CN105693235B - 高介微波介质陶瓷材料及其制备方法 - Google Patents

高介微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN105693235B
CN105693235B CN201610154058.0A CN201610154058A CN105693235B CN 105693235 B CN105693235 B CN 105693235B CN 201610154058 A CN201610154058 A CN 201610154058A CN 105693235 B CN105693235 B CN 105693235B
Authority
CN
China
Prior art keywords
microwave
high dielectric
ceramic material
ball milling
burning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610154058.0A
Other languages
English (en)
Other versions
CN105693235A (zh
Inventor
唐斌
方梓烜
孙成礼
钟朝位
张树人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610154058.0A priority Critical patent/CN105693235B/zh
Publication of CN105693235A publication Critical patent/CN105693235A/zh
Application granted granted Critical
Publication of CN105693235B publication Critical patent/CN105693235B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种高介微波介质陶瓷材料,材料化学通式为(Ca0.35Li0.25Nd0.35)(Ti1‑xDx)O3,其中0.01≤x≤0.05,D的组成为VW,V代表价态高于四价的Ta,W代表价态低于四价且平均离子半径接近于Ti4+的单个或多种元素,V和W可以同时取代或单独取代;本发明还提供一种高介微波介质陶瓷材料的制备方法,包括步骤:配料、球磨、烘干过筛、预烧、造粒、模压成型、烧结;本发明制得的材料具有高介电常数和较高Q×f值,可调的频率温度系数。配方中不含Pb,Cd等挥发性有毒金属,性能稳定,能够满足现代微波器件的应用需求,原材料在国内供应充足,价格相对低廉,使高性能微波陶瓷的低成本化成为可能。

Description

高介微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子信息功能材料与器件技术领域,具体涉及的是一种频率温度系数可调的高介Ca-Li-Nd-Ti基微波介质陶瓷材料及其制备方法,可用于制作现代移动通信与物联网技术中的介质谐振器、介质滤波器、介质基板以及介质天线等微波元器件。
背景技术
目前,信息技术正朝着高频、大功率、集成、多功能化方向快速发展,而且随着现代移动通信技术和物联网技术的迅猛发展,高频微波技术在通信、导航、卫星、蓝牙、传感物联网射频技术等系统中,有着广泛而重要的应用。其中,作为物联网感知层的核心技术之一的射频识别技术(radio frequency identification,RFID)是由读写器、天线和电子标签组成,同时该技术作为无线通信技术应用之一,它的多个部件均需利用到微波介质陶瓷,所以,微波介质陶瓷是该系统的核心基础材料,另外随着RFID更深入广泛的应用,其对微波介质材料的要求也日趋提高:高介电常数,与此同时该材料需满足较低的微波损耗和趋近于零的频率温度系数。这三项性能指标均是微波介质材料的重要参数:(1)高的介电常数有利于实现元器件的小型化,因为谐振器的尺寸和电介质材料的介电常数εr的平方根成反比;(2)高品质因数,微波介质陶瓷材料的Q×f值越大,滤波器的插入损耗就越低;(3)低的频率温度系数τf意味着器件的中心频率随环境温度变化小,工作稳定性高。因此研制微波频率下具有系列化高介电常数,低损耗且较低的频率温度系数的微波介质陶瓷材料具有很大的应用价值。
为了满足上述目标,一系列的微波陶瓷体系被开发出来,如Ba(Zn1/3Ta2/3)O3、Ba(Mg1/3Ta2/3)O3和BaO-Ln2O3-TiO2(Ln=Sm、Nd和La)。虽然Ba(Zn1/3Ta2/3)O3与Ba(Mg1/3Ta2/3)O3拥有极高的Q×f值,BaO-Ln2O3-TiO2拥有趋近于零的频率温度系数,但是上述几种材料的介电常数εr均远远小于120,使它们在满足现代移动通信技术和物联网技术的小型化需求时有所欠缺。在1993年,日本科研人员Ezaki等人发现将同为钙钛矿结构的Li2O-Ln2O3-TiO2与CaO-TiO2混合形成的CaO-Li2O-Ln2O3-TiO2(Ln=Yb、Er、Ho、Dy、Tb、Gd、Eu、Sm、Nd、Pr和La)体系具有εr=80~180,Q×f≥1000GHz,τf≥+13ppm/℃较为优良的性能。然而Ezaki的工作主要集中在对CaO-Li2O-Sm2O3-TiO2进行Ca元素的A取代研究,并未对其他稀土体系做详细研究,其最佳微波介电性能为εr=110,Q×f=4500GHz,τf≥+7ppm/℃,但为开发介电常数在120以上的高性能微波材料提供了思路。2003年,韩国科研人员Kim等人在(1-x)(Ca0.7Nd0.2)TiO3-x(Li0.5Nd0.5)TiO3体系中利用Li0.5Nd0.5 2+取代Ca0.7Nd0.2 2+,当x=0.5时取得较佳的微波介电性能:εr=134,Q×f=2000GHz,τf>+20ppm/℃。但是,Ca0.35Li0.25Nd0.35TiO3的品质因数较小和大的频率温度系数无法满足实际需求。更为重要的一点是,上述CaO-Li2O-Ln2O3-TiO2体系均需要在等静压的条件下压制样品,同样限制了它们在现代电子工业中的大规模应用。
近些年来,针对具有类似钙钛矿结构的微波材料进行Ti位取代研究逐渐成为主流。例如,在在Ba-Nd-Ti系微波陶瓷的研究中,Ti位取代成为该体系获得频率温度系数大幅度下降且高介电常数,高品质因数的重要途径。2014年,陈鹤拓等科研人员在《Aluminumsubstitution for titanium in Ba3.75Nd9.5Ti18O54microwave dielectric ceramics》一文中采用Al元素取代Ti元素使Ba3.75Nd9.5Ti18O54微波陶瓷获得高Q×f值的同时获得高介电常数(εr=72.7,Q×f=13112GHz)。《Journal of Alloys and Compounds》2015年的文章《Microwave dielectric properties and microstructure of Ba6-3xNd8+2xTi18-y(Cr1/ 2Nb1/2)yO54ceramics》报道了利用复合离子(Cr1/2Nb1/2)4+取代Ti4+离子使得Ba-Nd-Ti微波陶瓷获得高介电常数的同时品质因素得到极大的改善(εr=88.6,Q×f=11486GHz)。因此,在B位或Ti位利用单一元素离子或复合离子取代成为Ca0.35Li0.25Nd0.35TiO3系高介微波介质陶瓷实现频率温度系数大幅度改善且εr≥120,Q×f≥2700GHz的重要突破点之一。综上所述,以Ca-Li-Nd-Ti基陶瓷为基础,改良制备工艺,研究一种B位或Ti取代的高介电常数、高品质因数(高Q×f值),同时可在一定范围内将其调节为低频率温度系数的新型微波介质陶瓷具有较大的应用价值。
发明内容
鉴于以上关于Ca-Li-Nd-Ti体系的技术情况,为实现在保证高介电常数εr≥120的情况下同时具有高的品质因数Q×f≥2700GHz的目的,本发明在Ca0.35Li0.25Nd0.35TiO3中采用Ti位不同离子取代,提供一种B位不同离子取代的介电常数高、损耗较低、且达到大幅降低体系频率温度系数的高介微波介质陶瓷材料及其制备方法。
为实现上述发明目,本发明提供一种高介微波介质陶瓷材料,材料化学通式为(Ca0.35Li0.25Nd0.35)(Ti1-xDx)O3,其中0.01≤x≤0.05,调节x以控制体系微波性能,D的组成为VW,V代表价态为五价的Ta,W代表价态低于四价且平均离子半径接近于Ti4+的单个或多个元素,V和W同时取代或单独取代。
作为优选方式,单独取代时,W为Al、Ga中的一种;或者D直接为Ta;
作为优选方式,当VW同时取代时,若W为Al、Ga其中的一种时,则摩尔比V:W=1:1,若W为Mg、Zn、Ni其中的一种时,则摩尔比V:W=2:1。
作为优选方式,所述微波介质陶瓷材料晶相为正交钙钛矿结构。
作为优选方式,所述微波介质陶瓷材料的相对介电常数εr在120~140之间,Q×f值在2700~4000GHz之间,τf<60ppm/℃。
本发明还提供一种上述高介微波介质陶瓷材料的制备方法,按化学通式(Ca0.35Li0.25Nd0.35)(Ti1-xDx)O3,其中0.01≤x≤0.05,原料选自CaCO3、Li2CO3、Nd2O3、TiO2、Al2O3、MgO、ZnO、NiO、Ga2O3和Ta2O5,各原料按化学通式确定各自质量百分含量,经过球磨混合,1080~1120℃下预烧,然后在1150~1300℃下烧结制成。
作为优选方式,所述方法包括以下步骤:
(1)配料:按照化学通式(Ca0.35Li0.25Nd0.35)(Ti1-xDx)O3,原料选自CaCO3、Li2CO3、Nd2O3、TiO2、Al2O3、MgO、ZnO、Ga2O3和Ta2O5,各原料按化学通式确定各自质量百分含量;
(2)球磨:将步骤(1)所得混合料进行球磨,得到球磨料;
(3)烘干,过筛:将步骤(2)所得球磨料烘干并过60目筛得到干燥粉体;
(4)预烧:将步骤(3)所得干燥粉体置于氧化铝坩埚中,1080~1120℃条件下预烧3~5小时得到预烧粉体;
(5)造粒,模压成型:将步骤(4)所得预烧粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在80~100目,将粒料放入成型模具中干压成型得到生坯;
(6)烧结:将步骤(5)所得生坯置于氧化铝坩埚中,1150~1300℃下烧结3~5小时,得到最终的微波介质陶瓷材料。
作为优选方式,所述步骤(2)中具体球磨过程为:以二氧化锆球为球磨介质,按照混合料:磨球:高纯酒精的质量比为1:(3~5):(1~2)进行研磨5~7小时得到混合均匀的球磨料。
本发明具体以调节x值以控制Ti位取代量,从而保证高介电常数εr≥120的情况下同时具有高的品质因数且频率温度系数大幅度降低;低价的氧化铝Al2O3,氧化镓Ga2O3,氧化锌ZnO,氧化镁MgO,氧化镍NiO中的一种和高价的五氧化二钽Ta2O5单独或共同取代Ti位离子.
本发明提供的微波介质陶瓷材料,经检测具有高的介电常数,较低的损耗即较高的Q×f值,可调且和较低的谐振频率温度系数。
与现有技术相比,本发明具有以下特点:
1.本发明配方中,在B位用单一离子或复合离子取代Ti位,以达到调节改善频率温度系数的目的,且具有高介电常数和较高Q×f值的优势,较低且可调的频率温度系数,性能完全优于现有没有进行任何掺杂改性的配方,完全异于传统的A位取代途径。
2.本发明的配方中不含Pb,Cd等挥发性有毒金属。
3.多数配方烧结温度均在1150~1300℃左右,烧成温度范围较宽。
4.采用单次合成工艺,容易实现材料的稳定生产。
5.本发明配方造粒后采用传统压制成型方式,优于现有较为复杂的等静压成型方式,工艺简单可行。
6.性能上实现了较大提升:现有技术基础配方,介电常数134,Q×f值一般在2400GHz左右,且其谐振频率温度系数远大于+20ppm/℃;本发明提供的微波介质陶瓷材料相对介电常数εr在120~140之间,Q×f值在2700~4000GHz之间,谐振频率温度系数较(Ca0.35Li0.25Nd0.35)TiO3基础配方大幅度降低(+7~60ppm/℃),且性能稳定,能够满足现代微波器件的应用需求。
7.原材料在国内供应充足,价格相对低廉,使高性能微波陶瓷的低成本化成为可能。
附图说明
图1是本发明实施例制备的微波陶瓷介质材料的XRD分析结果。
图2是本发明实施例制备的微波陶瓷介质材料扫描电镜SEM图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
图1是本发明实施例制备的微波陶瓷介质材料的XRD分析结果,从图1可以看出:得到的晶相为纯正交钙钛矿结构相。图2是本发明实施例制备的微波陶瓷介质材料扫描电镜SEM图,从图2可看出制得样品表面晶粒尺寸分布均匀,大小晶粒分布有规律,气孔极少。
实施例
一种B位取代的高介低损微波介质陶瓷材料,化学通式为(Ca0.35Li0.25Nd0.35)(Ti1- xDx)O3,其中0.01≤x≤0.05,D的组成为VW,V代表价态高于四价的Ta,W代表价态低于四价且平均离子半径接近于Ti4+的单个或多种元素,V和W同时取代或单独取代。单独取代时,W为Al、Ga、Mg、Zn、Ni中的一种,或者D直接为Ta。当VW同时取代时,若W为Al、Ga其中的一种时,则摩尔比V:W=1:1,若W为Mg、Zn、Ni其中的一种时,则摩尔比V:W=2:1。
所述微波介质陶瓷材料晶相为正交钙钛矿结构。所述微波介质陶瓷材料的相对介电常数εr在120~140之间,Q×f值在2700~4000GHz之间,谐振频率温度系数大幅度降低(+7~60ppm/℃)。
上述B位取代的高介低损微波介质陶瓷材料的制备方法,按化学通式按照化学通式(Ca0.35Li0.25Nd0.35)(Ti1-xDx)O3,原料选自CaCO3、Li2CO3、Nd2O3、TiO2、Al2O3、MgO、ZnO、Ga2O3和Ta2O5,表1为各实施例中各原材料占原料总量的质量百分比,按表1的百分含量称取原料,经过球磨混合,1080~1120℃下预烧,然后在1150~1300℃下烧结制成。
实施例具体以调节x值以控制取代量,从而降低频率温度系数;
具体包括如下步骤:
(1)(Ca0.35Li0.25Nd0.35)(Ti1-xDx)O3,原料选自CaCO3、Li2CO3、Nd2O3、TiO2、Al2O3、MgO、ZnO、NiO、Ga2O3和Ta2O5,各实施例分别按表1中质量百分比准确称量各种原料。
(2)球磨;将步骤(1)所得混合料进行球磨,以二氧化锆球为球磨介质,按照混合料:磨球:高纯度酒精的质量比为1:(3~5):(1~2)进行研磨5~7小时得到混合均匀的球磨料。
(3)烘干,过筛;将步骤(2)所得球磨料烘干并过60目筛得到干燥粉体;
(4)预烧;将步骤(3)所得干燥粉体置于氧化铝坩埚中,1080~1120℃条件下预烧3~5小时得到预烧粉体;
(5)造粒,模压成型;将步骤(4)所得预烧粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在80~100目,将粒料放入成型模具中干压成型得到直径为15mm,厚度为约7mm的圆柱生坯;
(6)烧结;将步骤(5)所得生坯置于氧化铝坩埚中,1150~1300℃下烧结3~5小时,得到最终的微波介质陶瓷材料。各实施例采用的工艺参数和性能检测结果见表2。
从表2可看出,各实施例的微波介质陶瓷材料,经检测具有且高的介电常数(εr≥120),较低的损耗即较高的品质因数(Q×f≥2700GHz),较低的谐振频率温度系数(+7~60ppm/℃)。
表1各实施例中各原材料的质量百分含量
表2各实施例采用的工艺和微波介电性能
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (6)

1.一种高介微波介质陶瓷材料,其特征在于:材料化学通式为(Ca0.35Li0.25Nd0.35)(Ti1- xDx)O3,其中0.01≤x≤0.05,D的组成为VW,V代表价态高于四价的Ta,W代表价态低于四价且平均离子半径接近于Ti4+的单个或多种元素,V和W同时取代或单独取代;单独取代时,W为Al、Ga、Mg、Zn、Ni中的一种;当VW同时取代时,若W为Al、Ga其中的一种,则摩尔比V:W=1:1,若W为Mg、Zn、Ni其中的一种,则摩尔比V:W=2:1。
2.根据权利要求1所述的高介微波介质陶瓷材料,其特征在于:所述微波介质陶瓷材料晶相为正交钙钛矿结构。
3.根据权利要求1所述的高介微波介质陶瓷材料,其特征在于:所述微波介质陶瓷材料的相对介电常数εr在120~140之间,Q×f值在2700~4000GHz之间,τf频率温度系数在+7~+60ppm/℃之间。
4.根据权利要求1至3任意一项所述的高介微波介质陶瓷材料的制备方法,其特征在于:按化学通式(Ca0.35Li0.25Nd0.35)(Ti1-xDx)O3,原料选自CaCO3、Li2CO3、Nd2O3、TiO2、Al2O3、MgO、ZnO、NiO、Ga2O3和Ta2O5,各原料按化学通式确定各自质量百分含量,经过球磨混合,1080~1120℃下预烧,然后在1150~1300℃下烧结制成。
5.根据权利要求4所述的高介微波介质陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)配料:按照化学通式(Ca0.35Li0.25Nd0.35)(Ti1-xDx)O3,原料选自CaCO3、Li2CO3、Nd2O3、TiO2、Al2O3、MgO、ZnO、NiO、Ga2O3和Ta2O5,各原料按化学通式确定各自质量百分含量;
(2)球磨:将步骤(1)所得混合料进行球磨,得到球磨料;
(3)烘干,过筛:将步骤(2)所得球磨料烘干并过60目筛得到干燥粉体;
(4)预烧:将步骤(3)所得干燥粉体置于氧化铝坩埚中,1080~1120℃条件下预烧3~5小时得到预烧粉体;
(5)造粒,模压成型:将步骤(4)所得预烧粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在80~100目,将粒料放入成型模具中干压成型得到生坯;
(6)烧结:将步骤(5)所得生坯置于氧化铝坩埚中,1150~1300℃下烧结4~6小时,得到最终的微波介质陶瓷材料。
6.根据权利要求5所述的高介微波介质陶瓷材料的制备方法,其特征在于:所述步骤(2)中具体球磨过程为:以二氧化锆球为球磨介质,按照混合料:磨球:高纯酒精的质量比为1:(3~5):(1~2)进行研磨5~7小时得到混合均匀的球磨料。
CN201610154058.0A 2016-03-17 2016-03-17 高介微波介质陶瓷材料及其制备方法 Expired - Fee Related CN105693235B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610154058.0A CN105693235B (zh) 2016-03-17 2016-03-17 高介微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610154058.0A CN105693235B (zh) 2016-03-17 2016-03-17 高介微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105693235A CN105693235A (zh) 2016-06-22
CN105693235B true CN105693235B (zh) 2018-07-10

Family

ID=56231212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610154058.0A Expired - Fee Related CN105693235B (zh) 2016-03-17 2016-03-17 高介微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105693235B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109111224A (zh) * 2017-06-23 2019-01-01 天津大学 一种高温度稳定性锂镍钛系微波介质陶瓷及其制备方法和应用
CN107739201B (zh) * 2017-09-29 2020-03-13 无锡鑫圣慧龙纳米陶瓷技术有限公司 一种高介电常数的微波介质陶瓷材料及其制备方法和应用
CN112573914B (zh) * 2020-12-25 2022-10-18 无锡鑫圣慧龙纳米陶瓷技术有限公司 低温烧结温度稳定型介质波导用微波介质陶瓷及制备方法
CN116283290B (zh) * 2023-03-06 2024-03-29 哈尔滨工业大学 一种微波介质陶瓷材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532197A (en) * 1994-07-27 1996-07-02 Korea Institute Of Science And Technology Dielectric material for high frequencies
CN102898135A (zh) * 2012-10-12 2013-01-30 桂林电子科技大学 一种高介电常数微波介质陶瓷材料及其制备方法
CN105016729A (zh) * 2015-08-11 2015-11-04 电子科技大学 Ca-Nd-Ti微波介质陶瓷材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3276756B2 (ja) * 1993-02-03 2002-04-22 三洋電機株式会社 マイクロ波用誘電体磁器組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5532197A (en) * 1994-07-27 1996-07-02 Korea Institute Of Science And Technology Dielectric material for high frequencies
CN102898135A (zh) * 2012-10-12 2013-01-30 桂林电子科技大学 一种高介电常数微波介质陶瓷材料及其制备方法
CN105016729A (zh) * 2015-08-11 2015-11-04 电子科技大学 Ca-Nd-Ti微波介质陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN105693235A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
KR102181024B1 (ko) 극초단파 안테나에서 사용하기 위한 Mo-도핑된 Co2Z-형 페라이트 복합 물질
Hao et al. Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications
US8758721B2 (en) Enhanced hexagonal ferrite material and methods of preparation thereof
CN104844194B (zh) Ab位同时取代的微波介质陶瓷材料及其制备方法
CN105272213B (zh) 高介低损微波介质陶瓷材料及其制备方法
CN105693235B (zh) 高介微波介质陶瓷材料及其制备方法
CN106145931B (zh) 一种超低损耗微波介质陶瓷材料及其制备方法
CN107188557B (zh) 一种微波介质陶瓷材料及其制备方法
CN103922739B (zh) 一种b位取代bnt微波介质陶瓷材料及其制备方法
CN107117967B (zh) 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN108249906A (zh) 一种高品质因数微波介质陶瓷材料及制备方法
EP3016111A1 (en) Dielectric composition and electronic component
CN105837213B (zh) 添加ReAlO3的微波介质陶瓷材料及其制备方法
CN105016729B (zh) Ca‑Nd‑Ti微波介质陶瓷材料及其制备方法
CN103570349A (zh) 掺杂改性的复合钙钛矿型微波介质陶瓷Ba(Co,Nb)O3及其制备方法
TWI538895B (zh) 介電體陶瓷組合物、介電體陶瓷、電子零件以及通信機器
CN105399405B (zh) 一种低介微波铁电陶瓷及其制备方法
CN109467432A (zh) 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法
CN107382314A (zh) 一种钡基复合钙钛矿结构的微波介质陶瓷
CN109354495A (zh) 镁锆铌锑系微波介质陶瓷及制备方法和应用
KR101282194B1 (ko) Y형 페라이트 및 이로 제조된 페라이트 성형체
CN114890786B (zh) 一种近零温漂5g陶瓷滤波器材料及其制备方法
CN103803967B (zh) 微波介质陶瓷及其制备方法
CN104829230B (zh) 一种复合微波陶瓷介质材料、制备方法及用途
WO2007017950A1 (ja) 電子デバイス用誘電体磁器組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180710

Termination date: 20190317