CN114702310A - 低损耗尖晶石微波铁氧体材料及其制备方法 - Google Patents

低损耗尖晶石微波铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN114702310A
CN114702310A CN202210362918.5A CN202210362918A CN114702310A CN 114702310 A CN114702310 A CN 114702310A CN 202210362918 A CN202210362918 A CN 202210362918A CN 114702310 A CN114702310 A CN 114702310A
Authority
CN
China
Prior art keywords
equal
less
ball milling
spinel
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210362918.5A
Other languages
English (en)
Other versions
CN114702310B (zh
Inventor
袁红兰
冯涛
杨菲
任仕晶
肖永成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 9 Research Institute
Original Assignee
CETC 9 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 9 Research Institute filed Critical CETC 9 Research Institute
Priority to CN202210362918.5A priority Critical patent/CN114702310B/zh
Publication of CN114702310A publication Critical patent/CN114702310A/zh
Application granted granted Critical
Publication of CN114702310B publication Critical patent/CN114702310B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明公开了一种低损耗尖晶石微波铁氧体材料及其制备方法,属于微波铁氧体材料技术领域,其化学通式为:Ni1‑a‑d+e‑ gZnaInbDycCodSneMnfCugFe2‑b‑c‑2e‑f‑δO4,其中,0≤a≤0.2,0≤b≤0.3,0.005≤c≤0.02,0≤d≤0.03,0≤e≤0.1,0≤f≤0.1,0≤g≤0.2,δ为缺铁量,0≤δ≤0.1,本发明的尖晶石NiZn旋磁材料烧结温度在1100℃~1350℃范围可调,饱和磁化强度在Ms在3000Gauss~4500Gauss范围,有较小的铁磁共振线宽△H:150Oe~250Oe,较低的介电损耗
Figure DEST_PATH_IMAGE001
,自旋波线宽△Hk在10Oe~38Oe范围可调,本发明微波铁氧体材料具有烧结温度可选范围宽、电磁损耗小、功率容量可调等特性,本材料可以用于与介质陶瓷、低饱和磁化强度石榴石复合共烧制备复合基片,实现微波器件尤其是微带器件小型化、宽带化需求。

Description

低损耗尖晶石微波铁氧体材料及其制备方法
技术领域
本发明涉及微波铁氧体材料技术领域,尤其涉及低损耗尖晶石微波铁氧体材料及其制备方法。
背景技术
尖晶石微波铁氧体材料因其损耗低、功率承受能力强的特性,在高频微波应用领域占有统治地位,其电磁性能直接决定X~毫米波频段微波器件的相关性能。
随着微波器件小型化、轻量化、宽频带发展需求,基于单一铁氧体材料进行设计对器件小型化、宽带化作用已趋于极致,无法进一步减小器件体积和拓展带宽,而介质陶瓷/铁氧体、尖晶石铁氧体/石榴石铁氧体异质复合基片满足器件小型化、轻量化、宽带化设计需求。
上述的复合基片,是以高饱和磁化强度的铁氧体材料圆柱作为内芯,其外是另外一种较低饱和磁化强度的铁氧体或介质陶瓷材料。这种复合基片的圆柱和圆环相接面会形成一种周界模,这种异常的模的场分布随频率有较稳定的场结构,所以能用于超倍频程环行器。
根据工艺的不同,复合基片分为粘接复合基片和共烧复合基片,而目前大量应用的是粘接复合基片。
粘接复合基片是将不同材料分别成型、烧结,精密匹配加工后通过粘接剂使之无缝结合。目前,5G基站中的微波环行器/隔离器90%以上采用介质陶瓷/铁氧体粘接复合基片设计。粘接复合基片是采用物理粘胶生产得到,这种方式存在主要问题是基片无法承受高温环境、无法承受高温工艺加工,高温可靠性低。
共烧异质复合基片通过成型工艺使不同材料成型为一体,通过高温共烧(1100℃以上)固相反应实现微观无缝隙一体化。共烧复合基片高温稳定性好,成为微带倍频程尤其是三倍频程器件小型化、高性能化的关键材料。这方面的报道已经有很多,比如,中国专利申请:CN201510543515.0采用Ni0.52-xCoxCu0.1Zn0.4Fe1.98O3.99,x=0-0.40;加入以下掺杂剂:0.001-0.80wt%BaTiO3、0.01-0.20wt%CaCO3、0.01-0.20wt%V2O5、0.001-0.20wt%Bi2O3;材料的烧结温度960℃~1080℃,烧结温度无法实现异质复合共烧。又比如中国专利申请:CN202010056140.6采用Ni1-x-y-zZnxCoyCuzMn0.02AluFe1.9-uO,其中:0.1≤x≤0.2,0.03≤y≤0.05,0.03≤z≤0.5,0.2≤u≤0.25;在1150℃保温5小时烧结得到饱和磁化强度(4πMs)为3000Gs、介电常数13.5,介电损耗小于0.0005,温度系数<1.2×10-3/℃(25~+85℃)的微波铁氧体材料,其固定的烧结温度不利于不同烧结温度需求的异质复合共烧。
微波铁氧体材料的电磁性能主要包括本征特性及非本征特性,饱和磁化强度4πMs、居里温度TC等是材料的本征参数,只取决于材料各次晶格上磁性阳离子的数量及分布情况,而介电损耗tanδε、铁磁共振线宽ΔH、自旋波线宽ΔHk等不仅与其化学成分和晶体结构有关,而且与密度、晶粒尺寸、气孔率以及它们在晶粒内部和晶粒之间的分布关系密切,是材料微结构的结构敏感量,所以,异质共烧复合基片应尽量减少扩散离子对其性能的影响。
也就是说,现有技术的NiZn尖晶石微波铁氧体材料的烧结温度在1180℃~1220℃,无法实现与烧结温度高的介质陶瓷(烧结温度1100℃~1550℃)、石榴石铁氧体材料(烧结温度1300℃~1450℃)共烧制备复合基片。目前研究的高温1260~1300℃烧结的尖晶石,以Zn2+Sn4+联合取代调控4πMs,材料的损耗较大,介电损耗在5×10-4~10×10-4,而Zn2+在共烧固相反应过程扩散进入另一材料的离子浓度相对较大,导致过渡区材料的损耗增大。
发明内容
本发明的目的之一,就在于提供一种低损耗尖晶石微波铁氧体材料,以解决上述问题。
为了实现上述目的,本发明采用的技术方案是这样的:一种低损耗尖晶石微波铁氧体材料,其化学通式为:Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中,0≤a≤0.2,0≤b≤0.3,0.005≤c≤0.02,0≤d≤0.03,0≤e≤0.1,0≤f≤0.1,0≤g≤0.2,δ为缺铁量,0≤δ≤0.1。
目前低损耗NiZn尖晶石微波铁氧体材料烧结温度在1180℃~1220℃,虽然通过低熔点氧化物CuO的含量来调节烧结温度是容易的,但要同时满足在烧结温度1100℃~1350℃范围内材料具有良好的电磁性能是比较困难的。
本发明采用Zn2+In3+Sn4+联合取代调控4πMs,同时降低损耗。非磁性离子In3+在联合取代中所起的作用是复杂的,在本发明的分子式Ni1-a-d+e- gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4中,不同的a、e取代值组合,再加入In3+取代,提高4πMs、降低4πMs、保持4πMs不变三种情况都是存在的,而材料的损耗均是降低的。Zn2+In3+Sn4+联合取代,是不同4πMs的低损耗材料制备的有效途径。
本发明采用两种途径调控ΔHk:采用Dy3+取代细化晶粒,材料的晶粒尺寸小于5μm,提高了材料的△Hk;采用不同含量快驰豫离子Co2+取代,减小驰豫时间,调控△Hk,使之满足器件不同功率容量对材料△Hk不同需求。In3+、Sn4+、Dy3+也是石榴石配方常用取代离子,避免了尖晶石/石榴石复合共烧时离子互相扩散导致的基片性能变差。
本发明采用In3+、Sn4+、Dy3+作为取代离子,避免了尖晶石/石榴石复合共烧时离子互相扩散导致的基片性能变差。
本发明的NiZn尖晶石微波铁氧体材料烧结温度由通常的1180℃~1220℃拓展到1100℃~1350℃,从而可以实现与介质陶瓷、石榴石微波铁氧体材料复合共烧制备复合基片,解决了微波器件尤其是微带器件小型化、宽带化难题。
本发明的目的之二,在于提供一种上述材料的制备方法,采用的技术方案为,包括下述步骤:
(1)配方设计:根据组成化学式Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中:0≤a≤0.2,0≤b≤0.3,0.005≤c≤0.02,0≤d≤0.03,0≤e≤0.1,0≤f≤0.1,0≤g≤0.2,δ为缺铁量,0≤δ≤0.1进行配方设计;
(2)称料:根据步骤(1)配方设计结果,计算并称取所需各种原材料,所述原材料为Fe2O3、NiO、ZnO、In2O3、Co2O3、SnO2、Dy2O3 、MnCO3、CuO;
(3)一次球磨:将步骤(2)称取的各种原材料混合装入球磨罐中,并加入球和稀释剂,进行原材料一次湿法混合球磨,球磨时间为5h~10h;
(4)预烧:将经步骤(3)后的浆料烘干,过30目~60目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为800℃~1000℃,保温4h~6h;
(5)二次球磨:将经步骤(4)预烧后的粉料,装入球磨罐中,并加入球和稀释剂,进行二次湿法球磨,球磨时间为5 h~24 h,得到浆料;
(6)造粒:将步骤(5)球磨后的浆料烘干得到粉料,然后加入胶合剂进行造粒;
(7)成型:将步骤(6)得到的颗粒放入模具进行压制,压制压强为100MPa~160MPa,得到材料生坯;
(8)烧结:将步骤(7)得到生坯装入空气气氛或氧化气氛炉中进行烧结,烧结温度为1100℃~1350℃,保温4 h~8 h,即得。
所得材料依据GB/T9633-2012进行材料的电磁性能测试。
作为优选的技术方案,步骤(2)中,所述原材料的纯度为分析纯。
作为优选的技术方案,步骤(3)中,所述稀释剂为去离子水或分析纯的无水乙醇。
作为优选的技术方案,步骤(5)中,所述稀释剂为去离子水或分析纯的无水乙醇。
作为优选的技术方案,步骤(6)中,所述胶合剂为聚乙烯醇。
作为优选的技术方案,所述聚乙烯醇的浓度为6wt%~10wt%,加入量为步骤(6)的粉料重量的10%。
与现有技术相比,本发明的优点在于:本发明的尖晶石NiZn旋磁材料烧结温度为1100℃~1350℃,饱和磁化强度在Ms在3000Gauss ~4500Gauss范围,有较小的铁磁共振线宽△H:150Oe~250Oe,较低的介电损耗
Figure 414715DEST_PATH_IMAGE001
,自旋波线宽△Hk在10Oe~38Oe范围可调。本发明微波铁氧体材料具有烧结温度可选范围宽、电磁损耗小、功率容量可调等特性,可以用于与介质陶瓷、低饱和磁化强度石榴石复合共烧制备复合基片,实现微波器件尤其是微带器件小型化、宽带化尤其是三倍频程设计,满足高功率、中功率、低功率微波器件选材需求。
具体实施方式
下面将结合实施例对本发明作进一步说明。
实施例1
一种低损耗尖晶石微波铁氧体材料,其主相结构为尖晶石结构,其化学式为Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中:a=0.1,b=0.2,c=0.02,d=0,e=0.1,f=0.04,g=0,δ=0.01。
其制备方法如下:
1.配方设计,根据组成化学式Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中:a=0.1,b=0.2,c=0.02,d=0,e=0.1,f=0.04,g=0,δ=0.01进行配方设计;
2.称料,配方设计结果,计算并称取所需各种原材料,所述原材料为分析纯的Fe2O3、NiO、ZnO、In2O3、SnO2、Dy2O3 、MnCO3
3.一次球磨,将称取的各种原材料混合装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行原材料一次湿法混合球磨,球磨时间为6 h;
4.预烧,将浆料烘干,过30目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为1000℃,保温5 h;
5.二次球磨,将预烧后的粉料,装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行二次湿法球磨,球磨时间为24 h,得到浆料;
6.造粒,将球磨后的浆料烘干,然后加入浓度为8wt%聚乙烯醇胶合剂10%进行造粒;
7.成型,将造粒料放入模具进行压制,压制压强为160MPa,得到材料生坯;
8.烧结,将生坯装入空气气氛或氧化气氛炉中进行烧结,烧结温度为1350℃,保温8 h。
测试,依据GB/T9633-2012进行材料的电磁性能测试。
本实施例制得的尖晶石微波多晶铁氧体材料电磁性能测试结果如表1所示。
实施例2
一种低损耗尖晶石微波铁氧体材料,其主相结构为尖晶石结构,其化学式为Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中: a=0,b=0.3,c=0.01,d=0.01,e=0,f=0.06,g=0,δ=0.06。
制备方法如下:
1.配方设计,根据组成化学式Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中:a=0,b=0.3,c=0.01,d=0.01,e=0,f=0.06,g=0,δ=0.06进行配方设计;
2.称料,配方设计结果,计算并称取所需各种原材料,所述原材料为分析纯的Fe2O3、NiO、In2O3、Co2O3、Dy2O3 、MnCO3
3.一次球磨,将称取的各种原材料混合装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行原材料一次湿法混合球磨,球磨时间为8 h;
4.预烧,将浆料烘干,过40目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为950℃,保温8 h;
5.二次球磨,将预烧后的粉料,装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行二次湿法球磨,球磨时间为10 h,得到浆料;
6.造粒,将球磨后的浆料烘干,然后加入浓度为6wt%聚乙烯醇胶合剂10%进行造粒;
7.成型,将造粒料放入模具进行压制,压制压强为120MPa,得到材料生坯;
8.烧结,将生坯装入空气气氛或氧化气氛炉中进行烧结,烧结温度为1300℃,保温6 h。
测试:依据GB/T9633-2012进行材料的电磁性能测试。
本实施例制得的尖晶石微波多晶铁氧体材料电磁性能测试结果如表1所示。
实施例3
一种低损耗尖晶石微波铁氧体材料,其主相结构为尖晶石结构,其化学式为Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中:a=0.1,b=0.1,c=0.01,d=0.01,e=0,f=0.1,g=0.1,δ=0.1。
其制备方法如下:
1.配方设计,根据组成化学式Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中:a=0.1,b=0.1,c=0.01,d=0.01,e=0,f=0.1,g=0.1,δ=0.1进行配方设计;
2.称料,配方设计结果,计算并称取所需各种原材料,所述原材料为分析纯的Fe2O3、NiO、ZnO 、In2O3、Co2O3、Dy2O3 、CuO、MnCO3
3.一次球磨,将称取的各种原材料混合装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行原材料一次湿法混合球磨,球磨时间为5 h;
4.预烧,将浆料烘干,过40目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为900℃,保温5 h;
5.二次球磨,将预烧后的粉料,装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行二次湿法球磨,球磨时间为8 h,得到浆料;
6.造粒,将球磨后的浆料烘干,然后加入浓度为6wt%聚乙烯醇胶合剂10%进行造粒;
7.成型,将造粒料放入模具进行压制,压制压强为120MPa,得到材料生坯;
8.烧结,将生坯装入空气气氛或氧化气氛炉中进行烧结,烧结温度为1220℃,保温6 h。
测试:依据GB/T9633-2012进行材料的电磁性能测试。
本实施例制得的尖晶石微波多晶铁氧体材料电磁性能测试结果如表1所示。
实施例4
一种低损耗尖晶石微波铁氧体材料,其主相结构为尖晶石结构,其化学式为Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中:a=0.2,b=0,c=0.005,d=0.03,e=0,f=0.05,g=0.2,δ=0.05。
其制备方法如下:
1.配方设计,根据组成化学式Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中:a=0.2,b=0,c=0.005,d=0.03,e=0,f=0.05,g=0.2,δ=0.05进行配方设计;
2.称料,配方设计结果,计算并称取所需各种原材料,所述原材料为分析纯的Fe2O3、NiO、ZnO 、Co2O3、Dy2O3 、CuO、MnCO3
3.一次球磨,将称取的各种原材料混合装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行原材料一次湿法混合球磨,球磨时间为5 h;
4.预烧,将浆料烘干,过40目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为850℃,保温6 h;
5.二次球磨,将预烧后的粉料,装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行二次湿法球磨,球磨时间为6 h,得到浆料;
6.造粒,将球磨后的浆料烘干,然后加入浓度为10wt%聚乙烯醇胶合剂10%进行造粒;
7.成型,将造粒料放入模具进行压制,压制压强为100MPa,得到材料生坯;
8.烧结,将生坯装入空气气氛或氧化气氛炉中进行烧结,烧结温度为1100℃,保温4 h。
测试:依据GB/T9633-2012进行材料的电磁性能测试。
本实施例制得的尖晶石微波多晶铁氧体材料电磁性能测试结果如表1所示。
Figure DEST_PATH_IMAGE002
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种低损耗尖晶石微波铁氧体材料,其特征在于:其化学通式为:Ni1-a-d+e- gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中,0≤a≤0.2,0≤b≤0.3,0.005≤c≤0.02,0≤d≤0.03,0≤e≤0.1,0≤f≤0.1,0≤g≤0.2,δ为缺铁量,0≤δ≤0.1。
2.权利要求1所述的低损耗尖晶石微波铁氧体材料的制备方法,其特征在于,包括下述步骤:
(1)配方设计:根据组成化学式Ni1-a-d+e-gZnaInbDycCodSneMnfCugFe2-b-c-2e-f-δO4,其中:0≤a≤0.2,0≤b≤0.3,0.005≤c≤0.02,0≤d≤0.03,0≤e≤0.1,0≤f≤0.1,0≤g≤0.2,δ为缺铁量,0≤δ≤0.1进行配方设计;
(2)称料:根据步骤(1)配方设计结果,计算并称取所需各种原材料,所述原材料为Fe2O3、NiO、ZnO、In2O3、Co2O3、SnO2、Dy2O3 、MnCO3、CuO;
(3)一次球磨:将步骤(2)称取的各种原材料混合装入球磨罐中,并加入球和稀释剂,进行原材料一次湿法混合球磨,球磨时间为5h~10h;
(4)预烧:将经步骤(3)后的浆料烘干,过30目~60目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为800℃~1000℃,保温4h~6h;
(5)二次球磨:将经步骤(4)预烧后的粉料,装入球磨罐中,并加入球和稀释剂,进行二次湿法球磨,球磨时间为5h~24h,得到浆料;
(6)造粒:将步骤(5)球磨后的浆料烘干得到粉料,然后加入胶合剂进行造粒;
(7)成型:将步骤(6)得到的颗粒放入模具进行压制,压制压强为100MPa~160MPa,得到材料生坯;
(8)烧结:将步骤(7)得到生坯装入空气气氛或氧化气氛炉中进行烧结,烧结温度为1100℃~1350℃,保温4 h~8 h,即得。
3.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述原材料的纯度为分析纯。
4.根据权利要求2所述的制备方法,其特征在于,步骤(3)中,所述稀释剂为去离子水或分析纯的无水乙醇。
5.根据权利要求2所述的制备方法,其特征在于,步骤(5)中,所述稀释剂为去离子水或分析纯的无水乙醇。
6.根据权利要求2所述的制备方法,其特征在于,步骤(6)中,所述胶合剂为聚乙烯醇。
7.根据权利要求6所述的制备方法,其特征在于,所述聚乙烯醇的浓度为6wt%~10wt%,加入量为步骤(6)粉料重量的10%。
CN202210362918.5A 2022-04-08 2022-04-08 低损耗尖晶石微波铁氧体材料及其制备方法 Active CN114702310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210362918.5A CN114702310B (zh) 2022-04-08 2022-04-08 低损耗尖晶石微波铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210362918.5A CN114702310B (zh) 2022-04-08 2022-04-08 低损耗尖晶石微波铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114702310A true CN114702310A (zh) 2022-07-05
CN114702310B CN114702310B (zh) 2023-05-05

Family

ID=82173042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210362918.5A Active CN114702310B (zh) 2022-04-08 2022-04-08 低损耗尖晶石微波铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114702310B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180935A (zh) * 2022-07-08 2022-10-14 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种毫米波ltcf生瓷带制备方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1071611A (en) * 1964-06-15 1967-06-07 Sumitomo Special Melts Company Process for producting ferrites
JP2006206384A (ja) * 2005-01-28 2006-08-10 Tdk Corp 非可逆回路素子用セラミック材料及びその製造方法
CN101388268A (zh) * 2008-07-11 2009-03-18 临沂中瑞电子有限公司 一种高磁导率低温烧结NiCuZn铁氧体材料
CN101591168A (zh) * 2009-06-05 2009-12-02 李凌峰 一种小线宽、低损耗微波铁氧体材料及制造方法
CN101723657A (zh) * 2009-12-16 2010-06-09 电子科技大学 一种NiCuZn微波铁氧体材料的制备方法
CN103588473A (zh) * 2013-08-15 2014-02-19 横店集团东磁股份有限公司 一种具有高饱和磁感应强度高磁导率特性的Mn-Zn铁氧体及其制备工艺
CN104402428A (zh) * 2014-11-21 2015-03-11 钢铁研究总院 一种高频高磁导率高q值的镍锌铁氧体材料及其制备方法
CN104446416A (zh) * 2014-12-02 2015-03-25 南京国睿微波器件有限公司 尖晶石NiSn系列旋磁铁氧体材料及其制备方法
CN104860669A (zh) * 2015-05-11 2015-08-26 西南应用磁学研究所 高温烧制铁氧体-陶瓷一体化基板及制备方法
CN108164260A (zh) * 2018-01-15 2018-06-15 上海安费诺永亿通讯电子有限公司 一种无线充电用镍锌软磁铁氧体及其制备方法、应用
CN108863336A (zh) * 2018-07-24 2018-11-23 北京无线电测量研究所 一种镍系微波铁氧体基片材料及其制备方法
CN109095915A (zh) * 2018-08-20 2018-12-28 浙江大学 制备高性能MnZn铁氧体的In(Cd,Ga)、Ni、Ti、Co离子联合替代方法
CN111285672A (zh) * 2020-01-18 2020-06-16 南京彼奥电子科技有限公司 一种毫米波铁氧体环行器基片材料及其制备方法
CN111620682A (zh) * 2020-06-19 2020-09-04 中国电子科技集团公司第九研究所 梯度饱和磁化强度微波铁氧体材料、制成的铁氧体基板及其制备方法
CN112321291A (zh) * 2020-10-09 2021-02-05 北京无线电测量研究所 一种高饱和低温烧结旋磁Ni系尖晶石铁氧体材料及其制备方法
CN113773069A (zh) * 2021-09-10 2021-12-10 无锡市高宇晟新材料科技有限公司 铁氧体材料及其制备方法和应用
CN113800896A (zh) * 2021-09-24 2021-12-17 浙江凯文磁钢有限公司 一种制造铋钙钒石榴石铁氧体材料的方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1071611A (en) * 1964-06-15 1967-06-07 Sumitomo Special Melts Company Process for producting ferrites
JP2006206384A (ja) * 2005-01-28 2006-08-10 Tdk Corp 非可逆回路素子用セラミック材料及びその製造方法
CN101388268A (zh) * 2008-07-11 2009-03-18 临沂中瑞电子有限公司 一种高磁导率低温烧结NiCuZn铁氧体材料
CN101591168A (zh) * 2009-06-05 2009-12-02 李凌峰 一种小线宽、低损耗微波铁氧体材料及制造方法
CN101723657A (zh) * 2009-12-16 2010-06-09 电子科技大学 一种NiCuZn微波铁氧体材料的制备方法
CN103588473A (zh) * 2013-08-15 2014-02-19 横店集团东磁股份有限公司 一种具有高饱和磁感应强度高磁导率特性的Mn-Zn铁氧体及其制备工艺
CN104402428A (zh) * 2014-11-21 2015-03-11 钢铁研究总院 一种高频高磁导率高q值的镍锌铁氧体材料及其制备方法
CN104446416A (zh) * 2014-12-02 2015-03-25 南京国睿微波器件有限公司 尖晶石NiSn系列旋磁铁氧体材料及其制备方法
CN104860669A (zh) * 2015-05-11 2015-08-26 西南应用磁学研究所 高温烧制铁氧体-陶瓷一体化基板及制备方法
CN108164260A (zh) * 2018-01-15 2018-06-15 上海安费诺永亿通讯电子有限公司 一种无线充电用镍锌软磁铁氧体及其制备方法、应用
CN108863336A (zh) * 2018-07-24 2018-11-23 北京无线电测量研究所 一种镍系微波铁氧体基片材料及其制备方法
CN109095915A (zh) * 2018-08-20 2018-12-28 浙江大学 制备高性能MnZn铁氧体的In(Cd,Ga)、Ni、Ti、Co离子联合替代方法
CN111285672A (zh) * 2020-01-18 2020-06-16 南京彼奥电子科技有限公司 一种毫米波铁氧体环行器基片材料及其制备方法
CN111620682A (zh) * 2020-06-19 2020-09-04 中国电子科技集团公司第九研究所 梯度饱和磁化强度微波铁氧体材料、制成的铁氧体基板及其制备方法
CN112321291A (zh) * 2020-10-09 2021-02-05 北京无线电测量研究所 一种高饱和低温烧结旋磁Ni系尖晶石铁氧体材料及其制备方法
CN113773069A (zh) * 2021-09-10 2021-12-10 无锡市高宇晟新材料科技有限公司 铁氧体材料及其制备方法和应用
CN113800896A (zh) * 2021-09-24 2021-12-17 浙江凯文磁钢有限公司 一种制造铋钙钒石榴石铁氧体材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金宇龙: "微波铁氧体材料的现状与发展", 《无机盐工业》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180935A (zh) * 2022-07-08 2022-10-14 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种毫米波ltcf生瓷带制备方法
CN115180935B (zh) * 2022-07-08 2023-11-03 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种毫米波ltcf生瓷带制备方法

Also Published As

Publication number Publication date
CN114702310B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN111825441B (zh) 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用
CN109867518B (zh) 一种高温度稳定性的石榴石铁氧体及其制备方法
CN101859622B (zh) 一种中频低损耗MnZn铁氧体磁芯的制造方法
CN101575206B (zh) 高频大功率镍锌基软磁铁氧体材料及其制造方法
TW202337868A (zh) 對溫度不敏感的介電常數石榴石
CN110803921B (zh) 一种复合微波铁氧体磁片及其制备方法和用途
CN111499369B (zh) 一种Ku波段用高功率旋矩铁氧体材料及其制备方法
CN114477995B (zh) 一种中饱和磁化强度功率型高介电常数石榴石材料及其制备方法
CN111620682A (zh) 梯度饱和磁化强度微波铁氧体材料、制成的铁氧体基板及其制备方法
CN108863336B (zh) 一种镍系微波铁氧体基片材料及其制备方法
CN106518038A (zh) 多元掺杂yig材料及其制备方法
CN115385680A (zh) 一种高介低线宽微波旋磁铁氧体材料及其制备方法
CN107382313B (zh) 一种超高品质因数、中低介电常数及近零温度系数的微波介质陶瓷及其制备方法
CN113651609A (zh) 一种微波铁氧体材料及其制备方法与应用
CN114702310B (zh) 低损耗尖晶石微波铁氧体材料及其制备方法
CN114436637A (zh) 一种高介电常数高功率微波铁氧体材料及其制备方法
CN114956800B (zh) 一种高性能微波多晶铁氧体材料
CN111004028A (zh) 一种微波铁氧体磁片及其制备方法和用途
CN115537924A (zh) 一种yig微波滤波晶体及其生长方法
CN108774057A (zh) 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法
CN113845359A (zh) 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
CN113461414A (zh) 适用于毫米波微带环形器的铁氧体及其制备方法和应用
CN113248265A (zh) 一种叠层高频电感用材料及其制备方法
CN114436635B (zh) 具有高自旋波线宽的微波铁氧体材料及其制备方法
CN115180935B (zh) 一种毫米波ltcf生瓷带制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant