CN112239358A - 微波LiZnTiMn旋磁铁氧体材料及其制备方法 - Google Patents

微波LiZnTiMn旋磁铁氧体材料及其制备方法 Download PDF

Info

Publication number
CN112239358A
CN112239358A CN202011189575.4A CN202011189575A CN112239358A CN 112239358 A CN112239358 A CN 112239358A CN 202011189575 A CN202011189575 A CN 202011189575A CN 112239358 A CN112239358 A CN 112239358A
Authority
CN
China
Prior art keywords
lizntimn
microwave
ferrite material
compactness
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011189575.4A
Other languages
English (en)
Other versions
CN112239358B (zh
Inventor
廖宇龙
何伟东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Zizhiyuan Green Energy Technology Co ltd
Original Assignee
Chengdu Zizhiyuan Green Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Zizhiyuan Green Energy Technology Co ltd filed Critical Chengdu Zizhiyuan Green Energy Technology Co ltd
Priority to CN202011189575.4A priority Critical patent/CN112239358B/zh
Publication of CN112239358A publication Critical patent/CN112239358A/zh
Application granted granted Critical
Publication of CN112239358B publication Critical patent/CN112239358B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及一种高致密性微波LiZnTiMn旋磁铁氧体材料及其制备方法,属于冶金领域。本发明的LiZnTiMn旋磁铁氧体材料中还含有Bi2O3‑MXO,X为1或2,M为过渡金属。本发明的铁氧体材料性能更加优异,磁性好,同时致密性大大提高。采用本发明的方法的旋磁铁氧体材料的旋磁性能好,同时致密性大大提高,且不会带来不良影响。

Description

微波LiZnTiMn旋磁铁氧体材料及其制备方法
技术领域
本发明涉及一种高致密性微波LiZnTiMn旋磁铁氧体材料及其制备方法,属于冶金领域。
背景技术
随着电子信息技术的快速发展,微波器件已经被广泛应用于雷达系统、人工智能、卫星通信等先进技术中。各国家在微波器件领域的研究中投入了大量的财力物力,目前,其研究热点主要在以下三个方面:小型化移相器和开关;移动通讯基地台用环行器和隔离器;微波器件的小型化平面化。由于LiZnTiMn旋磁铁氧体具有低矫顽力,高的饱和磁感应强度,高剩余磁感应强度,这种材料在微波器件的制备与研发中得到了广泛的重视。传统高温烧结(~1200℃)方法制备的LiZnTiMn铁氧体材料,将其应用于微波移相器的制备中可制得性能优良的微波器件。然而,要实现微波移相器的小型化及批量化,就要求LiZnTiMn铁氧体能够与LTCF技术兼容,即在金属引线熔点温度以下(以银为例,小于960℃)实现LiZnTiMn旋磁铁氧体的烧结与制备。
然而在低温烧结过程中,存在各项磁性能、机械性能、热学性能等不能同时兼顾的问题,尤其是材料的致密度在LTCF技术中一直是一个难题。通常载流子迁移率随着致密度的增加而升高,由于样品中空洞的散射作用,致使电阻率ρ随着致密度的降低而升高,还会造成热导率κ的下降,塞贝克系数α等参数的恶化。当前研究铁氧体低温烧结的方法主要集中在两个方面,一是通过改进制备工艺,二是采用不同的掺杂方案来降低材料烧结温度。在保证低温烧结的同时,也要兼顾材料的致密性,只有材料的致密性高,才能使其气孔率,微观结构均匀性,旋磁性能获得一个良好的参数。
CN2016100988710一种实现低温烧结制备微波LiZnTiMn铁氧体材料的方法,通过在LiZnTiMn主粉体预烧之后加入氧化物Bi2O3添加剂实现LTCF工艺。通过Bi2O3在烧结反应时形成液相浸润铁氧体固相表面,对固相表面具有较好的润滑作用,减小晶粒表面的摩擦力,加速物质迁移,以此达到低温烧结的目的。但是Bi2O3作为非磁性物质,过多的引入会弱化LiZnTiMn铁氧体的磁性,也会导致晶粒吞并生长,微观结构的均匀性被破坏,不能保证材料在高水准的磁性能下进行低温烧结。
发明内容
本发明的第一个目的是提供一种新的高致密性微波LiZnTiMn旋磁铁氧体材料。
为达到本发明的第一个目的,所述LiZnTiMn旋磁铁氧体材料中还含有Bi2O3-MXO,X为1或2,M为过渡金属;
优选M为Ni,Co,Cu,X为1。
在一种具体实施方式中,所述LiZnTiMn旋磁铁氧体材料中Li0.35-0.42Zn0.27- 0.3Ti0.1-0.11Mn0.05-0.1Fe2.05-2.1O4占99.4~99.8wt%,Bi2O3-MXO占0.6~0.2wt%;
优选所述Li0.35-0.42Zn0.27-0.3Ti0.1-0.11Mn0.05-0.1Fe2.05-2.1O4占99.6wt%,Bi2O3-MXO占0.4wt%。
在一种具体实施方式中,所述Bi2O3-MXO中Bi2O3:MXO的重量比为:1~7:1~3。
本发明的第二个目的是提供上述高致密性微波LiZnTiMn旋磁铁氧体材料的制备方法。
为达到本发明的第二个目的,所述方法包括:将Li0.35-0.42Zn0.27-0.3Ti0.1- 0.11Mn0.05-0.1Fe2.05-2.1O4和Bi2O3-MXO混合均匀,850~950℃烧结得到。
在一种具体实施方式中,所述Li0.35-0.42Zn0.27-0.3Ti0.1-0.11Mn0.05-0.1Fe2.05-2.1O4的制备方法包括:将配料加水进行球磨4~8小时,80~120℃烘干,按照2~4℃/min温度曲线升温至750~850℃,保温1~3小时得到LiZnTiMn主料;
所述配料为:Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4
优选球磨6小时100℃烘干,2℃/min温度曲线升温至800℃,保温2小时。
在一种具体实施方式中,所述配料中:Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4的摩尔比为:1.025~1.05:0.27~0.3:0.1~0.11:0.175~0.21:0.0167:0.033。
在一种具体实施方式中,所述方法还包括:将Bi2O3与MXO混匀,得到添加剂;
将所述LiZnTiMn主料与添加剂按照:99.4~99.8wt%:0.2~0.6wt%混合,加水进行球磨4~8小时,烘干,按照2~4℃/min温度曲线升温至850~950℃保温2~4小时,冷却得到高致密性微波LiZnTiMn旋磁铁氧体材料;
优选球磨6小时,烘干,按照2℃/min温度曲线升温至900℃保温2小时。
在一种具体实施方式中,所述球磨的料、水、球重量比为1:1~1.5:3;优选所述球磨转速为200~250r/min,更优选为220r/min。
在一种具体实施方式中,所述方法还包括将LiZnTiMn主料与添加剂混合球磨、烘干后的物料加入胶水进行造粒成型,优选所述成型的压力为8~15Mpa,优选为8MPa。
在一种具体实施方式中,所述胶水优选为聚乙烯醇、聚乙二醇中至少一种。
有益效果:
本发明通过加入复合氧化物Bi2O3-MXO添加剂实现LTCF工艺,利用Bi2O3和MXO的协同作用实现低温烧结工艺。不仅利用了Bi2O3可以在烧结反应时形成液相浸润铁氧体固相表面,对固相表面具有较好的润滑作用,能减小晶粒表面的摩擦力,便于物质迁移的特点,也考虑到Bi2O3作为非磁性物质,过多的引入会弱化LiZnTiMn铁氧体的磁性,也会导致晶粒吞并生长,微观结构的均匀性被破坏。我们发现NiO可以在烧结反应时提供半径大的磁性离子进入晶粒内部,提高材料的旋磁性能,并且Bi2O3与MXO在低温时会反应生成烧结特性良好的低熔点共晶化合物,可以在低温烧结过程中更好的促进样品的晶粒生长及烧结致密,使得铁氧体材料获得更加优异的性能。
采用本发明的技术实现了较高水平旋磁参数的LiZnTiMn铁氧体在900℃的烧结和制备。
此外,相对于没有添加Bi2O3-MXO的LiZnTiMn铁氧体,所制备LiZnTiMn铁氧体的致密性大大提高,且不会带来不良影响。
附图说明
图1为实施例2中得到的采用LTCF法制备微波LiZnTiMn旋磁铁氧体材料与未加复合氧化物Bi2O3-NiO添加剂样品微结构对比图。
具体实施方式
为达到本发明的第一个目的,所述LiZnTiMn旋磁铁氧体材料中还含有Bi2O3-MXO,X为1或2,M为过渡金属;
优选M为Ni,Co,Cu,X为1。
在一种具体实施方式中,所述LiZnTiMn旋磁铁氧体材料中Li0.35-0.42Zn0.27- 0.3Ti0.1-0.11Mn0.05-0.1Fe2.05-2.1O4占99.4~99.8wt%,Bi2O3-MXO占0.6~0.2wt%;
优选所述Li0.35-0.42Zn0.27-0.3Ti0.1-0.11Mn0.05-0.1Fe2.05-2.1O4占99.6wt%,Bi2O3-MXO占0.4wt%。
在一种具体实施方式中,,所述Bi2O3-MXO中Bi2O3:MXO的重量比为:1~7:1~3。
本发明的第二个目的是提供上述高致密性微波LiZnTiMn旋磁铁氧体材料的制备方法。
为达到本发明的第二个目的,所述方法包括:将Li0.35-0.42Zn0.27-0.3Ti0.1- 0.11Mn0.05-0.1Fe2.05-2.1O4和Bi2O3-MXO混合均匀,850~950℃烧结得到。
在一种具体实施方式中,所述Li0.35-0.42Zn0.27-0.3Ti0.1-0.11Mn0.05-0.1Fe2.05-2.1O4的制备方法包括:将配料加水进行球磨4~8小时,80~120℃烘干,按照2~4℃/min温度曲线升温至750~850℃,保温1~3小时得到LiZnTiMn主料;
所述配料为:Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4
优选球磨6小时100℃烘干,2℃/min温度曲线升温至800℃,保温2小时。
在一种具体实施方式中,所述配料中:Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4的摩尔比为:1.025~1.05:0.27~0.3:0.1~0.11:0.175~0.21:0.0167:0.033。
在一种具体实施方式中,所述方法还包括:将Bi2O3与MXO混匀,得到添加剂;
将所述LiZnTiMn主料与添加剂按照:99.4~99.8wt%:0.2~0.6wt%混合,加水进行球磨4~8小时,烘干,按照2~4℃/min温度曲线升温至850~950℃保温2~4小时,冷却得到高致密性微波LiZnTiMn旋磁铁氧体材料;
优选球磨6小时,烘干,按照2℃/min温度曲线升温至900℃保温2小时。
在一种具体实施方式中,所述球磨的料、水、球重量比为1:1~1.5:3;优选所述球磨转速为200~250r/min,更优选为220r/min。
在一种具体实施方式中,所述方法还包括将LiZnTiMn主料与添加剂混合球磨、烘干后的物料加入胶水进行造粒成型,优选所述成型的压力为8~15Mpa,优选为8MPa。
在一种具体实施方式中,所述胶水优选为聚乙烯醇、聚乙二醇中至少一种。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
实施例1
(1)称量配料:以Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4的分子式来称量配料。
(2)一次球磨:按照料:水:铁球=1:1.2:3的比例将步骤1配好的配料进行球磨,球磨时间为4小时,后取出80℃烘干,使粉料混合均匀后,按照2℃/min温度曲线升温至800℃,保温1小时得到LiZnTiMn主料。
(3)制备复合氧化物Bi2O3-NiO添加剂:以Bi2O3,NiO计,按照Bi2O3:NiO=1:1的重量比来配料,混合均匀后作为添加剂备用;
(4)取步骤3制作得到的Bi2O3-NiO添加剂0.4wt%,步骤2的主料99.6wt%混合,进行二次球磨,球磨比为料:水:球=1:1:3,球磨时间为4小时,球磨转速为220r/min;将二次球磨出来的浆料烘干,加入聚乙烯醇(PVA)胶水进行造粒成型,成型压力为8MPa,压制成坯件后,按照2℃/min温度曲线升温,在烧结温度点900℃保温2小时,自然冷却得到LTCF法制备的微波LiZnTiMn旋磁铁氧体材料。
实施例2
(1)称量配料:以Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4的分子式来称量配料。
(2)一次球磨:按照料:水:铁球=1:1:3的比例将步骤1配好的配料进行球磨,球磨时间为6小时,后取出100℃烘干,使粉料混合均匀后,按照2℃/min温度曲线升温至800℃,保温2小时得到LiZnTiMn主料。
(3)制备复合氧化物Bi2O3-NiO添加剂:以Bi2O3,NiO计,按照Bi2O3:NiO=5:3的重量比来配料,混合均匀后作为添加剂备用;
(4)取步骤3制作得到的Bi2O3-NiO添加剂0.4wt%,步骤2的主料99.6wt%混合,进行二次球磨,球磨比为料:水:球=1:1:3,球磨时间为6小时,球磨转速为220r/min;将二次球磨出来的浆料烘干,加入聚乙烯醇(PVA)胶水进行造粒成型,成型压力为8MPa,压制成坯件后,按照2℃/min温度曲线升温,在烧结温度点900℃保温2小时,自然冷却得到LTCF法制备的微波LiZnTiMn旋磁铁氧体材料。
实施例3
(1)称量配料:以Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4的分子式来称量配料。
(2)一次球磨:按照料:水:铁球=1:1.5:3的比例将步骤1配好的配料进行球磨,球磨时间为8小时,后取出120℃烘干,使粉料混合均匀后,按照4℃/min温度曲线升温至800℃,保温3小时得到LiZnTiMn主料。
(3)制备复合氧化物Bi2O3-NiO添加剂:以Bi2O3,NiO计,按照Bi2O3:NiO=3:1的重量比来配料,混合均匀后作为添加剂备用;
(4)取步骤3制作得到的Bi2O3-NiO添加剂0.6wt%,步骤2的主料99.4wt%混合,进行二次球磨,球磨比为料:水:球=1:1.5:3,球磨时间为8小时,球磨转速为220r/min;将二次球磨出来的浆料烘干,加入聚乙烯醇(PVA)胶水进行造粒成型,成型压力为8MPa,压制成坯件后,按照2℃/min温度曲线升温,在烧结温度点900℃保温2小时,自然冷却得到LTCF法制备的微波LiZnTiMn旋磁铁氧体材料。
实施例4
(1)称量配料:以Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4的分子式来称量配料。
(2)一次球磨:按照料:水:铁球=1:1.2:3的比例将步骤1配好的配料进行球磨,球磨时间为6小时,后取出100℃烘干,使粉料混合均匀后,按照2℃/min温度曲线升温至800℃,保温2小时得到LiZnTiMn主料。
(3)制备复合氧化物Bi2O3-NiO添加剂:以Bi2O3,NiO计,按照Bi2O3:NiO=7:1的重量比来配料,混合均匀后作为添加剂备用;
(4)取步骤3制作得到的Bi2O3-NiO添加剂0.2wt%,步骤2的主料99.8wt%混合,进行二次球磨,球磨比为料:水:球=1:1:3,球磨时间为6小时,球磨转速为220r/min;将二次球磨出来的浆料烘干,加入聚乙烯醇(PVA)胶水进行造粒成型,成型压力为15MPa,压制成坯件后,按照4℃/min温度曲线升温,在烧结温度点900℃保温4小时,自然冷却得到LTCF法制备的微波LiZnTiMn旋磁铁氧体材料。
实施例5
(1)称量配料:以Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4的分子式来称量配料。
(2)一次球磨:按照料:水:铁球=1:1.2:3的比例将步骤1配好的配料进行球磨,球磨时间为6小时,后取出100℃烘干,使粉料混合均匀后,按照2℃/min温度曲线升温至800℃,保温2小时得到LiZnTiMn主料。
(3)制备复合氧化物Bi2O3-CuO添加剂:以Bi2O3,CuO计,按照Bi2O3:CuO=2:1的重量比来配料,混合均匀后作为添加剂备用;
(4)取步骤3制作得到的Bi2O3-CuO添加剂0.2wt%,步骤2的主料99.8wt%混合,进行二次球磨,球磨比为料:水:球=1:1:3,球磨时间为6小时,球磨转速为220r/min;将二次球磨出来的浆料烘干,加入聚乙烯醇(PVA)胶水进行造粒成型,成型压力为15MPa,压制成坯件后,按照4℃/min温度曲线升温,在烧结温度点900℃保温4小时,自然冷却得到LTCF法制备的微波LiZnTiMn旋磁铁氧体材料。
对比例1
(1)称量配料:以Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4的分子式来称量配料。
(2)一次球磨:按照料:水:铁球=1:1:3的比例将步骤1配好的配料进行球磨,球磨时间为6小时,后取出100℃烘干,使粉料混合均匀后,按照2℃/min温度曲线升温至800℃,保温2小时得到LiZnTiMn主料。
(3)将步骤2制作得到的LiZnTiMn,进行二次球磨,球磨比为料:水:球=1:1:3,球磨时间为6小时,球磨转速为220r/min;将二次球磨出来的浆料烘干,加入聚乙烯醇(PVA)胶水进行造粒成型,成型压力为8MPa,压制成坯件后,按照2℃/min温度曲线升温,在烧结温度点900℃保温2小时,自然冷却得到LTCF法制备的LiZnTiMn旋磁铁氧体材料。
对比例2
(1)称量配料:以Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4为原料,按照Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4的分子式来称量配料。
(2)一次球磨:按照料:水:铁球=1:1:3的比例将步骤1配好的配料进行球磨,球磨时间为6小时,后取出100℃烘干,使粉料混合均匀后,按照2℃/min温度曲线升温至800℃,保温2小时得到LiZnTiMn主料。
(3)制备复合氧化物Bi2O3-NiO添加剂:以Bi2O3,NiO计,按照Bi2O3:NiO=8:5的重量比来配料,混合均匀后作为添加剂备用;
(4)取步骤3制作得到的Bi2O3-NiO添加剂0.8wt%,步骤2的主料99.2wt%混合,进行二次球磨,球磨比为料:水:球=1:1:3,球磨时间为6小时,球磨转速为220r/min;将二次球磨出来的浆料烘干,加入聚乙烯醇(PVA)胶水进行造粒成型,成型压力为8MPa,压制成坯件后,按照2℃/min温度曲线升温,在烧结温度点900℃保温2小时,自然冷却得到LTCF法制备的微波LiZnTiMn旋磁铁氧体材料。
表1实施例及对比例得到的产品性能
Figure BDA0002752402360000071
图1为实施例2中得到的采用LTCF法制备微波LiZnTiMn旋磁铁氧体材料与对比例1未加复合氧化物Bi2O3-NiO添加剂样品微结构对比图。可以看到,通过加入重量比0.4wt%Bi2O3-NiO添加剂(Bi2O3与NiO的重量比为5:3)后LiZnTiMn晶粒明显长大,得到致密“烧熟”的微波LiZnTiMn旋磁铁氧体材料。

Claims (10)

1.高致密性微波LiZnTiMn旋磁铁氧体材料,其特征在于,所述LiZnTiMn旋磁铁氧体材料中还含有Bi2O3-MXO,X为1或2,M为过渡金属;
优选M为Ni,Co,Cu,X为1。
2.根据权利要求1所述的高致密性微波LiZnTiMn旋磁铁氧体材料,其特征在于,所述LiZnTiMn旋磁铁氧体材料中Li0.35-0.42Zn0.27-0.3Ti0.1-0.11Mn0.05-0.1Fe2.05-2.1O4占99.4~99.8wt%,Bi2O3-MXO占0.6~0.2wt%;
优选所述Li0.35-0.42Zn0.27-0.3Ti0.1-0.11Mn0.05-0.1Fe2.05-2.1O4占99.6wt%,Bi2O3-MXO占0.4wt%。
3.根据权利要求1或2所述的高致密性微波LiZnTiMn旋磁铁氧体材料,其特征在于,所述Bi2O3-MXO中Bi2O3:MXO的重量比为:1~7:1~3。
4.权利要求1~3任一项所述的高致密性微波LiZnTiMn旋磁铁氧体材料的制备方法,其特征在于,所述方法包括:将Li0.35-0.42Zn0.27-0.3Ti0.1-0.11Mn0.05-0.1Fe2.05-2.1O4和Bi2O3-MXO混合均匀,850~950℃烧结得到。
5.根据权利要求4所述的高致密性微波LiZnTiMn旋磁铁氧体材料的制备方法,其特征在于,所述Li0.35-0.42Zn0.27-0.3Ti0.1-0.11Mn0.05-0.1Fe2.05-2.1O4的制备方法包括:将配料加水进行球磨4~8小时,80~120℃烘干,按照2~4℃/min温度曲线升温至750~850℃,保温1~3小时得到LiZnTiMn主料;
所述配料为:Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4
优选球磨6小时100℃烘干,2℃/min温度曲线升温至800℃,保温2小时。
6.根据权利要求5所述的高致密性微波LiZnTiMn旋磁铁氧体材料的制备方法,其特征在于,所述配料中:Fe2O3,ZnO,TiO2,Li2CO3,Mn3O4的摩尔比为:1.025~1.05:0.27~0.3:0.1~0.11:0.175~0.21:0.0167:0.033。
7.根据权利要求4~6任一项所述的高致密性微波LiZnTiMn旋磁铁氧体材料的制备方法,其特征在于,所述方法还包括:将Bi2O3与MXO混匀得到添加剂;
将所述LiZnTiMn主料与添加剂按照:99.4~99.8wt%:0.2~0.6wt%混合,加水进行球磨4~8小时,烘干,按照2~4℃/min温度曲线升温至850~950℃保温2~4小时,冷却得到高致密性微波LiZnTiMn旋磁铁氧体材料;
优选球磨6小时,烘干,按照2℃/min温度曲线升温至900℃保温2小时。
8.根据权利要求5或7中所述的高致密性微波LiZnTiMn旋磁铁氧体材料的制备方法,其特征在于,所述球磨的料、水、球重量比为1:1~1.5:3;优选所述球磨转速为200~250r/min,更优选为220r/min。
9.根据权利要求7中所述的高致密性微波LiZnTiMn旋磁铁氧体材料的制备方法,其特征在于,所述方法还包括将LiZnTiMn主料与添加剂混合球磨、烘干后的物料加入胶水进行造粒成型,优选所述成型的压力为8~15Mpa,优选为8MPa。
10.根据权利要求9中所述的高致密性微波LiZnTiMn旋磁铁氧体材料的制备方法,其特征在于,所述胶水优选为聚乙烯醇、聚乙二醇中至少一种。
CN202011189575.4A 2020-10-30 2020-10-30 微波LiZnTiMn旋磁铁氧体材料及其制备方法 Active CN112239358B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011189575.4A CN112239358B (zh) 2020-10-30 2020-10-30 微波LiZnTiMn旋磁铁氧体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011189575.4A CN112239358B (zh) 2020-10-30 2020-10-30 微波LiZnTiMn旋磁铁氧体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112239358A true CN112239358A (zh) 2021-01-19
CN112239358B CN112239358B (zh) 2022-11-29

Family

ID=74168474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011189575.4A Active CN112239358B (zh) 2020-10-30 2020-10-30 微波LiZnTiMn旋磁铁氧体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112239358B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213908A (zh) * 2021-04-25 2021-08-06 中国航天时代电子有限公司 一种用于铁氧体器件的微波铁氧体材料及其制备方法
CN113511888A (zh) * 2021-04-07 2021-10-19 电子科技大学 一种窄线宽ltcf旋磁基板材料及其制备方法
CN113845359A (zh) * 2021-08-30 2021-12-28 电子科技大学 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
CN114605142A (zh) * 2022-03-28 2022-06-10 电子科技大学 一种ltcf变压器用复合铁氧体基板材料及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159696A (en) * 1978-06-07 1979-12-17 Mitsubishi Electric Corp Lithium-nickel ferrite
EP0429088A1 (en) * 1989-11-24 1991-05-29 SELENIA INDUSTRIE ELETTRONICHE ASSOCIATE S.p.A. Lithium-titanium-zinc ferrites for microwave applications
JPH0959059A (ja) * 1995-08-23 1997-03-04 Sanyo Electric Co Ltd マイクロ波用誘電体磁器組成物
US6002211A (en) * 1994-09-14 1999-12-14 U.S. Philips Corporation Sintered moulding, transformer core and inductor core of Li(Ni)Zn ferrite material, as well as applications thereof
JP2007145658A (ja) * 2005-11-29 2007-06-14 Tdk Corp Li系フェライト焼結体の製造方法及びLi系フェライト焼結体
CN101549993A (zh) * 2009-04-30 2009-10-07 深圳市华扬通信技术有限公司 一种应用于c波段移相器的锂铁氧体材料及其制备方法
CN101684044A (zh) * 2008-09-25 2010-03-31 Tdk株式会社 MnZnLi系铁氧体
CN102167575A (zh) * 2011-01-06 2011-08-31 电子科技大学 Ka波段移相器用LiZn铁氧体材料及制备方法
CN103664154A (zh) * 2012-09-21 2014-03-26 绵阳市维奇电子技术有限公司 高频高电阻率Li-Ti-Zn软磁铁氧体材料配方及工艺
CN103880408A (zh) * 2014-02-26 2014-06-25 南京国睿微波器件有限公司 一种高性能高致密化移相器用锂铁氧体材料及其制备方法
CN105884342A (zh) * 2016-02-23 2016-08-24 电子科技大学 Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN106946559A (zh) * 2017-03-14 2017-07-14 电子科技大学 尖晶石复合铁氧体材料及制备方法
CN111792925A (zh) * 2020-07-23 2020-10-20 中国电子科技集团公司第九研究所 一种高磁导率宽温功率型镍锌ltcf材料、其制备方法及应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159696A (en) * 1978-06-07 1979-12-17 Mitsubishi Electric Corp Lithium-nickel ferrite
EP0429088A1 (en) * 1989-11-24 1991-05-29 SELENIA INDUSTRIE ELETTRONICHE ASSOCIATE S.p.A. Lithium-titanium-zinc ferrites for microwave applications
US6002211A (en) * 1994-09-14 1999-12-14 U.S. Philips Corporation Sintered moulding, transformer core and inductor core of Li(Ni)Zn ferrite material, as well as applications thereof
JPH0959059A (ja) * 1995-08-23 1997-03-04 Sanyo Electric Co Ltd マイクロ波用誘電体磁器組成物
JP2007145658A (ja) * 2005-11-29 2007-06-14 Tdk Corp Li系フェライト焼結体の製造方法及びLi系フェライト焼結体
CN101684044A (zh) * 2008-09-25 2010-03-31 Tdk株式会社 MnZnLi系铁氧体
CN101549993A (zh) * 2009-04-30 2009-10-07 深圳市华扬通信技术有限公司 一种应用于c波段移相器的锂铁氧体材料及其制备方法
CN102167575A (zh) * 2011-01-06 2011-08-31 电子科技大学 Ka波段移相器用LiZn铁氧体材料及制备方法
CN103664154A (zh) * 2012-09-21 2014-03-26 绵阳市维奇电子技术有限公司 高频高电阻率Li-Ti-Zn软磁铁氧体材料配方及工艺
CN103880408A (zh) * 2014-02-26 2014-06-25 南京国睿微波器件有限公司 一种高性能高致密化移相器用锂铁氧体材料及其制备方法
CN105884342A (zh) * 2016-02-23 2016-08-24 电子科技大学 Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN106946559A (zh) * 2017-03-14 2017-07-14 电子科技大学 尖晶石复合铁氧体材料及制备方法
CN111792925A (zh) * 2020-07-23 2020-10-20 中国电子科技集团公司第九研究所 一种高磁导率宽温功率型镍锌ltcf材料、其制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FEI XIE ET AL.: "Low-temperature sintering and ferrimagnetic properties of LiZnTiMn ferrites with Bi2O3-CuO eutectic mixture", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
I.SOIBAM ET AL.: "Effects of cobalt substitution on the dielectric properties of Li-Zn ferrites", 《SOLID STATE COMMUNICATIONS》 *
TIANCI CAO ET AL.: "Enhanced magnetic properties of low-temperature sintered LiZnTiMn ferrites with Bi2O3-NiO additive", 《JOURNAL OF MATERIALS SCIENCE:MATERIALS IN ELECTRONICS》 *
冯全源 等: "移相器材料Zn、Ti、Sn替代锂铁氧体", 《无机材料学报》 *
王伟: "Ka波段移相器用LiZn铁氧体及其应用研究", 《中国优秀硕士学位全文数据库 工程科技II辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511888A (zh) * 2021-04-07 2021-10-19 电子科技大学 一种窄线宽ltcf旋磁基板材料及其制备方法
CN113213908A (zh) * 2021-04-25 2021-08-06 中国航天时代电子有限公司 一种用于铁氧体器件的微波铁氧体材料及其制备方法
CN113845359A (zh) * 2021-08-30 2021-12-28 电子科技大学 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法
CN114605142A (zh) * 2022-03-28 2022-06-10 电子科技大学 一种ltcf变压器用复合铁氧体基板材料及其制备方法

Also Published As

Publication number Publication date
CN112239358B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN112239358B (zh) 微波LiZnTiMn旋磁铁氧体材料及其制备方法
CN104891982A (zh) 一种稀土高磁导率软磁铁氧体及其制备方法
CN105236948B (zh) Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法
CN112745122B (zh) 一种高功率高介电常数石榴石的制备方法及石榴石
CN112456998A (zh) 一种高介电常数的石榴石铁氧体材料及其制备方法
CN111848149A (zh) 一种高介电常数微波铁氧体材料、制备方法和器件
US20190006070A1 (en) Composite magnetic material and magnetic core
CN106946559B (zh) 尖晶石复合铁氧体材料及制备方法
CN113327736B (zh) 一种宽频、五高性能的软磁铁氧体材料及其制备方法
CN101412621B (zh) 高磁导率高饱和磁感应强度MnZn铁氧体材料及其制备方法
CN108774057B (zh) 一种用于LTCC环形器的NiCuZn旋磁铁氧体材料及其制备方法
CN102167575B (zh) Ka波段移相器用LiZn铁氧体材料及制备方法
CN115477534B (zh) Ku波段自偏置器件用双相复合铁氧体材料及其制备方法
CN115057697B (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
CN116396068A (zh) K~Ka波段自偏置环行器铁氧体基板材料及制备方法
CN112194481B (zh) 一种镍锌铁氧体材料及其制备方法
CN113228205B (zh) 烧结体及其制造方法
Huo et al. Microstructure, magnetic, and power loss characteristics of low‐sintered NiCuZn ferrites with La2O3‐Bi2O3 additives
CN104891980A (zh) 一种适用于电源上用的软磁铁氧体材料及其制备方法
CN116396069B (zh) 一种非磁场取向的织构化六角铁氧体材料的制备方法
CN115367813B (zh) 一种尖晶石型镍锌铁氧体及其制备方法和应用
CN115180935B (zh) 一种毫米波ltcf生瓷带制备方法
KR102130103B1 (ko) 페리자성체 및 이의 제조방법
CN116477936A (zh) 一种微波用铁氧体材料及其制备方法
CN114409393B (zh) 一种高矫顽力低损耗复合六角铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant