262A (zh) 一种knn基层状磁电复合材料及其制备方法
CN104591714A (zh) CoFe2O4/0.4BaTiO3-0.6BiFeO3 磁电复合材料及其制备方法
CN102249678A (zh) 无铅无铋压电陶瓷
CN106278252A (zh) 一种钛酸铋Bi4‑XPrXTi3‑XCoXO12陶瓷材料及其制备方法
Kumar et al. Design and development of bismuth ferrite based environmental friendly multiferroic for devices
CN106565239A (zh) 一种低烧结温度功率型压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170222