CN111383836A - 一种降低软磁复合材料磁滞损耗的方法 - Google Patents

一种降低软磁复合材料磁滞损耗的方法 Download PDF

Info

Publication number
CN111383836A
CN111383836A CN202010376507.2A CN202010376507A CN111383836A CN 111383836 A CN111383836 A CN 111383836A CN 202010376507 A CN202010376507 A CN 202010376507A CN 111383836 A CN111383836 A CN 111383836A
Authority
CN
China
Prior art keywords
loss
soft magnetic
magnetic field
composite material
reducing hysteresis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010376507.2A
Other languages
English (en)
Inventor
冯双久
倪江利
胡锋
阚绪材
刘先松
杨玉杰
吕庆荣
朱瑞威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202010376507.2A priority Critical patent/CN111383836A/zh
Publication of CN111383836A publication Critical patent/CN111383836A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种降低软磁复合材料磁滞损耗的方法,涉及降低软磁复合材料磁滞损耗的方法技术领域,在所述软磁复合材料上加上横向磁场。本发明产品在相同功率情况下,通过本发明方法粉芯损耗的降低,主要是磁滞损耗的降低,涡流损耗系数基本保持不变。

Description

一种降低软磁复合材料磁滞损耗的方法
技术领域
本发明涉及软磁复合材料损耗技术领域,具体涉及一种降低软磁复合材料磁滞损耗的方法。
背景技术
软磁复合材料是一类广泛应用于电力电子领域的功能材料,主要应用在各类大功率电感和变压器等磁性器件中。由于此类材料具有高的饱和磁化强度和较大的电阻率,在千赫兹频段的大功率电子系统中得到广泛应用。磁性材料应用于交变电磁场中会产生损耗,这种损耗不仅消耗电磁能量,还会造成系统发热升温及散热问题。从应用的角度考虑,损耗自然是越低越好,但理论上分析又不可能完全消除损耗。因此在大功率情况下损耗特性成为软磁材料的一个重要技术指标,而且随着技术的发展,材料的损耗也逐步降低。软磁复合材料真正的大规模研究与应用历史只有20余年,但在材料降低损耗方面也是成绩斐然的,这一方面得益于对铁氧体材料研究的借鉴,另一方面也与材料制备的工艺条件提升有关。目前针对软磁复合材料损耗的两个主要来源:磁滞损耗和涡流损耗,分别有针对性地采用不同的技术手段降低损耗。对磁滞损耗的降低,经常采用的方法有两种,一种是提高复合材料的密度,从而可以有效提高材料的磁导率,达到降低磁滞损耗的目的;另一种是通过退火处理,消除材料中存在的应力,尽可能消除应力导致的磁滞损耗。对涡流损耗,又可以分为金属颗粒内的涡流损耗和颗粒间的涡流损耗。颗粒内的涡流损耗,一方面通过提高合金电阻率的方法得到降低;另一方面也可以通过细化合金颗粒降低涡流损耗。颗粒间的涡流损耗,通过金属磁性颗粒的表面包覆绝缘材料层,实现不同金属颗粒间的绝缘化,阻止涡流在不同金属颗粒间的流动,从而降低涡流损耗。这些降低损耗的方法之间又是相互制约的,例如,细化金属颗粒,对降低涡流损耗的效果明显,但颗粒细小,不利于提高复合材料的磁导率,会增加磁滞损耗。因此实际中会综合考虑各类因素以及具体应用条件,以获得最低的材料损耗。
由日本科学家首先提出的非晶纳米晶软磁材料实现了金属软磁材料性能的一次跃升,通过在非晶材料中分布纳米尺寸的微小晶粒,使材料具有较大的电阻率和合适的磁导率,较好地平衡了材料的磁滞损耗和涡流损耗相互制约,成为性能优异的一类金属软磁材料。但非晶纳米晶金属粉料因为制备工艺限制,颗粒细小,制备的软磁复合材料的磁导率较低,磁滞损耗无法有效控制。另外就是非晶纳米晶的成本高,也限制了它的应用领域。
在诸如大功率电源、新能源电动汽车、风力发电、高铁和轨道交通等高新技术领域,对新型磁性器件的需求旺盛。但这些器件的技术要求高,有些情况下因为材料损耗偏大而无法实现器件的功能。降低软磁复合材料的损耗,其目的不是为了节约被材料损耗的那一点能量,而是可以为高功率器件和设备的设计提供更大的自由度。例如,目前世界上的大功率UPS电源的最大功率为60kW,而限制进一步提高电源功率容量的原因是电源内部损耗发热的散热问题无法解决。
本发明的主要研究内容就是研究开发出一种新的降低软磁复合材料损耗的方法,独立于其它降低材料损耗的方法而不受制约。这样就可以在现有降低软磁复合材料损耗方法的基础上,进一步降低材料的损耗,获得具有超低损耗的软磁复合材料。
发明内容
本发明的目的在于提供一种降低软磁复合材料磁滞损耗的方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种降低软磁复合材料磁滞损耗的方法,在所述软磁复合材料上加上横向磁场。
所述软磁复合材料磁芯为铁粉芯、FeSiAl粉芯、FeSi粉芯、FeSiCr粉芯或非晶纳米晶粉芯。
所述横向磁场由铁氧体永磁块或金属永磁块提供。
所述横向磁场大小在50-400kA/m。
所述横向磁场与交变磁场相互垂直,交变磁场来源线圈设备通电产生。
适用于电感或变压器。
所述横向磁场与交变磁场相互垂直。
与现有技术相比,本发明具有如下的有益效果:
本发明产品在相同的测试条件下,通过本发明方法软磁复合材料损耗的降低,主要是磁滞损耗的降低,涡流损耗系数基本保持不变。
附图说明
图1为本发明FeSiAl粉芯在Bm=50mT时加磁场与不加磁场的损耗比较图。
具体实施方式
下面结合具体实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
例1.磁导率为90的FeSiAl粉芯,加磁场前测量的初始磁导率为87.1(50kHz,8A/m),加160kA/m横向磁场后,相同测试条件下的初始磁导率为80.3。磁通密度为50mT时加横向磁场前、后粉芯材料的损耗结果对比如图1所示。从图中可以看出,加横向磁场后,材料的损耗下降明显,以50kHz为例,加横向磁场前的损耗为52.9kW/m3,加横向磁场后的损耗为37.2kW/m3,相对下降了30%左右。从图1的结果可以看出,粉芯损耗的降低主要是磁滞损耗的降低,涡流损耗系数基本保持不变。
例2.FeSi粉芯,加横向磁场前测量的初始磁导率为36(50kHz,8A/m),加200kA/m横向磁场后,相同测试条件下的初始磁导率为34。以50kHz,50mT下测试数据为例,加横向磁场前的损耗为240.6kW/m3,加横向磁场后的损耗为204.9kW/m3,相对下降了15%左右。实验中发现,增大横向磁场,损耗可以进一步降低。
例3.FeSiCr粉芯,加横向磁场前测量的初始磁导率为40(50kHz,8A/m),加200kA/m横向磁场后,相同测试条件下的初始磁导率为36。以20kHz,100mT下测试数据为例,加横向磁场前的损耗为956.9kW/m3,加横向磁场后的损耗为807.9kW/m3,相对下降了15%左右。
例4.纳米晶粉芯,由于成型难度较大,所获得的纳米晶粉芯的密度较低,磁导率也较小。加横向磁场前测量的初始磁导率为9.1(200kHz,8A/m),加240kA/m横向磁场后,相同测试条件下的初始磁导率为8.2。在50kHz,50mT下测试了样品的损耗数据,加横向磁场前的损耗为1474kW/m3,加横向磁场后的损耗为1022kW/m3,相对下降了30%左右。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (6)

1.一种降低软磁复合材料磁滞损耗的方法,其特征在于,在所述软磁复合材料上加上横向磁场。
2.根据权利要求1所述的一种降低软磁复合材料磁滞损耗的方法,其特征在于,所述软磁复合材料磁芯为铁粉芯、FeSiAl粉芯、FeSi粉芯、FeSiCr粉芯或非晶纳米晶粉芯。
3.根据权利要求1所述的一种降低软磁复合材料磁滞损耗的方法,其特征在于,所述横向磁场由铁氧体永磁块或金属永磁块提供。
4.根据权利要求1所述的一种降低软磁复合材料磁滞损耗的方法,其特征在于,所述横向磁场大小在50-400kA/m。
5.根据权利要求1所述的一种降低软磁复合材料磁滞损耗的方法,其特征在于,适用于电感或变压器。
6.根据权利要求1所述的一种降低软磁复合材料磁滞损耗的方法,其特征在于,所述横向磁场与交变磁场相互垂直。
CN202010376507.2A 2020-05-07 2020-05-07 一种降低软磁复合材料磁滞损耗的方法 Pending CN111383836A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010376507.2A CN111383836A (zh) 2020-05-07 2020-05-07 一种降低软磁复合材料磁滞损耗的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010376507.2A CN111383836A (zh) 2020-05-07 2020-05-07 一种降低软磁复合材料磁滞损耗的方法

Publications (1)

Publication Number Publication Date
CN111383836A true CN111383836A (zh) 2020-07-07

Family

ID=71219014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010376507.2A Pending CN111383836A (zh) 2020-05-07 2020-05-07 一种降低软磁复合材料磁滞损耗的方法

Country Status (1)

Country Link
CN (1) CN111383836A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112447352A (zh) * 2020-11-02 2021-03-05 安徽大学 一种具有低磁滞损耗的金属软磁复合材料
CN112851324A (zh) * 2021-01-21 2021-05-28 安徽大学 一种应用于高频领域的复合材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905091A (zh) * 2005-07-28 2007-01-31 黄付贵 一种纳米晶软磁铁芯及其热处理方法和应用
DE102014215318A1 (de) * 2014-08-04 2016-02-04 Siemens Aktiengesellschaft Anisotrop weichmagnetisches Komposit-Material mit hoher Anisotropie der Permeabilität zur Unterdrückung von Querfluss und dessen Herstellung
CN108461270A (zh) * 2018-02-06 2018-08-28 中国科学院宁波材料技术与工程研究所 一种低损耗非晶磁粉芯的制备方法
CN108998633A (zh) * 2018-08-17 2018-12-14 华北电力大学扬中智能电气研究中心 一种非晶纳米晶磁芯的热处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905091A (zh) * 2005-07-28 2007-01-31 黄付贵 一种纳米晶软磁铁芯及其热处理方法和应用
DE102014215318A1 (de) * 2014-08-04 2016-02-04 Siemens Aktiengesellschaft Anisotrop weichmagnetisches Komposit-Material mit hoher Anisotropie der Permeabilität zur Unterdrückung von Querfluss und dessen Herstellung
CN108461270A (zh) * 2018-02-06 2018-08-28 中国科学院宁波材料技术与工程研究所 一种低损耗非晶磁粉芯的制备方法
CN108998633A (zh) * 2018-08-17 2018-12-14 华北电力大学扬中智能电气研究中心 一种非晶纳米晶磁芯的热处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李智勇等: "非晶纳米晶软磁材料的发展及应用", 《金属功能材料》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112447352A (zh) * 2020-11-02 2021-03-05 安徽大学 一种具有低磁滞损耗的金属软磁复合材料
CN112851324A (zh) * 2021-01-21 2021-05-28 安徽大学 一种应用于高频领域的复合材料

Similar Documents

Publication Publication Date Title
Sunday et al. Soft magnetic composites: recent advancements in the technology
Li et al. The preparation and magnetic performance of the iron-based soft magnetic composites with the Fe@ Fe3O4 powder of in situ surface oxidation
CN102000816B (zh) 一种交换耦合双相纳米复合永磁颗粒及其制备方法
CN111383836A (zh) 一种降低软磁复合材料磁滞损耗的方法
CN101996723A (zh) 一种复合软磁磁粉芯及其制备方法
CN111354528A (zh) 一种磷酸-硅烷共包覆金属软磁复合材料及其制备方法
Hu et al. Low melting glass as adhesive and insulating agent for soft magnetic composites: Case in FeSi powder core
CN103426584A (zh) 一种铁氧体复合磁粉芯及其制备方法
CN108447642A (zh) 一种软磁复合材料的制备方法
CN110246675A (zh) 一种高饱和磁通密度、低损耗软磁复合材料及其制备方法
CN103107013A (zh) 一种合金软磁粉芯的制备工艺
CN111554465B (zh) 一种纳米晶软磁合金及其制备方法和应用
CN106571205A (zh) 低损耗铁硅镍磁粉芯复合材料的制备方法
CN103451578A (zh) 铁基非晶带材及其制造方法、变压器铁芯和变压器
KR20160014423A (ko) 연자성 합금, 이를 포함하는 무선 전력 송신 장치 및 무선 전력 수신 장치
Wang et al. Mechanism of adding carbonyl iron powder to enhance the magnetic properties of Fe-Si-B-Cu-Nb nanocrystalline soft magnetic composites
Sarfraz et al. Lightweight thermoplastic coated soft magnetic composites (SMC) and application for high-efficiency brushless DC motors
CN202110928U (zh) 大电流磁屏蔽电感器
KR20130026116A (ko) 교류 모터용 분말 코어 및 그 제조방법과 이를 포함하는 교류모터
CN105788803A (zh) 电磁道岔用电磁铁、电磁道岔及转辙方法
Sato et al. Improved performance of a flat-wire coil with magnetic composite material for wireless power transfer
US20240038421A1 (en) Soft magnetic powder, preparation method therefor, and use thereof
CN112447352A (zh) 一种具有低磁滞损耗的金属软磁复合材料
WO2023011464A1 (zh) 一种钕铁硼磁体切割后的处理方法
CN207724327U (zh) 一种机械手用超薄高频电永磁吸盘

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200707