CN116496096A - 一种增强软磁/硬磁复合铁氧体吸波性能的方法 - Google Patents

一种增强软磁/硬磁复合铁氧体吸波性能的方法 Download PDF

Info

Publication number
CN116496096A
CN116496096A CN202310730418.7A CN202310730418A CN116496096A CN 116496096 A CN116496096 A CN 116496096A CN 202310730418 A CN202310730418 A CN 202310730418A CN 116496096 A CN116496096 A CN 116496096A
Authority
CN
China
Prior art keywords
ferrite
soft
hard magnetic
bafe
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310730418.7A
Other languages
English (en)
Other versions
CN116496096B (zh
Inventor
郑宗良
王成亮
邹元宏
张宇航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202310730418.7A priority Critical patent/CN116496096B/zh
Publication of CN116496096A publication Critical patent/CN116496096A/zh
Application granted granted Critical
Publication of CN116496096B publication Critical patent/CN116496096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明涉及吸波材料制备领域,公开了一种增强软磁/硬磁复合铁氧体吸波性能的方法,吸波材料软磁相为镍锌尖晶石铁氧体NiZn,硬磁相为M型六角钡铁氧体BaFe12O19,通过固相反应法分别形成NiZn铁氧体和BaFe12O19铁氧体,将两种铁氧体均匀混合后,按照一定的质量比复合制成软/硬磁复合铁氧体样品。本发明通过改变煅烧温度分别调控软磁和硬磁铁氧体的晶粒尺寸,协调优化获得特定软/硬磁晶粒大小组合,使得复合铁氧体具有更多软/硬磁相界面,增强复合铁氧体的软/硬磁相交换耦合效应,进一步拓宽磁损耗范围,显著提升电磁波吸收带宽和最大反射损耗。本发明所得软/硬磁复合铁氧体反射损耗在10.25GHz处为‑55.03dB,有效吸收带宽为4.7GHz。

Description

一种增强软磁/硬磁复合铁氧体吸波性能的方法
技术领域
本发明涉及吸波材料制备领域,具体涉及一种增强软磁/硬磁复合铁氧体吸波性能的方法。
背景技术
随着各种商业和工业无线通信技术的快速发展,电磁辐射和电磁干扰问题日益突出,严重影响了自然环境、人类健康和电子电器系统的正常工作。因此研制具有宽吸收带宽和高反射损耗的高性能电磁吸波材料已经迫在眉睫。
在现有的各种吸波材料中,铁氧体作为一种磁性吸波介质,由于其对电磁波的吸收既有介电特性方面的极化效应又有磁损耗效应,被广泛应用于商业和国防领域。其中,尖晶石型铁氧体具有高磁导率和低矫顽力,适合开发具有极高磁损耗的吸波材料。然而,尖晶石型铁氧体对电磁波的吸收仅限于相对较低的频率,因为其自然共振频率一般在兆赫兹范围内。相比之下,M型六角铁氧体由于具有自然共振频率高、矫顽力大、电阻率高等优点,更适合作为高频吸波材料。因此,尖晶石型铁氧体和M型六角铁氧体的结合为制备宽带吸波材料提供了一种有效的途径。此外,软/硬磁铁氧体之间的交换耦合作用可以进一步增强复合材料的电磁吸收。近年来,一系列采用软/硬铁氧体复合材料的电磁吸波材料不断被提出,然而反射损耗和有效吸收带宽仍然是限制其广泛应用的瓶颈。探索有效的途径来提高软/硬铁氧体复合材料的吸收带宽和最大反射损耗是非常必要的。
铁氧体的电磁吸波性能取决于其磁性能和介电性能,而磁性能和介电性能则与材料的微观结构特性(晶粒尺寸、密度、界面等)密切相关。特别地,铁氧体的晶粒尺寸对磁性能和介电性能具有关键性的调控作用。然而,在电磁吸收应用方面,到目前为止,很少有研究关注晶粒尺寸对软/硬铁氧体复合材料的微波吸收性能的影响。
发明内容
为解决现有技术中存在的问题,本发明提供了一种增强软磁/硬磁复合铁氧体吸波性能的方法,通过固相反应法分别形成镍锌铁氧体NiZn和BaFe12O19铁氧体,在后续将两种铁氧体均匀混合后,按照一定的质量比复合制成软/硬磁复合铁氧体样品,通过改变煅烧温度分别调控软磁和硬磁铁氧体的晶粒尺寸,协调优化获得特定软/硬磁晶粒大小组合,使得复合铁氧体具有更多软/硬磁相界面,增强复合铁氧体的软/硬磁相交换耦合效应,从而进一步拓宽磁损耗范围,显著提升电磁波吸收带宽和最大反射损耗,解决了上述背景技术中提到的问题。
为实现上述目的,本发明提供如下技术方案:一种增强软磁/硬磁复合铁氧体吸波性能的方法,在制备以软磁相为钴掺杂镍锌铁氧体NiZn,硬磁相为M型六角钡铁氧体BaFe12O19的复合铁氧体吸波材料中,通过改变NiZn铁氧体和BaFe12O19铁氧体的煅烧烧结温度来分别调控软磁和硬磁铁氧体的晶粒尺寸,得到特定软/硬磁晶粒大小组合,使得复合铁氧体具有更多软/硬磁相界面,增强复合铁氧体的软/硬磁相交换耦合效应。
优选的,所述通过改变NiZn铁氧体和BaFe12O19铁氧体的煅烧烧结温度来调控软/硬磁铁氧体的晶粒尺寸具体包括:
改变NiZn铁氧体的烧结温度分别为900℃、1100℃及1250℃,在900℃烧结后的NiZn铁氧体晶粒平均大小范围在200~300nm;随着烧结温度的增加,晶粒尺寸增大,在1100℃烧结后的NiZn铁氧体晶粒平均大小范围在500~700nm;随着烧结温度的增加,晶粒尺寸增大,在1250℃烧结后的NiZn铁氧体晶粒平均大小范围在1.6~2.2mm;
改变BaFe12O19铁氧体的烧结温度分别为900℃、1100℃及1250℃,在900℃烧结后的BaFe12O19晶粒平均大小范围在100~200nm;在1100℃烧结后的BaFe12O19晶粒平均大小范围在250~450nm;随着烧结温度的增加,晶粒尺寸增大,在1250℃烧结后的BaFe12O19晶粒平均大小范围在1~2mm。
优选的,特定软/硬磁晶粒大小组合的复合铁氧体吸波材料包括由900℃烧结后的小晶粒NiZn铁氧体与1250℃烧结后的大晶粒BaFe12O19铁氧体复合后的软/硬磁复合铁氧体吸波材料,反射损耗在10.25GHz处为-55.03dB,有效吸收带宽为4.7GHz。
优选的,所述镍锌铁氧体可以是纯NiZn铁氧体,也可以是钴、钙、锰、铜、锶、钡等一种或几种元素掺杂的NiZn铁氧体。
优选的,所述镍锌铁氧体NiZn是钴掺杂镍锌铁氧体Ni0.5Zn0.5-x Co x Fe2O4,(0<x<0.5)。
优选的,以软磁相为镍锌铁氧体NiZn,硬磁相为M型六角钡铁氧体BaFe12O19的复合铁氧体吸波材料的制备步骤包括如下:
S1、制备NiZn铁氧体相:按一定摩尔比称取高纯度的NiO、ZnO和Fe2O3加去离子水进行球磨混合,球磨后的混合料在烘箱中烘干后进行预烧结,然后将预烧料破碎,烘干后将粉末进行二次煅烧,煅烧温度为900℃、1100℃及1250℃,得到不同晶粒大小NiZn铁氧体粉末;
S2、制备BaFe12O19相:采用分析纯BaCO3和Fe2O3为原材料,按照化学配比BaFe12O19进行称料,将配好的原材料加入去离子水进行球磨混合。球磨后的混合料在烘箱中烘干后进行预烧结,然后将预烧料破碎,烘干后将粉末进行二次煅烧,煅烧温度为900℃、1100℃及1250℃,得到不同晶粒大小BaFe12O19铁氧体粉末;
S3、复合铁氧体的制备:将步骤S1和步骤S2中制备的NiZn铁氧体和BaFe12O19铁氧体纳米粉末按照一定质量比加入到丙酮溶液中,再加入环氧树脂和聚乙二醇后超声搅拌,直至丙酮完全挥发;将干燥后的混合物压制成环状致密磁体,加热后所得磁体即为软磁/硬磁复合铁氧体吸波材料。
优选的,以软磁相为钴掺杂镍锌铁氧体Ni0.5Zn0.5-x Co x Fe2O4,(0<x<0.5),硬磁相为M型六角钡铁氧体BaFe12O19的复合铁氧体吸波材料的制备步骤包括如下:
S1、制备Ni0.5Zn0.5-x Co x Fe2O4铁氧体相:钴掺杂镍锌尖晶石铁氧体按照Ni0.5Zn0.5- x Co x Fe2O4的化学配比称取高纯度的Co3O4、NiO、ZnO和Fe2O3粉末混合后加去离子水进行球磨混合12h;球磨后的混合料在烘箱中烘干,然后在空气中1000℃预烧3h,升温速率为2℃/min;之后将预烧料破碎,二次球磨12h,经烘干后置于马弗炉进行二次煅烧,煅烧温度为900℃、1100℃及1250℃,得到不同晶粒大小Ni0.5Zn0.5-x Co x Fe2O4铁氧体粉末;
S2、制备BaFe12O19相:采用高纯度BaCO3和Fe2O3为原材料,按照化学配比BaFe12O19进行称料,将配好的原材料加入去离子水进行球磨混合12h。球磨后的混合料在烘箱中烘干,然后在空气中1000℃预烧3h,升温速率为2℃/min。之后将预烧料破碎,二次球磨12h,经烘干后最终置于马弗炉进行二次煅烧,煅烧温度为900℃、1100℃及1250℃,得到不同晶粒大小BaFe12O19铁氧体粉末;
S3、复合铁氧体的制备:将步骤S1和步骤S2中制备的Ni0.5Zn0.5-x Co x Fe2O4铁氧体和BaFe12O19铁氧体纳米粉末按照质量比为1:1加入到丙酮溶液中,再加入环氧树脂和聚乙二醇后超声搅拌,直至丙酮完全挥发;将干燥后的混合物压制成环状致密磁体,加热后所得磁体即为软磁/硬磁复合铁氧体吸波材料。
优选的,步骤S3中,所述丙酮溶液与铁氧体的质量比为1:4~6。
优选的,步骤S3中,所述环氧树脂占丙酮溶液质量的5~10%。
优选的,步骤S3中,所述聚乙二醇占丙酮溶液质量的5~15%。
优选的,步骤S3中,所述烘箱中加热的温度为80~160℃,加热时间为1~ 4h。
本发明的有益效果是:
1)本发明所研究的复合材料的软磁铁氧体配方设计新颖,在此之前没有使用Ni0.5Zn0.5-x Co x Fe2O4作为软/硬磁复合铁氧体吸波材料的软磁介质的相关研究。
2)本发明所得的软/硬磁复合铁氧体与常规复合铁氧体相比,通过控制复合物中软/硬磁相的晶粒尺寸比,使得复合铁氧体中具有更多的软/硬磁相界面,不仅可增强软/硬磁交换耦合效应从而进一步拓展磁损耗范围,还可加强界面极化弛豫现象从而提高介电损耗,表现出更为优异的综合吸波性能。因此,调控铁氧体的晶粒尺寸会给软/硬磁复合铁氧体的整个体系及吸波性能改善起很大作用。
3)本发明制备的复合铁氧体在10.25 GHz处最小反射损耗为-55.03 dB,厚度为2.7 mm,小于-10 dB的有效吸收带宽达到4.7 GHz(频率范围为7.55-12.25 GHz)。与现有技术相比,本发明更能满足现代吸波材料“薄、轻、宽、强”的要求。
附图说明
图1为Ni0.5Zn0.5-x Co x Fe2O4铁氧体分别在900℃、1100℃及1250℃烧结后的XRD图谱;
图2为BaFe12O19铁氧体分别在900℃、1100℃及1250℃烧结后的XRD图谱;
图3为Ni0.5Zn0.5-x Co x Fe2O4铁氧体在900℃烧结后的SEM图片;
图4为Ni0.5Zn0.5-x Co x Fe2O4铁氧体在900℃烧结后的晶粒尺寸分布图;
图5为Ni0.5Zn0.5-x Co x Fe2O4铁氧体在1100℃烧结后的SEM图片;
图6为Ni0.5Zn0.5-x Co x Fe2O4铁氧体在1100℃烧结后的晶粒尺寸分布图;
图7为Ni0.5Zn0.5-x Co x Fe2O4铁氧体在1250℃烧结后的SEM图片;
图8为Ni0.5Zn0.5-x Co x Fe2O4铁氧体在1250℃烧结后的晶粒尺寸分布图;
图9为BaFe12O19铁氧体在900℃烧结后的SEM图片;
图10为BaFe12O19铁氧体在900℃烧结后的晶粒尺寸分布图;
图11为BaFe12O19铁氧体在1100℃烧结后的SEM图片;
图12为BaFe12O19铁氧体在1100℃烧结后的晶粒尺寸分布图;
图13为BaFe12O19铁氧体在1250℃烧结后的SEM图片;
图14为BaFe12O19铁氧体在1250℃烧结后的晶粒尺寸分布图;
图15为实施例1制得的复合试样S-1的磁滞回线图;
图16为实施例3制得的复合试样S-3的磁滞回线图;
图17为实施例7制得的复合试样S-7的磁滞回线图;
图18为实施例9制得的复合试样S-9的磁滞回线图;
图19为实施例1、实施例2与实施例3制得复合试样S-1、S-2和S-3的衰减常数图;
图20为实施例4、实施例5与实施例6制得复合试样S-4、S-5和S-6的衰减常数图;
图21为实施例7、实施例8与实施例9制得复合试样S-7、S-8和S-9的衰减常数图;
图22为实施例1、实施例2与实施例3制得复合试样S-1、S-2和S-3在厚度为2.7mm时的反射损耗图;
图23为实施例4、实施例5与实施例6制得复合试样S-4、S-5和S-6在厚度为2.7mm时的反射损耗图;
图24为实施例7、实施例8与实施例9制得复合试样S-7、S-8和S-9在厚度为2.7mm时的反射损耗图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
以软磁相为钴掺杂镍锌铁氧体Ni0.5Zn0.5-x Co x Fe2O4(0<x<0.5),一种增强软磁/硬磁复合铁氧体吸波性能的方法,在制备以软磁相为钴掺杂镍锌铁氧体Ni0.5Zn0.5-x Co x Fe2O4,当x=0.2时,即钴掺杂镍锌铁氧体Ni0.5Zn0.3Co0.2Fe2O4,硬磁相为M型六角钡铁氧体BaFe12O19的复合铁氧体吸波材料中,其制备方法通过固相反应法分别形成Ni0.5Zn0.5-x Co x Fe2O4铁氧体和BaFe12O19铁氧体,在后续将两种铁氧体均匀混合后,按照1:1的质量比压成软/硬磁复合铁氧体样品。在制备过程中,通过改变煅烧温度(Ni0.5Zn0.5-x Co x Fe2O4铁氧体和BaFe12O19铁氧体的烧结温度)分别调控软磁/硬磁铁氧体的晶粒尺寸,协调优化获得特定软/硬磁晶粒大小组合,使得复合铁氧体具有更多软/硬磁相界面,增强复合铁氧体的软/硬磁相交换耦合效应,从而进一步拓宽磁损耗范围,显著提升电磁波吸收带宽和最大反射损耗。
改变Ni0.5Zn0.5-x Co x Fe2O4铁氧体的烧结温度分别为900℃、1100℃及1250℃,如图1所示,为900℃、1100℃及1250℃烧结后的XRD图谱。在900℃烧结后的Ni0.5Zn0.5-x Co x Fe2O4铁氧体晶粒平均大小范围在200~300nm;随着烧结温度的增加,晶粒尺寸增大,在1100℃烧结后的Ni0.5Zn0.5-x Co x Fe2O4铁氧体晶粒平均大小范围在500~700nm;随着烧结温度的增加,晶粒尺寸增大,在1250℃烧结后的Ni0.5Zn0.5-x Co x Fe2O4铁氧体晶粒平均大小范围在1.6~2.2mm;
改变BaFe12O19铁氧体的烧结温度分别为900℃、1100℃及1250℃,如图2所示,为900℃、1100℃及1250℃烧结后的XRD图谱。在900℃烧结后的BaFe12O19晶粒平均大小范围在100~200nm;在1100℃烧结后的BaFe12O19晶粒平均大小范围在250~450nm;随着烧结温度的增加,晶粒尺寸增大,在1250℃烧结后的BaFe12O19晶粒平均大小范围在1~2mm。
进一步的,复合铁氧体吸波材料的制备方法包括如下:
制备Ni0.5Zn0.5-x Co x Fe2O4粉末:钴掺杂镍锌尖晶石铁氧体按照Ni0.5Zn0.3Co0.2Fe2O4的化学配比称取分析纯的Co2O3、NiO、ZnO和Fe2O3粉末混合后加去离子水进行球磨混合12h,球磨后的混合料在烘箱中烘干,然后在空气中1000℃预烧3h,升温速率为2℃/min。之后将预烧料破碎,二次球磨12h,经烘干后置于马弗炉在900℃煅烧6h,烧结后的SEM图片如图3所示;如图4所示为Ni0.5Zn0.5-x Co x Fe2O4铁氧体在900℃烧结后的晶粒尺寸分布图,由图中可以看出,最终在900℃烧结后的Ni0.5Zn0.5-x Co x Fe2O4铁氧体晶粒平均大小范围在200~300nm。
制备BaFe12O19粉末:采用分析纯BaCO3和Fe2O3为原材料,按照化学配比BaFe12O19进行称料,将配好的原材料加入去离子水进行球磨混合12h。球磨后的混合料在烘箱中烘干,然后在空气中1000℃预烧3h,升温速率为2℃/min。之后将预烧料破碎,二次球磨12h,经烘干后置于马弗炉在900℃煅烧6h,烧结后的SEM图片如图9所示;如图10所示为BaFe12O19铁氧体在900℃烧结后的晶粒尺寸分布图,由图中可以看出,在900℃烧结后的BaFe12O19晶粒平均大小范围在100~200nm;随炉冷却后得到蓬松状粉末。
复合铁氧体的制备:将Ni0.5Zn0.5-x Co x Fe2O4粉末和BaFe12O19粉末按质量比1:1加入到丙酮溶液中,丙酮溶液与铁氧体粉末的重量比为4~6:1。然后机械搅拌混合溶液配合超声辅助,直到丙酮完全挥发。然后将铁氧体复合粉末与5~10wt%的环氧树脂和5~15wt%的聚乙二醇再次在丙酮溶液中超声搅拌,直至丙酮挥发。将干燥后的混合物压入外径为7mm,内径为3mm的模具中,接着放入烘箱中120℃烘干1.5h,制得电磁参数测量用复合试样S-1。根据测得的电磁参数,计算得出样品厚度在2.7mm处的吸波性能。如图15所示为实施例1制得的复合试样S-1的磁滞回线图,由图中可以看出,含有小晶粒尺寸Ni0.5Zn0.5-x Co x Fe2O4铁氧体和小晶粒尺寸BaFe12O19铁氧体两相的复合试样S-1磁滞回线出现了一些扭结,表示软/硬磁铁氧体相存在弱的交换耦合。
实施例2
Ni0.5Zn0.5-x Co x Fe2O4和BaFe12O19的制备方法同实施例1,变动的参数是制备Ni0.5Zn0.5-x Co x Fe2O4铁氧体时烧结温度更改为1100℃,烧结后的SEM图片如图5所示,如图6所示为Ni0.5Zn0.5-x Co x Fe2O4铁氧体在1100℃烧结后的晶粒尺寸分布图,由图中可以看出,随着烧结温度的增加,晶粒尺寸增大,在1100℃烧结后的Ni0.5Zn0.5-x Co x Fe2O4铁氧体晶粒平均大小范围在500~700nm。制得电磁参数测量用复合试样S-2。复合试样S-2衰减常数和复合试样S-2在厚度为2.7mm时的反射损耗分别如图19和图22所示。
实施例3
Ni0.5Zn0.5-x Co x Fe2O4和BaFe12O19的制备方法同实施例1,变动的参数是制备Ni0.5Zn0.5-x Co x Fe2O4铁氧体时烧结温度更改为1250℃,烧结后的SEM图片如图7所示,如图8所示为Ni0.5Zn0.5-x Co x Fe2O4铁氧体在1250℃烧结后的晶粒尺寸分布图,由图中可以看出,随着烧结温度的增加,晶粒尺寸增大,在1250℃烧结后的Ni0.5Zn0.5-x Co x Fe2O4铁氧体晶粒平均大小范围在1.6~2.2mm。制得电磁参数测量用复合试样S-3。如图16所示为实施例3制得的复合试样S-3的磁滞回线图,由图中可以看出,含有大晶粒尺寸Ni0.5Zn0.5-x Co x Fe2O4铁氧体和小晶粒尺寸BaFe12O19铁氧体两相的复合试样S-3磁滞回线出现了一些扭结,表示软/硬磁铁氧体相存在弱的交换耦合。复合试样S-3衰减常数和复合试样S-3在厚度为2.7mm时的反射损耗分别如图19和图22所示。
实施例4
Ni0.5Zn0.5-x Co x Fe2O4和BaFe12O19的制备方法同实施例1,变动的参数是制备BaFe12O19铁氧体时烧结温度更改为1100℃,烧结后的SEM图片如图11所示,如图12所示为BaFe12O19铁氧体在1100℃烧结后的晶粒尺寸分布图,由图中可以看出,在1100℃烧结后的BaFe12O19晶粒平均大小范围在250~450nm。制得电磁参数测量用复合试样S-4。复合试样S-4衰减常数和复合试样S-4在厚度为2.7mm时的反射损耗分别如图20和图23所示。
实施例5
Ni0.5Zn0.5-x Co x Fe2O4和BaFe12O19的制备方法同实施例1,变动的参数是制备BaFe12O19铁氧体时烧结温度更改为1100℃,制备Ni0.5Zn0.5-x Co x Fe2O4铁氧体时烧结温度更改为1100℃。制得电磁参数测量用复合试样S-5。复合试样S-5衰减常数和复合试样S-5在厚度为2.7mm时的反射损耗分别如图20和图23所示。
实施例6
Ni0.5Zn0.5-x Co x Fe2O4和BaFe12O19的制备方法同实施例1,变动的参数是制备BaFe12O19铁氧体时烧结温度更改为1100℃,制备Ni0.5Zn0.5-x Co x Fe2O4铁氧体时烧结温度更改为1250℃。制得电磁参数测量用复合试样S-6。复合试样S-6衰减常数和复合试样S-6在厚度为2.7mm时的反射损耗分别如图20和图23所示。
实施例7
Ni0.5Zn0.5-x Co x Fe2O4和BaFe12O19的制备方法同实施例1,变动的参数是制备BaFe12O19铁氧体时烧结温度更改为1250℃,烧结后的SEM图片如图13所示,如图14所示为BaFe12O19铁氧体在1250℃烧结后的晶粒尺寸分布图,由图中可以看出,随着烧结温度的增加,晶粒尺寸增大,在1250℃烧结后的BaFe12O19晶粒平均大小范围在1~2mm。制得电磁参数测量用复合试样S-7。如图17所示为实施例7制得的复合试样S-7的磁滞回线图,由图中可以看出,含有小晶粒尺寸Ni0.5Zn0.5-x Co x Fe2O4铁氧体和大晶粒尺寸BaFe12O19铁氧体两相的复合试样S-7存在单相且光滑的磁滞回线,说明样品中软/硬磁铁氧体相表现出良好的交换耦合效应。复合试样S-7衰减常数和复合试样S-7在厚度为2.7mm时的反射损耗分别如图21和图24所示。由图21中可以看出,实施例7中由900℃烧结后的小晶粒Ni0.5Zn0.5-x Co x Fe2O4铁氧体与1250℃烧结后的大晶粒BaFe12O19铁氧体复合后的软/硬磁复合铁氧体对电磁波衰减能力有显著提升,衰减能力为所有实施例中制得样品的最强。由图24中可以看出,实施例7中由900℃烧结后的小晶粒Ni0.5Zn0.5-x Co x Fe2O4铁氧体与1250℃烧结后的大晶粒BaFe12O19铁氧体复合后的软/硬磁复合铁氧体吸波性能显著提升,有效吸收带宽为4.7GHz,在10.25GHz处的反射损耗为-55.03dB。
实施例8
Ni0.5Zn0.5-x Co x Fe2O4和BaFe12O19的制备方法同实施例1,变动的参数是制备BaFe12O19铁氧体时烧结温度更改为1250℃,制备Ni0.5Zn0.5-x Co x Fe2O4铁氧体时烧结温度更改为1100℃。制得电磁参数测量用复合试样S-8。复合试样S-8衰减常数和复合试样S-8在厚度为2.7mm时的反射损耗分别如图21和图24所示。
实施例9
Ni0.5Zn0.5-x Co x Fe2O4和BaFe12O19的制备方法同实施例1,变动的参数是制备BaFe12O19铁氧体时烧结温度更改为1250℃,制备Ni0.5Zn0.5-x Co x Fe2O4铁氧体时烧结温度更改为1250℃。制得电磁参数测量用复合试样S-9。如图18所示为实施例9制得的复合试样S-9的磁滞回线图,由图中可以看出,含有大晶粒尺寸Ni0.5Zn0.5-x Co x Fe2O4铁氧体和大晶粒尺寸BaFe12O19铁氧体两相的复合试样S-9磁滞回线出现了一些扭结,表示软/硬磁铁氧体相存在弱的交换耦合。复合试样S-9衰减常数和复合试样S-9在厚度为2.7mm时的反射损耗分别如图21和图24所示。
本发明所得的软/硬磁复合铁氧体与常规复合铁氧体相比,通过控制复合物中软/硬磁相的晶粒尺寸比,协调优化使得软磁颗粒分散在硬磁颗粒中,具有更多的软/硬磁相界面,不仅可增强软/硬磁交换耦合效应从而进一步拓展磁损耗范围,还可加强界面极化弛豫现象从而提高介电损耗,表现出更为优异的综合吸波性能。因此,调控铁氧体的晶粒尺寸会给软/硬磁复合铁氧体的整个体系及吸波性能改善起很大作用。本发明所得软/硬磁复合铁氧体在匹配厚度为2.7mm条件下,反射损耗在10.25GHz处为-55.03dB,有效吸收带宽为4.7GHz。
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种增强软磁/硬磁复合铁氧体吸波性能的方法,其特征在于,在制备以软磁相为镍锌铁氧体NiZn,硬磁相为M型六角钡铁氧体BaFe12O19的复合铁氧体吸波材料中,通过改变NiZn铁氧体和BaFe12O19铁氧体的煅烧烧结温度来分别调控软磁和硬磁铁氧体的晶粒尺寸,得到特定软/硬磁晶粒大小组合,使得复合铁氧体具有更多软/硬磁相界面,增强复合铁氧体的软/硬磁相交换耦合效应。
2.根据权利要求1所述的增强软磁/硬磁复合铁氧体吸波性能的方法,其特征在于:所述通过改变NiZn铁氧体和BaFe12O19铁氧体的煅烧烧结温度来分别调控软磁和硬磁铁氧体的晶粒尺寸具体包括:
改变NiZn铁氧体的烧结温度分别为900℃、1100℃及1250℃,在900℃烧结后的NiZn铁氧体晶粒平均大小范围在200~300nm;在1100℃烧结后的NiZn铁氧体晶粒平均大小范围在500~700nm;随着烧结温度的增加,晶粒尺寸增大,在1250℃烧结后的NiZn铁氧体晶粒平均大小范围在1.6~2.2mm;
改变BaFe12O19铁氧体的烧结温度分别为900℃、1100℃及1250℃,在900℃烧结后的BaFe12O19晶粒平均大小范围在100~200nm;在1100℃烧结后的BaFe12O19晶粒平均大小范围在250~450nm;随着烧结温度的增加,晶粒尺寸增大,在1250℃烧结后的BaFe12O19晶粒平均大小范围在1~2mm。
3.根据权利要求1所述的增强软磁/硬磁复合铁氧体吸波性能的方法,其特征在于:特定软/硬磁晶粒大小组合的复合铁氧体吸波材料包括由900℃烧结后的小晶粒NiZn铁氧体与1250℃烧结后的大晶粒BaFe12O19铁氧体复合后的软/硬磁复合铁氧体吸波材料,反射损耗在10.25GHz处为-55.03dB,有效吸收带宽为4.7GHz。
4.根据权利要求1-3中任一项所述的增强软磁/硬磁复合铁氧体吸波性能的方法,其特征在于:所述镍锌铁氧体是纯NiZn铁氧体,或者是钴、钙、锰、铜、锶、钡的一种或几种元素掺杂的NiZn铁氧体。
5.根据权利要求4中所述的增强软磁/硬磁复合铁氧体吸波性能的方法,其特征在于:所述镍锌铁氧体NiZn是钴掺杂镍锌铁氧体Ni0.5Zn0.5-x Co x Fe2O4, 0<x<0.5。
6.根据权利要求1所述的增强软磁/硬磁复合铁氧体吸波性能的方法,其特征在于:所述以软磁相为镍锌铁氧体NiZn,硬磁相为M型六角钡铁氧体BaFe12O19的复合铁氧体吸波材料的制备步骤包括如下:
S1、制备NiZn铁氧体相:按一定摩尔比称取高纯度的NiO、ZnO和Fe2O3加去离子水进行球磨混合,球磨后的混合料在烘箱中烘干后进行预烧结,然后将预烧料破碎,烘干后将粉末进行二次煅烧,煅烧温度为900℃、1100℃及1250℃,得到不同晶粒大小NiZn铁氧体粉末;
S2、制备BaFe12O19相:采用分析纯BaCO3和Fe2O3为原材料,按照化学配比BaFe12O19进行称料,将配好的原材料加入去离子水进行球磨混合,球磨后的混合料在烘箱中烘干后进行预烧结,然后将预烧料破碎,烘干后将粉末进行二次煅烧,煅烧温度为900℃、1100℃及1250℃,得到不同晶粒大小BaFe12O19铁氧体粉末;
S3、复合铁氧体的制备:将步骤S1和步骤S2中制备的NiZn铁氧体和BaFe12O19铁氧体纳米粉末按照一定质量比加入到丙酮溶液中,再加入环氧树脂和聚乙二醇后超声搅拌,直至丙酮完全挥发;将干燥后的混合物压制成环状致密磁体,加热后所得磁体即为软磁/硬磁复合铁氧体吸波材料。
7.根据权利要求6所述的增强软磁/硬磁复合铁氧体吸波性能的方法,其特征在于:步骤S3中,所述丙酮溶液与铁氧体的质量比为1:4~6。
8.根据权利要求6所述的增强软磁/硬磁复合铁氧体吸波性能的方法,其特征在于:步骤S3中,所述环氧树脂占丙酮溶液质量的5~10%。
9.根据权利要求6所述的增强软磁/硬磁复合铁氧体吸波性能的方法,其特征在于:步骤S3中,所述聚乙二醇占丙酮溶液质量的5~15%。
10.根据权利要求6所述的增强软磁/硬磁复合铁氧体吸波性能的方法,其特征在于:步骤S3中,所述烘箱中加热的温度为80~160℃,加热时间为1~4h。
CN202310730418.7A 2023-06-20 2023-06-20 一种增强软磁/硬磁复合铁氧体吸波性能的方法 Active CN116496096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310730418.7A CN116496096B (zh) 2023-06-20 2023-06-20 一种增强软磁/硬磁复合铁氧体吸波性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310730418.7A CN116496096B (zh) 2023-06-20 2023-06-20 一种增强软磁/硬磁复合铁氧体吸波性能的方法

Publications (2)

Publication Number Publication Date
CN116496096A true CN116496096A (zh) 2023-07-28
CN116496096B CN116496096B (zh) 2023-09-01

Family

ID=87323317

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310730418.7A Active CN116496096B (zh) 2023-06-20 2023-06-20 一种增强软磁/硬磁复合铁氧体吸波性能的方法

Country Status (1)

Country Link
CN (1) CN116496096B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116947475A (zh) * 2023-08-15 2023-10-27 中国计量大学 一种自偏置环行器用高性能复合铁氧体的制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110618A (ja) * 1999-10-06 2001-04-20 Tdk Corp フェライト磁石の製造方法
US20040045635A1 (en) * 2002-09-09 2004-03-11 General Electric Company Polymeric resin bonded magnets
KR20050063285A (ko) * 2003-12-22 2005-06-28 요업기술원 페라이트 미분말의 저온제조방법
JP2007027446A (ja) * 2005-07-19 2007-02-01 Daido Electronics Co Ltd 複合磁石シート
CN101299370A (zh) * 2008-03-05 2008-11-05 内蒙古科技大学 硬磁相与软磁相合成磁体及制备方法
US20110151377A1 (en) * 2009-12-18 2011-06-23 Simon Fraser University Compositions Including Magnetic Materials
CN102936339A (zh) * 2012-10-17 2013-02-20 西北工业大学 一种聚吡咯/铁氧体/多壁碳纳米管复合材料的制备方法
CN103450683A (zh) * 2013-08-28 2013-12-18 西北工业大学 一种聚吡咯/BaFe12O19-Ni0.8Zn0.2Fe2O4/石墨烯纳米吸波材料的制备方法
CN103848989A (zh) * 2014-03-20 2014-06-11 南京大学 一种镍锌铁氧体/聚苯胺复合材料的制备方法
JP2014192327A (ja) * 2013-03-27 2014-10-06 Riken Corp 近傍界用電波吸収シートおよびその製造方法
JP2018110167A (ja) * 2016-12-28 2018-07-12 国立研究開発法人産業技術総合研究所 複合磁性粒子、電波吸収体および複合磁性粒子の製造方法
US20180301255A1 (en) * 2017-04-12 2018-10-18 Canon Kabushiki Kaisha Composite magnetic material and motor
US20190022761A1 (en) * 2016-02-23 2019-01-24 University Of Florida Research Foundation, Inc. Magnetic nanoparticles and methods of making magnetic nanoparticles
CN110136907A (zh) * 2019-04-26 2019-08-16 南京睿磐内尔环保复合新材料有限公司 一种超声辅助共沉淀法合成复合铁氧体的方法
US20200243231A1 (en) * 2017-10-20 2020-07-30 Canon Kabushiki Kaisha Composite magnetic material, magnet comprising the material, motor using the magnet, and method of manufacturing the composite magnetic material
CN111500150A (zh) * 2020-05-09 2020-08-07 杨勇华 一种二硫化钼-钡铁氧体环氧树脂电磁屏蔽涂层及其制法
CN112851324A (zh) * 2021-01-21 2021-05-28 安徽大学 一种应用于高频领域的复合材料
CN115286377A (zh) * 2022-08-19 2022-11-04 安徽工业大学 一种六角SrFe12O19铁氧体基复合永磁铁氧体的制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110618A (ja) * 1999-10-06 2001-04-20 Tdk Corp フェライト磁石の製造方法
US20040045635A1 (en) * 2002-09-09 2004-03-11 General Electric Company Polymeric resin bonded magnets
KR20050063285A (ko) * 2003-12-22 2005-06-28 요업기술원 페라이트 미분말의 저온제조방법
JP2007027446A (ja) * 2005-07-19 2007-02-01 Daido Electronics Co Ltd 複合磁石シート
CN101299370A (zh) * 2008-03-05 2008-11-05 内蒙古科技大学 硬磁相与软磁相合成磁体及制备方法
US20110151377A1 (en) * 2009-12-18 2011-06-23 Simon Fraser University Compositions Including Magnetic Materials
CN102936339A (zh) * 2012-10-17 2013-02-20 西北工业大学 一种聚吡咯/铁氧体/多壁碳纳米管复合材料的制备方法
JP2014192327A (ja) * 2013-03-27 2014-10-06 Riken Corp 近傍界用電波吸収シートおよびその製造方法
CN103450683A (zh) * 2013-08-28 2013-12-18 西北工业大学 一种聚吡咯/BaFe12O19-Ni0.8Zn0.2Fe2O4/石墨烯纳米吸波材料的制备方法
CN103848989A (zh) * 2014-03-20 2014-06-11 南京大学 一种镍锌铁氧体/聚苯胺复合材料的制备方法
US20190022761A1 (en) * 2016-02-23 2019-01-24 University Of Florida Research Foundation, Inc. Magnetic nanoparticles and methods of making magnetic nanoparticles
JP2018110167A (ja) * 2016-12-28 2018-07-12 国立研究開発法人産業技術総合研究所 複合磁性粒子、電波吸収体および複合磁性粒子の製造方法
US20180301255A1 (en) * 2017-04-12 2018-10-18 Canon Kabushiki Kaisha Composite magnetic material and motor
US20200243231A1 (en) * 2017-10-20 2020-07-30 Canon Kabushiki Kaisha Composite magnetic material, magnet comprising the material, motor using the magnet, and method of manufacturing the composite magnetic material
CN110136907A (zh) * 2019-04-26 2019-08-16 南京睿磐内尔环保复合新材料有限公司 一种超声辅助共沉淀法合成复合铁氧体的方法
CN111500150A (zh) * 2020-05-09 2020-08-07 杨勇华 一种二硫化钼-钡铁氧体环氧树脂电磁屏蔽涂层及其制法
CN112851324A (zh) * 2021-01-21 2021-05-28 安徽大学 一种应用于高频领域的复合材料
CN115286377A (zh) * 2022-08-19 2022-11-04 安徽工业大学 一种六角SrFe12O19铁氧体基复合永磁铁氧体的制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
SARAH LOWUM ET AL.: "Cold sintering of magnetic BaFe12O19 and other ferrites at 300 °C", JOURNAL OF MATERIALS SCIENCE, vol. 56 *
XIANFENG MENG ET AL.: "Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19@polyaniline composite", CERAMICS INTERANTIONAL, vol. 45, no. 2 *
冯旺军;郑文谦;赵星;刚骏涛;曹悦;: "BaFe_(12)O_(19)/Ni_(0.6)Zn_(0.4)Fe_2O_4复合材料的磁性能研究", 人工晶体学报, no. 03 *
刘剑虹;王超会;赵家林;赵亮;: "双相永磁材料制备及性能", 高师理科学刊, no. 05 *
谭宏斌;马小玲;: "纳米铁氧体吸波材料研究进展", 陶瓷学报, no. 01 *
赵亮;刘剑虹;: "双相永磁体的制备", 科学家, no. 01 *
郑宗良: "高频铁氧体材料的磁介性能调控研究", 中国优秀博士学位论文全文数据库 工程科技II辑, no. 02 *
郑宗良: "高频铁氧体材料的磁介性能调控研究", 中国博士学位论文全文数据库 工程科技II辑 *
韩娜;苏瑞;王知贺;谢艾玲;李季;徐仕;: "软/硬磁纳米复相永磁材料制备及应用研究现状", 现代化工, no. 06 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116947475A (zh) * 2023-08-15 2023-10-27 中国计量大学 一种自偏置环行器用高性能复合铁氧体的制备方法
CN116947475B (zh) * 2023-08-15 2024-02-23 中国计量大学 一种自偏置环行器用高性能复合铁氧体的制备方法

Also Published As

Publication number Publication date
CN116496096B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
Yang et al. Bi3+ doping-adjusted microstructure, magnetic, and dielectric properties of nickel zinc ferrite ceramics for high frequency LTCC antennas
Kong et al. Ni-Zn ferrites composites with almost equal values of permeability and permittivity for low-frequency antenna design
Li et al. Emerging magnetodielectric materials for 5G communications: 18H hexaferrites
CN116496096B (zh) 一种增强软磁/硬磁复合铁氧体吸波性能的方法
JP2020007224A (ja) 向上した共鳴周波数を有する改良z型六方晶フェライト材料
CN116239376B (zh) 一种高熵尖晶石吸波陶瓷材料及其制备方法
Bromho et al. Understanding the impacts of Al+ 3-substitutions on the enhancement of magnetic, dielectric and electrical behaviors of ceramic processed nickel-zinc mixed ferrites: FTIR assisted studies
Xueyun et al. Improved cut-off frequency in Gd/La doped NiZnCo ferrites
KR20170111537A (ko) 자성 복합체, 그 제조 방법, 및 자성 복합체를 포함하는 안테나
Neelima et al. Effect of Dy3+ substitution on structural and magnetodielectric properties of Mn–Zn ferrites synthesized by microwave hydrothermal method
CN104671764B (zh) 一种铌掺杂钡铁氧体吸波粉体材料及制备方法
Vinaykumar et al. Characterizations of low-temperature sintered BaCo1. 3Ti1. 3Fe9. 4O19 M-type ferrite for high-frequency antenna application
US20240018051A1 (en) Copper oxide doped ni-co-zn ferrite for very high frequency and ultra high frequency applications and process methodology
CN113511687B (zh) 一种吸波材料及其制备方法
Lei et al. Mn-substituted Co2Z ferrite ceramics with impedance matching for ultra-high frequency miniaturization antennas
Ebrahimi et al. Effects of high-energy ball milling on the microwave absorption properties of Sr0. 9Nd0. 1Fe12O19
Huang et al. Impact of stoichiometry and sintering temperature on magnetic properties of Y 3 Mn x Al 0.83− x Fe 4.17 O 12 ferrites
CN113845359A (zh) 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
Huo et al. Microstructure, magnetic, and power loss characteristics of low‐sintered NiCuZn ferrites with La2O3‐Bi2O3 additives
Li et al. Structure and magnetic properties of CuO-substituted Co 2 Y hexaferrites for high frequency applications
Caffarena et al. Synthesis and characterization of nanocrystalline Ba3Co0. 9Cu1. 1Fe24O41 powder and its application in the reduction of radar cross-section
Gan et al. Effect of temperature on magnetic and dielectric properties of Mg-Cd-Ga ferrites for high-frequency-range antennas
Yang et al. Gyromagnetic properties of Cu-substituted NiZn ferrites for millimeter-wave applications
Huang et al. Low temperature sintering behavior of La-Co substituted M-type strontium hexaferrites for use in microwave LTCC technology
Zeng et al. Effects of Bi2O3–CuO additives on microstructure and microwave properties of low-temperature-sintered NiCuZn ferrite ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant