CN105837213B - 添加ReAlO3的微波介质陶瓷材料及其制备方法 - Google Patents

添加ReAlO3的微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN105837213B
CN105837213B CN201610188438.6A CN201610188438A CN105837213B CN 105837213 B CN105837213 B CN 105837213B CN 201610188438 A CN201610188438 A CN 201610188438A CN 105837213 B CN105837213 B CN 105837213B
Authority
CN
China
Prior art keywords
ball milling
realo
ceramic materials
dielectric ceramic
microwave dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610188438.6A
Other languages
English (en)
Other versions
CN105837213A (zh
Inventor
唐斌
陈鹤拓
熊喆
钟朝位
张树人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610188438.6A priority Critical patent/CN105837213B/zh
Publication of CN105837213A publication Critical patent/CN105837213A/zh
Application granted granted Critical
Publication of CN105837213B publication Critical patent/CN105837213B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明提供一种添加ReAlO3的微波介质陶瓷材料及其制备方法,材料化学通式为Ba3.75Nd9.5(Ti1‑xCx)18O54+y wt%ReAlO3,C=MN,其中x为摩尔含量比例,0.03≤x≤0.06,2≤y≤9,y是在Ba3.75Nd9.5(Ti1‑xCx)18O54的基础上外加的ReAlO3的质量百分比含量;M代表价态高于四价的Nb,N代表价态低于四价且离子半径与Ti相近的Zn,Co,Ni,Mg,Al中一种元素,M和N同时取代,Re为Nd,Sm,La,Ce其中的一种;制备方法包括配料、分别经过球磨混合,两相分别在1100~1150℃和1450‑1500℃下预烧,然后在1400~1450℃下烧结制成;制得的材料介电常数较高,频率温度系数可调同时保持较高的Q×f值,配方中不含Pb、Cd等挥发性或重金属,性能上实现了大幅提升,且原材料在国内供应充足,价格低廉,使高性能微波陶瓷的低成本化成为可能。

Description

添加ReAlO3的微波介质陶瓷材料及其制备方法
技术领域
本发明涉及电子元器件材料领域,特别是涉及一种在少量B位取代的Ba3.75Nd9.5Ti18O54中,添加经过接近其烧结温度预烧的ReAlO3相的微波介质陶瓷材料及其制备方法。
背景技术
随着无线通信技术向小型化民用化方向发展,同时根据物联网技术在日常生活中的具体需求,二者结合产生了射频识别技术(radio frequency identification,RFID)。该技术既是物联网感知层的核心技术之一,又是一种无线通信技术,其系统由读写器、天线和电子标签组成。一般而言,无论是天线还是标签常常需要采用介电常数大于60的微波介质陶瓷。因此,高介电常数的微波介质陶瓷是制备射频识别器件的核心基础材料。而同时其高频化,高稳定性的实际应用要求,加上器件制备工艺简洁和低成本化需求,一般要求微波介质陶瓷材料具有:系列化且较高的介电常数(大于60),较低的频率温度系数(±10ppm/℃以内),较低的微波损耗(由Q×f值表征,一般要求Q×f值大于5000GHz)。因此,这三项性能指标是表征微波介质材料性能的重要参数:同样的条件下,微波器件采用较高的Q×f值材料制作器件损耗更低,有效解决器件集成中的发热问题,且利于器件精确选频;采用系列化的较大的介电常数的微波介质材料有助于设计各种小型化的微波器件;同时,趋于零的频率温度系数是器件性能是否稳定的重要参数。因此研制微波频率下具有系列化较高介电常数,低损耗且趋于零的频率温度系数的微波介质陶瓷材料具有较大的应用价值。
在当前为数不多的高介微波介质陶瓷体系中,Ba6-3xNd8+2xTi18O54体系陶瓷(0≤x≤0.8),其较高的Q×f值(约5000-10000GHz),较高的介电常数(80-90),以及已被广泛证实的可调到零的频率温度系数,在世界范围内有着广泛的研究和应用。据报道,x=2/3时,体系介电常数约82,Q×f值为体系最高值(约10000GHz),且频率温度系数最低(约50ppm/℃);而x=0.75 时,体系介电常数约89,Q×f值约10000GHz,且频率温度系数同样很低(约60ppm/℃)。相比较而言,当x=0.75时,体系的综合性能更加优异,本发明基于x=0.75进行性能改善研究。其具有类钨铜矿结构,原材料在国内较易获得,成本相对比较低廉,烧成温度较宽较低,现在已经成为应用最广泛的微波介质陶瓷材料之一。也可用于制作介质滤波器,多层陶瓷电容器以及介质谐振器等。
在这些调整Ba6-3xNd8+2xTi18O54体系陶瓷频率温度系数的报道中,主要方法包括离子取代和两相复合。根据文献报道,结构上,Ba6-3xNd8+2xTi18O54体系陶瓷通常是类钨青铜结构(复杂钙钛矿结构),由Ti-O构成的八面体相互连接形成骨架,而同时Ba和Nd分别位于骨架间隙中。这些间隙既有四边形区域(A2位稀土元素更倾向于占该位)和又有空间较大的五边形区域(A1位,Ba元素更倾向于占该位);且随着通式中x的变化,Ba和Ln可以相互取代。基于该结构理论,各国研究人员在BaO-Nd2O3-TiO2体系中较多采用A位取代,且得到了各种介电常数较高的(90左右)、性能优异的陶瓷材料。R.Ubic等采用Ca,Sr和Sm,Bi等元素分别对Ba位和Nd位进行取代制备(Ba1-aAa)6-3x(Nd1-bBb)8+2xTi18O54陶瓷,可改善体系不同的性能指标参数。总体而言,A1位取代可提升介电常数但会增大频率温度系数;A2位取代会降低频率温度系数,但是不同元素会产生不同的性能变化趋势,且不同含量会有不同的取代机理。故为达到介电常数可控的目的,A位取代元素的选取和含量的控制显得尤为重要。同时,B位取代的研究进展缓慢,相关的文献报道近年来才陆续有所报道。为调零频率温度系数,四价取代会大幅降低介电常数和品质因数,而少量B位非四价元素组合取代可维持较高的介电常数和较高的品质因数。因此,选取合适的元素在适量的范围内做离子取代可达到较好的预期效果。
对于两相复合而言,原理较为清晰,体系性能由两相性能综合决定,但是只有选择合适两相参与复合,在合适的温度烧结,才能得到理想的微波性能。原因在于,1)纯的Ba6-3xNd8+2xTi18O54相具有较高的频率温度系数,常常需要加入大量的第二相进行调节。2)具有负频率温度系数的陶瓷,介电常数一般较低。因此,若直接采用纯Ba-Nd-Ti相,需要引入大量第二相,会大幅降低体系的介电常数,以换取近零的频率温度系数。基于现有报道,多数直接复合常常会大幅降低体系的介电常数。例如,《陶瓷国际》(Ceramic International)报道,采用BaNd2Ti4O12和BaZn2Ti4O11复合,得到的陶瓷Q×f值达40000GHz,频率温度系数也接近于零,但是介电常数40左右;Azough.F等在《电子陶瓷》(Journal ofElectroceramics)报道采用BaNd2Ti4O12和BaAl2Ti4O12复合,得到了介电常数71,品质因数8200GHz的陶瓷;X.Yao 等报道BaNd2Ti5O14和BaAl2Ti5O14复合得到介电常数71,Q×f值约10000GHz的陶瓷,事实上,根据文献分析BaNd2Ti5O14并非单相;《欧洲陶瓷协会会刊》(Journal of the European Ceramic Society)报道了Ba4.2Nd9.2Ti18O54体系中掺杂如NdAlO3,成功降低了频率温度系数,介电常数约65,总体性能并不好,原因在于二者不同的传质速率。综合上述报道,直接采用BaNd2Ti4O12晶相的陶瓷采用两相复合,需要大量引入第二相以降低体系频率温度系数,但体系介电常数也会大幅降低。基于这样的事实,现迫切需要新的思路以维持体系较高的介电常数,较高的品质因数和近零的频率温度系数。
基于上述研究现状,本发明拟采用在少量B位取代(0.03≤x≤0.06)的Ba3.75Nd9.5Ti18O54陶瓷基础上,添加在烧结温度附近预烧的ReAlO3陶瓷,通过两相复合,以获得近零的频率温度系数,且维持体系较高的介电常数和较高的品质因数。充分利用了少量B位取代 Ba3.75Nd9.5Ti18O54陶瓷材料高介电常数、高品质因数和较低的频率温度系数,以及ReAlO3陶瓷较低的损耗和绝对值较大的负频率温度系数的优势。故采用较少的第二相即可将体系频率温度系数调零,对主晶相的性能危害较小。
发明内容
鉴于以上所述现有技术的情况,本发明的目的在于采用低损耗,廉价且具有负频率温度系数的ReAlO3陶瓷,将其在接近烧结温度下预烧,与B位少量等价取代的Ba3.75Nd9.5Ti18O54陶瓷复合,提供一种具有介电常数较高且可调、损耗较低、频率温度系数接近零、成本低廉的微波介质陶瓷材料及其制备方法。
为实现上述目的,本发明提供一种添加ReAlO3的微波介质陶瓷材料及其制备方法,材料化学通式为Ba3.75Nd9.5(Ti1-xCx)18O54+y wt%ReAlO3,C=MN,其中x为摩尔含量比例,0.03≤x ≤0.06;2≤y≤9,y是在Ba3.75Nd9.5(Ti1-xCx)18O54的基础上外加的ReAlO3的质量百分比含量; M代表价态高于四价的Nb,N代表价态低于四价且离子半径与Ti相近的Zn,Co,Ni,Mg,Al 中一种元素,M和N同时取代,Re为常见稀土元素Nd,Sm,La,Ce。
作为优选方式,N为Zn,Co,Ni,Mg,Al中的一种。
作为优选方式,当MN同时取代时,若N为Al,则摩尔比N:M=1:1,若N为Zn、Co、 Ni、Mg其中的一种,则摩尔比N:M=1:2。
作为优选方式,所述微波介质陶瓷材料晶相为类钨铜矿结构的BaNd2Ti4O12和钙钛矿结构的ReAlO3复合。
作为优选方式,所述微波介质陶瓷材料的Q×f值在9000~12000GHz之间,相对介电常数εr在70~80之间,谐振频率温度系数在±10ppm/℃以内。
为实现上述目的,本发明提供一种添加ReAlO3的微波介质陶瓷材料及其制备方法,材料化学通式为Ba3.75Nd9.5(Ti1-xCx)18O54+y wt%ReAlO3。原料选自BaCO3、Nd2O3、La2O3、Ce2O3、 Sm2O3、TiO2、Al2O3、MgO、ZnO、Co2O3、NiO、Nb2O5,各原料按化学通式确定各自质量百分含量,经过球磨混合,两相分别在1100~1150℃和1450-1500℃下预烧,然后在 1400~1450℃下烧结制成。
本发明具体在于,1.原材料的选取:(1)充分利用少量B位II-V或III-V价取代的Ba3.75Nd9.5Ti18O54陶瓷,具有的高介电常数(大于80),低损耗和低的频率温度系数(一般低于+35ppm/℃);(2)采用低损耗,负频率温度系数的ReAlO3陶瓷作为第二相;2.烧结机理控制:充分利用两相不同的烧结传质速率。相比较而言,ReAlO3陶瓷晶粒形成速率较快,Ba3.75Nd9.5Ti18O54陶瓷晶粒形成速度较慢。两相混合烧结时,ReAlO3陶瓷晶粒快速形成,会阻碍Ba3.75Nd9.5Ti18O54陶瓷晶粒生长,导致整体性能变差。而本发明创新在于第二相ReAlO3陶瓷在接近烧结温度(1450-1500℃)下预烧,降低第二相的烧结活性,采用该思路形成的陶瓷材料非常致密(如图2所示)。3.少量第二相添加即可实现大幅提升体系微波介电性能的目标。
作为优选方式,所述方法包括以下步骤:
(1)配料;按照化学通式Ba3.75Nd9.5(Ti1-xCx)18O54+y wt%ReAlO3,C=MN,原料选自BaCO3、 Nd2O3、La2O3、Ce2O3、Sm2O3、TiO2、Al2O3、MgO、ZnO、Co2O3、NiO、Nb2O5,各原料按化学通式确定各自质量百分含量;
(2)球磨;将步骤(1)所得混合料进行球磨,得到球磨料;
(3)烘干,过筛;将步骤(2)所得球磨料烘干并过60目筛得到干燥粉体;
(4)预烧;将步骤(3)所得干燥粉体置于氧化铝坩埚中,两相分别在1100~1150℃和 1450-1500℃下预烧5小时得到预烧粉体;
(5)二次球磨;将步骤(4)所得预烧粉体按照摩尔比例混合并球磨,得到球磨料并烘干;
(6)造粒,模压成型;将步骤(5)所得预烧粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在80~160目,将粒料放入成型模具中干压成型得到生坯;
(7)烧结;将步骤(6)所得生坯置于氧化铝坩埚中,1400~1450℃下烧结2~3小时,得到最终的微波介质陶瓷材料。
作为优选方式,所述步骤(2)中具体球磨过程为:以二氧化锆球为球磨介质,按照混合料:磨球:去离子水的质量比为1:(3~5):(1~2)进行研磨8小时得到混合均匀的球磨料。
本发明提供的微波介质陶瓷材料,经检测具有较低的损耗即较高的Q×f值,可调且较高的介电常数和近零的谐振频率温度系数。
与现有技术相比,本发明具有以下特点:
1.本发明采用在少量B位取代的频率温度系数较低(约+35ppm/℃)的 Ba6-3xNd8+ 2xTi18O54,x=3/4中少量添加低损耗,负频率温度系数的ReAlO3陶瓷。具有高介电常数,较高的Q×f值和近零频率温度系数的优点。
2.第二相在接近其烧结温度的温度范围内进行预烧,晶相生成较为完整;其与主相复合烧结时,第二相活性降低,促进了主晶相的晶粒生长,可以实现陶瓷致密化烧结,对应的复相陶瓷性能获得提高。
3.本发明的配方中不含Pb,Cd等挥发性或重金属,是一种环保微波介质陶瓷材料。
4.性能上实现了较大提升:现阶段已有的两相复合基础配方,介电常数一般在60~70, Q×f值一般在5000~11000GHz左右,不能完全满足用于射频识别的微波器件应用要求;本发明提供的微波介质陶瓷材料Q×f值在9000~12000GHz之间,相对介电常数εr在70~80之间,且谐振频率温度系数均在±10ppm/℃以内,且性能稳定,能够满足现代微波器件的应用需求。
5.原材料在国内供应充足,价格低廉,使高性能微波陶瓷的低成本化成为可能。
附图说明
图1为Ba3.75Nd9.5(Ti0.97(Co1/3Nb2/3)0.03)18O54-9wt%NdAlO3陶瓷的XRD图谱。
图2为Ba3.75Nd9.5(Ti0.95(Al0.5Nb0.5)0.05)18O54-5wt%NdAlO3陶瓷的断面SEM图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
图1为Ba3.75Nd9.5(Ti0.97(Co1/3Nb2/3)0.03)18O54-9wt%NdAlO3的XRD图谱,未标出的相为主晶相BaNd2Ti4O12,类钨铜矿结构,标出的相为NdAlO3相,钙钛矿结构。
图2为Ba3.75Nd9.5(Ti0.95(Al0.5Nb0.5)0.05)18O54-5wt%NdAlO3的断面SEM图,断面致密,在微米级别图像中观察不到明显的气孔。
实施例
本发明提供一种添加ReAlO3(高温预烧)的高性能基微波介质陶瓷材料,材料配方为 Ba3.75Nd9.5(Ti1-xCx)18O54+y wt%ReAlO3,C=MN,其中x为摩尔含量比例,0.03≤x≤0.06;2≤ y≤9,y是在Ba3.75Nd9.5(Ti1-xCx)18O54的基础上外加的ReAlO3的质量百分比含量(即ywt%表示每100克Ba3.75Nd9.5(Ti1-xCx)18O54材料加入y克的ReAlO3);M代表价态高于四价的Nb,N 代表价态低于四价且离子半径与Ti相近的其他一种元素(Zn,Mg,Ni,Co,Al),M和N同时取代,Re为常见稀土元素(Re=Nd,Sm,La,Ce)。
N为Zn,Co,Ni,Mg,Al中的一种。当MN同时取代时,若N为Al,则摩尔比N:M=1:1,若N为Zn、Co、Ni,Mg其中的一种时,则总的摩尔比N:M=1:2。
所述微波介质陶瓷材料晶相为类钨铜矿结构的BaNd2Ti4O12和钙钛矿结构的ReAlO3.
所述微波介质陶瓷材料的Q×f值在9000~12000GHz之间,相对介电常数εr在70~80之间,谐振频率温度系数在±10ppm/℃以内。
一种添加ReAlO3的高性能高介微波介质陶瓷材料的制备方法,材料化学通式为(1-y)Ba3.75Nd9.5(Ti1-xCx)18O54+y ReAlO3,原料选自BaCO3、Nd2O3、La2O3、Ce2O3、Sm2O3、TiO2、Al2O3、MgO、ZnO、Co2O3、NiO、Nb2O5,表1为各实施例中各原材料占原料总量的质量百分比,按表1的百分含量称取原料,经过球磨混合,两相分别在1000~1150℃和1450-1500℃下预烧,然后在1400~1450℃下烧结制成。
实施例具体以少量B位II-V价或III-V价取代的Ba3.75Nd9.5Ti18O54陶瓷为基础,其具有大于80的介电常数,大于8000GHz的Q×f值和频率温度系数约+35ppm/℃;结合拥有低损耗和较负频率温度系数的NdAlO3,两相复合以得到较高的介电常数,较高的Q×f值和近零的频率温度系数。
所述方法包括以下步骤:
(1)配料;按照化学通式Ba3.75Nd9.5(Ti1-xCx)18O54+y wt%ReAlO3,原料选自BaCO3、Nd2O3、 La2O3、Ce2O3、Sm2O3、TiO2、Al2O3、MgO、ZnO、Co2O3、NiO、Nb2O5,各实施例分别按表1中质量百分比准确称量各种原料;
(2)球磨;将步骤(1)所得混合料进行球磨,以二氧化锆球为球磨介质,按照混合料:磨球:去离子水的质量比为1:(3~5):(1~2)进行研磨8小时得到混合均匀的球磨料。
(3)烘干,过筛;将步骤(2)所得球磨料烘干并过60目筛得到干燥粉体;
(4)预烧;将步骤(3)所得干燥粉体置于氧化铝坩埚中,两相分别在1000~1150℃和 1450-1500℃条件下预烧5小时得到预烧粉体;
(5)混合球磨;将步骤(4)所得预烧料按照摩尔比例混合并进行球磨,以二氧化锆球为球磨介质,按照混合料:磨球:去离子水的质量比为1:(3~5):(1~2)进行研磨8小时得到混合均匀的球磨料。
(6)造粒,模压成型;将步骤(5)所得干燥预烧粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在80~160目,将粒料放入成型模具中干压成型得到直径为15mm,厚度为约7mm 的圆柱生坯;
(7)烧结;将步骤(6)所得生坯置于氧化铝坩埚中,1400~1450℃下烧结2~3小时,得到最终的微波介质陶瓷材料。各实施例采用的工艺参数和性能检测结果见表2。
从表2可看出,各实施例的微波介质陶瓷材料,经检测具有较低的损耗即较高的Q×f值,较高的介电常数和近零的谐振频率温度系数。
表1各实施例中各原材料的质量百分含量
表2各实施例采用的工艺和微波介电性能
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (5)

1.一种添加ReAlO3的微波介质陶瓷材料,其特征在于:材料配方为Ba3.75Nd9.5(Ti1-xCx)18O54+y wt%ReAlO3,C=MN,其中x为摩尔含量比例,0.03≤x≤0.06;2≤y≤9,y是在Ba3.75Nd9.5(Ti1-xCx)18O54的基础上外加的ReAlO3的质量百分比含量;M代表价态高于四价的Nb,N代表价态低于四价且离子半径与Ti相近的Zn,Co,Ni,Mg,Al中一种元素,M和N同时取代,Re为常见稀土元素Nd、Sm、La、Ce其中的一种;当MN同时取代时,若N为Al,则摩尔比N:M=1:1,若N为Zn、Co、Ni、Mg中的一种,则摩尔比N:M=1:2;所述微波介质陶瓷材料由B位取代的BaNd2Ti4O12相和ReAlO3相复合。
2.根据权利要求1所述的微波介质陶瓷材料,其特征在于:所述微波介质陶瓷材料的Q×f值在9000~12000GHz之间,相对介电常数εr在70~80之间,频率温度系数在±10ppm/℃以内。
3.根据权利要求1至2任意一项所述的微波介质陶瓷材料的制备方法,其特征在于:按材料配方Ba3.75Nd9.5(Ti1-xCx)18O54+y wt%ReAlO3,原料选自BaCO3、Nd2O3、Sm2O3、La2O3、Ce2O3、TiO2、ZnO、NiO、Co2O3、MgO、Al2O3、Nb2O5,各原料按化学通式确定各自质量百分含量,分别经过球磨混合,两相分别在1100~1150℃和1450-1500℃下预烧,然后在1400~1450℃下烧结制成。
4.根据权利要求3所述的微波介质陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)配料;按照材料配方Ba3.75Nd9.5(Ti1-xCx)18O54+y wt%ReAlO3,C=MN,原料选自BaCO3、Nd2O3、Sm2O3、La2O3、Ce2O3、TiO2、ZnO、NiO、Co2O3、MgO、Al2O3、Nb2O5,各原料按化学通式确定各自质量百分含量;
(2)球磨;将步骤(1)所得混合料分别进行球磨,得到球磨料;
(3)烘干,过筛;将步骤(2)所得球磨料烘干并过100目筛得到干燥粉体;
(4)预烧;将步骤(3)所得干燥粉体置于坩埚中,分别在1100~1150℃和1450-1500℃条件下预烧5小时得到预烧粉体;
(5)二次球磨;将步骤(4)所得预烧粉体按照摩尔比例混合并球磨,得到球磨料;
(6)烘干,过筛;将步骤(5)所得球磨料烘干并过100目筛得到干燥粉体;
(7)造粒,模压成型;将步骤(6)所得预烧粉体与聚乙烯醇水溶液混合后造粒,造粒尺寸控制在80~100目,将粒料放入成型模具中干压成型得到生坯;
(8)烧结;将步骤(7)所得生坯置于承烧板上,1400~1450℃下烧结2小时,得到最终的微波介质陶瓷材料。
5.根据权利要求4所述的微波介质陶瓷材料的制备方法,其特征在于:所述步骤(2)和(5)中具体球磨过程为:以二氧化锆球为球磨介质,按照混合料:磨球:去离子水的质量比为1:(3~5):(1~2)进行球磨8小时得到混合均匀的球磨料。
CN201610188438.6A 2016-03-29 2016-03-29 添加ReAlO3的微波介质陶瓷材料及其制备方法 Expired - Fee Related CN105837213B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610188438.6A CN105837213B (zh) 2016-03-29 2016-03-29 添加ReAlO3的微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610188438.6A CN105837213B (zh) 2016-03-29 2016-03-29 添加ReAlO3的微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105837213A CN105837213A (zh) 2016-08-10
CN105837213B true CN105837213B (zh) 2019-03-29

Family

ID=56584165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610188438.6A Expired - Fee Related CN105837213B (zh) 2016-03-29 2016-03-29 添加ReAlO3的微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105837213B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761603B (zh) * 2019-03-12 2022-02-08 广东国华新材料科技股份有限公司 一种bcsltm-sa复合微波介质陶瓷及其制备方法
CN110734284A (zh) * 2019-11-11 2020-01-31 深圳顺络电子股份有限公司 一种中介高q微波介质陶瓷材料及其制备方法
CN111018526B (zh) * 2019-12-24 2022-02-01 东北大学 一种氧化钕基的高温质子导体及其制备方法
CN114180956B (zh) * 2021-12-20 2023-07-21 无锡鑫圣慧龙纳米陶瓷技术有限公司 高介电常数5g波导用微波介质陶瓷及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111505A (ja) * 2004-10-18 2006-04-27 Soshin Electric Co Ltd 誘電体磁器組成物および電子部品
CN103922739A (zh) * 2014-03-13 2014-07-16 电子科技大学 一种b位取代bnt微波介质陶瓷材料及其制备方法
CN105294104A (zh) * 2015-12-01 2016-02-03 山东工业陶瓷研究设计院有限公司 低损耗介电可调中介微波介质陶瓷材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111505A (ja) * 2004-10-18 2006-04-27 Soshin Electric Co Ltd 誘電体磁器組成物および電子部品
CN103922739A (zh) * 2014-03-13 2014-07-16 电子科技大学 一种b位取代bnt微波介质陶瓷材料及其制备方法
CN105294104A (zh) * 2015-12-01 2016-02-03 山东工业陶瓷研究设计院有限公司 低损耗介电可调中介微波介质陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Low loss and middle permittivity of (1-x) Ca4La2Ti5O17–xNdAlO3 dielectric resonators with near-zero temperature coefficient of the resonant frequency;Jie-chang Di et al.;《Journal Material Science》;20111118(第47期);第2271–2277页 *

Also Published As

Publication number Publication date
CN105837213A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN104844194B (zh) Ab位同时取代的微波介质陶瓷材料及其制备方法
CN105837213B (zh) 添加ReAlO3的微波介质陶瓷材料及其制备方法
CN106083033A (zh) 一种微波介质陶瓷材料及其制备方法
CN107188557B (zh) 一种微波介质陶瓷材料及其制备方法
CN105272213B (zh) 高介低损微波介质陶瓷材料及其制备方法
CN103922739A (zh) 一种b位取代bnt微波介质陶瓷材料及其制备方法
CN108358633B (zh) 一种低温烧结Ca5Mn4-xMgxV6O24微波介质材料及其制备方法
CN105016729B (zh) Ca‑Nd‑Ti微波介质陶瓷材料及其制备方法
Wang et al. A low-firing Ca5Ni4 (VO4) 6 ceramic with tunable microwave dielectric properties and chemical compatibility with Ag
CN105693235B (zh) 高介微波介质陶瓷材料及其制备方法
CN105198423A (zh) Sr-La-Al基微波介质陶瓷材料及其制备方法
CN105399405B (zh) 一种低介微波铁电陶瓷及其制备方法
CN107721421B (zh) 一种Zn-Nb-Ti系LTCC材料及其制备方法
CN102731092A (zh) 一种Zr-Ti基微波介质陶瓷材料及其制备方法
CN109467432A (zh) 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法
JP3011123B2 (ja) 誘電体セラミック組成物
JP4870920B2 (ja) 誘電体磁器組成物及び電子部品
CN108455986B (zh) 一种复合微波介质陶瓷材料及其制备方法
JP4465663B2 (ja) 誘電体磁器組成物
CN103880415B (zh) 一种低损耗高介电Sr1-x-y(Ca0.6M0.8/3)y(Na0.5E0.5)xTiO3微波陶瓷及其制备方法
JPWO2006013981A1 (ja) 誘電体磁器組成物および誘電体磁器
CN105314976B (zh) Ti基低损耗中K值微波介质陶瓷及其制备方法
CN102173782B (zh) 钼基钛基温度稳定型微波介质陶瓷材料及其制备方法
JP4419889B2 (ja) 誘電体磁器組成物
JP4849325B2 (ja) 誘電体磁器組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190329