CN115180935A - 一种毫米波ltcf生瓷带制备方法 - Google Patents

一种毫米波ltcf生瓷带制备方法 Download PDF

Info

Publication number
CN115180935A
CN115180935A CN202210798388.9A CN202210798388A CN115180935A CN 115180935 A CN115180935 A CN 115180935A CN 202210798388 A CN202210798388 A CN 202210798388A CN 115180935 A CN115180935 A CN 115180935A
Authority
CN
China
Prior art keywords
equal
ball milling
ltcf
millimeter wave
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210798388.9A
Other languages
English (en)
Other versions
CN115180935B (zh
Inventor
袁红兰
杨菲
彭梓
冯涛
肖永成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 9 Research Institute
Original Assignee
CETC 9 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 9 Research Institute filed Critical CETC 9 Research Institute
Priority to CN202210798388.9A priority Critical patent/CN115180935B/zh
Publication of CN115180935A publication Critical patent/CN115180935A/zh
Application granted granted Critical
Publication of CN115180935B publication Critical patent/CN115180935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2616Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing lithium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4

Abstract

本发明公开了一种毫米波LTCF生瓷带制备方法,经过配方计算后,依次通过配料、一次球磨、预烧、二次球磨、制浆、流延、叠层、共烧,得到流延生瓷带,其中,其配方组成为Ni1‑x‑ yZnxCuyMnzFe2‑z‑δO4,其中:0.25≤x≤0.45,0.16≤y≤0.25,0.02≤z≤0.08,δ为缺铁量,0.01≤δ≤0.1,并在所述二次球磨步骤中加入0.5wt%~1.0wt%的Bi2O3,制备的尖晶石NiZn毫米波LTCF生瓷带,烧结温度在880℃~920℃范围,可实现与金属浆料(银浆、金浆)共烧;所制得的旋磁生瓷带致密、均匀、单相的尖晶石结构,电磁性能优异,饱和磁化强度4πMs在4400Gauss~4600Gauss,铁磁共振线宽△H在185Oe~109Oe,介电损耗tand e均小于5×10‑4,气孔率低于1.9%,具有较高的居里温度,自旋波线宽△Hk大于15Oe,具有一定的功率承受能力。

Description

一种毫米波LTCF生瓷带制备方法
技术领域
本发明涉及磁铁氧体材料技术领域,尤其涉及一种毫米波LTCF生瓷带制备方法。
背景技术
雷达相控阵体系的小型化、集成化成为当前射频、微波毫米波器件及组件的重要发展方向,传统环行器由于体积较大原因严重制约了雷达阵面的轻薄化。基于低温共烧旋磁铁氧体材料(LTCF)技术可实现环行器的轻薄化、集成化,打破传统阵面架构,使得新型远程毫米波陆基雷达的天线阵面的厚度、重量、体积大幅减少,集成度显著提高。
LTCF技术应用的旋磁材料不是传统成型工艺制备的块体材料,而是流延工艺制备的生瓷带,需要生瓷带与电路的金属浆料匹配共烧,因此,毫米波LTCF生瓷带的要求是:在低于920℃烧结温度下具有高饱和磁化强度、低损耗、低气孔率、高居里温度等特性。
但是,目前的流延工艺制备的生瓷带,在流延浆料的制备过程中,加入了粘结剂、增塑剂、溶剂、分散剂等,导致流延工艺制备的生瓷带电磁性能较成型工艺材料性能差。LTCF设计需要与直接印刷在旋磁生瓷带上的Ag导体共烧,为防止短路,要求生瓷带具有很高的电阻率ρ,而电阻率与介电损耗成反比,高电阻率意味着材料必须有的低介电损耗。
为了解决上述问题,本领域技术人员作了很多努力,比如,中国申请号:CN202110943087.6,一种基于LTCC技术的NiCuZn铁氧体制备方法,公开了:在预烧工艺中二元掺杂Bi2O3和Co2O3,采用成型工艺、烧结温度925℃,得到致密度高,孔隙小,饱和磁化强度到了55.858emu/g(约为3600 Gauss),矫顽力为4.87Oe的NiCuZn铁氧体材料,该专利虽然没有公开介电损耗性能,但是,该专利的材料矫顽力大,从而可以推断材料的电磁损耗大,另外,所掺杂的Co2O3的熔点895℃,虽然比NiO、ZnO等氧化物低,但Co离子是快驰豫离子,Co离子添加会导致材料的线宽,尤其是有效线宽的成倍增加,也会使材料介电损耗增大。
又比如,中国专利申请号:CN202110324931.7,一种高饱和磁化强度低温烧结LiZn铁氧体材料及其制备方法,发明通过Zr离子部分取代的LiZn铁氧体中的Zn离子,得到LiZn铁氧体材料:Li0.43Zn0.27Zr0.13Fe2.17O4,采用成型工艺,925℃烧结时样品密度能够达到4.76g/cm3 ,Bi2O3助烧剂的用量为1.5wt%时,饱和磁化强度高达102.4emu/g、矫顽力为192A/m、铁磁共振线宽为205Oe,该专利是LiZn铁氧体材料,相对于NiZn铁氧体材料而言,损耗更大,另外材料的致密性也较差,因为流延工艺制备的LiZn生瓷带的气孔率一般在3.5%左右,NiZn生瓷带的气孔率一般在2%左右。
又比如,中国专利申请号:CN202011071585.8,一种高饱和低温烧结旋磁Ni系尖晶石铁氧体材料,铁氧体材料化学分子式为Ni(1-a-b-c)ZnaCubCocMndFe2-dO4,在900℃烧结所得的铁氧体材料,饱和磁化强度≧4000Gs,介电损耗正切(tanδ)≦1×10-3,铁磁共振线宽(ΔH)≦150Oe,饱和磁化强度≧4600Gs,介电损耗正切(tanδ)≦1.5×10-3,铁磁共振线宽(ΔH)≦250Oe。该专利具有高饱和磁化强度高,但介电损耗大。
即,对于毫米波应用的高饱和磁化强度的LTCF生瓷带,目前报道最好性能是:饱和磁化强度4πMs≧4600Gs,介电损耗tanδε≦1.5×10-3,铁磁共振线宽ΔH≦250Oe。对于应用来说,损耗还是较大,尤其是介电损耗在10-3级别。
发明内容
本发明的目的就在于提供一种毫米波LTCF生瓷带制备方法,以解决上述问题。
为了实现上述目的,本发明采用的技术方案是这样的:
一种毫米波LTCF生瓷带制备方法,经过配方计算后,依次通过配料、一次球磨、预烧、二次球磨、制浆、流延、叠层、共烧,得到电磁性能合格的流延生瓷带,其中,其配方组成为Ni1-x-yZnxCuyMnzFe2-z-δO4,其中:0.25≤x≤0.45,0.16≤y≤0.25,0.02≤z≤0.08,δ为缺铁量,0.01≤δ≤0.1,并在所述二次球磨步骤中加入0.5 wt%~1.0wt%的Bi2O3掺杂剂。
作为优选的技术方案,包括下述步骤:
(1)配方设计:根据组成化学式Ni1-x-yZnxCuyMnzFe2-z-δO4,其中:0.25≤x≤0.45,0.16≤y≤0.25,0.02≤z≤0.08,δ为缺铁量,0.01≤δ≤0.1进行配方设计;
(2)称料:根据步骤(1)配方设计结果,计算并称取所需各种原材料,所述原材料为分析纯的Fe2O3、NiO、ZnO、CuO、MnCO3,然后按照比例称取掺杂剂:0.05 wt%~0.2wt%的Li2CO3、0.5 wt%~1.0wt%的Bi2O3和0.05 wt%~0.2wt%的V2O5,所述掺杂剂为分析纯的Li2CO3、V2O5、Bi2O3;微量的低熔点氧化物Bi2O3、Li2CO3、V2O5加入,以降低烧结温度,不进入配方分子式取代计算,掺杂剂的百分含量为总物料质量百分比;
(3)一次球磨,将步骤(2)称取的各种原材料和掺杂剂Li2CO3、V2O5混合装入球磨罐中,并加入球和稀释剂,进行原材料一次湿法混合球磨,球磨时间为5小时~8小时;
(4)预烧:将经步骤(3)后的浆料烘干,过30目~60目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为780℃~850℃,保温5小时~8小时;
(5)二次球磨,将经步骤(4)预烧后的粉料,装入球磨罐中,再加入0.5 wt%~1.0wt%的Bi2O3掺杂剂、并加入球和稀释剂,进行二次湿法球磨,球磨时间为5小时~10小时,得到旋磁粉料二磨浆料,粉料粒度D50控制在1.0μm ~1.5μm;
(6)制浆:加入1%~5%的增塑剂、1.0 wt %~5.0 wt %的分散剂、8.0wt%~12.0 wt%的粘结剂及40.0 wt %~80.0 wt %的有机载体加入球磨罐中混合10小时~20小时,再将步骤5二次球磨浆料烘干得到旋磁粉料100wt %加入球磨罐中球磨20小时~45小时,形成黏度为1500mPa·s~3000 mPa·s的流延浆料;
(7)流延:将步骤(6)得到的浆料进行流延制备旋磁生瓷带,流延速度控制在0.2~0.6m/min,生瓷带厚度50μm±5μm ~100μm±5μm(即,生瓷带厚度在50μm ~100μm范围的任一值,公差控制在±5μm,以保障生瓷带厚度均匀性);
(8)叠层:将步骤(7)得到生瓷带切割成方片,将方片依次堆叠在一起,并进行真空包封,包封后采用温等静压压制成厚度大于3mm的生坯;
(9)共烧:将步骤(8)得到生坯进行排胶、共烧,排胶温度为400℃~500℃,保温10小时~20小时;共烧温度为880℃~920℃,保温5小时~10小时。
作为优选的技术方案:步骤(3)和步骤(5)中的稀释剂均为去离子水。
作为优选的技术方案:步骤(6)中的增塑剂为邻苯二甲酸二丁酯、邻苯二甲基二辛酯或聚乙二醇中的一种。
作为优选的技术方案:步骤(6)中的分散剂选自三油酸甘油酯、三乙醇胺中的一种。
作为优选的技术方案:步骤(6)中的粘结剂为聚乙二醇缩丁醛。
作为优选的技术方案:步骤(6)中的有机载体为乙醇和丁酮,二者质量比为1:1。
作为优选的技术方案:步骤(8)中的方片尺寸为4英寸。
作为优选的技术方案:步骤(8)中的采用铝塑带进行真空包封。
作为优选的技术方案:共烧后进行性能测试:具体而言,先依据GB/T9633-2012测试样品要求制备测试样品,然后进行电磁性能测试。
微波铁氧体材料的电磁性能主要包括本征特性及非本征特性,饱和磁化强度4πMs、居里温度TC等是材料的本征参数,只取决于材料各次晶格上磁性阳离子的数量及分布情况,而介电损耗tanδε、铁磁共振线宽ΔH等不仅与其化学成分和晶体结构有关,而且与密度、晶粒尺寸、气孔率以及它们在晶粒内部和晶粒之间的分布关系密切,是材料微结构的结构敏感量,所以,本专利在配方设计中引入低熔点氧化物Bi2O3,在较低温度下形成液相或过渡液相,促进材料的低温烧结致密化,用CuO、Li2CO3、V2O5进行适量离子代换,形成具有较低熔点的改性化合物,促进烧结固相反应进程,达到低烧结温度下固相反应完全的目的;其中,Li1+和V5+联合取代2个Fe3+,Li1+和V5+作为一个整体使用,一是电价平衡,二是离子个数相等,在工艺设计中,各工序采用最佳工艺参数配合,制备致密、均匀的生瓷带,实现生瓷带高饱和磁化强度、低损耗、高温度稳定性的制备。
本发明在生瓷带配方设计中引入低熔点氧化物Bi2O3掺杂,并在适当的时机(二次球磨)中加入,在较低烧结温度下形成液相或过渡液相,促进材料的低温烧结致密化;在实施例2的基础上做对比例,即Bi2O3在预烧工艺加入,其余条件不变,包括相同烧结温度下,ΔH为150 Oe左右,tanδε在5×10-4,可见,二次球磨加入Bi2O3比预烧工艺加入,材料损耗性能更优。
另外,本发明用适当的金属离子进行适量代换,Cu2+取代Ni2+,Li1+和V5+联合取代2个Fe3+的形成具有较低熔点的改性化合物,达到降低烧结温度的目的,使生瓷带在880℃~920℃烧结固相反应完全,具有单一的尖晶石相结构,使生瓷带具有较低的电磁损耗;采用Mn2+配合缺铁量δ组合设计,抑制烧结中Fe2+的产生,从而提高电阻率ρ,即达到降低介电损耗tand e的目的,又可避免与Ag导体共烧短路。工艺设计中,各工序采用最佳工艺参数配合,首先制备电磁性能优异的旋磁粉,料粉料粒度D50控制在1.0μm~1.5μm,烧结生瓷带不易边沿翘曲;旋磁粉料、增塑剂、分散剂、粘结剂、有机载体适当比例配置混合制浆,使流延浆料的黏度为1500mPa·s~3000 mPa·s,流延生瓷带均匀、致密。
与现有技术相比,本发明的优点在于: 本发明制备的尖晶石NiZn毫米波LTCF生瓷带,烧结温度在880℃~920℃范围,可实现与金属浆料(银浆、金浆)共烧。所制得的旋磁生瓷带致密、均匀、单相的尖晶石结构,具有烧结温度低、损耗小、居里温度高、气孔率低等优点,电磁性能优异,饱和磁化强度4πMs在4400Gauss~4600Gauss,铁磁共振线宽△H在185Oe~109Oe,介电损耗tand e均小于5×10-4,气孔率低于1.9%,且具有较高的居里温度373℃,自旋波线宽△Hk大于15Oe,具有一定的功率承受能力。
附图说明
图1为本发明的工艺流程图;
图2为本发明各实施例所制得的生瓷带的XRD图。
具体实施方式
下面将结合附图对本发明作进一步说明。
实施例1
一种毫米波LTCF生瓷带,其主相结构为尖晶石结构,其化学式为Ni1-x- yZnxCuyMnzFe2-z-δO4,其中:x=0.25,y=0.16,z=0.08,δ=0. 1;
其制备方法参见图1,具体如下:
(1)配方设计,根据组成化学式Ni1-x-yZnxCuyMnzFe2-z-δO4,其中:x=0.25,y=0.16,z=0.08,δ=0.1,进行配方设计;
(2)称料,配方设计结果,计算并称取所需各种原材料,所述原材料为分析纯的Fe2O3、NiO、ZnO、CuO、MnCO3、Li2CO3、V2O5、Bi2O3;称取掺杂剂:0.2wt%的Li2CO3和0.2wt%的V2O5,所述掺杂剂为分析纯的Li2CO3、V2O5
(3)一次球磨,将称取的各种原材料和掺杂剂混合装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行原材料一次湿法混合球磨,高效研磨设备球磨时间为8小时;
(4)预烧,将一磨浆料烘干,过30目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为850℃,保温5小时;
(5)二次球磨,将预烧后的粉料,装入球磨罐中,然后加入1.0wt%的Bi2O3掺杂剂,并加入球和稀释剂,稀释剂为去离子水,进行二次湿法球磨,球磨时间为球磨时间为10小时,得到旋磁粉料,粉料粒度D50控制在1.0μm~1.5μm;
(6)制浆,先将4.5%的增塑剂(邻苯二甲酸二丁酯)、1%的分散剂(三油酸甘油酯)、8%的粘结剂(聚乙二醇缩丁醛)及50%的有机溶剂乙醇和丁酮(质量比1:1)加入球磨罐中混合10小时;再将烘干得到旋磁粉料100%加入球磨罐中球磨45小时,形成黏度为1500mPa·s左右的流延浆料;
(7)流延,将浆料进行流延制备旋磁生瓷带,流延速度控制在60mm/min,生瓷带厚度在50μm±5μm范围;
(8)叠层,将方片依次堆叠在一起,并用铝塑带进行真空包封,包封后采用温等静压压制成厚度大于3mm的生坯坯;
(9)共烧,将生坯进行排胶、烧结得到共烧样品,排胶温度为400℃,保温20小时;共烧温度为920℃,保温5小时;
(10)测试,依据GB/T9633-2012测试样品要求制备测试样品,然后进行电磁性能测试,测试结果见表1。
LTCF生瓷带性能测试结果如表1所示。
实施例2
一种毫米波LTCF生瓷带,其主相结构为尖晶石结构,其化学式为Ni1-x- yZnxCuyMnzFe2-z-δO4,其中:x=0.35,y=0.2,z=0.05,δ=0.05。
其制备方法如下:
(1)配方设计,根据组成化学式Ni1-x-yZnxCuyMnzFe2-z-δO4,其中:x=0.35,y=0.2,z=0.05,δ=0.05进行配方设计;
(2)称料,配方设计结果,计算并称取所需各种原材料,所述原材料为分析纯的Fe2O3、NiO、ZnO、CuO、MnCO3、Li2CO3、V2O5、Bi2O3;称取掺杂剂:0.1wt%的Li2CO3和0.1wt%的V2O5,所述掺杂剂为分析纯的Li2CO3、V2O5
(3)一次球磨,将称取的各种原材料和掺杂剂混合装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行原材料一次湿法混合球磨,高效研磨设备球磨时间为5小时;
(4)预烧,将一磨浆料烘干,过30目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为820℃,保温6小时;
(5)二次球磨,将预烧后的粉料,装入球磨罐中,再加入1.0wt%Bi2O3掺杂剂,并加入球和稀释剂,稀释剂为去离子水,进行二次湿法球磨,球磨时间为5小时,得到旋磁粉料二磨浆料,粉料粒度D50控制在1.0μm ~1.5μm;
(6)制浆,先将5%的增塑剂(聚乙二醇)、1%的分散剂(三乙醇胺)、12%的粘结剂(聚乙二醇缩丁醛)及50%的有机溶剂乙醇和丁酮(质量比1:1)加入球磨罐中混合20小时;再将烘干得到旋磁粉料加入球磨罐中球磨20小时,形成黏度为2000 mPa·s的流延浆料;
(7)流延,将浆料进行流延制备旋磁生瓷带,流延速度控制在60mm/min,生瓷带厚度50μm±5μm;
(8)叠层,将方片依次堆叠在一起,并用铝塑带进行真空包封,包封后采用温等静压压制成厚度大于3mm的生坯坯;
(9)共烧,将生坯进行排胶、共烧得到共烧基板,排胶温度为500℃,保温10小时;共烧温度为900℃,保温8小时;
(10)测试,依据GB/T9633-2012测试样品要求制备测试样品,然后进行电磁性能测试,结果如表1所示。
实施例3
一种毫米波LTCF生瓷带制备方法,其主相结构为尖晶石结构,其化学式为Ni1-x- yZnxCuyMnzFe2-z-δO4,其中:x=0.45,y=0.25,z=0.02,δ=0.01。
制备方法如下:
(1)配方设计,根据组成化学式Ni1-x-yZnxCuyMnzFe2-z-δO4,其中:x=0.45,y=0.25,z=0.02,δ=0.01进行配方设计;
(2)称料,配方设计结果,计算并称取所需各种原材料,所述原材料为分析纯的Fe2O3、NiO、ZnO、CuO、MnCO3、Li2CO3、V2O5、Bi2O3;称取掺杂剂:0.05 wt%的Li2CO3和0.05 wt%的V2O5,所述掺杂剂为分析纯的Li2CO3、V2O5
(3)一次球磨,将称取的各种原材料和掺杂剂混合装入球磨罐中,并加入球和稀释剂,稀释剂为去离子水,进行原材料一次湿法混合球磨,高效研磨设备球磨时间为5小时;
(4)预烧,将一磨浆料烘干,60目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为780℃,保温8小时;
(5)二次球磨,将预烧后的粉料,装入球磨罐中,再加入0.5wt%的Bi2O3掺杂剂,并加入球和稀释剂,稀释剂为去离子水,进行二次湿法球磨,球磨时间为5小时小时,得到旋磁粉料二磨浆料,粉料粒度D50控制在1.0μm ~1.5μm;
(6)制浆,先将1%的增塑剂(邻苯二甲基二辛酯)、5%的分散剂(三油酸甘油酯)、12%的粘结剂(聚乙二醇缩丁醛)及80%的有机溶剂乙醇和丁酮(质量比1:1)加入球磨罐中混合10小时;再将烘干得到旋磁粉料加入球磨罐中球磨20小时,形成黏度为3000 mPa·s左右的流延浆料;
(7)流延,将浆料进行流延制备生瓷带,流延速度控制在20mm/min,生瓷带厚度100μm±5μm;
(8)叠层,将方片依次堆叠在一起,并用铝塑带进行真空包封,包封后采用温等静压压制成厚度大于3mm的生坯坯;
(9)共烧,将生坯进行排胶、共烧得到共烧基板,排胶温度为400℃,保温20小时;共烧温度为880℃,保温10小时;
(10)测试,依据GB/T9633-2012测试样品要求制备测试样品,然后进行电磁性能测试。
LTCF生瓷带性能测试结果如表1所示;
表1生瓷带性能
Figure 73940DEST_PATH_IMAGE001
从上表可以看出,实施例2所制得的生瓷带的综合性能指标最优,饱和磁化强度4πMs高达4620 Gauss,铁磁共振线宽△H为120 Oe,介电损耗tand e低至3.5×10-4,自旋波线宽△Hk大于16Oe,且具有较高的居里温度373℃,致密的结构,气孔率为1.9%,已满足毫米波LTCF器件设计需求。
对比例1
本对比例是以实施例2为基础,将步骤(5)中加入的Bi2O3掺杂剂改为在步骤(4)中加入,其余条件均不变,所制得的生瓷带的性能见表1。
对比例2
本对比例是以实施例2为基础,仅步骤(2)中,不添加掺杂剂Li2CO3和V2O5,其余与实施例2相同,结果见表1。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种毫米波LTCF生瓷带制备方法,其特征在于:经过配方计算后,依次通过配料、一次球磨、预烧、二次球磨、制浆、流延、叠层、共烧,得到电磁性能合格的流延生瓷带,其中,其配方组成为Ni1-x-yZnxCuyMnzFe2-z-δO4,其中:0.25≤x≤0.45,0.16≤y≤0.25,0.02≤z≤0.08,δ为缺铁量,0.01≤δ≤0.1,并在所述二次球磨步骤中加入0.5 wt%~1.0wt%的Bi2O3掺杂剂。
2.根据权利要求1所述的一种毫米波LTCF生瓷带制备方法,其特征在于,包括下述步骤:
(1)配方设计:根据组成化学式Ni1-x-yZnxCuyMnzFe2-z-δO4,其中:0.25≤x≤0.45,0.16≤y≤0.25,0.02≤z≤0.08,δ为缺铁量,0.01≤δ≤0.1进行配方设计;
(2)称料:根据步骤(1)配方设计结果,计算并称取所需各种原材料,所述原材料为分析纯的Fe2O3、NiO、ZnO、CuO、MnCO3,然后按照比例称取掺杂剂:0.5 wt%~1.0wt%的Bi2O3、0.05 wt%~0.2wt%的Li2CO3和0.05 wt%~0.2wt%的V2O5,所述掺杂剂为分析纯的Li2CO3、V2O5、Bi2O3
(3)一次球磨,将步骤(2)称取的各种原材料和掺杂剂Li2CO3、V2O5混合装入球磨罐中,并加入球和稀释剂,进行原材料一次湿法混合球磨,球磨时间为5小时~8小时;
(4)预烧:将经步骤(3)后的浆料烘干,过30目~60目分样筛制备成粉料,然后放入烧结炉内进行预烧,预烧温度为780℃~850℃,保温5小时~8小时;
(5)二次球磨,将经步骤(4)预烧后的粉料,装入球磨罐中,然后加入0.5 wt%~1.0wt%的Bi2O3掺杂剂、球和稀释剂,进行二次湿法球磨,球磨时间为5小时~10小时,得到旋磁粉料二磨浆料,粉料粒度D50控制在1.0μm~1.5μm;
(6)制浆:加入1%~5%的增塑剂、1.0 wt %~5.0 wt %的分散剂、8.0wt%~12.0 wt %的粘结剂及40.0 wt %~80.0 wt %的有机载体加入球磨罐中混合10小时~20小时,再将步骤5二次球磨浆料烘干得到的旋磁粉料100wt %加入球磨罐中球磨20小时~45小时,形成黏度为1500mPa·s~3000 mPa·s的流延浆料;
(7)流延:将步骤(6)得到的浆料进行流延制备旋磁生瓷带,流延速度控制在20~60mm/min,生瓷带厚度50μm±5μm ~100μm±5μm;
(8)叠层:将步骤(7)得到生瓷带切割成方片,将方片依次堆叠在一起,并进行真空包封,包封后采用温等静压压制成厚度大于3mm的生坯;
(9)共烧:将步骤(8)得到生坯进行排胶、共烧,排胶温度为400℃~500℃,保温10小时~20小时;共烧温度为880℃~920℃,保温5小时~10小时。
3.根据权利要求2所述的一种毫米波LTCF生瓷带制备方法,其特征在于:步骤(3)和步骤(5)中的稀释剂均为去离子水。
4.根据权利要求3所述的一种毫米波LTCF生瓷带制备方法,其特征在于:步骤(6)中的增塑剂为邻苯二甲酸二丁酯、邻苯二甲基二辛酯或聚乙二醇中的任一种。
5.根据权利要求3所述的一种毫米波LTCF生瓷带制备方法,其特征在于:分散剂选自三油酸甘油酯、三乙醇胺中的一种。
6.根据权利要求3所述的一种毫米波LTCF生瓷带制备方法,其特征在于:步骤(6)中的粘结剂为聚乙二醇缩丁醛。
7.根据权利要求3所述的一种毫米波LTCF生瓷带制备方法,其特征在于:步骤(6)中的有机载体为质量比1:1的乙醇和丁酮。
8.根据权利要求3所述的一种毫米波LTCF生瓷带制备方法,其特征在于:步骤(8)中的方片尺寸为4英寸。
9.根据权利要求3所述的一种毫米波LTCF生瓷带制备方法,其特征在于:步骤(8)中的采用铝塑带进行真空包封。
10.根据权利要求3所述的一种毫米波LTCF生瓷带制备方法,其特征在于:共烧后进行性能测试。
CN202210798388.9A 2022-07-08 2022-07-08 一种毫米波ltcf生瓷带制备方法 Active CN115180935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210798388.9A CN115180935B (zh) 2022-07-08 2022-07-08 一种毫米波ltcf生瓷带制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210798388.9A CN115180935B (zh) 2022-07-08 2022-07-08 一种毫米波ltcf生瓷带制备方法

Publications (2)

Publication Number Publication Date
CN115180935A true CN115180935A (zh) 2022-10-14
CN115180935B CN115180935B (zh) 2023-11-03

Family

ID=83517072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210798388.9A Active CN115180935B (zh) 2022-07-08 2022-07-08 一种毫米波ltcf生瓷带制备方法

Country Status (1)

Country Link
CN (1) CN115180935B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184364A (ja) * 2007-01-30 2008-08-14 Fdk Corp 酸化物磁性材料
CN101723657A (zh) * 2009-12-16 2010-06-09 电子科技大学 一种NiCuZn微波铁氧体材料的制备方法
JP2010222218A (ja) * 2009-03-25 2010-10-07 Fdk Corp 低温焼成フェライト
US20110230329A1 (en) * 2010-03-18 2011-09-22 Ngk Insulators, Ltd. POWDERS USED FOR PRODUCING Ni-Cu-Zn SYSTEM FERRITE CERAMICS SINTERED BODY AND METHOD FOR MANUFACTURING THE SAME
CN102603279A (zh) * 2012-03-07 2012-07-25 天通控股股份有限公司 一种高强度高Bs镍锌铁氧体及其制备方法
CN104987056A (zh) * 2015-06-30 2015-10-21 电子科技大学 一种新型的铁电-铁磁复合材料及其制备方法
CN105236948A (zh) * 2015-08-28 2016-01-13 电子科技大学 Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法
CN110483032A (zh) * 2019-09-06 2019-11-22 电子科技大学 基于ltcc技术的低温烧结yig铁氧体及制备方法
CN112321291A (zh) * 2020-10-09 2021-02-05 北京无线电测量研究所 一种高饱和低温烧结旋磁Ni系尖晶石铁氧体材料及其制备方法
CN113603472A (zh) * 2021-08-17 2021-11-05 杭州电子科技大学 一种基于LTCC技术的NiCuZn铁氧体制备方法
CN114702310A (zh) * 2022-04-08 2022-07-05 西南应用磁学研究所(中国电子科技集团公司第九研究所) 低损耗尖晶石微波铁氧体材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184364A (ja) * 2007-01-30 2008-08-14 Fdk Corp 酸化物磁性材料
JP2010222218A (ja) * 2009-03-25 2010-10-07 Fdk Corp 低温焼成フェライト
CN101723657A (zh) * 2009-12-16 2010-06-09 电子科技大学 一种NiCuZn微波铁氧体材料的制备方法
US20110230329A1 (en) * 2010-03-18 2011-09-22 Ngk Insulators, Ltd. POWDERS USED FOR PRODUCING Ni-Cu-Zn SYSTEM FERRITE CERAMICS SINTERED BODY AND METHOD FOR MANUFACTURING THE SAME
CN102603279A (zh) * 2012-03-07 2012-07-25 天通控股股份有限公司 一种高强度高Bs镍锌铁氧体及其制备方法
CN104987056A (zh) * 2015-06-30 2015-10-21 电子科技大学 一种新型的铁电-铁磁复合材料及其制备方法
CN105236948A (zh) * 2015-08-28 2016-01-13 电子科技大学 Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法
CN110483032A (zh) * 2019-09-06 2019-11-22 电子科技大学 基于ltcc技术的低温烧结yig铁氧体及制备方法
CN112321291A (zh) * 2020-10-09 2021-02-05 北京无线电测量研究所 一种高饱和低温烧结旋磁Ni系尖晶石铁氧体材料及其制备方法
CN113603472A (zh) * 2021-08-17 2021-11-05 杭州电子科技大学 一种基于LTCC技术的NiCuZn铁氧体制备方法
CN114702310A (zh) * 2022-04-08 2022-07-05 西南应用磁学研究所(中国电子科技集团公司第九研究所) 低损耗尖晶石微波铁氧体材料及其制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
任凭;刘颖力;朱华;张怀武;: "Bi_2O_3含量对NiCuZn旋磁铁氧体基板材料性能的影响", 磁性材料及器件, no. 01, pages 69 - 70 *
周丽波: "无线充电用NiCuZn铁氧体磁性基板材料研究及天线结构设计", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》, no. 7, pages 042 - 132 *
袁红兰等: ""Cu2+和Mn2+取代对低温烧结NiZn铁氧体材料微波电磁性能的影响", 《磁性材料及器件》 *
袁红兰等: ""Cu2+和Mn2+取代对低温烧结NiZn铁氧体材料微波电磁性能的影响", 《磁性材料及器件》, 27 June 2022 (2022-06-27), pages 1 - 8 *
袁红兰等: "Cu2+和Mn2+取代对低温烧结NiZn铁氧体材料微波电磁性能的影响", 《磁性材料及器件》, vol. 54, no. 2, pages 6 - 10 *
韩志全;廖杨;冯涛;: "缺铁量对氧化物法低温烧结NiCuZn铁氧体电磁性能的影响", 磁性材料及器件, no. 06, pages 12 - 15 *
韩志全等: "缺铁量对氧化物法低温烧结NiCuZn铁氧体电磁性能的影响", 《磁性材料及器件》 *
韩志全等: "缺铁量对氧化物法低温烧结NiCuZn铁氧体电磁性能的影响", 《磁性材料及器件》, no. 06, 15 December 2007 (2007-12-15), pages 12 - 15 *
顾卫卫等: "缺铁量对低温烧结NiCuZn 铁氧体材料性能的影响", 《磁性材料及器件》, vol. 41, no. 3, pages 71 - 74 *

Also Published As

Publication number Publication date
CN115180935B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
CN111825441B (zh) 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用
TW201821386A (zh) 對溫度不敏感的介電常數石榴石
US20090260861A1 (en) Polycrystalline, magnetic ceramic material, microwave magnetic device, and non-reciprocal circuit device comprising such microwave magnetic device
Zheng et al. Low loss ${\rm NiZn/Co} _ {2}{\rm Z} $ composite ferrite with almost equal values of permeability and permittivity for antenna applications
CN105236948B (zh) Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法
CN101723657A (zh) 一种NiCuZn微波铁氧体材料的制备方法
CN111620682A (zh) 梯度饱和磁化强度微波铁氧体材料、制成的铁氧体基板及其制备方法
CN114477995B (zh) 一种中饱和磁化强度功率型高介电常数石榴石材料及其制备方法
Wang et al. Low-temperature sintering and ferromagnetic properties of Li0. 35Zn0. 30Mn0. 05Ti0. 15Fe2. 15O4 ferrites co-fired with Bi2O3-MgO mixture
CN112321291A (zh) 一种高饱和低温烧结旋磁Ni系尖晶石铁氧体材料及其制备方法
CN108863322A (zh) 一种低介电微波介质陶瓷及其制备方法
Huo et al. Effects of Zn substitution on high-frequency properties of Ba1. 5Sr1. 5Co2-xZnxFe22O41 hexaferrites
CN113078429A (zh) 一种准平面化复合基板微带环形器
JP5365967B2 (ja) 多結晶セラミック磁性体材料、マイクロ波磁性体、及びこれを用いた非可逆回路素子
Xu et al. Influence of LZN nanoparticles on microstructure and magnetic properties of bi-substituted LiZnTi low-sintering temperature ferrites
CN105693235B (zh) 高介微波介质陶瓷材料及其制备方法
CN107382317A (zh) 一种镁镍锆铌系微波介质陶瓷
Zheng et al. Introduction of NiZn-ferrite into Co $ _ {2} $ Z-ferrite and effects on the magnetic and dielectric properties
CN108774057B (zh) 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法
CN103435349B (zh) 一种锰离子取代制备高品质因数铌酸钕微波介质陶瓷
CN113501708A (zh) 一种Li系尖晶石微波铁氧体材料及其制备方法
CN115057697B (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN114702310B (zh) 低损耗尖晶石微波铁氧体材料及其制备方法
JP2010083689A (ja) 多結晶セラミック磁性体材料、マイクロ波磁性体、及びこれを用いた非可逆回路素子
CN115180935B (zh) 一种毫米波ltcf生瓷带制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant