CN113213908A - 一种用于铁氧体器件的微波铁氧体材料及其制备方法 - Google Patents
一种用于铁氧体器件的微波铁氧体材料及其制备方法 Download PDFInfo
- Publication number
- CN113213908A CN113213908A CN202110450149.XA CN202110450149A CN113213908A CN 113213908 A CN113213908 A CN 113213908A CN 202110450149 A CN202110450149 A CN 202110450149A CN 113213908 A CN113213908 A CN 113213908A
- Authority
- CN
- China
- Prior art keywords
- ball milling
- ferrite material
- microwave ferrite
- hours
- microwave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2608—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
- C04B35/2616—Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing lithium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/265—Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/34—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
- H01F1/342—Oxides
- H01F1/344—Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/442—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Magnetic Ceramics (AREA)
Abstract
本发明公开了一种用于铁氧体器件的微波铁氧体材料及其制备方法。该铁氧体属于锂铁氧体材料,化学成分为LixZnyMnzBiuNiv(Dy,Tb)wFe2.26±γO4±δ,其中:x=0.35‑0.37,y=0.27‑0.29,z=0.045‑0.055,u=0.004‑0.006,v=0‑0.03,w=0‑0.03,γ=0‑0.0113,δ=0‑0.02。本发明提出了通过工艺调节饱和磁化强度的方法,可以将制的的微波铁氧体材料的饱和磁化强度控制在4300‑5100Gs范围内。本发明制备的微波铁氧体材料具有高剩磁比(Ms/Mr≥0.9),低矫顽力(Hc≤2Oe),低损耗(损耗角正切tanδ≤1×10‑3)等特点。
Description
技术领域
本发明涉及一种用于铁氧体器件的微波铁氧体材料及其制备方法,属于电子元器件核心材料技术领域。
背景技术
微波铁氧体器件在微波技术中占有重要地位,在航空航天、卫星通信、电子对抗、移动通信及医疗等领域中有着广泛的应用。作为微波铁氧体器件的核心,微波铁氧体材料应用于环行器/隔离器、移相器、铁氧体开关等器件,在微波系统中实现着对微波传输的隔离、通路选择、移相、极化状态控制、开关、调制、倍频、放大等方面的功能。
微波铁氧体是具有亚铁磁性的金属氧化物。当电磁波/场通过微波铁氧体时,由于受到铁磁共振引起的张量磁导率的影响,电磁波/场的场结构产生变化,在输入端口的主模在中心两侧分别是左旋圆极化波和右旋圆极化波。当铁氧体器件工作时,电磁波会受到张量磁导率的影响而发生偏转。利用微波铁氧体材料的旋磁效应可以制造微波铁氧体器件,如:环行器/隔离器、铁氧体开关、铁氧体移相器等。
根据经验公式:(γ×Ms)/f=p,其中p值取0.6-0.7,γ表示旋磁比,微波铁氧体材料的饱和磁化强度决定了微波铁氧体器件的应用频段。高频段是通信器件重要的发展趋势,因此研究制造高饱和磁化强度的微波铁氧体材料具有重要的现实意义。同时,在材料化学成分配比固定的情况下,通过调节工艺参数来改变饱和磁化强度也为具有重要的实际操作意义。
微波铁氧体材料根据剩磁比(Mr/Ms)的不同可以进一步分为微波旋磁材料和微波矩磁材料,其中微波矩磁材料的剩磁比≥0.85。微波铁氧体材料的剩磁比决定了其应用范围,一般而言,微波旋磁材料应用于环行器/隔离器,微波矩磁铁氧体应用于铁氧体开关。
微波矩磁铁氧体材料的矫顽力决定其切换速度,矫顽力越小,切换越灵敏。微波矩磁铁氧体材料的损耗角正切(介电常数虚部)决定了微波铁氧体器件的损耗,损耗角正切越小,损耗越小。因此,制备低矫顽力、低损耗角正切的微波矩磁铁氧体材料具有重要意义。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提供了一种用于铁氧体器件的微波铁氧体材料及其制备方法,该材料具有本发明制备的微波铁氧体材料具有高剩磁比(Ms/Mr≥0.9),低矫顽力(Hc≤2Oe),低损耗(损耗角正切tanδ≤1×10-3)等特点。
本发明的技术解决方案是:
一种用于铁氧体器件的微波铁氧体材料,该微波铁氧体材料化学成分为:
LixZnyMnzBiuNivDywFe2.26±γO4±δ或者
LixZnyMnzBiuNivTbwFe2.26±γO4±δ
其中:x=0.35-0.37,y=0.27-0.29,z=0.045-0.055,u=0.004-0.006,v=0-0.03,w=0-0.03,γ=0-0.0113,δ=0-0.02。
一种用于铁氧体器件的微波铁氧体材料的制备方法,该方法的步骤包括:
(1)进行配料即制备微波铁氧体材料的原料,以微波铁氧体材料的原料的总质量为100%,根据微波铁氧体材料化学成分,按照化学成分摩尔比换算为质量比进行称量,配料比如下:
称量后将粉料充分混合;
微波铁氧体材料化学成分为LixZnyMnzBiuNivDywFe2.26±γO4±δ时,配料中选用Dy2O3;微波铁氧体材料化学成分为LixZnyMnzBiuNivTbwFe2.26±γO4±δ时,配料中选用Tb2O3;
(2)预球磨:将称量混合后的粉料、介质溶剂、球磨珠装入球磨罐进行球磨;
所用的介质溶剂为非极性溶剂,优选乙醇或正庚烷;粉料、介质溶剂、球磨珠的质量比为1:x:y,其中x=1.8-2.6,y=1.8-3.0;球磨罐选用玛瑙罐或不锈钢罐,球磨珠材料与球磨罐相同;
预球磨强度为20-60r/min,优选30r/min,球磨时间11-13h;
(3)烘干:将步骤(2)预球磨得到的配料进行烘干;烘干温度120-190℃,优选130℃,峰值温度不高于200℃;
(4)一次过筛:将步骤(3)烘干得到的配料过40-80目筛;
(5)预烧结:将步骤(4)一次过筛后得到的配料进行预烧结;
进一步的,预烧结条件为:2小时内均匀升温至355℃,再2小时内由355℃升温至540℃,再3小时内由540℃升温至900℃,900℃保温5小时;断电后随炉冷却;
(6)二次球磨:将步骤(5)预烧结得到的粉料装入球磨罐进行球磨;二次球磨强度为80-100r/min,优选90r/min,球磨时间29-31h;
(7)烘干:将步骤(6)二次球磨得到的配料进行烘干;烘干温度120-190℃,优选130℃,峰值温度不高于200℃;
(8)造粒:在步骤(7)烘干得到的粉料中以11%-17%的比例(以烘干得到的粉料为100%计算)加入聚乙烯醇的水溶液,聚乙烯醇的水溶液浓度为质量比8%-9%,充分混合研磨后过80目筛;
(9)压型:将步骤(8)造粒得到的粉料放入相应模具中进行压型,得到生坯;压型时,压力范围为:10-35MPa,优选采用20MPa;
(10)二次烧结:将步骤(9)压型得到生坯放入电炉进行烧结;
二次烧结条件为:阶段①:7小时内均匀升温至380℃,再2小时内由380℃升温至580℃,再6小时内580℃升温至1060℃;阶段②:1060℃保温t小时,t=8-30h,保温时间t后断电后随炉冷却;
改变保温时间t确定铁氧体材料的饱和磁化强度,当t=8h时,饱和磁化强度为4300Gs,t=10h时,饱和磁化强度为4400Gs,t=24h时,饱和磁化强度为4700Gs,t=28h时,饱和磁化强度为5000Gs,t≥30h时,饱和磁化强度为5100Gs。
本发明与现有技术相比的有益效果是:
(1)本发明制备的微波铁氧体材料具有高剩磁比、低矫顽力、低损耗以及高温度稳定性等特点,可以用于制造高性能的环行器/隔离器、铁氧体开关等微波无源器件。
(2)与传统锂铁铁氧体材料相比,利用本发明得到的微波铁氧体材料主要性能对比如下:
(3)本发明公开了一种用于铁氧体器件的微波铁氧体材料及其制备方法。该铁氧体属于锂铁氧体材料,化学成分为
LixZnyMnzBiuNiv(Dy,Tb)wFe2.26±γO4±δ,其中:x=0.35-0.37,y=0.27-0.29,z=0.045-0.055,u=0.004-0.006,v=0-0.03,w=0-0.03,γ=0-0.0113,δ=0-0.02。本发明提出了通过工艺调节饱和磁化强度的方法,可以将制的的微波铁氧体材料的饱和磁化强度控制在4300-5100Gs范围内。本发明制备的微波铁氧体材料具有高剩磁比(Ms/Mr≥0.9),低矫顽力(Hc≤2Oe),低损耗(损耗角正切tanδ≤1×10-3)等特点。
具体实施方式
本发明提出了一种用于铁氧体器件的微波铁氧体材料,所述微波铁氧体材料化学成分为:
LixZnyMnzBiuNivDywFe2.26±γO4±δ或者
LixZnyMnzBiuNivTbwFe2.26±γO4±δ
其中:x=0.35-0.37,y=0.27-0.29,z=0.045-0.055,u=0.004-0.006,v=0-0.03,w=0-0.03,γ=0-0.0113,δ=0-0.02。
进一步的,本发明还提出可用于铁氧体器件的微波铁氧体材料的制备方法,步骤如下:
(1)进行配料,根据微波铁氧体材料化学成分,按照化学成分摩尔比换算为质量比进行称量,配料比如下:
称量后将粉料充分混合;
进一步的,微波铁氧体材料化学成分为LixZnyMnzBiuNivDywFe2.26±γO4±δ时,配料中选用Dy2O3;微波铁氧体材料化学成分为LixZnyMnzBiuNivTbwFe2.26±γO4±δ时,配料中选用Tb2O3。
(2)预球磨:将称量混合后的粉料、介质溶剂、球磨珠装入球磨罐进行球磨;
由于在极性溶剂(如:乙醇)中,Li2CO3与其他粉料的溶解度差异较大,会导致混合不充分的情况,因此本发明所用的介质溶剂为非极性溶剂,优选乙醇或正庚烷;粉料、介质溶剂、球磨珠的质量比为1:x:y,其中x=1.8-2.6,y=1.8-3.0;球磨罐选用玛瑙罐或不锈钢罐,球磨珠材料与球磨罐相同。
进一步的,预球磨强度为20-60r/min,优选30r/min,球磨时间11-13h;
(3)烘干:将步骤(2)预球磨得到的的配料进行烘干;烘干温度120-190℃,优选130℃,峰值温度不高于200℃。
(4)一次过筛:将步骤(3)烘干得到的配料过40-80目筛;
(5)预烧结:将步骤(4)一次过筛后得到的配料进行预烧结;进一步的,预烧结条件为:2小时内均匀升温至355℃,再2小时内由355℃升温至540℃,再3小时内由540℃升温至900℃,900℃保温5小时;断电后随炉冷却。
(6)二次球磨:将步骤(5)预烧结得到的粉料装入球磨罐进行球磨;粉料、介质溶剂、球磨珠的质量比为1:x:y,其中x=1.8-2.6,y=1.8-3.0;球磨罐选用玛瑙罐或不锈钢罐,球磨珠材料类型需要与球磨罐相同。二次球磨强度为80-100r/min,优选90r/min,球磨时间29-31h;
(7)烘干:将步骤(6)二次球磨得到的的配料进行烘干;烘干温度120-190℃,优选130℃,峰值温度不高于200℃。
(8)造粒:在步骤(7)烘干得到的粉料中以11%-17%的比例(以烘干得到的粉料为100%计算)加入聚乙烯醇的水溶液,聚乙烯醇的水溶液浓度为8-9%(质量比),充分混合研磨后过80目筛;
(9)压型:将步骤(8)造粒得到的粉料放入相应模具中进行压型,得到生坯;压型时,压力范围为:10-35MPa,优选采用20MPa。
(10)二次烧结:将步骤(9)压型得到生坯放入电炉进行烧结。二次烧结条件为:阶段①:7小时内均匀升温至380℃,再2小时内由380℃升温至580℃,再6小时内580℃升温至1060℃;阶段②:1060℃保温t小时,t=8-30h,保温时间t后断电后随炉冷却。
改变保温时间t确定铁氧体材料的饱和磁化强度,当t=8h时,饱和磁化强度为4300Gs,t=10h时,饱和磁化强度为4400Gs,t=24h时,饱和磁化强度为4700Gs,t=28h时,饱和磁化强度为5000Gs,t≥30h时,饱和磁化强度为5100Gs。
实施例1
化学成分:Li0.36Zn0.28Mn0.05Bi0.005Fe2.26O4.26该成分微波铁氧体材料的制备方法如下:
(1)进行配料,根据微波铁氧体材料化学成分,按照化学成分摩尔比换算为质量比进行称量,相关原材料质量如下:
称量后将粉料充分混合。
(2)预球磨:将称量混合后的粉料、无水乙醇、不锈钢球磨珠装入不锈钢球磨罐进行球磨,其中:粉料、无水乙醇、球磨珠的质量比为1:2:2.5。预球磨强度(转速)为30r/min,球磨时间12h。
(3)烘干:将步骤(2)预球磨得到的配料在130℃条件下进行烘干。
(4)一次过筛:将步骤(3)烘干得到的配料过70目筛;
(5)预烧结:将步骤(4)一次过筛后得到的配料进行预烧结。预烧结条件为:2小时内均匀升温至355℃,再2小时内由355℃升温至540℃,再3小时内由540℃升温至900℃,900℃保温5小时;断电后随炉冷却。
(6)二次球磨:将步骤(5)预烧结得到的粉料装入不锈钢球磨罐进行球磨;粉料、无水乙醇、不锈钢球磨珠的质量比为1:2:2.5。二次球磨强度(转速)为90r/min,球磨时间30h。
(7)烘干:将步骤(6)二次球磨得到的配料在130℃条件下进行烘干。
(8)造粒:在步骤(7)烘干得到的粉料中以14%的比例(以烘干得到的粉料为100%计算)加入聚乙烯醇的水溶液,聚乙烯醇的水溶液浓度为8.5%(质量比),充分混合研磨后过80目筛。
(9)压型:将步骤(8)造粒得到的粉料放入模具中进行压型,所用压力为20MPa,得到生坯。
(10)二次烧结:将步骤(9)压型得到生坯放入电炉进行烧结。
二次烧结条件为:阶段①:7小时内均匀升温至380℃,再2小时内由380℃升温至580℃,再6小时内580℃升温至1060℃;阶段②:将生坯分为两组,分别在1060℃条件下保温24h以及28h。断电后随炉冷却。
得到的微波铁氧体材料性能测试结果如下:
实施例2
化学成分:Li0.36Zn0.28Mn0.05Bi0.005Ni0.001Dy0.002Fe2.26O3.98该成分微波铁氧体材料的制备方法如下:
(1)进行配料,根据微波铁氧体材料化学成分,按照化学成分摩尔比换算为质量比进行称量,相关原材料质量如下:
称量后将粉料充分混合。
(2)预球磨:将称量混合后的粉料、无水乙醇、不锈钢球磨珠装入不锈钢球磨罐进行球磨,其中:粉料、无水乙醇、球磨珠的质量比为1:2:2.5。预球磨强度(转速)为30r/min,球磨时间12h。
(3)烘干:将步骤(2)预球磨得到的配料在130℃条件下进行烘干。
(4)一次过筛:将步骤(3)烘干得到的配料过70目筛;
(5)预烧结:将步骤(4)一次过筛后得到的配料进行预烧结。预烧结条件为:2小时内均匀升温至355℃,再2小时内由355℃升温至540℃,再3小时内由540℃升温至900℃,900℃保温5小时;断电后随炉冷却。
(6)二次球磨:将步骤(5)预烧结得到的粉料装入不锈钢球磨罐进行球磨;粉料、无水乙醇、不锈钢球磨珠的质量比为1:2:2.5。二次球磨强度(转速)为90r/min,球磨时间30h。
(7)烘干:将步骤(6)二次球磨得到的配料在130℃条件下进行烘干。
(8)造粒:在步骤(7)烘干得到的粉料中以14%的比例(以烘干得到的粉料为100%计算)加入聚乙烯醇的水溶液,聚乙烯醇的水溶液浓度为8.5%(质量比),充分混合研磨后过80目筛。
(9)压型:将步骤(8)造粒得到的粉料放入模具中进行压型,所用压力为20MPa,得到生坯。
(10)二次烧结:将步骤(9)压型得到生坯放入电炉进行烧结。
二次烧结条件为:阶段①:7小时内均匀升温至380℃,再2小时内由380℃升温至580℃,再6小时内580℃升温至1060℃;阶段②:在1060℃条件下保温30h。断电后随炉冷却。
得到的微波铁氧体材料性能测试结果如下:
实施例3
化学成分:Li0.36Zn0.28Mn0.05Bi0.005Ni0.001Tb0.002Fe2.26O3.98该成分微波铁氧体材料的制备方法如下:
(1)进行配料,根据微波铁氧体材料化学成分,按照化学成分摩尔比换算为质量比进行称量,相关原材料质量如下:
称量后将粉料充分混合。
(2)预球磨:将称量混合后的粉料、无水乙醇、不锈钢球磨珠装入不锈钢球磨罐进行球磨,其中:粉料、无水乙醇、球磨珠的质量比为1:2:2.5。预球磨强度(转速)为30r/min,球磨时间12h。
(3)烘干:将步骤(2)预球磨得到的配料在130℃条件下进行烘干。
(4)一次过筛:将步骤(3)烘干得到的配料过70目筛;
(5)预烧结:将步骤(4)一次过筛后得到的配料进行预烧结。预烧结条件为:2小时内均匀升温至355℃,再2小时内由355℃升温至540℃,再3小时内由540℃升温至900℃,900℃保温5小时;断电后随炉冷却。
(6)二次球磨:将步骤(5)预烧结得到的粉料装入不锈钢球磨罐进行球磨;粉料、无水乙醇、不锈钢球磨珠的质量比为1:2:2.5。二次球磨强度(转速)为90r/min,球磨时间30h。
(7)烘干:将步骤(6)二次球磨得到的配料在130℃条件下进行烘干。
(8)造粒:在步骤(7)烘干得到的粉料中以14%的比例(以烘干得到的粉料为100%计算)加入聚乙烯醇的水溶液,聚乙烯醇的水溶液浓度为8.5%(质量比),充分混合研磨后过80目筛。
(9)压型:将步骤(8)造粒得到的粉料放入模具中进行压型,所用压力为20MPa,得到生坯。
(10)二次烧结:将步骤(9)压型得到生坯放入电炉进行烧结。二次烧结条件为:阶段①:7小时内均匀升温至380℃,再2小时内由380℃升温至580℃,再6小时内580℃升温至1060℃;阶段②:在1060℃条件下保温30h。断电后随炉冷却。
得到的微波铁氧体材料性能测试结果如下:
通过上述实施例可以看出,本发明制备的微波铁氧体材料具有高剩磁比(Ms/Mr≥0.9),低矫顽力(Hc≤2Oe),低损耗(损耗角正切tanδ≤1×10-3)等特点。本发明给出了可以用于微波铁氧体器件的高性能微波铁氧体材料。通过控制原材料配比,控制烧结、成相、回火温度,控制晶粒大小、生坯压力参数实现了微波铁氧体材料的晶粒细化与性能优化。成功制造出有高剩磁比、低矫顽力、低损耗以及高温度稳定性的微波铁氧体材料。本发明同时还实现了在微波铁氧体材料化学成分配比固定的情况下,通过调节工艺参数来改变饱和磁化强度的工艺控制,对实际工艺操作具有重要意义。
Claims (10)
1.一种用于铁氧体器件的微波铁氧体材料,其特征在于:该微波铁氧体材料化学成分为:
LixZnyMnzBiuNivDywFe2.26±γO4±δ或者
LixZnyMnzBiuNivTbwFe2.26±γO4±δ
其中:x=0.35-0.37,y=0.27-0.29,z=0.045-0.055,u=0.004-0.006,v=0-0.03,w=0-0.03,γ=0-0.0113,δ=0-0.02。
3.一种权利要求1或2所述的用于铁氧体器件的微波铁氧体材料的制备方法,其特征在于该方法的步骤包括:
(1)进行配料,以微波铁氧体材料的原料的总质量为100%,根据微波铁氧体材料化学成分,按照化学成分摩尔比换算为质量比对原料进行称量,配料比如下:
称量后将粉料充分混合;
微波铁氧体材料化学成分为LixZnyMnzBiuNivDywFe2.26±γO4±δ时,配料中选用Dy2O3;微波铁氧体材料化学成分为LixZnyMnzBiuNivTbwFe2.26±γO4±δ时,配料中选用Tb2O3;
(2)预球磨:将称量混合后的粉料、介质溶剂、球磨珠装入球磨罐进行球磨;
所用的介质溶剂为非极性溶剂,粉料、介质溶剂、球磨珠的质量比为1:x:y,其中x=1.8-2.6,y=1.8-3.0;球磨罐选用玛瑙罐或不锈钢罐,球磨珠材料与球磨罐相同;预球磨强度为20-60r/min,优选30r/min,球磨时间11-13h;
(3)烘干:将步骤(2)预球磨得到的配料进行烘干;烘干温度120-190℃,峰值温度不高于200℃;
(4)一次过筛:将步骤(3)烘干得到的配料过40-80目筛;
(5)预烧结:将步骤(4)一次过筛后得到的配料进行预烧结;预烧结条件为:2小时内均匀升温至355℃,再2小时内由355℃升温至540℃,再3小时内由540℃升温至900℃,900℃保温5小时;断电后随炉冷却;
(6)二次球磨:将步骤(5)预烧结得到的粉料装入球磨罐进行球磨;二次球磨强度为80-100r/min,优选90r/min,球磨时间29-31h;
(7)烘干:将步骤(6)二次球磨得到的配料进行烘干;烘干温度120-190℃,优选130℃,峰值温度不高于200℃;
(8)造粒:在步骤(7)烘干得到的粉料中以11%-17%的比例加入聚乙烯醇的水溶液,聚乙烯醇的水溶液浓度为质量比8%-9%,充分混合研磨后过80目筛;
(9)压型:将步骤(8)造粒得到的粉料进行压型,得到生坯;压型时,压力范围为:10-35MPa,优选采用20MPa;
(10)二次烧结:将步骤(9)压型得到生坯放入电炉进行烧结;二次烧结条件为:阶段①:7小时内均匀升温至380℃,再2小时内由380℃升温至580℃,再6小时内580℃升温至1060℃;阶段②:1060℃保温t小时,t=8-30h,保温时间t后断电后随炉冷却。
4.根据权利要求3所述的一种用于铁氧体器件的微波铁氧体材料的制备方法,其特征在于:步骤(2)中,所用的介质溶剂为乙醇或正庚烷。
5.根据权利要求3所述的一种用于铁氧体器件的微波铁氧体材料的制备方法,其特征在于:步骤(3)中,烘干温度为130℃。
6.根据权利要求3所述的一种用于铁氧体器件的微波铁氧体材料的制备方法,其特征在于:步骤(6)中,二次球磨强度为90r/min。
7.根据权利要求3所述的一种用于铁氧体器件的微波铁氧体材料的制备方法,其特征在于:步骤(7)中,烘干温度为130℃。
8.根据权利要求3所述的一种用于铁氧体器件的微波铁氧体材料的制备方法,其特征在于:步骤(9)中,压力范围为20MPa。
9.根据权利要求3所述的一种用于铁氧体器件的微波铁氧体材料的制备方法,其特征在于:步骤(10)中,改变保温时间t确定铁氧体材料的饱和磁化强度。
10.根据权利要求9所述的一种用于铁氧体器件的微波铁氧体材料的制备方法,其特征在于:当t=8h时,饱和磁化强度为4300Gs,t=10h时,饱和磁化强度为4400Gs,t=24h时,饱和磁化强度为4700Gs,t=28h时,饱和磁化强度为5000Gs,t≥30h时,饱和磁化强度为5100Gs。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110450149.XA CN113213908A (zh) | 2021-04-25 | 2021-04-25 | 一种用于铁氧体器件的微波铁氧体材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110450149.XA CN113213908A (zh) | 2021-04-25 | 2021-04-25 | 一种用于铁氧体器件的微波铁氧体材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113213908A true CN113213908A (zh) | 2021-08-06 |
Family
ID=77088920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110450149.XA Pending CN113213908A (zh) | 2021-04-25 | 2021-04-25 | 一种用于铁氧体器件的微波铁氧体材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113213908A (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005075653A (ja) * | 2003-08-28 | 2005-03-24 | Tdk Corp | フェライト材料の製造方法及びフェライト材料の焼成方法 |
US20110018675A1 (en) * | 2008-02-14 | 2011-01-27 | Tomoyuki Tada | Sintered ferrite material, wire wound component, and producing method of sintered ferrite material |
CN103848620A (zh) * | 2012-12-06 | 2014-06-11 | 北京有色金属研究总院 | 一种LiMnZn铁氧体材料及其制备方法 |
CN105884342A (zh) * | 2016-02-23 | 2016-08-24 | 电子科技大学 | Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法 |
CN111499369A (zh) * | 2020-05-08 | 2020-08-07 | 电子科技大学 | 一种Ku波段用高功率旋矩铁氧体材料及其制备方法 |
CN112239358A (zh) * | 2020-10-30 | 2021-01-19 | 成都子之源绿能科技有限公司 | 微波LiZnTiMn旋磁铁氧体材料及其制备方法 |
CN112456993A (zh) * | 2020-10-29 | 2021-03-09 | 中国航天时代电子有限公司 | 一种可用于铁氧体器件的微波铁氧体材料及制备方法 |
-
2021
- 2021-04-25 CN CN202110450149.XA patent/CN113213908A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005075653A (ja) * | 2003-08-28 | 2005-03-24 | Tdk Corp | フェライト材料の製造方法及びフェライト材料の焼成方法 |
US20110018675A1 (en) * | 2008-02-14 | 2011-01-27 | Tomoyuki Tada | Sintered ferrite material, wire wound component, and producing method of sintered ferrite material |
CN103848620A (zh) * | 2012-12-06 | 2014-06-11 | 北京有色金属研究总院 | 一种LiMnZn铁氧体材料及其制备方法 |
CN105884342A (zh) * | 2016-02-23 | 2016-08-24 | 电子科技大学 | Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法 |
CN111499369A (zh) * | 2020-05-08 | 2020-08-07 | 电子科技大学 | 一种Ku波段用高功率旋矩铁氧体材料及其制备方法 |
CN112456993A (zh) * | 2020-10-29 | 2021-03-09 | 中国航天时代电子有限公司 | 一种可用于铁氧体器件的微波铁氧体材料及制备方法 |
CN112239358A (zh) * | 2020-10-30 | 2021-01-19 | 成都子之源绿能科技有限公司 | 微波LiZnTiMn旋磁铁氧体材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111825441B (zh) | 高介电常数、高饱和磁化强度石榴石铁氧体材料、其制备方法及应用 | |
CN115385680B (zh) | 一种高介低线宽微波旋磁铁氧体材料及其制备方法 | |
CN105174931B (zh) | NiCuZn铁氧体材料的制备方法 | |
CN111499369B (zh) | 一种Ku波段用高功率旋矩铁氧体材料及其制备方法 | |
CN112745122B (zh) | 一种高功率高介电常数石榴石的制备方法及石榴石 | |
JP2015061081A (ja) | 共鳴下無線周波数サーキュレータおよびアイソレータに関する材料、装置および方法 | |
CN112430080A (zh) | 一种高功率和高剩磁比的石榴石铁氧体材料及其制备方法 | |
US20240067568A1 (en) | Two-component microwave ferrite material, preparation method therefor and application thereof | |
CN109867518A (zh) | 一种高温度稳定性的石榴石铁氧体及其制备方法 | |
CN114477995B (zh) | 一种中饱和磁化强度功率型高介电常数石榴石材料及其制备方法 | |
CN111732427B (zh) | 自偏置环行器用低铁磁共振线宽六角铁氧体材料及其制备方法 | |
CN106946559B (zh) | 尖晶石复合铁氧体材料及制备方法 | |
CN112456993A (zh) | 一种可用于铁氧体器件的微波铁氧体材料及制备方法 | |
CN109761595B (zh) | 用于5g通信的隔离器和环形器中的铁氧体及其制备方法 | |
CN114057479A (zh) | 一种超高居里温度的yig微波铁氧体材料及其制备方法 | |
CN116396068B (zh) | K~Ka波段自偏置环行器铁氧体基板材料及制备方法 | |
CN113213908A (zh) | 一种用于铁氧体器件的微波铁氧体材料及其制备方法 | |
CN115057697B (zh) | 一种低线宽的w型六角晶系微波铁氧体材料的制备方法 | |
CN114702310B (zh) | 低损耗尖晶石微波铁氧体材料及其制备方法 | |
CN113845359A (zh) | 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法 | |
CN116947475B (zh) | 一种自偏置环行器用高性能复合铁氧体的制备方法 | |
CN116813322B (zh) | 一种高介电常数旋矩铁氧体材料及其制备方法 | |
CN117125968A (zh) | 一种镍铁氧体及其制备方法 | |
CN116514535B (zh) | 高介电低线宽石榴石铁氧体材料及制备方法和微带环行器 | |
CN116986891B (zh) | 一种双离子联合取代自偏置六角铁氧体的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20210806 |