CN116239376B - 一种高熵尖晶石吸波陶瓷材料及其制备方法 - Google Patents

一种高熵尖晶石吸波陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN116239376B
CN116239376B CN202310159885.9A CN202310159885A CN116239376B CN 116239376 B CN116239376 B CN 116239376B CN 202310159885 A CN202310159885 A CN 202310159885A CN 116239376 B CN116239376 B CN 116239376B
Authority
CN
China
Prior art keywords
spinel
wave
entropy
ceramic material
absorbing ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310159885.9A
Other languages
English (en)
Other versions
CN116239376A (zh
Inventor
王永祯
王政炎
张妍兰
王晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202310159885.9A priority Critical patent/CN116239376B/zh
Publication of CN116239376A publication Critical patent/CN116239376A/zh
Application granted granted Critical
Publication of CN116239376B publication Critical patent/CN116239376B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2625Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing magnesium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种高熵尖晶石吸波陶瓷材料及其制备方法,涉及吸波材料技术领域。本发明提供的高熵尖晶石吸波陶瓷材料,化学式为(MgxCoyNizCumZnn)Fe2O4,x为0.2~0.25,y为0.11~0.2,z为0.13~0.23,m为0.2~0.25,n为0.2~0.25。本发明通过高熵效应和尖晶石型材料固有的阳离子交换作用,极大的提升了材料的电磁波损耗能力,并通过对金属元素含量的控制,在保持单相材料的前提下提高了材料的阻抗匹配。本发明提供的高熵尖晶石吸波陶瓷材料具有宽吸收频段和高吸收能力。

Description

一种高熵尖晶石吸波陶瓷材料及其制备方法
技术领域
本发明涉及吸波材料技术领域,具体涉及一种高熵尖晶石吸波陶瓷材料及其制备方法。
背景技术
随着信息技术的迅速发展,尤其是5G技术的广泛应用,电磁污染变得越来越严重,对人的健康产生了巨大影响,可能引发心脑血管疾病,细胞癌变和多种永久性病变。
陶瓷基电磁波吸收材料具有强度大、耐腐蚀和耐高温等多种优点,但却在微波吸收方面由于阻抗匹配问题导致吸收带宽窄,最大反射损耗低等问题。
发明内容
本发明的目的在于提供一种高熵尖晶石吸波陶瓷材料及其制备方法,本发明提供的高熵尖晶石吸波陶瓷材料具有宽吸收频段和高吸收能力。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种高熵尖晶石吸波陶瓷材料,化学式为(MgxCoyNizCumZnn)Fe2O4,x为0.2~0.25,y为0.11~0.2,z为0.13~0.23,m为0.2~0.25,n为0.2~0.25。
优选地,包括(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4、(Mg0.25Co0.12Ni0.13Cu0.25Zn0.25)Fe2O4或(Mg0.22Co0.11Ni0.23Cu0.22Zn0.22)Fe2O4
优选地,所述高熵尖晶石吸波陶瓷材料为单一尖晶石结构,空间群为Fd-3m。
本发明提供了上述技术方案所述高熵尖晶石吸波陶瓷材料的制备方法,包括以下步骤:
将氧化镁、一氧化钴、氧化镍、氧化铜、氧化锌和三氧化二铁混合,进行烧结,得到高熵尖晶石吸波陶瓷材料。
优选地,所述氧化镁、一氧化钴、氧化镍、氧化铜、氧化锌和三氧化二铁的摩尔比为0.2±0.05:0.2±0.15:0.2±0.15:0.2±0.05:0.2±0.05:1。
优选地,所述混合为研磨。
优选地,所述研磨为湿磨。
优选地,所述烧结的温度为900~1100℃,保温时间为4~6h。
优选地,所述烧结采用的加热方式为辐射加热。
优选地,所述烧结的气氛为空气气氛。
本发明提供了一种高熵尖晶石吸波陶瓷材料,化学式为(MgxCoyNizCumZnn)Fe2O4,x为0.2~0.25,y为0.11~0.2,z为0.13~0.23,m为0.2~0.25,n为0.2~0.25。本发明通过高熵效应和尖晶石型材料固有的阳离子交换作用,极大的提升了材料的电磁波损耗能力,并通过对金属元素含量的控制,在保持单相材料的前提下提高了材料的阻抗匹配。本发明提供的高熵尖晶石吸波陶瓷材料具有宽吸收频段和高吸收能力。
本发明还提供了上述技术方案所述高熵尖晶石吸波陶瓷材料的制备方法,本发明采用固相反应法制备高熵陶瓷粉体,所需实验设备简单,操作容易,便于规模生产。本发明的原料价格低,生产成本低,制备工艺简单,便于产业化大规模生产。
附图说明
图1为实施例1~3所制备的高熵尖晶石吸波陶瓷材料的XRD图谱;
图2为实施例3制备的高熵尖晶石吸波陶瓷材料的形貌扫描电镜照片;
图3为实施例3制备的高熵尖晶石吸波陶瓷材料的复介电常数图;
图4为实施例3制备的高熵尖晶石吸波陶瓷材料的复磁导率图;
图5为实施例3制备的高熵尖晶石吸波陶瓷材料的磁滞回线图;
图6为实施例1制备的高熵尖晶石吸波陶瓷材料的反射损耗图;
图7为实施例2制备的高熵尖晶石吸波陶瓷材料的反射损耗图;
图8为实施例3制备的高熵尖晶石吸波陶瓷材料的反射损耗图。
具体实施方式
本发明提供了一种高熵尖晶石吸波陶瓷材料,化学式为(MgxCoyNizCumZnn)Fe2O4,x为0.2~0.25,y为0.11~0.2,z为0.13~0.23,m为0.2~0.25,n为0.2~0.25。在本发明中,所述x优选为0.22,y优选为0.12,z优选为0.2,m为0.22,n为0.22。
在本发明中,所述高熵尖晶石吸波陶瓷材料优选包括Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4、(Mg0.25Co0.12Ni0.13Cu0.25Zn0.25)Fe2O4或(Mg0.22Co0.11Ni0.23Cu0.22Zn0.22)Fe2O4
在本发明中,所述高熵尖晶石吸波陶瓷材料优选为单一尖晶石结构,空间群优选为Fd-3m。在本发明中,所述高熵尖晶石吸波陶瓷材料属于尖晶石型铁氧体。
本发明提供了上述技术方案所述高熵尖晶石吸波陶瓷材料的制备方法,包括以下步骤:
将氧化镁、一氧化钴、氧化镍、氧化铜、氧化锌和三氧化二铁混合,进行烧结,得到高熵尖晶石吸波陶瓷材料。
在本发明中,所述氧化镁、一氧化钴、氧化镍、氧化铜、氧化锌和三氧化二铁的摩尔比优选为0.2±0.05:0.2±0.15:0.2±0.15:0.2±0.05:0.2±0.05:1,更优选为0.22:0.11:0.23:0.22:0.22:1。在本发明中,所述氧化镁、一氧化钴、氧化镍、氧化铜、氧化锌和三氧化二铁以粉末的形式进行混合;所述氧化镁粉末、一氧化钴粉末、氧化镍粉末、氧化铜粉末、氧化锌粉末和三氧化二铁粉末的粒径独立优选为100~200μm。
在本发明中,所述混合优选为研磨。在本发明中,所述研磨优选为湿磨。在本发明中,所述研磨的时间优选为0.5h。本发明通过研磨使原料混合更加均匀,保证了烧结后各种元素分布的均匀性。在本发明中,所述湿磨时采用的助磨剂优选为酒精。本发明在所述研磨过程中加入的酒精助磨剂在研磨过程中完全挥发,得到混合均匀的氧化物前驱体。本发明对所述酒精的添加量没有特殊要求,只要满足浸润全部氧化物,研磨过程能够完全挥发即可。
在本发明中,所述烧结的温度优选为900~1100℃,保温时间优选为4~6h。在本发明中,由室温升温至所述烧结的温度的升温速率优选为3~10℃/min。
在本发明中,所述烧结采用的加热方式优选为辐射加热,更优选为热辐射加热。
在本发明中,所述烧结的气氛优选为空气气氛。在本发明中,所述烧结优选在马弗炉的坩埚中进行。在本发明中,所述坩埚优选为氧化铝坩埚。
在本发明中,所述高熵尖晶石吸波陶瓷材料优选为粉体;微观形貌优选为1~5μm的微球。
本发明在单相材料中通过元素配比调控了材料的阻抗匹配,得到了吸收带宽宽,损耗能力强的高熵尖晶石吸波陶瓷材料。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4高熵尖晶石吸波陶瓷材料的制备方法如下:
步骤1,称量0.803gMgO,1.499gCoO,1.494gNiO,1.591gCuO,1.628gZnO和15.969gFe2O3粉末,置于研钵中,再滴加酒精直至浸润所有粉体,研磨混合0.5h,得到高熵尖晶石吸波陶瓷前驱体;
步骤2,将步骤1制得的高熵尖晶石吸波陶瓷前驱体置于刚玉坩埚中,在马弗炉中以10℃/min升温至1100℃,保温6h,获得(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)Fe2O4高熵尖晶石吸波陶瓷粉体。
对实施例1所得高熵尖晶石吸波陶瓷材料进行XRD表征,结果如图1所示,说明得到的高熵陶瓷为尖晶石结构。
测试并计算实施例1所得高熵尖晶石吸波陶瓷材料的电磁波吸收性能,结果如图6所示。由图6可以看出,本实施例制备的高熵尖晶石吸波陶瓷材料在6.48GHz~12.4GHz(吸收带宽5.92GHz)吸收频段均具有较好的吸波性能,RLmin=-25.5dB。
实施例2
(Mg0.25Co0.12Ni0.13Cu0.25Zn0.25)Fe2O4高熵尖晶石吸波陶瓷材料的制备方法如下:
步骤1,称量1.008gMgO,0.899gCoO,0.971gNiO,1.989gCuO,2.035gZnO和15.969gFe2O3粉末,置于研钵中,再滴加酒精直至浸润所有粉体,研磨混合0.5h,得到高熵尖晶石吸波陶瓷前驱体;
步骤2,将步骤1制得的高熵尖晶石吸波陶瓷前驱体置于刚玉坩埚中,在马弗炉中以10℃/min升温至1100℃,保温6h,获得(Mg0.25Co0.12Ni0.13Cu0.25Zn0.25)Fe2O4高熵尖晶石吸波陶瓷粉体。
对实施例2所得高熵尖晶石吸波陶瓷材料进行XRD表征,结果如图1所示,说明得到的高熵陶瓷为尖晶石结构。
测试并计算实施例2所得高熵尖晶石吸波陶瓷材料的电磁波吸收性能,结果如图7所示。由图7可以看出,本实施例制备的高熵尖晶石吸波陶瓷材料在5.36GHz~10.32GHz(吸收带宽4.96GHz)吸收频段均具有较好的吸波性能,RLmin=-29.1dB。
实施例3
(Mg0.22Co0.11Ni0.23Cu0.22Zn0.22)Fe2O4高熵尖晶石吸波陶瓷材料的制备方法如下:
步骤1,称量0.887gMgO,0.824gCoO,1.718gNiO,1.750gCuO,1.791gZnO和15.969gFe2O3粉末,置于研钵中,再滴加酒精直至浸润所有粉体,研磨混合0.5h,得到高熵尖晶石吸波陶瓷前驱体;
步骤2,将步骤1制得的高熵尖晶石吸波陶瓷前驱体置于刚玉坩埚中,在马弗炉中以10℃/min升温至1100℃,保温6h,获得(Mg0.22Co0.11Ni0.23Cu0.22Zn0.22)Fe2O4高熵尖晶石吸波陶瓷粉体。
对实施例3所得高熵尖晶石吸波陶瓷材料进行XRD表征,结果如图1所示,说明得到的高熵陶瓷为尖晶石结构。
对实施例3所得高熵尖晶石吸波陶瓷材料进行SEM表征,结果如图2所示,说明得到的高熵陶瓷的微观形貌为1~5μm的微球。
对实施例3所得高熵尖晶石吸波陶瓷材料进行电磁参数测试,复介电常数如图3所示,复磁导率如图4所示。由图3可以看出,实施例3的介电常数实部和虚部在2~18GHz上基本不变,由图4可以看出,实施例3的磁导率实部和虚部在2~18GHz上先增后减。
对实施例3所得高熵尖晶石吸波陶瓷材料进行VSM测试,磁滞回线如图5所示,说明获得的高熵吸波陶瓷为软磁性材料。
测试并计算实施例3所得高熵尖晶石吸波陶瓷材料的电磁波吸收性能,结果如图8所示。由图8可以看出,本实施例制备的高熵尖晶石吸波陶瓷材料在4.8GHz~9.52GHz(吸收带宽4.72GHz)吸收频段均具有较好的吸波性能,RLmin=-50.4dB。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种高熵尖晶石吸波陶瓷材料的制备方法,步骤为:
将氧化镁、一氧化钴、氧化镍、氧化铜、氧化锌和三氧化二铁混合,进行烧结,得到高熵尖晶石吸波陶瓷材料;所述烧结的温度为1100℃,保温时间为6h;
所述高熵尖晶石吸波陶瓷材料的化学式为(Mg0.22Co0.11Ni0.23Cu0.22Zn0.22)Fe2O4
2.根据权利要求1所述的制备方法,其特征在于,所述高熵尖晶石吸波陶瓷材料为单一尖晶石结构,空间群为Fd-3m。
3.根据权利要求1所述的制备方法,其特征在于,所述混合为研磨。
4.根据权利要求3所述的制备方法,其特征在于,所述研磨为湿磨。
5.根据权利要求1所述的制备方法,其特征在于,所述烧结采用的加热方式为辐射加热。
6.根据权利要求1所述的制备方法,其特征在于,所述烧结的气氛为空气气氛。
CN202310159885.9A 2023-02-22 2023-02-22 一种高熵尖晶石吸波陶瓷材料及其制备方法 Active CN116239376B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310159885.9A CN116239376B (zh) 2023-02-22 2023-02-22 一种高熵尖晶石吸波陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310159885.9A CN116239376B (zh) 2023-02-22 2023-02-22 一种高熵尖晶石吸波陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116239376A CN116239376A (zh) 2023-06-09
CN116239376B true CN116239376B (zh) 2023-12-01

Family

ID=86629250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310159885.9A Active CN116239376B (zh) 2023-02-22 2023-02-22 一种高熵尖晶石吸波陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116239376B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116768614B (zh) * 2023-07-17 2024-04-02 太原理工大学 一种高熵氧化物陶瓷材料及其制备方法和应用
CN117658242B (zh) * 2024-01-30 2024-04-19 太原理工大学 高吸波能力纳米尖晶石型高熵氧化物及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149629A (zh) * 2021-03-11 2021-07-23 中国科学院上海硅酸盐研究所 一种耐高温过渡金属高熵氧化物吸波填料及其制备方法
CN113860911A (zh) * 2021-10-27 2021-12-31 江西科技师范大学 一种高熵铁氧体多孔陶瓷材料及其制备方法和应用
CN114315360A (zh) * 2022-01-14 2022-04-12 航天材料及工艺研究所 一种宽频吸收高熵碳化物吸波陶瓷材料、制备方法及应用
CN114736010A (zh) * 2022-04-02 2022-07-12 郑州航空工业管理学院 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用
CN115594497A (zh) * 2022-10-31 2023-01-13 安徽大学(Cn) 一种具有尖晶石结构的高熵陶瓷及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735366B (zh) * 2020-10-29 2021-08-01 國立成功大學 高熵複合氧化物及其製法、及使用其之陽極材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149629A (zh) * 2021-03-11 2021-07-23 中国科学院上海硅酸盐研究所 一种耐高温过渡金属高熵氧化物吸波填料及其制备方法
CN113860911A (zh) * 2021-10-27 2021-12-31 江西科技师范大学 一种高熵铁氧体多孔陶瓷材料及其制备方法和应用
CN114315360A (zh) * 2022-01-14 2022-04-12 航天材料及工艺研究所 一种宽频吸收高熵碳化物吸波陶瓷材料、制备方法及应用
CN114736010A (zh) * 2022-04-02 2022-07-12 郑州航空工业管理学院 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用
CN115594497A (zh) * 2022-10-31 2023-01-13 安徽大学(Cn) 一种具有尖晶石结构的高熵陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN116239376A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN116239376B (zh) 一种高熵尖晶石吸波陶瓷材料及其制备方法
CN112961650B (zh) 一种三金属有机框架衍生铁镍合金/多孔碳超薄吸波剂及其制备方法
CN113060731B (zh) 一种三元金属碳化MOFs材料的制备方法及应用
CN104844182B (zh) 一种锆钛共掺杂钡铁氧体吸波粉体材料及其制备方法
CN114853458B (zh) 一种高熵陶瓷及其制备方法和作为电磁波吸收材料的应用
CN101412622A (zh) 高频镍铜锌铁氧体及其制备方法
CN114736010A (zh) 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用
CN100480187C (zh) 一种镍锌铁氧体材料及其制备方法
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN111137874B (zh) 一种以hkust-1为模板制备复合吸波材料的方法
CN101774027B (zh) 纳米磁性合金吸波材料的制备方法
CN112159219A (zh) 掺杂钇的镍锌钴铁氧体及其制备方法
CN104671764B (zh) 一种铌掺杂钡铁氧体吸波粉体材料及制备方法
CN116496096B (zh) 一种增强软磁/硬磁复合铁氧体吸波性能的方法
CN112830776A (zh) 一种u型六角铁氧体材料及其制备方法
CN113072371B (zh) 一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法
CN114956192A (zh) 一种镧钴共掺杂钡铁氧体双波段吸波粉体材料及其制备方法
CN110517723B (zh) 高磁导率GHz波段吸收材料的制备方法
CN114226744A (zh) 一种形状可控的坡莫合金粉体微波吸收剂的制备方法
CN114058328A (zh) 一种吸波复合材料及其制备方法
CN110323029A (zh) 复合磁性体
CN114433860B (zh) 一种微米尺度多肉状多孔铁钴合金及其制备和应用
CN115491178B (zh) 一种CoFe2O4介孔型碳核壳吸波材料的制备及应用
Xiong et al. Metal-oxide doping enhances electromagnetic wave absorption performance of BaFe12O19 glass-ceramics
CN116768614B (zh) 一种高熵氧化物陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant