CN112851324A - 一种应用于高频领域的复合材料 - Google Patents
一种应用于高频领域的复合材料 Download PDFInfo
- Publication number
- CN112851324A CN112851324A CN202110082969.8A CN202110082969A CN112851324A CN 112851324 A CN112851324 A CN 112851324A CN 202110082969 A CN202110082969 A CN 202110082969A CN 112851324 A CN112851324 A CN 112851324A
- Authority
- CN
- China
- Prior art keywords
- composite material
- ferrite
- zinc
- green body
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2608—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
- C04B35/2633—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2658—Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2683—Other ferrites containing alkaline earth metals or lead
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
- C04B2235/3267—MnO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Magnetic Ceramics (AREA)
Abstract
本发明提供一种应用于高频领域的复合材料,涉及高频领域铁氧体加工技术领域。所述应用于高频领域的复合材料为充磁后的软磁、硬磁复合材料,所述软磁、硬磁复合材料为锰锌铁氧体/锶铁氧体复合材料或者镍锌铁氧体/锶铁氧体复合材料。本发明克服了现有技术的不足,通过软磁铁氧体和硬磁铁氧体生产复合材料后经过充磁有效降低磁损耗,提升在高频领域的应用价值。
Description
技术领域
本发明涉及高频领域铁氧体加工技术领域,具体涉及一种应用于高频领域的复合材料。
背景技术
磁性材料的发展已经有一百多年的历史,并且早已形成了完整的规模化产业。但由于磁性材料应用领域的不断扩展和对性能要求的不断提高,都要求磁性器件小型化、高频化。这就要求软磁材料要具有高的饱和磁化强度、尽可能低的磁损耗、更小的磁导率,降低软磁材料的损耗和磁导率一直是研究热点。
由于软磁材料的磁滞损耗与频率呈线性关系,涡流损耗与频率的平方成正比,磁性器件的高频化导致材料损耗的明显上升,同时器件的小型化使散热变得更加困难,所以应用于高频领域的软磁材料必须具有较小的磁导率以保证材料具有足够高的截止频率,对降低磁滞损耗是不利的。对于软、硬磁复合材料而言,可以通过调节软磁、硬磁的化学成分或者软磁、硬磁复合比例来调节磁性材料的磁导率,以便应用于高频领域。
发明内容
针对现有技术不足,本发明提供一种应用于高频领域的复合材料,通过软磁铁氧体和硬磁铁氧体生产复合材料后进行充磁有效降低磁损耗,提升在高频领域的应用价值。
为实现以上目的,本发明的技术方案通过以下技术方案予以实现:
一种应用于高频领域的复合材料,所述应用于高频领域的复合材料为充磁后的软磁、硬磁复合材料。
优选的,所述软磁、硬磁复合材料为锰锌铁氧体/锶铁氧体复合材料或者镍锌铁氧体/锶铁氧体复合材料。
优选的,所述镍锌铁氧体/锶铁氧体复合材料和锰锌铁氧体/锶铁氧体复合材料中的锶铁氧体可以替换为钡铁氧体或者其它成分的硬磁铁氧体。
所述锰锌铁氧体/锶铁氧体复合材料的制备工艺包括以下步骤:
(1)锰锌铁氧体预烧料的制备:将二氧化锰、氧化锌、三氧化二铁按一定摩尔比混合后球磨混料,放入马弗炉中在850-1000℃空气中煅烧2h,得预烧料备用;
(2)上述预烧料球磨成平均粒径1μm的粉末后和平均粒径1μm的锶铁氧体粉末混合,压制成圆环生坯,放入马弗炉中,在1150-1400℃氮气气氛中煅烧2h,随炉冷却后得到复合材料磁环。
优选的,所述步骤(1)中二氧化锰、氧化锌、三氧化二铁混合的摩尔比为(1-x-y)∶(x)∶(1+y/2),其中x=0.05-0.4,y=0-0.1。
所述镍锌铁氧体/锶铁氧体复合材料的制备方法包括以下步骤:
(1)镍锌铁氧体预烧料的制备:将氧化镍、氧化锌、三氧化二铁按一定摩尔比混合后球磨混料,放入马弗炉中在850-1000℃空气中煅烧2h,得预烧料备用;
(2)上述预烧料球磨成平均粒径1μm的粉末后和平均粒径为1μm的锶铁氧体粉末混合,压制成圆环生坯,放入马弗炉中,在1150-1400℃空气中煅烧2h,随炉冷却后得到复合材料磁环。
优选的,所述步骤(1)中氧化镍、氧化锌、三氧化二铁混合的摩尔比为(1-x)∶x∶1,其中x=0.1-0.6。
本发明提供一种应用于高频领域的复合材料,与现有技术相比优点在于:
通过将软磁铁氧体和硬磁铁氧体相结合形成复合材料后充磁处理,保证所得复合材料具有较小的磁导率的同时降低磁滞损耗,提升复合材料在高频领域中的应用,提升材料的商业价值。
附图说明:
图1:为本发明10wt%锶铁氧体和锰锌复合铁氧体样品充磁前后磁损耗随频率变化对比图(Bm=10mT);
图2:为本发明10wt%锶铁氧体和镍锌复合铁氧体样品充磁前后磁损耗随频率变化对比图(Bm=10mT)。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面结合本发明实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
锰锌铁氧体/锶铁氧体复合材料的制备:
(1)锰锌铁氧体预烧料的制备:称量二氧化锰、氧化锌、三氧化二铁,并按0.8075mol、0.0425mol、1.075mol比例配好倒入玛瑙研钵中,充分研磨1h,将研磨料倒入三氧化二铝坩埚里,再放入马弗炉中在900℃空气中煅烧2h,得预烧料备用;
(2)上述预烧料球磨成平均粒径1μm的粉末后和平均粒径1μm的锶铁氧体粉末混合,放入马弗炉中,在1200℃氮气气氛中煅烧2h,随炉冷却后得到锰锌铁氧体/锶铁氧体复合材料磁环。
按照上述步骤分别加入2wt%、10wt%和20wt%的锶铁氧体,得到各组样品进行检测,并就同样的样品充磁检测(f=1000kHz,Bm=10mT),且充磁采用永磁材料精密测量系统(NIM-2000HF),材料的性能使用B-H分析仪(Iwatsu SY-8258)检测,其中磁损耗降低率η=[(W1-W0)/W0]×100%,检测结果如下表1所示:
表1:不同锶铁氧体用量下锰锌铁氧体/锶铁氧体复合材料的降损耗效果
实施例2:
镍锌铁氧体/锶铁氧体复合材料的制备:
(1)镍锌铁氧体预烧料的制备:称量氧化镍、氧化锌、三氧化二铁并按0.6mol、0.4mol、1mol比例配好倒入玛瑙研钵中,充分研磨1h,将研磨的原料倒入三氧化二铝坩埚里,放入马弗炉中在900℃空气中煅烧2h,得预烧料备用;
(2)上述预烧料球磨成平均粒径1μm的粉末后和平均粒径为1μm的锶铁氧体粉末混合,压制成圆环生坯,放入马弗炉中在1200℃空气中煅烧2h,随炉冷却后得到镍锌铁氧体/锶铁氧体复合材料磁环;
按照上述步骤分别加入5wt%、10wt%、15wt%和20wt%的锶铁氧体,得到各组样品进行检测,并就同样的样品充磁检测
(f=1000kHz,Bm=10mT),且充磁采用永磁材料精密测量系统(NIM-2000HF),材料的性能使用B-H分析仪(Iwatsu SY-8258)检测,其中磁损耗降低率η=[(W1-W0)/W0]×100%,检测结果如下表2所示:
表2:不同锶铁氧体用量下镍锌铁氧体/锶铁氧体复合材料的降损耗效果
由上表1和表2可知,本发明所制得的镍锌铁氧体/锶铁氧体复合材料、锰锌铁氧体/锶铁氧体复合材料在充磁后均有效降低了磁损耗。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (7)
1.一种应用于高频领域的复合材料,其特征在于,所述应用于高频领域的复合材料为充磁后的软磁、硬磁复合材料。
2.根据权利要求1所述的一种应用于高频领域的复合材料,其特征在于:所述软磁、硬磁复合材料为锰锌铁氧体/锶铁氧体复合材料或者镍锌铁氧体/锶铁氧体复合材料。
3.根据权利要求2所述的一种应用于高频领域的复合材料,其特征在于:所述镍锌铁氧体/锶铁氧体复合材料和锰锌铁氧体/锶铁氧体复合材料中的锶铁氧体可以替换为钡铁氧体或者其它成分的硬磁铁氧体。
4.根据权利要求1所述的一种应用于高频领域的复合材料,其特征在于:所述锰锌铁氧体/锶铁氧体复合材料的制备工艺包括以下步骤:
(1)锰锌铁氧体预烧料的制备:将二氧化锰、氧化锌、三氧化二铁按一定摩尔比混合后球磨混料,放入马弗炉中在850-1000℃空气中煅烧2h,得预烧料备用;
(2)上述预烧料球磨成平均粒径1μm的粉末后和平均粒径1μm的锶铁氧体粉末混合,压制成圆环生坯,放入马弗炉中,在1150-1400℃氮气气氛中煅烧2h,随炉冷却后得到复合材料磁环。
5.根据权利要求4所述的一种应用于高频领域的复合材料,其特征在于:所述步骤(1)中二氧化锰、氧化锌、三氧化二铁混合的摩尔比为(1-x-y)∶(x)∶(1+y/2),其中x=0.05-0.4,y=0-0.1。
6.根据权利要求1所述的一种应用于高频领域的复合材料,其特征在于:所述镍锌铁氧体/锶铁氧体复合材料的制备方法包括以下步骤:
(1)镍锌铁氧体预烧料的制备:将氧化镍、氧化锌、三氧化二铁按一定摩尔比混合后球磨混料,放入马弗炉中在850-1000℃空气中煅烧2h,得预烧料备用;
(2)上述预烧料球磨成平均粒径1μm的粉末后和平均粒径为1μm的锶铁氧体粉末混合,压制成圆环生坯,放入马弗炉中,在1150-1400℃空气中煅烧2h,随炉冷却后得到复合材料磁环。
7.根据权利要求6所述的一种应用于高频领域的复合材料,其特征在于:所述步骤(1)中氧化镍、氧化锌、三氧化二铁混合的摩尔比为(1-x)∶x∶1,其中x=0.1-0.6。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110082969.8A CN112851324A (zh) | 2021-01-21 | 2021-01-21 | 一种应用于高频领域的复合材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110082969.8A CN112851324A (zh) | 2021-01-21 | 2021-01-21 | 一种应用于高频领域的复合材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112851324A true CN112851324A (zh) | 2021-05-28 |
Family
ID=76008852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110082969.8A Pending CN112851324A (zh) | 2021-01-21 | 2021-01-21 | 一种应用于高频领域的复合材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112851324A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114524668A (zh) * | 2022-03-15 | 2022-05-24 | 宜宾金川电子有限责任公司 | 锰锌铁氧体废料在锶铁氧体中的添加与回收利用方法 |
CN116496096A (zh) * | 2023-06-20 | 2023-07-28 | 西南交通大学 | 一种增强软磁/硬磁复合铁氧体吸波性能的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101481241A (zh) * | 2008-12-24 | 2009-07-15 | 海宁市凌通电子有限责任公司 | 复相纳米晶永磁铁氧体材料的制备方法 |
CN102757230A (zh) * | 2012-06-28 | 2012-10-31 | 重庆大学 | 一种锶锌铁三元复合磁性材料的制备方法 |
CN103449808A (zh) * | 2013-09-12 | 2013-12-18 | 安徽工业大学 | 一种具备交换耦合的双相复合硬磁铁氧体纳米粉体的制备方法 |
CN103449807A (zh) * | 2013-09-12 | 2013-12-18 | 安徽工业大学 | 一种具有交换耦合的双相复合硬磁铁氧体的制备方法 |
CN103890869A (zh) * | 2012-02-03 | 2014-06-25 | Lg电子株式会社 | 具有硬-软磁性异质结构的核-壳结构的纳米粒子、利用所述纳米粒子制备的磁体及它们的制备方法 |
CN105006325A (zh) * | 2015-06-30 | 2015-10-28 | 安徽工业大学 | 一种研磨制备具有交换耦合作用的复合铁氧体粉末的方法 |
CN108998633A (zh) * | 2018-08-17 | 2018-12-14 | 华北电力大学扬中智能电气研究中心 | 一种非晶纳米晶磁芯的热处理方法 |
CN111383836A (zh) * | 2020-05-07 | 2020-07-07 | 安徽大学 | 一种降低软磁复合材料磁滞损耗的方法 |
CN111470857A (zh) * | 2020-03-16 | 2020-07-31 | 横店集团东磁股份有限公司 | 一种高频锰锌铁氧体材料及其制备方法 |
-
2021
- 2021-01-21 CN CN202110082969.8A patent/CN112851324A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101481241A (zh) * | 2008-12-24 | 2009-07-15 | 海宁市凌通电子有限责任公司 | 复相纳米晶永磁铁氧体材料的制备方法 |
CN103890869A (zh) * | 2012-02-03 | 2014-06-25 | Lg电子株式会社 | 具有硬-软磁性异质结构的核-壳结构的纳米粒子、利用所述纳米粒子制备的磁体及它们的制备方法 |
CN102757230A (zh) * | 2012-06-28 | 2012-10-31 | 重庆大学 | 一种锶锌铁三元复合磁性材料的制备方法 |
CN103449808A (zh) * | 2013-09-12 | 2013-12-18 | 安徽工业大学 | 一种具备交换耦合的双相复合硬磁铁氧体纳米粉体的制备方法 |
CN103449807A (zh) * | 2013-09-12 | 2013-12-18 | 安徽工业大学 | 一种具有交换耦合的双相复合硬磁铁氧体的制备方法 |
CN105006325A (zh) * | 2015-06-30 | 2015-10-28 | 安徽工业大学 | 一种研磨制备具有交换耦合作用的复合铁氧体粉末的方法 |
CN108998633A (zh) * | 2018-08-17 | 2018-12-14 | 华北电力大学扬中智能电气研究中心 | 一种非晶纳米晶磁芯的热处理方法 |
CN111470857A (zh) * | 2020-03-16 | 2020-07-31 | 横店集团东磁股份有限公司 | 一种高频锰锌铁氧体材料及其制备方法 |
CN111383836A (zh) * | 2020-05-07 | 2020-07-07 | 安徽大学 | 一种降低软磁复合材料磁滞损耗的方法 |
Non-Patent Citations (1)
Title |
---|
国营北京第七九八厂情报室编: "《国外近期专利及论文 铁氧体译文集 上》", 31 December 1992 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114524668A (zh) * | 2022-03-15 | 2022-05-24 | 宜宾金川电子有限责任公司 | 锰锌铁氧体废料在锶铁氧体中的添加与回收利用方法 |
CN116496096A (zh) * | 2023-06-20 | 2023-07-28 | 西南交通大学 | 一种增强软磁/硬磁复合铁氧体吸波性能的方法 |
CN116496096B (zh) * | 2023-06-20 | 2023-09-01 | 西南交通大学 | 一种增强软磁/硬磁复合铁氧体吸波性能的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112851324A (zh) | 一种应用于高频领域的复合材料 | |
EP1101736B1 (en) | Mn-Zn ferrite and production thereof | |
CN110054489A (zh) | 一种高振幅磁导率MnZn铁氧体材料及其制备方法 | |
US20090050840A1 (en) | Ferrite material | |
JP3584439B2 (ja) | Mn−Znフェライトおよびその製造方法 | |
CN107954706B (zh) | 一种高磁导率软磁铁氧体材料及其制备方法 | |
Su et al. | Correlation between the microstructure and permeability stability of ferrite materials | |
Huan et al. | Effects of SnO 2 on DC-bias-superposition characteristic of the low-temperature-fired NiCuZn ferrites | |
JP3588693B2 (ja) | Mn−Zn系フェライトおよびその製造方法 | |
CN113735574A (zh) | 一种超高Bs低损耗锰锌铁氧体材料及其制备方法 | |
CN109678483A (zh) | 宽温低温度系数低功耗锰锌铁氧体材料的制备方法 | |
CN109678486A (zh) | 一种宽温低温度系数低功耗锰锌铁氧体材料 | |
CN112017835B (zh) | 一种低重稀土高矫顽力烧结钕铁硼磁体及其制备方法 | |
CN114014644A (zh) | 一种钙系永磁铁氧体材料及其制备方法 | |
JP2005330126A (ja) | MnZnフェライト及びその製造方法 | |
CN109553407B (zh) | 一种高频低频兼容的锰锌功率材料及其制备方法和应用 | |
JP2004247370A (ja) | MnZnフェライト | |
CN104464998B (zh) | 一种高磁能积烧结钕铁硼永磁材料及制备方法 | |
Su et al. | Theoretical and experimental demonstration of the relationship between microstructure and the DC-bias-superposition characteristic of ferrite materials | |
JP2006206420A (ja) | フェライト焼結体、その製造方法及びコイル部品 | |
JP2004247371A (ja) | MnZnフェライト | |
CN114380589A (zh) | 一种高性能永磁铁氧体的制备方法 | |
CN110436910A (zh) | 一种高Bs材料的制备方法 | |
CN112863801B (zh) | 一种高磁导率、低磁损的复合材料及其制备方法 | |
CN114477987B (zh) | 一种宽温锰锌铁氧体材料的制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210528 |