CN116396068A - K~Ka波段自偏置环行器铁氧体基板材料及制备方法 - Google Patents

K~Ka波段自偏置环行器铁氧体基板材料及制备方法 Download PDF

Info

Publication number
CN116396068A
CN116396068A CN202310284691.1A CN202310284691A CN116396068A CN 116396068 A CN116396068 A CN 116396068A CN 202310284691 A CN202310284691 A CN 202310284691A CN 116396068 A CN116396068 A CN 116396068A
Authority
CN
China
Prior art keywords
ferrite substrate
circulator
ferrite
cuo
substrate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310284691.1A
Other languages
English (en)
Other versions
CN116396068B (zh
Inventor
蒋晓娜
龚莹
余忠
孙科
兰中文
邬传健
李启帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202310284691.1A priority Critical patent/CN116396068B/zh
Publication of CN116396068A publication Critical patent/CN116396068A/zh
Application granted granted Critical
Publication of CN116396068B publication Critical patent/CN116396068B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

K~Ka波段自偏置环行器铁氧体基板材料及制备方法,属于铁氧体材料制备技术领域,本发明的基板材料包括主料和掺杂剂,所述主料包括:0~11.3%BaCO3、2.7%~11.6%SrCO3、3.12%La2O3和80.27%~83.5%Fe2O3,其余为CuO原料;以主料的质量为参照基准,按重量百分比,以氧化物计算,掺杂剂包括:1~2wt%CuO、1~2.5wt%Bi2O3和0.2~1.5wt%SiO2。本发明采用离子取代、湿法磁场成型等技术,获得了高剩磁比、较高磁晶各向异性场、高矫顽力、低共振线宽的M型钡锶铁氧体基板,可满足K~Ka波段铁氧体自偏置环行器的性能要求。

Description

K~Ka波段自偏置环行器铁氧体基板材料及制备方法
技术领域
本发明属于铁氧体材料制备技术领域,具体涉及K~Ka波段自偏置环行器铁氧体基板制备方法。
背景技术
近年来,微波通信在许多领域都得到了广泛的应用,如移动通信、卫星通信等。在微波通信中,微波器件的应用非常广泛,其中环行器、移相器、隔离器、滤波器等常用的微波器件在微波领域应用需求量非常大。随着微波技术的快速发展,器件正朝着小型化、集成化等方向发展。传统K~Ka波段铁氧体环行器由尖晶石铁氧体基板制备而成,为实现环行功能,需要外加永磁磁钢来提供一个沿铁氧体基板平面法线方向的偏置外磁场(Ho),这个外置磁钢厚度通常是铁氧体基板厚度的数倍,甚至超过10倍。这极大地增加了整机系统的体积和质量,不利于铁氧体环行器向小型化和集成化方向发展。而磁铅石型铁氧体(如:具有c轴取向M型钡铁氧体)因有高磁晶各向异性场(Ha),可以在其内部形成自偏置内场(Hi),使环行器可以去除外加磁钢,这样可以大大减小器件的质量和体积,推动铁氧体环行器小型化和集成化发展。自偏置环行器便成为铁氧体环行器高频小型轻量化发展的方向。
针对目前自偏置环行器用微波铁氧体材料的研究,专利ZL201410149524.7公开了一种电机用M型钡锶永磁铁氧体及制造方法,该材料的剩磁(Br)≥4700Gs,矫顽力(Hc)≥5500Oe,虽然剩磁和矫顽力高,但此类材料用于微波频段时损耗太高,即共振线宽大,不能很好地满足微波环行器高频化发展需求。Renuka Bowrothu等研究了一种用于自偏置环行器的钡铁氧体材料(BaM/PDMS复合材料),其饱和磁化强度(Ms)为121kA/m(4πMs约1513Gs),矫顽力(Hc)为324kA/m(约4050Oe),剩磁(Mr)为101kA/m(4πMr约1263Gs),剩磁比(Mr/Ms)为0.83,共振线宽为4330Oe,虽然该材料矫顽力很高,但材料线宽较大,会导致器件损耗较高。Yu Wang等研究了一种M型钡铁氧体材料用于自偏置环行器,其饱和磁化强度(4πMs)在4734Gs左右,矫顽力Hc约2300Oe,法线方向的剩磁比Mr/Ms约0.67,虽然具有适宜的饱和磁化强度和矫顽力,但材料的剩磁比较低,且随着Sc取代量增加,剩磁比呈下降趋势。专利CN202010880100.3公布的一种La、Sc取代M型六角铁氧体材料性能指标为:饱和磁化强度4πMs>3790Gs,剩磁4πMr>3415Gs,矫顽力Hc>550Oe,各向异性场Ha>13.6kOe,铁磁共振线宽ΔH>389Oe,但材料的Hc较低,不利于保持自偏置性能。
基于上述可知,现有的自偏置环行器用铁氧体沿基板平面法线方向的性能难以兼具适宜各向异性场、高矫顽力、高剩磁比以及低铁磁共振线宽特性。本发明提供一种自偏置环行器用钡锶铁氧体基板制备方法,结合掺杂和湿法磁场成型等技术,使沿该基板平面法线方向的性能具有高剩磁比、较高磁各向异性场、高矫顽力等优点,且基板面内共振线宽较低。该环行器基板可用于K~Ka波段铁氧体自偏置环行器,该材料的饱和磁化强度4πMs大于4000Gs,铁氧体基板平面法线方向的剩磁比Mr/Ms高达0.72,磁各向异性场Ha约17kOe,矫顽力Hc大于2300Oe,且制备方法简单,对实现铁氧体环行器高频小型轻量化和集成化具有重要意义。
发明内容
本发明所要解决的技术问题是,针对背景技术所涉及的K~Ka波段铁氧体自偏置环行器用铁氧体基板平面法线方向难以兼具较高磁各向异性场、高矫顽力和高剩磁比和低共振线宽特性等技术难题,提出了一种自偏置环行器铁氧体基板材料及制备方法。
本发明解决所述技术问题采用的技术方案是,K~Ka波段自偏置环行器铁氧体基板材料,包括主料和掺杂剂,所述主料包括:0~11.3%BaCO3、2.7%~11.6%SrCO3、3.12%La2O3和80.27%~83.5%Fe2O3,其余为CuO原料;
以主料的质量为参照基准,按重量百分比,以氧化物计算,掺杂剂包括:1~2wt%CuO、1~2.5wt%Bi2O3和0.2~1.5wt%SiO2
本发明还提供K~Ka波段自偏置环行器铁氧体基板材料制备方法,包括以下步骤:
步骤1、预烧料制备
以BaCO3、SrCO3、La2O3、Fe2O3、CuO作为原料,按照主料:0~11.3%BaCO3、2.7%~11.6%SrCO3、3.12%La2O3、80.27%~83.5%Fe2O3、其余为CuO原料的比例称取原料,一次球磨,烘干、过筛后在1050~1150℃温度下预烧1~3h,冷却至室温后,过筛,得到预烧料;
步骤2、掺杂
以预烧料的质量为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:1~2wt%CuO、1~2.5wt%Bi2O3和0.2~1.5wt%SiO2
步骤3、二次球磨
对步骤2得到的产物进行球磨,得到浆料;
步骤4、磁场成型
将步骤3得到的浆料进行脱水,控制浆料的含水量在35wt%~50wt%之间,然后压制成圆柱型生坯,成型磁场方向沿圆柱体中心轴线方向,最大磁场强度约为12~15kOe;
步骤5、烧结
压制得到的生坯进行烧结处理,烧结温度为1045~1075℃,保温时间1~3h,烧结后随炉自然冷却至室温。
步骤6、基板加工
沿烧结圆柱体径向切薄片,并将薄片加工成适合环行器要求的铁氧体基板圆片。
所述步骤1中,在1050~1150℃温度下预烧。
所述步骤2中,按照下述比例加入掺杂剂:1~2wt%CuO、1~2.5wt%Bi2O3和0.2~1.5wt%SiO2
进一步的,所述步骤3中,按照质量比为钢球:粉料:去离子水=3:1:1.5的比例进行球磨,球磨时间为15~18h。
所述步骤4中,成型压力为6~7MPa,保压时间为30~50s。
所述步骤6中,铁氧体基板圆片直径需磨加工至1~2mm,厚度需磨加工至约0.4mm。
本发明提供一种K~Ka波段自偏置环行器铁氧体基板制备方法,采用离子取代、湿法磁场成型等技术,获得了高剩磁比、较高磁晶各向异性场、高矫顽力、低共振线宽的M型钡锶铁氧体基板,可满足K~Ka波段铁氧体自偏置环行器的性能要求。同时,制备方法简单,对于实现铁氧体环行器的高频化、小型轻量化和集成化具有重要意义。
具体实施方式
本发明用“~”和“-”表示的数值范围均包含范围端点值。
本发明通过优化主配方(主配方中进行Sr2+离子取代)控制材料的成分,通过二次球磨工艺调控材料的粉体粒度在0.7~1.0微米,结合湿法磁场成型工艺制备生坯,再结合优化的烧结工艺,制备M型钡锶铁氧体基板,该铁氧体基板为圆片形(直径为d,厚度为h),厚度h约0.4mm,直径约1~2mm,易磁化方向沿基板平面法线方向,即厚度h方向。通过离子取代以及优化烧结工艺,该材料的饱和磁化强度4πMs大于4000Gs,铁氧体基板平面法线方向的剩磁比Mr/Ms高达0.72,磁各向异性场Ha约17kOe,矫顽力Hc大于2300Oe。另外,该基板面内的共振线宽相对较低。
本发明的核心思想是:利用离子取代以及优化烧结工艺,制备具有高剩磁比、高矫顽力以及低铁磁共振线宽的M型钡锶铁氧体基板。首先,SrM铁氧体的磁晶各向异性常数K1=3.5×105J/m3,较BaM铁氧体大,而Ms=36.6×104A/m,较BaM铁氧体小。由于SrM铁氧体的K1较大,Ms较小,故单畴的临界尺寸较BaM铁氧体大,烧结时容易得到单畴,性能也较好,例如SrM铁氧体的最大磁能积(BH)max达到了36×103J/m3,矫顽力也比BaM铁氧体高些,因此在高温下不易引起不可逆退磁,更适合于承受较大退磁作用的应用场合。因此,用Sr2+取代BaM后会使得磁晶各向异性场增大,从而获得高剩磁和高剩磁比,这也有利于获得高矫顽力;其次,烧结温度的增加会提升固相反应程度,使得致密化程度提高,密度上升,使得单位体积内的离子磁矩之和增加,从而使得饱和磁化强度升高,剩磁受饱和磁化强度的提高也会逐渐增加,从而获得高剩磁和高剩磁比材料。
作为一种实施方式,K~Ka波段自偏置环行器铁氧体基板材料,其特征在于,包括主料和掺杂剂,所述主料包括:0~11.3%BaCO3、2.7%~11.6%SrCO3、3.12%La2O3、80.27%~83.5%Fe2O3、其余为CuO原料;
所述掺杂剂以主料的质量为参照基准,按重量百分比,以氧化物计算,掺杂剂包括:1~2wt%CuO、1~2.5wt%Bi2O3和0.2~1.5wt%SiO2
制备方法包括以下材料制备步骤:
步骤1、预烧料制备
1.1以BaCO3、SrCO3、La2O3、Fe2O3、CuO作为原料,按照主料:0~11.3%BaCO3、2.7%~11.6%SrCO3、3.12%La2O3、80.27%~83.5%Fe2O3、其余为CuO原料的比例称取原料,然后进行一次球磨8~12h;
1.2将步骤1.1得到的一次球磨料烘干、过筛后,在1050~1150℃温度下预烧1~3h,随炉冷却至室温后,取出,得到预烧料;
步骤2、掺杂
以步骤1得到的过筛后的粉料为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:1~2wt%CuO、1~2.5wt%Bi2O3和0.2~1.5wt%SiO2
步骤3、二次球磨
将步骤2得到的粉料,按照质量比球:粉料:水=3:1:1.5的比例进行球磨,球磨时间为15~18h;
步骤4、磁场成型
将步骤3得到的浆料进行脱水,控制浆料的含水量在35wt%~50wt%之间,然后采用湿法磁场成型设备压制成圆柱型生坯。成型磁场方向沿圆柱坯体中心轴线方向,磁场大小为12~15kOe,成型压力为6~7MPa,保压时间为30~50s;
步骤5、烧结
将步骤4压制得到的生坯进行烧结处理,烧结温度为1045~1075℃,保温时间1~3h,烧结完成后,随炉自然冷却至室温;
步骤6、基板加工
沿烧结圆柱体径向切薄片,并将薄片加工成适合环行器基板要求的铁氧体圆片。
步骤7、测试
将步骤6得到的样品进行密度测试,并测基板平面法线方向静磁性能及面内共振线宽。采用Bettersize2600型激光粒度分析仪干法测试二次球磨粉体粒度,采用美国LakeShore 8604型振动样品磁强计分别测试基板法线方向和面内方向的饱和磁滞回线和磁化曲线,获得法线方向的矫顽力Hc、饱和磁化强度4πMs、剩余磁化强度4πMr以及剩磁比Mr/Ms等静磁性能,另外,由法线方向和面内方向的饱和磁化曲线计算基板的磁各向异性场(Ha)。采用美国Agilent N5227A矢量网络分析仪测试样品面内的共振线宽(ΔH)。
本发明制备的自偏置环行器用六角铁氧体基板,形状为圆片,厚度约0.4mm,直径为1.36mm,易磁化方向沿片状基板的法线方向,测试样品沿基板平面法线方向上的静磁性能及沿基板面内方向的共振线宽,具体结果如下:
饱和磁化强度:4πMs≥4000Gs;
剩余磁化强度:4πMr≥2800Gs;
剩磁比:Mr/Ms≥0.7;
矫顽力:Hc≥2300Oe;
各向异性场:Ha约17kOe;
共振线宽:ΔH约450Oe。
实施例1
步骤1:配方
以BaCO3、SrCO3、La2O3、Fe2O3、CuO作为原料,按照主料:7.6wt%BaCO3、5.6wt%SrCO3、3.12wt%La2O3、81.5wt%Fe2O3、其余为CuO原料的比例称取原料;
步骤2:一次球磨
将步骤1的粉料,按照球:粉料:水质量比为3:1:1.5的比例,在行星式球磨机中混合均匀,时间为10小时;
步骤3:预烧
将步骤2得到的浆料烘干、过筛后,放置于预烧罐中,在1100℃的温度下进行预烧,保温时间2小时;
步骤4、掺杂
以步骤3得到的过筛后的粉料为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:1wt%CuO、1.5wt%Bi2O3、0.5wt%SiO2
步骤5、二次球磨
将步骤4得到的粉料,按照质量比球:粉料:水=3:1:1.5的比例进行球磨,球磨时间为16h;
步骤6、磁场成型
将步骤5得到的浆料进行脱水,控制浆料的含水量在35wt%~50wt%之间,然后采用湿法磁场成型设备压制成型,成型压力为7MPa,成型磁场强度为12kOe,保压时间为30s;
步骤7、烧结
将步骤6压制得到的生坯进行烧结处理,烧结温度为1060℃,保温时间2h,烧结完成后,随炉自然冷却至室温;
步骤8、测试
将步骤7得到的样品进行密度测试,制备样品进行法线方向静磁性能及其它性能测试。
实施例2
本实施例与实施例1相比,区别在于:步骤4掺杂中,按重量百分比加入以下掺杂剂:1.5wt%CuO、2.0wt%Bi2O3、1wt%SiO2。其余步骤与实施例1相同。
实施例3
本实施例与实施例1相比,区别在于:步骤7烧结中,烧结温度为1075℃。其余步骤与实施例1相同。
对以上工艺制备的自偏置环行器用六角铁氧体基板平面法线方向静磁性能以及基板面内方向的共振线宽进行测试,实施例1~3性能列表如下:
Figure BDA0004139318520000061

Claims (7)

1.K~Ka波段自偏置环行器铁氧体基板材料,其特征在于,包括主料和掺杂剂,所述主料包括:0~11.3%BaCO3、2.7%~11.6%SrCO3、3.12%La2O3和80.27%~83.5%Fe2O3,其余为CuO原料;
以主料的质量为参照基准,按重量百分比,以氧化物计算,掺杂剂包括:1~2wt%CuO、1~2.5wt%Bi2O3和0.2~1.5wt%SiO2
2.K~Ka波段自偏置环行器铁氧体基板材料制备方法,其特征在于,包括以下步骤:
步骤1、预烧料制备
以BaCO3、SrCO3、La2O3、Fe2O3、CuO作为原料,按照主料:0~11.3%BaCO3、2.7%~11.6%SrCO3、3.12%La2O3、80.27%~83.5%Fe2O3、其余为CuO原料的比例称取原料,一次球磨,烘干、过筛后在1050~1150℃温度下预烧1~3h,冷却至室温后,过筛,得到预烧料;
步骤2、掺杂
以预烧料的质量为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:1~2wt%CuO、1~2.5wt%Bi2O3和0.2~1.5wt%SiO2
步骤3、二次球磨
对步骤2得到的产物进行球磨,得到浆料;
步骤4、磁场成型
将步骤3得到的浆料进行脱水,控制浆料的含水量在35wt%~50wt%之间,然后压制成圆柱型生坯,成型磁场方向沿圆柱体中心轴线方向,磁场强度大小为12~15kOe;
步骤5、烧结
压制得到的生坯进行烧结处理,烧结温度为1045~1075℃,保温时间1~3h,烧结后随炉自然冷却至室温。
步骤6、基板加工
沿烧结圆柱体径向切薄片,并将薄片加工成适合环行器要求的铁氧体基板圆片。
3.如权利要求2所述的K~Ka波段自偏置环行器铁氧体基板材料制备方法,其特征在于,所述步骤1中,在1050~1150℃温度下预烧。
4.如权利要求2所述的K~Ka波段自偏置环行器铁氧体基板材料制备方法,其特征在于,所述步骤2中,按照下述比例加入掺杂剂:
1~2wt%CuO、1~2.5wt%Bi2O3和0.2~1.5wt%SiO2
5.如权利要求2所述的K~Ka波段自偏置环行器铁氧体基板材料制备方法,其特征在于,所述步骤3中,按照质量比为钢球:粉料:去离子水=3:1:1.5的比例进行球磨,球磨时间为15~18h,粉料粒度为0.7~0.8μm。
6.如权利要求2所述的K~Ka波段自偏置环行器铁氧体基板材料制备方法,其特征在于,所述步骤4中,成型压力为6~7MPa,保压时间为30~50s。
7.如权利要求2所述的K~Ka波段自偏置环行器铁氧体基板材料制备方法,其特征在于,所述步骤6中,铁氧体基板圆片直径磨加工至1~2mm,厚度磨加工至0.3~0.4mm。
CN202310284691.1A 2023-03-22 2023-03-22 K~Ka波段自偏置环行器铁氧体基板材料及制备方法 Active CN116396068B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310284691.1A CN116396068B (zh) 2023-03-22 2023-03-22 K~Ka波段自偏置环行器铁氧体基板材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310284691.1A CN116396068B (zh) 2023-03-22 2023-03-22 K~Ka波段自偏置环行器铁氧体基板材料及制备方法

Publications (2)

Publication Number Publication Date
CN116396068A true CN116396068A (zh) 2023-07-07
CN116396068B CN116396068B (zh) 2024-05-31

Family

ID=87017014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310284691.1A Active CN116396068B (zh) 2023-03-22 2023-03-22 K~Ka波段自偏置环行器铁氧体基板材料及制备方法

Country Status (1)

Country Link
CN (1) CN116396068B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116780140A (zh) * 2023-08-28 2023-09-19 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种准二维平面化环行器/隔离器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774025A (en) * 1995-08-07 1998-06-30 Northrop Grumman Corporation Planar phase shifters using low coercive force and fast switching, multilayerable ferrite
US20040222869A1 (en) * 2003-05-05 2004-11-11 Joey Bray Ferrite-filled, antisymmetrically-biased rectangular waveguide phase shifter
US20070246681A1 (en) * 2004-03-04 2007-10-25 Tdk Corporation Ferrite Magnetic Material, Ferrite Sintered Magnet and Method for Producing the Same
CN103724004A (zh) * 2013-11-13 2014-04-16 横店集团东磁股份有限公司 一种高矫顽力永磁铁氧体材料及其制备方法
CN108424137A (zh) * 2018-03-13 2018-08-21 四川诺威胜电子科技有限公司 高各向异性低铁磁共振线宽六角铁氧体材料及制备方法
CN109851349A (zh) * 2019-03-18 2019-06-07 电子科技大学 一种高性能环保型六角永磁铁氧体材料及其制备方法
CN113078429A (zh) * 2021-03-12 2021-07-06 电子科技大学 一种准平面化复合基板微带环形器
CN113072369A (zh) * 2021-03-25 2021-07-06 电子科技大学 高剩磁比的u型六角铁氧体材料及制备方法
CN114591074A (zh) * 2022-03-28 2022-06-07 电子科技大学 自偏置环行器用高剩磁m型钡铁氧体制备技术
FR3121930A1 (fr) * 2021-04-19 2022-10-21 Thales Materiau ferrite de lithium faibles pertes pour dispositif hyperfrequence commandable de puissance
CN115340373A (zh) * 2022-07-15 2022-11-15 电子科技大学 基于低纯度铁精矿原料体系的六角铁氧体材料制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774025A (en) * 1995-08-07 1998-06-30 Northrop Grumman Corporation Planar phase shifters using low coercive force and fast switching, multilayerable ferrite
US20040222869A1 (en) * 2003-05-05 2004-11-11 Joey Bray Ferrite-filled, antisymmetrically-biased rectangular waveguide phase shifter
US20070246681A1 (en) * 2004-03-04 2007-10-25 Tdk Corporation Ferrite Magnetic Material, Ferrite Sintered Magnet and Method for Producing the Same
CN103724004A (zh) * 2013-11-13 2014-04-16 横店集团东磁股份有限公司 一种高矫顽力永磁铁氧体材料及其制备方法
CN108424137A (zh) * 2018-03-13 2018-08-21 四川诺威胜电子科技有限公司 高各向异性低铁磁共振线宽六角铁氧体材料及制备方法
CN109851349A (zh) * 2019-03-18 2019-06-07 电子科技大学 一种高性能环保型六角永磁铁氧体材料及其制备方法
CN113078429A (zh) * 2021-03-12 2021-07-06 电子科技大学 一种准平面化复合基板微带环形器
CN113072369A (zh) * 2021-03-25 2021-07-06 电子科技大学 高剩磁比的u型六角铁氧体材料及制备方法
FR3121930A1 (fr) * 2021-04-19 2022-10-21 Thales Materiau ferrite de lithium faibles pertes pour dispositif hyperfrequence commandable de puissance
CN114591074A (zh) * 2022-03-28 2022-06-07 电子科技大学 自偏置环行器用高剩磁m型钡铁氧体制备技术
CN115340373A (zh) * 2022-07-15 2022-11-15 电子科技大学 基于低纯度铁精矿原料体系的六角铁氧体材料制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116780140A (zh) * 2023-08-28 2023-09-19 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种准二维平面化环行器/隔离器

Also Published As

Publication number Publication date
CN116396068B (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
CN109867518B (zh) 一种高温度稳定性的石榴石铁氧体及其制备方法
CN111499369B (zh) 一种Ku波段用高功率旋矩铁氧体材料及其制备方法
CN111825441A (zh) 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用
CN106518038B (zh) 多元掺杂yig材料及其制备方法
CN115385680B (zh) 一种高介低线宽微波旋磁铁氧体材料及其制备方法
CN116396068B (zh) K~Ka波段自偏置环行器铁氧体基板材料及制备方法
US20240067568A1 (en) Two-component microwave ferrite material, preparation method therefor and application thereof
CN114477995B (zh) 一种中饱和磁化强度功率型高介电常数石榴石材料及其制备方法
CN111925201B (zh) Sc掺杂六角晶系Zn2W铁氧体材料及制备方法
CN111732427B (zh) 自偏置环行器用低铁磁共振线宽六角铁氧体材料及其制备方法
CN113072369B (zh) 高剩磁比的u型六角铁氧体材料及制备方法
CN112830776B (zh) 一种u型六角铁氧体材料及其制备方法
CN115477534B (zh) Ku波段自偏置器件用双相复合铁氧体材料及其制备方法
CN115057697B (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN117326860A (zh) 一种单轴型小线宽六角铁氧体材料及其制备方法
CN114591074A (zh) 自偏置环行器用高剩磁m型钡铁氧体制备技术
CN113845359A (zh) 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
CN117276835A (zh) 铁氧体基板及制备方法
CN112939590A (zh) 一种x波段准平面化器件用六角铁氧体材料及其制备方法
CN112456993A (zh) 一种可用于铁氧体器件的微波铁氧体材料及制备方法
CN116947475B (zh) 一种自偏置环行器用高性能复合铁氧体的制备方法
CN114890779B (zh) 高机械强度高功率低共振线宽的石榴石铁氧体及制备方法
CN116514535B (zh) 高介电低线宽石榴石铁氧体材料及制备方法和微带环行器
CN116396069B (zh) 一种非磁场取向的织构化六角铁氧体材料的制备方法
CN114409393B (zh) 一种高矫顽力低损耗复合六角铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant