CN109467432A - 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法 - Google Patents

一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN109467432A
CN109467432A CN201811529798.3A CN201811529798A CN109467432A CN 109467432 A CN109467432 A CN 109467432A CN 201811529798 A CN201811529798 A CN 201811529798A CN 109467432 A CN109467432 A CN 109467432A
Authority
CN
China
Prior art keywords
tao
hours
microwave
ceramic material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811529798.3A
Other languages
English (en)
Other versions
CN109467432B (zh
Inventor
李恩竹
杨鸿宇
杨鸿程
陈亚伟
钟朝位
张树人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201811529798.3A priority Critical patent/CN109467432B/zh
Publication of CN109467432A publication Critical patent/CN109467432A/zh
Application granted granted Critical
Publication of CN109467432B publication Critical patent/CN109467432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于电子陶瓷及其制造领域,具体涉及一种Mg‑Ti‑Ta基微波介质陶瓷材料及其制备方法。本发明提供的材料,烧结温度1200‑1300℃,介电常数40‑44,损耗低至2.34×10‑4,晶体结构为Trirutile相的Mg0.5Ti0.5TaO4。将原料Mg(OH)2·4MgCO3·5H2O,TiO2,Ta2O5按化学通式Mg0.5Ti0.5TaO4配比,再通过固相法即可制得。本发明提供的Mg0.5Ti0.5TaO4微波介质陶瓷,烧结温度低,适中的介电常数,以及介质损耗低,且制备方法,工艺简单,易于工业化生产。

Description

一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法
技术领域
本发明属于电子陶瓷及其制造领域,具体涉及一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法,材料结构为Trirutile相。
背景技术
电子通信的高速发展,尤其涉及微波频段通信(300MHz~300GHz)的重要性日益增加,广泛的应用于移动手持电话、蓝牙、雷达、广播电视等领域。因此微波器件的发展,诸如谐振器、滤波器、介质天线等微波元器件的需求也日益增加。微波介质陶瓷具有尺寸可控,利用其制作的谐振器与微带线等构成的集成电路,可使器件尺寸达到毫米量级,使得微波介质陶瓷成为基础及关键材料。而对于不同领域的应用,适中的介电常数、谐振频率温度稳定系数以及高的品质因数Q×f值、低的损耗是研究微波介质陶瓷的主要参数。
Trirutile相微波介质陶瓷MgTa2O6具有适中的介电常数:εr=30.3、Q×f=59600GHz、τf=30ppm/℃。但其烧结致密化所需温度达到1550℃,极大的限制了其应用。
发明内容
针对上述存在问题或不足,为解决现有Trirutile相微波介质陶瓷烧结温度以及参数性能不佳的问题,本发明提供了一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法,其材料结构为Trirutile相。
本发明提供的Mg-Ti-Ta基微波介质陶瓷材料,为Mg0.5Ti0.5TaO4微波介质陶瓷材料,具有Trirutile相晶体结构,预烧温度950℃-1150℃,烧结温度适中(1200-1300℃),介电常数适中(40-44),损耗低至2.34×10-4。其原料组成为Mg(OH)2·4MgCO3·5H2O,TiO2,Ta2O5,化学通式Mg0.5Ti0.5TaO4,通过固相法制得。
其制备方法具体如下:
步骤1:将碱式碳酸镁(Mg(OH)2·4MgCO3·5H2O)、二氧化钛(TiO2)和氧化钽(Ta2O5)的原始粉末按照化学通式Mg0.5Ti0.5TaO4配料。
步骤2:将步骤1所得配料与氧化锆球和去离子水,以质量比1:4-6:3-6配比,行星球磨6-8小时,然后在80℃-120℃下烘干,再以60-200目筛网过筛,最后在950℃-1150℃大气氛围中预烧3-5小时合成主晶相Mg0.5Ti0.5TaO4
步骤3:将步骤2所得粉料按照粉料:氧化锆球:去离子水质量比1:3-5:2-4,行星球磨混合4-6小时,然后在80℃-100℃下烘干,烘干后添加质量百分比为2~5%的PVA溶液作为粘结剂造粒,然后压制成型,最后在1200℃-1300℃大气气氛中烧结4-6小时,制成Mg0.5Ti0.5TaO4微波介质陶瓷材料。
本发明对MgTa2O6从原料上引入TiO2,考虑Ti4+离子与Mg2+及Ta5+离子具有相近的离子半径,从而使得晶体结构上,Ti4+离子能够进入格点位置,形成固溶体。利用该固溶体的形成温度较低(预烧温度在950℃即可形成晶相结构),并且由于Ti4+离子的引入,改变了该固溶体系的摩尔体积与离子极化率,结合克劳修斯-莫索蒂方程,最终得到的材料体系介电常数高于MgTa2O6陶瓷,且烧结温度1200-1300℃低于MgTa2O6的1550℃。
附图说明
图1为实施例1-5的XRD图;
图2a-e分别对应为实施例1-5的表面形貌SEM图;图2f为实施例4中A点与B点的X射线能谱(EDS)分析。
具体实施方式
下面结合附图和实施例对本发明做进一步的详细说明。
步骤1、将Mg(OH)2·4MgCO3·5H2O)、TiO2、Ta2O5的原始粉末按照化学通式Mg0.5Ti0.5TaO4配料。
步骤2、将步骤1所得粉料,按照粉料:氧化锆球:去离子水的质量比1:5:3加入尼龙罐中,行星球磨混合6小时,取出后在100℃下烘干,以200目筛网过筛,后在1000℃大气氛围中预烧4小时合成主晶相Mg0.5Ti0.5TaO4
步骤3、将步骤2预烧后所得的粉料按照粉料:氧化锆球:去离子水的质量比1:5:1加入尼龙罐中,行星球磨混合4小时,取出后在100℃下烘干,烘干后添加质量百分比为4%的PVA溶液作为粘结剂造粒,压制成型,最后在1200-1300℃大气气氛中烧结6小时,制成微波介质陶瓷材料。
图1为实施例1-5所取烧结温度(1200、1225、1250、1275、1300)的XRD图,其中Si峰作为内标法校准实验及仪器误差。在不同的烧结温度下,样品的衍射峰与Trirutile相MgTa2O6卡片(JCPDS#32-0631)匹配,说明此时形成了Trirutile相固溶体Mg0.5Ti0.5TaO4。但实际衍射峰峰位存在右移现象。依据布拉格衍射定律,峰位右移是由于晶胞体积变小导致。相较MgTa2O6而言,Mg0.5Ti0.5TaO4相中Ti4+离子在相同配位数下离子半径小于Mg2+及Ta5+离子,因此晶胞体积将会降低,故衍射峰右移。
图2(a)至(e)为实施例1、2、3、4、5的表面形貌SEM图。明显地,随着烧结温度的升高,样品的气孔率降低,致密度提高,晶粒尺寸并且晶粒尺寸从1.29增加至9.64μm。从图中还可以看出随着烧结温度的升高,出现明显差异的大小晶粒。为了检测大小晶粒中的元素含量比例,我们采用的X射线能谱(EDS)对其中图(d)的大小晶粒进行了分析,结果显示于图(f)中,从结果中可以看出,大小晶粒处的Mg:Ti:Ta元素比例约为1:1:2,接近理想化学式Mg0.5Ti0.5TaO4的配比。当烧结温度持续增加,如图(e)所示,此时样品的晶粒持续增加,说明样品可能已经过烧,导致晶粒的二次再生长。
实施例的成分和微波介电性能如下
从上表的实施例1-4可以看出,随着烧结温度的升高,样品的收缩逐渐增加,介电常数增加,介质损耗降低,品质因数Q×f值升高,结合SEM形貌图看出烧结温度的提高有助于提高致密度,降低气孔率,同时晶粒尺寸也在逐渐增加。但从实施例5中看出,介电常数、介质损耗及品质因数Q×f值呈现出与实施例1-4相反的变化趋势,说明此时样品已经过烧,对微波介电性能有不利影响。
综上可见,本发明提供的Mg-Ti-Ta基介质陶瓷材料,具有适中的烧结温度,适中的介电常数以及较低的介质损耗,性能参数佳;且其制备方法,工艺简单,易于工业化生产。

Claims (2)

1.一种Mg-Ti-Ta基微波介质陶瓷材料,其特征在于:
为Mg0.5Ti0.5TaO4微波介质陶瓷材料,晶体结构为Trirutile相,预烧温度950℃-1150℃,烧结温度1200-1300℃,介电常数40-44,损耗低至2.34×10-4
其原料组成为Mg(OH)2·4MgCO3·5H2O,TiO2,Ta2O5,化学通式Mg0.5Ti0.5TaO4,通过固相法在1200℃-1300℃大气气氛中烧结制得。
2.如权利要求1所述Mg-Ti-Ta基微波介质陶瓷材料的制备方法,包括以下步骤:
步骤1:将碱式碳酸镁(Mg(OH)2·4MgCO3·5H2O)、二氧化钛(TiO2)和氧化钽(Ta2O5)的原始粉末按照化学通式Mg0.5Ti0.5TaO4配料;
步骤2:将步骤1所得配料与氧化锆球和去离子水,以质量比1:4-6:3-6配比,行星球磨6-8小时,然后在80℃-120℃下烘干,再以60-200目筛网过筛,最后在950℃-1150℃大气氛围中预烧3-5小时合成主晶相Mg0.5Ti0.5TaO4
步骤3:将步骤2所得粉料按照粉料:氧化锆球:去离子水质量比1:3-5:2-4,行星球磨混合4-6小时,然后在80℃-100℃下烘干,烘干后添加质量百分比为2~5%的PVA溶液作为粘结剂造粒,然后压制成型,最后在1200℃-1300℃大气气氛中烧结4-6小时,制成Mg0.5Ti0.5TaO4微波介质陶瓷材料。
CN201811529798.3A 2018-12-14 2018-12-14 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法 Active CN109467432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811529798.3A CN109467432B (zh) 2018-12-14 2018-12-14 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811529798.3A CN109467432B (zh) 2018-12-14 2018-12-14 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109467432A true CN109467432A (zh) 2019-03-15
CN109467432B CN109467432B (zh) 2021-03-30

Family

ID=65674903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811529798.3A Active CN109467432B (zh) 2018-12-14 2018-12-14 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109467432B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896530A (zh) * 2021-11-03 2022-01-07 电子科技大学 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
CN114773060A (zh) * 2022-04-29 2022-07-22 电子科技大学 一种多层陶瓷电容器用Mg-Ta基介质陶瓷及其低温制备方法
CN115093220A (zh) * 2022-06-14 2022-09-23 西安电子科技大学 一种低温烧结的Mg0.5Ti0.5TaO4基微波介质陶瓷材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781116A (zh) * 2010-01-02 2010-07-21 桂林理工大学 BaO-TiO2-Nb2O5三元体系低温烧结微波介质陶瓷材料及制备方法
CN101811864A (zh) * 2010-04-20 2010-08-25 杭州电子科技大学 近零谐振频率温度系数的微波介质陶瓷材料及其制备方法
CN106007703A (zh) * 2016-05-12 2016-10-12 电子科技大学 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN107140981A (zh) * 2017-05-27 2017-09-08 电子科技大学 一种ZnTiNb2O8系微波介质陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101781116A (zh) * 2010-01-02 2010-07-21 桂林理工大学 BaO-TiO2-Nb2O5三元体系低温烧结微波介质陶瓷材料及制备方法
CN101811864A (zh) * 2010-04-20 2010-08-25 杭州电子科技大学 近零谐振频率温度系数的微波介质陶瓷材料及其制备方法
CN106007703A (zh) * 2016-05-12 2016-10-12 电子科技大学 一种低温烧结复合微波介质陶瓷材料及其制备方法
CN107140981A (zh) * 2017-05-27 2017-09-08 电子科技大学 一种ZnTiNb2O8系微波介质陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.N.REIMERS ETC: "Crystal Structrue and Magnetism in CoSb2O6 and CoTa2O6", 《JOURNAL OF SOLID STATE CHEMISTRY》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113896530A (zh) * 2021-11-03 2022-01-07 电子科技大学 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
CN113896530B (zh) * 2021-11-03 2022-07-29 电子科技大学 一种温度稳定的改性NiO-Ta2O5基微波介质陶瓷材料及其制备方法
US11724966B2 (en) 2021-11-03 2023-08-15 University Of Electronic Sci. And Tech. Of China Microwave dielectric ceramic material and preparation method thereof
CN114773060A (zh) * 2022-04-29 2022-07-22 电子科技大学 一种多层陶瓷电容器用Mg-Ta基介质陶瓷及其低温制备方法
CN115093220A (zh) * 2022-06-14 2022-09-23 西安电子科技大学 一种低温烧结的Mg0.5Ti0.5TaO4基微波介质陶瓷材料及其制备方法
CN115093220B (zh) * 2022-06-14 2023-03-10 西安电子科技大学 一种低温烧结的Mg0.5Ti0.5TaO4基微波介质陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN109467432B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN107188557B (zh) 一种微波介质陶瓷材料及其制备方法
CN107140981B (zh) 一种ZnTiNb2O8系微波介质陶瓷材料及其制备方法
WO2001081269A1 (en) Low temperature sinterable and low loss dielectric ceramic compositions and method thereof
CN109467432A (zh) 一种Mg-Ti-Ta基微波介质陶瓷材料及其制备方法
CN110423117A (zh) 一种高q值微波介质陶瓷材料及其制备方法
CN109111229A (zh) 一种高温烧结微波介质陶瓷材料及其制备方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
Pang et al. Low-temperature sintering and microwave dielectric properties of TiO 2-based LTCC materials
CN108249906A (zh) 一种高品质因数微波介质陶瓷材料及制备方法
CN105272213B (zh) 高介低损微波介质陶瓷材料及其制备方法
CN105272222B (zh) 一种镁掺杂新型钛酸铋钠基无铅介电陶瓷材料及其制备方法
Xiao et al. Crystal structure and microwave dielectric properties of low-permittivity Sr 2 MgSi 2 O 7 ceramic
CN105837213B (zh) 添加ReAlO3的微波介质陶瓷材料及其制备方法
CN109574663B (zh) 一种Ni-Ti-Ta基微波介质陶瓷材料及其制备方法
CN105198423A (zh) Sr-La-Al基微波介质陶瓷材料及其制备方法
CN103570349A (zh) 掺杂改性的复合钙钛矿型微波介质陶瓷Ba(Co,Nb)O3及其制备方法
Pang et al. Sintering behavior and microwave dielectric properties of Ba6− 3xNd8+ 2xTi18O54 (x= 2/3) ceramics coated by H3BO3-TEOS sol–gel
Huang et al. Relationship of crystal structure and microwave dielectric properties in Ni0. 5Ti0. 5NbO4 ceramics with Ta substitution
CN109467433A (zh) 一种Co-Ti-Ta基介质陶瓷材料及其制备方法
JP2000335965A (ja) マイクロ波誘電体磁器組成物及びその製造方法
CN109354495A (zh) 镁锆铌锑系微波介质陶瓷及制备方法和应用
CN108455986A (zh) 一种复合微波介质陶瓷材料及其制备方法
CN109503162A (zh) 一种Co-Sn-Ta基微波介质陶瓷材料及其制备方法
CN104402430B (zh) 一种温度稳定型中k值微波介质陶瓷及其制备方法
CN101734907B (zh) 过渡族元素掺杂的钛酸锶钡基复合陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant