WO2022080631A1 - 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 - Google Patents

열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 Download PDF

Info

Publication number
WO2022080631A1
WO2022080631A1 PCT/KR2021/009254 KR2021009254W WO2022080631A1 WO 2022080631 A1 WO2022080631 A1 WO 2022080631A1 KR 2021009254 W KR2021009254 W KR 2021009254W WO 2022080631 A1 WO2022080631 A1 WO 2022080631A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
compound
resin composition
thermoplastic resin
acrylic acid
Prior art date
Application number
PCT/KR2021/009254
Other languages
English (en)
French (fr)
Inventor
심형섭
장석구
남기영
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210093001A external-priority patent/KR20220050751A/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to CN202180005384.4A priority Critical patent/CN114641528B/zh
Priority to EP21856896.2A priority patent/EP4011971B1/en
Priority to US17/640,282 priority patent/US20220411557A1/en
Publication of WO2022080631A1 publication Critical patent/WO2022080631A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2612Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aromatic or arylaliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to a thermoplastic resin composition, a method for producing the same, and a molded article comprising the same, and more particularly, to a thermoplastic resin composition suitable as a medical product due to excellent transparency and color stability, excellent color stability, and excellent chemical resistance and antistatic properties; It relates to a method for manufacturing the same and a molded article including the same.
  • Commonly used transparent resins include polycarbonate (PC) resin, polymethyl methacrylate (PMMA) resin, polystyrene (PS) resin, polyacrylonitrile-styrene (SAN) resin, and the like.
  • polycarbonate resin has excellent impact strength and transparency, it is difficult to make complex products due to poor processability and has poor chemical resistance.
  • the use of bisphenol-A used in the production of polycarbonate is increasingly limited due to the toxicity problem.
  • the polymethyl methacrylate resin has excellent optical properties, but has very poor impact resistance and chemical resistance, and the polystyrene (PS) resin and acrylonitrile-styrene (SAN) resin also have poor impact resistance and chemical resistance.
  • PS polystyrene
  • SAN acrylonitrile-styrene
  • the acrylonitrile-butadiene-styrene-based (hereinafter referred to as 'ABS-based') terpolymer is a non-transparent resin with well-balanced physical properties such as impact strength and fluidity.
  • U.S. Patent No. 4,767,833, Japanese Patent Application Laid-Open No. Hei 11-147020, European Patent No. 703,252, and Japanese Patent Application Laid-Open No. Hei 8-199008 are acrylic acid alkyl esters on ABS resins having excellent impact resistance, chemical resistance, processability, etc. It discloses methods for imparting transparency by introducing a methacrylic acid alkyl ester compound. However, the above methods have a problem in that chemical resistance is poor due to the influence of methacrylic acid alkyl ester introduced to impart transparency, so that application to medical products is limited.
  • a polyether-amide block copolymer was introduced into a transparent ABS-based resin to ensure chemical resistance, but transparency was lowered and blue color expression was insufficient.
  • thermoplastic resin composition satisfying all of transparency, colorability and chemical resistance.
  • the present invention provides a thermoplastic resin composition suitable as a medical product due to excellent transparency and colorability, excellent color stability, and excellent chemical resistance and antistatic properties, a manufacturing method thereof, and a molded article including the same intended to provide
  • the present invention is a (meth) acrylic acid alkyl ester compound-conjugated diene rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer 30 to 50% by weight; And (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound 50 to 70% by weight of the non-graft copolymer; to 100 parts by weight of the base resin consisting of, 6 to 15 parts by weight of the polyether-amide block copolymer, metal stear 0.2 to 0.9 parts by weight of an acid salt, and 0.001 to 0.006 parts by weight of an organic pigment, wherein the graft copolymer has an average particle diameter of 150 to 450 nm by weight of 30 to 70% by weight of a conjugated diene rubber, (meth)acrylic acid alkyl ester compound 20 to 40 by weight %, a graft copolymer comprising 5 to 20% by weight of an aromatic vinyl compound and 1 to 15%
  • the present invention is a (meth) acrylic acid alkyl ester compound-conjugated diene rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer 30 to 50% by weight; And (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound 50 to 70% by weight of the non-graft copolymer; to 100 parts by weight of the base resin consisting of, 6 to 15 parts by weight of the polyether-amide block copolymer, metal stear 0.2 to 0.9 parts by weight of an acid salt, and 0.001 to 0.006 parts by weight of an organic pigment, wherein the graft copolymer has an average particle diameter of 150 to 450 nm by weight of 30 to 70% by weight of a conjugated diene rubber, (meth)acrylic acid alkyl ester compound 20 to 40 by weight %, a graft copolymer comprising 5 to 20% by weight of an aromatic vinyl compound and 1 to 15% by weight of a
  • the present invention is a (meth) acrylic acid alkyl ester compound-conjugated diene rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer 30 to 50% by weight; And (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound 50 to 70% by weight of the non-graft copolymer; to 100 parts by weight of the base resin consisting of, 6 to 15 parts by weight of the polyether-amide block copolymer, metal stear Including 0.2 to 0.9 parts by weight of an acid salt, and 0.001 to 0.006 parts by weight of an organic pigment, comprising the steps of kneading and extruding at 200 to 300° C.
  • the graft copolymer has an average particle diameter of 150
  • a graft copolymer comprising 30 to 70 wt% of a conjugated diene rubber of to 450 nm, 20 to 40 wt% of a (meth)acrylic acid alkyl ester compound, 5 to 20 wt% of an aromatic vinyl compound, and 1 to 15 wt% of a vinyl cyanide compound
  • the non-graft copolymer is a (meth) acrylic acid alkyl ester compound 60 to 80% by weight, 15 to 35% by weight of an aromatic vinyl compound, and 1 to 15% by weight of a vinyl cyanide thermoplastic resin, characterized in that the copolymer comprising A method for preparing the composition is provided.
  • the present invention is a (meth) acrylic acid alkyl ester compound-conjugated diene rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer 30 to 50% by weight; And (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound 50 to 70% by weight of the non-graft copolymer; to 100 parts by weight of the base resin consisting of, 6 to 15 parts by weight of the polyether-amide block copolymer, metal stear Including 0.2 to 0.9 parts by weight of an acid salt, and 0.001 to 0.006 parts by weight of an organic pigment, kneading and extruding under conditions of 200 to 300° C.
  • thermoplastic resin composition prepared into pellets
  • the graft The copolymer contains 30 to 70 wt% of a conjugated diene rubber having an average particle diameter of 150 to 450 nm, 20 to 40 wt% of a (meth)acrylic acid alkyl ester compound, 5 to 20 wt% of an aromatic vinyl compound, and 1 to 15 wt% of a vinyl cyanide compound
  • the prepared thermoplastic resin composition can provide a method for producing a thermoplastic resin composition, characterized in that the transparency (Haze Value) measured with a sheet having a thickness of 3mm according to ASTM D1003 is 4.0 or less.
  • the present invention provides a molded article comprising the thermoplastic resin composition.
  • thermoplastic resin composition a method for manufacturing the same, and a molded article comprising the same, which is excellent in transparency and colorability, excellent color stability, and excellent chemical resistance and antistatic properties, and thus can be applied to medical products with high quality.
  • thermoplastic resin composition of the present disclosure a manufacturing method thereof, and a molded article including the same will be described in detail.
  • the present inventors provide a base comprising a (meth)acrylic acid alkyl ester compound-conjugated diene rubber-aromatic vinyl compound-vinyl cyan compound graft copolymer and (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound non-graft copolymer
  • the resin contains polyether-amide block copolymer, metal stearate, and organic pigment in a predetermined content ratio, it is confirmed that chemical resistance, transparency, and color expression are all excellent, and based on this, further research is completed to complete the present invention. became
  • thermoplastic resin composition of the present invention comprises 30 to 50 wt% of a (meth)acrylic acid alkyl ester compound-conjugated diene rubber-aromatic vinyl compound-vinylcyanide compound graft copolymer; And (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound 50 to 70% by weight of the non-graft copolymer; to 100 parts by weight of the base resin consisting of, 6 to 15 parts by weight of the polyether-amide block copolymer, metal stear 0.2 to 0.9 parts by weight of an acid salt, and 0.001 to 0.006 parts by weight of an organic pigment, wherein the graft copolymer has an average particle diameter of 150 to 450 nm by weight of 30 to 70% by weight of a conjugated diene rubber, (meth)acrylic acid alkyl ester compound 20 to 40 by weight %, a graft copolymer comprising 5 to 20% by weight of an aromatic vinyl compound and 1
  • thermoplastic resin composition of the present invention will be described in detail for each configuration.
  • the graft copolymer is, for example, 30 to 70% by weight of a conjugated diene rubber having an average particle diameter of 150 to 450nm, 20 to 40% by weight of a (meth)acrylic acid alkyl ester compound, 5 to 20% by weight of an aromatic vinyl compound, and a vinyl cyan compound 1 to It may be a graft copolymer comprising 15% by weight.
  • the conjugated diene rubber is a polymer of a conjugated diene compound having a structure in which a double bond and a single bond are arranged across one another.
  • the conjugated diene rubber may be, for example, a butadiene polymer, a butadiene-styrene copolymer (SBR), a butadiene-acrylonitrile copolymer (NBR), an ethylene-propylene copolymer (EPDM), or a polymer derived therefrom, preferably may be a butadiene polymer, a butadiene-styrene copolymer, or a mixture thereof.
  • the average particle diameter of the conjugated diene rubber is preferably 200 to 400 nm, more preferably 250 to 350 nm, and within this range, mechanical properties such as impact strength are excellent.
  • the average particle diameter can be measured using a dynamic light scattering method, and in detail, the intensity (intensity) in Gaussian mode using a particle measuring instrument (product name: Nicomp 380, manufacturer: PSS) ) as a value.
  • the sample is prepared by diluting 0.1 g of Latex (TSC 35-50 wt%) 1,000 to 5,000 times with deionized or distilled water, that is, diluting it appropriately so as not to deviate significantly from the Intensity Setpoint 300 kHz, and putting it in a glass tube
  • the measurement method is auto-dilution and measurement with a flow cell
  • the measurement mode is dynamic light scattering method/Intensity 300KHz/Intensity-weight Gaussian Analysis
  • the setting value is temperature 23°C, measurement wavelength 632.8nm, channel It can be measured with a width of 10 ⁇ sec.
  • the graft copolymer preferably contains 40 to 60% by weight of a conjugated diene rubber, 25 to 40% by weight of a (meth)acrylic acid alkyl ester compound, 5 to 15% by weight of an aromatic vinyl compound, and 3 to 10% by weight of a vinyl cyanide compound.
  • a graft copolymer made of It may be a graft copolymer comprising
  • the content of the monomer in the polymer may mean the weight % of the monomer input during the preparation of the polymer or the weight % of the monomer in the unit in the polymer.
  • the transparency of the graft copolymer is determined by the refractive index of the rubber used and the refractive index of the polymer to be grafted, and the refractive index of the polymer is controlled by the mixing ratio of the monomers. That is, since the refractive index of the conjugated diene rubber latex and the refractive index of the rest of the components must be matched to a similar degree, the mixing ratio of the monomers is very important. Therefore, in order to have transparency, the refractive index of the conjugated diene rubber used as a core for grafting and the refractive index of the entire grafting component must be similar, and it is necessary that the refractive index of the conjugated diene compound and the refractive index of the grafted component match. Best.
  • the difference in refractive index between the conjugated diene rubber latex and the (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound copolymer may be 0.01 or less, preferably less than 0.01, and within this range, transparency and colorability are excellent. It has excellent color stability.
  • the graft polymer may have a weight average molecular weight of, for example, 80,000 to 300,000 g/mol, preferably 100,000 to 200,000 g/mol, more preferably 130,000 to 170,000 g/mol, and within this range, impact strength, resistance It has excellent chemical properties and fluidity.
  • the weight average molecular weight may be measured using GPC (Gel Permeation Chromatography, waters breeze), and as a specific example, GPC (Gel Permeation Chromatography, waters breeze) using THF (tetrahydrofuran) as the eluent ) can be measured as a relative value with respect to a standard PS (standard polystyrene) sample.
  • GPC Gel Permeation Chromatography, waters breeze
  • THF tetrahydrofuran
  • solvent THF
  • column temperature 40°C
  • flow rate 0.3ml/min
  • sample concentration 20mg/ml
  • injection amount 5 ⁇ l
  • column model 1xPLgel 10 ⁇ m MiniMix-B (250x4.6mm) + 1xPLgel 10 ⁇ m MiniMix-B (250x4.6mm) + 1xPLgel 10 ⁇ m MiniMix-B Guard (50x4.6mm)
  • equipment name Agilent 1200 series system
  • Refractive index detector Agilent G1362 RID
  • RI temperature 35°C
  • data processing Agilent ChemStation S/W
  • test method Mn, Mw and PDI
  • the graft copolymer may be prepared by, for example, emulsion polymerization.
  • the method of adding each component may include a method of batch administration of each component and a method of continuously (sequentially) administering all or part of each component, but is not particularly limited.
  • the molecular weight may be adjusted by adding a molecular weight modifier together with the monomer during the graft polymerization.
  • a molecular weight modifier for example, dodecyl mercaptans such as tertiary dodecyl mercaptan and normal dodecyl mercaptan may be used.
  • the (meth)acrylic acid alkyl ester compound may be, for example, a methacrylic acid alkyl ester compound, an acrylic acid alkyl ester compound, or a mixture thereof, specifically (meth)acrylic acid methyl ester, (meth)acrylic acid ethyl ester, (meth)acrylic acid alkyl ester compound ) It may be at least one selected from the group consisting of acrylic acid propyl ester, (meth)acrylic acid 2-ethylhexyl ester, (meth)acrylic acid decyl ester and (meth)acrylic acid lauryl ester, preferably methyl methacrylate. .
  • (meth)acrylic acid alkyl ester compound refers to an acrylic acid alkyl ester compound and a methacrylic acid alkyl ester compound.
  • the aromatic vinyl compound is, for example, styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, m-methyl styrene, ethyl styrene, isobutyl styrene, t-butyl styrene, ⁇ -brobo styrene, ⁇ -bromostyrene, m-bromostyrene, ⁇ -chlorostyrene, ⁇ -chlorostyrene, m-chlorostyrene, vinyltoluene, vinylxylene, fluorostyrene and vinylnaphthalene may be at least one selected from the group consisting of, Preferably, it may be styrene.
  • the vinyl cyan compound may be, for example, at least one selected from the group consisting of acrylonitrile, methacrylonitrile, ethyl acrylonitrile and isopropyl acrylonitrile, preferably acrylonitrile.
  • the refractive index of the compound used in the graft copolymer of the present invention is butadiene 1.518, methyl methacrylate 1.49, styrene 1.59, acrylonitrile 1.52, acrylic acid 1.527, polyethylene glycol monomethacrylate 1.49 to 1.52.
  • the refractive index of the (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound copolymer grafted to the conjugated diene rubber of the graft copolymer may be calculated by the following Equation 1.
  • Wti weight fraction (%) of each component in the copolymer
  • RIi refractive index of the polymer of each component of the copolymer
  • the non-graft copolymer is, for example, a copolymer comprising 60 to 80% by weight of a (meth)acrylic acid alkyl ester compound, 15 to 35% by weight of an aromatic vinyl compound, and 1 to 15% by weight of a vinyl cyan compound, preferably (meth) ) It may be a copolymer comprising 65 to 75% by weight of an acrylic acid alkyl ester compound, 20 to 30% by weight of an aromatic vinyl compound, and 3 to 10% by weight of a vinyl cyanide compound, and has excellent mechanical properties such as impact strength within this range It has excellent chemical resistance.
  • the non-graft copolymer may have, for example, a weight average molecular weight of 80,000 to 300,000 g/mol, preferably 100,000 to 200,000 g/mol, more preferably 110,000 to 150,000 g/mol, and impact strength within this range, It has excellent chemical resistance and fluidity.
  • the method for preparing the non-graft copolymer may be, for example, suspension polymerization or bulk polymerization, and in particular, continuous bulk polymerization is most preferable in terms of manufacturing cost.
  • the non-grafted copolymer has, for example, a refractive index similar to that of the graft copolymer, and preferably has a refractive index difference of less than 0.01. In this case, it has excellent transparency and excellent color stability.
  • the base resin may consist of 30 to 50% by weight of the graft copolymer and 50 to 70% by weight of the non-grafted copolymer, for example, preferably 35 to 45% by weight of the graft copolymer and the non-grafted copolymer It may be composed of 55 to 65% by weight of the coal, and there is an advantage in that mechanical strength such as impact strength, fluidity and chemical resistance are excellent within this range.
  • the base resin is, for example, a total conjugated diene rubber content of 10 to 30% by weight, a total (meth)acrylic acid alkyl ester compound content of 50 to 60% by weight, a total aromatic vinyl compound content of 15 to 25% by weight, and a total vinyl cyanide compound
  • the content may be 3 to 13% by weight, preferably the total conjugated diene rubber content is 15 to 25% by weight, the total (meth)acrylic acid alkyl ester compound content is 52 to 57% by weight, and the total aromatic vinyl compound content is 17 to 25% by weight. 23% by weight and the total vinyl cyanide compound content may be 5 to 10% by weight, and transparency, colorability, chemical resistance and antistatic properties are all excellent within this range.
  • the polyether-amide block copolymer is, for example, 6 to 15 parts by weight, preferably 7 to 14 parts by weight, more preferably 8 to 13 parts by weight, even more preferably 10 to 13 parts by weight based on 100 parts by weight of the base resin. It may be a part by weight, and within this range, transparency is excellent, color stability is excellent, and antistatic property and chemical resistance are excellent, so that it has an effect suitable for medical products.
  • the polyether-amide block copolymer is preferably 6 to 15 parts by weight, more preferably 6 to 13 parts by weight, even more preferably 6 to 10 parts by weight, more based on 100 parts by weight of the base resin. More preferably, it may be 7 to 10 parts by weight, and within this range, transparency is excellent, color stability is excellent, and colorability and chemical resistance are excellent, so that it has an effect suitable for medical products.
  • the polyether-amide block copolymer is, for example, a polyamide oligomer having a number average molecular weight of 100 to 6,000 g/mol having a carboxyl group at the terminal, and an oxyalkylene unit having a number average molecular weight of 200 to 4,000 g/mol It may consist of two components of a bisphenol compound, preferably a polyamide oligomer having a number average molecular weight of 200 to 5,000 g/mol having a carboxyl group at the terminal, and an oxyalkylene unit having a number average molecular weight of 300 to It consists of two components of a bisphenol compound of 3,000 g/mol, and more preferably a polyamide oligomer having a number average molecular weight of 1.000 to 4,000 g/mol having a carboxyl group at the terminal, and a number average containing an oxyalkylene unit. It consists of two components of a bisphenol compound having a molecular weight of 500 to 2,500 g/
  • the polyether-amide block copolymer has, for example, a melting point of 100 to 260° C., preferably 186 to 204° C., and has excellent effects in transparency and antistatic properties within this range.
  • the melting point of the polymer is measured using a Differential Scanning Calorimeter (DSC, device name: DSC 2920, manufacturer: TA instrument). Specifically, after heating the polymer to 220 °C, the temperature is maintained for 5 minutes, and then the temperature is increased again after cooling to 20 °C.
  • DSC Differential Scanning Calorimeter
  • the polyamide oligomer and bisphenol compound are not particularly limited as long as they can be generally used in the art.
  • the metal stearate may be, for example, 0.2 to 0.9 parts by weight, preferably 0.25 to 0.85 parts by weight, more preferably 0.3 to 0.8 parts by weight, based on 100 parts by weight of the base resin, and has excellent transparency and color stability within this range. It has excellent chemical resistance and thus has the advantage of being applicable to medical products.
  • the metal stearate may be, for example, at least one selected from the group consisting of calcium stearate, magnesium stearate, aluminum stearate, potassium stearate and barium stearate, and preferably magnesium stearate, in this case Transparency and antistatic properties are improved.
  • the polyether-amide block copolymer is preferably included in the metal stearate, permeability and transparency are improved by a synergistic effect according to a combination thereof, and chemical resistance and antistatic property are improved.
  • the organic dye may include, for example, 0.001 to 0.006 parts by weight, preferably 0.001 to 0.005 parts by weight, and more preferably 0.001 to 0.003 parts by weight, based on 100 parts by weight of the base resin, in which case transparency, resistance It has excellent chemical properties and antistatic properties and excellent blue color expression, so it has the advantage of being applicable to medical products.
  • the organic dye may preferably be an entraquinone-based dye, and more preferably 1-hydroxy-4-(p-toluidin)anthraquinone), 1 ,4-bis(methylamino)anthraquinone (1,4-bis(mesitylamino)anthraquinone), 1,4-bis(methylamino)anthraquinone (1,4-bis(methylamino)anthraquinone), and 1,4 -bis[(2-ethyl-6-methylphenyl)amino)anthraquinone (1,4-bis[(2-ethyl-6-methylphenyl)amino]anthraquinone) may be at least one selected from the group consisting of, preferably It may be 1-hydroxy-4-(p-toluidine)enthraquinone, and in this case, it has excellent transparency, chemical resistance, and antistatic properties, and excellent blue color expression, so that it can be applied to medical products.
  • the entraquinone-based dye has a blue color
  • the conventional thermoplastic resin composition has insufficient color expression, particularly blue color expression, but the base resin of the present invention has an excellent color expression effect.
  • the use of blue color for medical supplies is used to prevent mistakes caused by voice afterimages and has a calming effect on the mind.
  • metal stearate is preferably included in the organic dye, transmittance and transparency are further improved due to a synergistic effect according to a combination thereof, and color expression is improved.
  • the thermoplastic resin composition preferably has a transparency (Haze Value) of 4.0% or less, more preferably 3.8% or less, more preferably 3.7% or less, even more preferably, measured with a sheet having a thickness of 3 mm according to ASTM D1003 may be 3 to 3.7%, and in this case, the physical property balance is excellent, the color expression is excellent, and the color stability is excellent.
  • a transparency (Haze Value) of 4.0% or less, more preferably 3.8% or less, more preferably 3.7% or less, even more preferably, measured with a sheet having a thickness of 3 mm according to ASTM D1003 may be 3 to 3.7%, and in this case, the physical property balance is excellent, the color expression is excellent, and the color stability is excellent.
  • the thermoplastic resin composition may have a transmittance of 63% or more, more preferably 64% or more, and still more preferably 64 to 70%, as measured by a sheet having a thickness of 3 mm according to ASTM D1003, in this case It has excellent effects on physical property balance, color expression and color stability.
  • the thermoplastic resin composition is preferably a sheet having a thickness of 3 mm in accordance with ASTM D1003 and has an L (whiteness) value of 65 or more, more preferably 67 or more, more preferably 67 to 77, measured using a Hunter Lab color meter. , and more preferably 68 to 75, has an effect of excellent color expression and excellent color stability while excellent physical property balance within this range.
  • the thermoplastic resin composition is preferably a sheet having a thickness of 3 mm according to ASTM D1003, and has a value of a measured using a Hunter Lab color meter from -2.1 to -3.1, more preferably from -2.15 to -2.7, still more preferably It may be -2.3 to -2.7, and there is an effect of expressing a blue color within this range.
  • the thermoplastic resin composition is preferably a sheet having a thickness of 3 mm according to ASTM D1003 and has a b value of -16.5 to -20.15, more preferably -17 to -20, more preferably, measured using a Hunter Lab color meter. -18 to -19, and more preferably -18.5 to -19, there is an effect of expressing a blue color within this range.
  • the thermoplastic resin composition preferably has a surface resistance of 1.5 X 10 11 ⁇ /square or less, more preferably 7 X 10 10 ⁇ /square or less, even more preferably 5 X 10 measured with a resistivity device (Keithley 8009). It may be 10 ⁇ /square or less, and more preferably 1 X 10 10 to 4 X 10 10 ⁇ /square, and within this range, the physical property balance is excellent while suppressing the generation of static electricity and, in particular, preventing malfunctions in precise medical devices has the effect of
  • the thermoplastic resin composition preferably has no change after 1 hour after fixing the tensile specimen on a 1.2% jig and applying it with a 70% isopropyl alcohol (IPA) solution, and has excellent balance of properties within this range It has excellent chemical resistance and can be applied to medical products. Medical products are mainly used after sterilization with IPA solution, but if the specimen cracks or breaks in the chemical resistance test using the IPA solution, it cannot be applied to medical products.
  • IPA isopropyl alcohol
  • the thermoplastic resin composition preferably has a Notched Izod impact strength of 10 kgf ⁇ cm/cm or more, more preferably 11 kgf ⁇ cm/cm or more, measured according to ASTM D256 with respect to a 1/8 inch specimen. , more preferably 11 to 15 kgf ⁇ cm / cm, even more preferably 12 to 15 kgf ⁇ cm / cm, there is an effect of excellent transparency and colorability while excellent balance of properties within this range.
  • the thermoplastic resin composition preferably has a flow index of 28 g/10 min or more, more preferably 28 to 33 g/10 min, still more preferably 29 to 32 g/ It may be 10 min, and within this range, the physical property balance is excellent and the moldability is excellent.
  • the thermoplastic resin composition may include, for example, at least one selected from the group consisting of a heat stabilizer, a UV stabilizer, a lubricant, and an antioxidant, and in this case, without reducing the original physical properties of the thermoplastic resin composition of the present invention There is an effect that the necessary physical properties are well realized.
  • the thermal stabilizer may be, for example, a phenol-based thermal stabilizer, a phosphite-based thermal stabilizer, or a mixture thereof, and the phenol-based thermal stabilizer is preferably 2,6-di-t-butyl-4-methylphenol, 2, 2'-ethylene-bis(4-methyl-6-t-butyl)-phenol or a mixture thereof may be used, and the phosphite-based thermal stabilizer is preferably phenyl phosphite, tris(2,4-t- It may be at least one selected from the group consisting of butyl phenyl) phosphite and tris-(nonylphenyl) phosphite, and has an effect of preventing discoloration.
  • the heat stabilizer may be, for example, 0.1 to 3 parts by weight, preferably 0.5 to 1.5 parts by weight, based on 100 parts by weight of the base resin, and in this case, there is an effect of preventing discoloration.
  • the ultraviolet stabilizer may be, for example, a hindered amine light stabilizer (HALS), preferably 1,1-bis(2,2,6,6-tetramethyl-4-piperidyl)succinic nate, bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebacate, bis( 1-Octyloxy-2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)-N-butyl -3,5-di-tert-butyl-4-hydroxybenzylmalonate, 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid Condensation product, N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylene diamine with 4-tert-oc
  • the hindered amine-based UV stabilizer is bis(2,2,6,6-tetramethyl-4-piperidyl) sebacade (Bis(2,2,6,6-tetramethyl-4-piperidyl) ) sebacate), 2-(2H-benzotriazol-2-yl)-4-(-(1,1,3,3-tetramethylbutyl)phenol (2-(2H-benzotriazol-2-yl)-4 -(1,1,3,3-tetramethylbutyl)phenol), poly[[6-(1,1,3,3-tetramethylbutyl)amino]-1,3,5-triazine-2,4-diyl ][(2,2,6,6-tetramethyl-4-piperidinyl)imino]-1,6-hexanediyl[(2,2,6,6-tetramethyl-4-piperidinyl)imino No] or a mixture thereof, more preferably bis(2,2,6,6-tetramethyl-4-piperid
  • the UV stabilizer may be, for example, 0.1 to 3 parts by weight, preferably 0.5 to 1.5 parts by weight, based on 100 parts by weight of the base resin, in which case weather resistance is improved.
  • the lubricant may be, for example, ethylene bis stearamide, polyethylene oxide wax, or a combination thereof, and the amount used may be 0.1 to 3 parts by weight, preferably 0.1 to 1 parts by weight, based on 100 parts by weight of the base resin.
  • the antioxidant may be, for example, a hindered phenolic antioxidant, preferably [3-[3-(4-hydroxy-3,5-ditertiary-butyl-phenyl)propanoyloxy]- 2,2-Bis[3-(4-Hydroxy-3,5-ditertiary-butyl phenyl)propanoyloxymethyl]propyl]3-(4-hydroxy-3,5-ditertiary-butyl-phenyl ) propanoate ([3-[3-(4-hydroxy-3,5-ditert-butyl-phenyl)propanoyloxy]-2,2-bis[3-(4-hydroxy-3,5-ditert-butyl-) phenyl)propanoyloxymethyl]propyl]3-(4-hydroxy-3,5-ditert-butyl-phenyl)propanoate), and in this case, there is an advantage of greatly improving the weather resistance without impairing impact
  • the antioxidant may be included, for example, in an amount of 0.1 to 2 parts by weight, preferably 0.3 to 1.5 parts by weight, and more preferably 0.3 to 1 parts by weight based on 100 parts by weight of the base resin.
  • thermoplastic resin composition
  • the method for preparing the thermoplastic resin composition of the present invention comprises 30 to 50 wt% of a (meth)acrylic acid alkyl ester compound-conjugated diene rubber-aromatic vinyl compound-vinylcyanide compound graft copolymer; And (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound 50 to 70% by weight of the non-graft copolymer; to 100 parts by weight of the base resin consisting of, 6 to 15 parts by weight of the polyether-amide block copolymer, metal stear Including 0.2 to 0.9 parts by weight of an acid salt, and 0.001 to 0.006 parts by weight of an organic pigment, comprising the steps of kneading and extruding at 200 to 300° C.
  • the graft copolymer has an average particle diameter of 150
  • a graft copolymer comprising 30 to 70 wt% of a conjugated diene rubber of to 450 nm, 20 to 40 wt% of a (meth)acrylic acid alkyl ester compound, 5 to 20 wt% of an aromatic vinyl compound, and 1 to 15 wt% of a vinyl cyanide compound
  • the non-graft copolymer is characterized in that it is a copolymer comprising 60 to 80% by weight of a (meth)acrylic acid alkyl ester compound, 15 to 35% by weight of an aromatic vinyl compound, and 1 to 15% by weight of a vinyl cyan compound. In this case, it has excellent transparency and colorability, excellent color stability, and excellent chemical resistance and antistatic properties, so that it is suitable as a medical product.
  • thermoplastic resin composition shares all the technical characteristics of the aforementioned thermoplastic resin composition. Therefore, a description of the overlapping portion will be omitted.
  • the step of preparing the pellets using the extrusion kneader may be preferably carried out in a standard of 20 to 80 pie under 200 to 300 ° C, and more preferably being carried out in a standard of 25 to 75 pie at 210 to 260 ° C. In this range, stable extrusion is possible and the kneading effect is excellent.
  • the temperature is the temperature set in the cylinder, and pi means the outer diameter (unit: mm).
  • the step of preparing the pellets using the extrusion kneading machine may preferably be carried out under the conditions of 150 to 300 rpm, more preferably 200 to 300 rpm, with the number of screw rotations, and stable extrusion is possible within this range, and the kneading effect is great.
  • the extrusion kneader is not particularly limited if it is an extrusion kneader commonly used in the art to which the present invention belongs, and may preferably be a twin-screw extrusion kneader.
  • the molded article of the present disclosure may include the thermoplastic resin composition, and in this case, it has excellent transparency, excellent color stability, and excellent chemical resistance.
  • the molded article may be, for example, a medical product, specifically, a syringe, a tube connector, and the like.
  • the manufacturing method of the molded article comprises 30 to 50 wt% of (meth)acrylic acid alkyl ester compound-conjugated diene rubber-aromatic vinyl compound-vinylcyanide compound graft copolymer; And (meth)acrylic acid alkyl ester compound-aromatic vinyl compound-vinyl cyan compound 50 to 70% by weight of the non-graft copolymer; to 100 parts by weight of the base resin consisting of, 6 to 15 parts by weight of the polyether-amide block copolymer, metal stear 0.2 to 0.9 parts by weight of an acid salt, and 0.001 to 0.006 parts by weight of an organic pigment to prepare pellets by kneading and extruding under the conditions of 200 to 300° C.
  • thermoplastic resin product having excellent processability can be manufactured.
  • thermoplastic resin composition of the present disclosure its manufacturing method and molded article, other conditions or equipment not explicitly described may be appropriately selected within the range commonly practiced in the art, and it is specified that there is no particular limitation do.
  • ADK STAB PEP-8 ADK STAB PEP-8 (ADEKA)
  • polybutadiene rubber latex having an average particle diameter of 300 nm and a refractive index of 1.516 was used.
  • 100 parts by weight of the polybutadiene rubber latex (based on solid content) 100 parts by weight of ion-exchanged water, 1.0 parts by weight of sodium dodecylbenzesulfonate as an emulsifier, 32 parts by weight of methyl methacrylate, 11 parts by weight of styrene, 7.0 parts by weight of acrylonitrile parts, 0.3 parts by weight of tertiary dodecyl mercaptan, 0.048 parts by weight of sodium formaldehyde sulfoxylate, 0.012 parts by weight of sodium ethylenediaminetetraesterate, 0.001 parts by weight of ferrous sulfide, and 0.04 parts by weight of cumene hydroperoxide at 75° C.
  • a raw material obtained by mixing 69 parts by weight of methyl methacrylate, 24 parts by weight of styrene, and 7 parts by weight of acrylonitrile, 30 parts by weight of toluene as a solvent and 0.15 parts by weight of tertiary dodecyl mercaptan as a molecular weight control agent in a reaction tank was prepared for an average reaction time of 3 After continuous input to the reaction tank for a period of time, the reaction temperature was maintained at 148 °C. The polymer solution discharged from the reaction tank was heated in a preheating tank, the unreacted monomer was volatilized in the volatilization tank, and the temperature of the polymer was maintained at 210° C.
  • the weight average molecular weight of the copolymer thus obtained was 120,000 g/mol, and the final refractive index of the obtained pellets was 1.516.
  • the refractive index of the non-graft copolymer was calculated by Equation 1 above.
  • Example 1 was carried out in the same manner as in Example 1, except that the components and contents described in Tables 1 and 2 were changed.
  • Refractive index A small amount of the specimen was cut and compressed to form a 0.2 mm thick film, and then measured with an Abbe-MARK-II at 25°C.
  • L (whiteness) value, a value, b value According to ASTM D1003, the L (whiteness) value, a value, and b value were measured using a Hunter Lab color meter with a sheet having a thickness of 3 mm.
  • the L (whiteness) value describes the degree of white-black, a value red-green, and b value yellow-blue. The higher the +L value, the more white, the higher the -L value, the more black. The larger the value, the more red, and the larger the -a value, the more green.
  • Fluidity (MI, g/10min) Measured according to ASTM D1238 under the conditions of 220 °C and 10 kg.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 Mg-st 0.3 0.8 0.3 0.3 0.8
  • Polyether-amide block copolymer 12 12 8 14 12 12 12 organic dyes 0.002 0.002 0.002 0.002 0.004 0.004
  • L value 68.65 68.42 68.65 68.42 68.15 68.22 a value -2.69 -2.65 -2.49 -2.85 -2.23 -2.15 b value -18.65 -18.71 -18.95 -18.21 -19.65 -20.11 chemical resistance no change no change no change no change no change no change no change surface resistance 6.6*10 10 3.6*10 10 1.3*10 11 1.1*10 10 6.2*10 10 3.3*10 10 impact strength 12.0 11.2 12.2
  • Examples 1 to 6 containing 0.002 to 0.004 parts by weight of the organic dye a value measured using a Hunter Lab color meter was -2.15 to -2.69, and the b value was in the range of -18.21 to -20.11, so the blue color was clear. It has excellent color stability and excellent antistatic properties, transparency and chemical resistance.
  • Comparative Examples 1 and 5 including polyether-amide block copolymer or Mg-st alone, could not be applied to medical products because of reduced antistatic properties as well as transparency or chemical resistance compared to Examples 1 to 6.
  • Comparative Examples 6 and 7 containing the polyether-amide block copolymer less than the scope of the present invention had very poor chemical resistance
  • Comparative Examples 7 and 7 containing the polyether-amide block copolymer exceeding the scope of the present invention 8 had poor transmittance, transparency and L value, lack of blue color expression, and reduced impact strength.
  • Comparative Example 9 containing the organic dye exceeding the scope of the present invention, the b value was greatly lowered, so that the blue color was excessively expressed, and the transmittance, transparency and L value were lowered, resulting in lowered transparency.
  • thermoplastic resin composition comprising a polyether-amide block copolymer, a metal stearate, and an organic pigment in a predetermined content ratio to a base resin containing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 기재는 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것으로, 보다 상세하게는 그라프트 공중합체 및 비그라프트 공중합체로 이루어진 베이스 수지 100 중량부에, 폴리에테르-아미드 블록 공중합체 6 내지 15 중량부, 금속 스테아르산염 0.2 내지 0.9 중량부, 및 유기 안료 0.001 내지 0.006 중량부를 포함하는 것을 특징으로 하는 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것이다. 본 발명에 따르면, 투명성 및 착색성이 뛰어나고 색상 안정성이 우수하면서 내화학성 및 대전방지성이 우수하여 의료용 제품으로 적합한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품을 제공하는 효과가 있다.

Description

열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
〔출원(들)과의 상호 인용〕
본 출원은 2020.10.16일자 한국특허출원 제 10-2020-0134309호 및 그를 토대로 2021.07.15일자로 재출원한 한국특허출원 10-2021-0093001호를 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것으로, 보다 상세하게는 투명성 및 착색성이 뛰어나 색상 안정성이 우수하면서 내화학성 및 대전방지성이 우수하여 의료용 제품으로 적합한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품에 관한 것이다.
최근 환경문제로 인해 소재 산업에도 많은 변화가 요구되고 있다. 특히, 의료용이나 식품용기로 사용하는 소재에 대해서 환경호르몬이나, 폐기 처리 등의 문제로 기존에 사용되던 폴리염화비닐(이하, 'PVC'라 함), 폴리카보네이트(이하, 'PC'라 함) 등을 변경하는 노력들이 많이 이루어지고 있다. 특히 내부에 액상 물질을 보관 또는 저장하여 사용하는 주사기, 튜브 커넥터 등에 적용되는 의료용 투명소재 분야에서 새로운 소재의 개발이 필요한 상황이다.
일반적으로 사용되고 있는 투명수지로는 폴리카보네이트(PC) 수지, 폴리메틸메타크릴레이트(PMMA) 수지, 폴리스티렌(PS) 수지, 폴리아크릴로니트릴-스티렌(SAN) 수지 등이 있다.
그러나, 상기 폴리카보네이트 수지는 충격강도나 투명도는 우수하지만 가공성이 나빠서 복잡한 제품을 만들기 어렵고, 내화학성이 나쁘다는 문제점이 있다. 또한, 폴리카보네이트 제조에 사용되는 비스페놀-A의 유해성 문제로 사용이 점점 제한되고 있다.
또한, 상기 폴리메틸메타크릴레이트 수지는 우수한 광학특성을 가지고 있으나 내충격성과 내화학성이 매우 나쁘고, 상기 폴리스티렌(PS) 수지와 아크릴로니트릴-스티렌(SAN) 수지도 내충격성과 내화학성이 열악하다.
또한, 아크릴로니트릴-부타디엔-스티렌계(이하, 'ABS계'라 함) 삼원 공중합체는 충격강도 및 유동성 등의 물성이 균형을 잘 이루고 있는 수지이나 불투명하다.
미국특허 제4,767,833호, 일본 공개 특허공보 평11-147020호, 유럽특허 제703,252호, 및 일본 공개 특허공보 평8-199008호는 내충격성, 내화학성, 가공성 등이 우수한 ABS계 수지에 아크릴산 알킬 에스테르나 메타크릴산 알킬에스테르 화합물을 도입하여 투명성을 부여하는 방법들을 개시하고 있다. 그러나, 상기 방법들은 투명성을 부여하기 위하여 도입한 메타크릴산 알킬 에스테르의 영향으로 내화학성이 나쁘다는 문제점이 있어 의료용 제품에 적용이 제한이 되었다.
이를 해결하기 위해 투명 ABS계 수지에 폴리에테르-아미드 블록 공중합체를 도입하여 내화학성은 확보하였지만 투명성이 저하되고 블루 색상 발현이 미흡한 문제가 발생한다.
따라서, 투명성, 착색성 및 내화학성을 모두 만족하는 열가소성 수지 조성물의 개발이 요구되고 있다.
[선행기술문헌]
[특허문헌]
미국특허 제4,767,833호
일본 공개특허공보 평11-147020호
유럽특허 제703,252호
일본 공개특허공보 평8-199008호
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 투명성 및 착색성이 뛰어나고 색상 안정성이 우수하면서 내화학성 및 대전방지성이 우수하여 의료용 제품으로 적합한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품을 제공하는 것을 목적으로 한다.
본 기재의 상기 목적 및 기타 목적들은 하기 설명된 본 기재에 의하여 모두 달성될 수 있다.
상기 목적을 달성하기 위하여, 본 발명은 (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 30 내지 50 중량%; 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체 50 내지 70 중량%;로 이루어진 베이스 수지 100 중량부에, 폴리에테르-아미드 블록 공중합체 6 내지 15 중량부, 금속 스테아르산염 0.2 내지 0.9 중량부, 및 유기 안료 0.001 내지 0.006 중량부를 포함하되, 상기 그라프트 공중합체는 평균입경 150 내지 450nm인 공액디엔 고무 30 내지 70 중량%, (메트)아크릴산 알킬 에스테르 화합물 20 내지 40 중량%, 방향족 비닐 화합물 5 내지 20 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 그라프트 공중합체이고, 상기 비그라프트 공중합체는 (메트)아크릴산 알킬 에스테르 화합물 60 내지 80 중량%, 방향족 비닐 화합물 15 내지 35 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 공중합체인 것을 특징으로 하는 열가소성 수지 조성물을 제공한다.
또한, 본 발명은 (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 30 내지 50 중량%; 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체 50 내지 70 중량%;로 이루어진 베이스 수지 100 중량부에, 폴리에테르-아미드 블록 공중합체 6 내지 15 중량부, 금속 스테아르산염 0.2 내지 0.9 중량부, 및 유기 안료 0.001 내지 0.006 중량부를 포함하되, 상기 그라프트 공중합체는 평균입경 150 내지 450nm인 공액디엔 고무 30 내지 70 중량%, (메트)아크릴산 알킬 에스테르 화합물 20 내지 40 중량%, 방향족 비닐 화합물 5 내지 20 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 그라프트 공중합체이고, 상기 비그라프트 공중합체는 (메트)아크릴산 알킬 에스테르 화합물 60 내지 80 중량%, 방향족 비닐 화합물 15 내지 35 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 공중합체이며, ASTM D1003에 의거하여 두께 3mm인 시트로 측정한 투명도(Haze Value)가 4.0 이하인 것을 특징으로 하는 열가소성 수지 조성물을 제공할 수 있다.
또한, 본 발명은 (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 30 내지 50 중량%; 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체 50 내지 70 중량%;로 이루어진 베이스 수지 100 중량부에, 폴리에테르-아미드 블록 공중합체 6 내지 15 중량부, 금속 스테아르산염 0.2 내지 0.9 중량부, 및 유기 안료 0.001 내지 0.006 중량부를 포함하여 200 내지 300℃ 및 100 내지 300 rpm 조건 하에서 혼련 및 압출하여 펠릿으로 제조하는 단계를 포함하되, 상기 그라프트 공중합체는 평균입경 150 내지 450nm인 공액디엔 고무 30 내지 70 중량%, (메트)아크릴산 알킬 에스테르 화합물 20 내지 40 중량%, 방향족 비닐 화합물 5 내지 20 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 그라프트 공중합체이고, 상기 비그라프트 공중합체는 (메트)아크릴산 알킬 에스테르 화합물 60 내지 80 중량%, 방향족 비닐 화합물 15 내지 35 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 공중합체인 것을 특징으로 하는 열가소성 수지 조성물의 제조방법을 제공한다.
또한, 본 발명은 (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 30 내지 50 중량%; 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체 50 내지 70 중량%;로 이루어진 베이스 수지 100 중량부에, 폴리에테르-아미드 블록 공중합체 6 내지 15 중량부, 금속 스테아르산염 0.2 내지 0.9 중량부, 및 유기 안료 0.001 내지 0.006 중량부를 포함하여 200 내지 300℃ 및 100 내지 300 rpm 조건 하에서 혼련 및 압출하여 펠릿으로 제조하는 열가소성 수지 조성물을 제조하는 단계를 포함하되, 상기 그라프트 공중합체는 평균입경 150 내지 450nm인 공액디엔 고무 30 내지 70 중량%, (메트)아크릴산 알킬 에스테르 화합물 20 내지 40 중량%, 방향족 비닐 화합물 5 내지 20 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 그라프트 공중합체이고, 상기 비그라프트 공중합체는 (메트)아크릴산 알킬 에스테르 화합물 60 내지 80 중량%, 방향족 비닐 화합물 15 내지 35 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 공중합체이며, 제조된 열가소성 수지 조성물은 ASTM D1003에 의거하여 두께 3mm인 시트로 측정한 투명도(Haze Value)가 4.0 이하인 것을 특징으로 하는 열가소성 수지 조성물의 제조방법을 제공할 수 있다.
또한, 본 발명은 상기 열가소성 수지 조성물을 포함하는 것을 특징으로 하는 성형품을 제공한다.
본 발명에 따르면, 투명성 및 착색성이 뛰어나고 색상 안정성이 우수하면서 내화학성 및 대전방지성이 우수하여 의료용 제품에 고품질로 적용 가능한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품을 제공하는 효과가 있다.
이하 본 기재의 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품을 상세하게 설명한다.
본 발명자들은 (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체를 포함하는 베이스 수지에 폴리에테르-아미드 블록 공중합체, 금속 스테아르산염 및 유기 안료를 소정 함량비로 포함하는 경우, 내화학성, 투명성 및 색상 발현이 모두 뛰어남을 확인하고, 이를 토대로 연구에 더욱 매진하여 본 발명을 완성하게 되었다.
본 기재의 열가소성 수지 조성물은 (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 30 내지 50 중량%; 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체 50 내지 70 중량%;로 이루어진 베이스 수지 100 중량부에, 폴리에테르-아미드 블록 공중합체 6 내지 15 중량부, 금속 스테아르산염 0.2 내지 0.9 중량부, 및 유기 안료 0.001 내지 0.006 중량부를 포함하되, 상기 그라프트 공중합체는 평균입경 150 내지 450nm인 공액디엔 고무 30 내지 70 중량%, (메트)아크릴산 알킬 에스테르 화합물 20 내지 40 중량%, 방향족 비닐 화합물 5 내지 20 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 그라프트 공중합체이고, 상기 비그라프트 공중합체는 (메트)아크릴산 알킬 에스테르 화합물 60 내지 80 중량%, 방향족 비닐 화합물 15 내지 35 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 공중합체인 것을 특징으로 한다. 이러한 경우, 투명성 및 착색성이 뛰어나고 색상 안정성이 우수하면서 내화학성 및 대전방지성이 우수하여 의료용 제품으로 적합한 효과가 있다.
이하 본 발명의 열가소성 수지 조성물을 구성별로 상세히 설명하기로 한다.
그라프트 공중합체
상기 그라프트 공중합체는 일례로 평균입경 150 내지 450nm인 공액디엔 고무 30 내지 70 중량%, (메트)아크릴산 알킬 에스테르 화합물 20 내지 40 중량%, 방향족 비닐 화합물 5 내지 20 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 그라프트 공중합체일 수 있다.
상기 공액디엔 고무는 이중결합과 단일결합이 하나 건너서 배열하고 있는 구조인 공액디엔 화합물의 중합체이다. 상기 공액디엔 고무는 일례로 부타디엔 중합체, 부타디엔-스티렌 공중합체(SBR), 부타디엔-아크릴로니트릴공중합체(NBR), 에틸렌-프로필렌 공중합체(EPDM) 또는 이들로부터 유도된 중합체일 수 있고, 바람직하게는 부타디엔 중합체, 부타디엔-스티렌 공중합체 또는 이들의 혼합일 수 있다.
상기 공액디엔 고무의 평균입경은 바람직하게는 200 내지 400nm, 보다 바람직하게는 250 내지 350nm일 수 있고, 이 범위 내에서 충격강도 등의 기계적 물성이 우수한 효과가 있다.
본 기재에서 평균입경은 동적 광산란법(dynamic light scattering)을 이용하여 측정할 수 있고, 상세하게는 입자측정기(제품명: Nicomp 380, 제조사: PSS)를 사용하여 가우시안(Gaussian) 모드로 인텐서티(intensity) 값으로 측정한다. 이때 구체적인 측정예로, 샘플은 Latex(TSC 35~50wt%) 0.1g을 탈이온수 또는 증류수로 1,000~5,000배 희석하여, 즉 Intensity Setpoint 300 kHz을 크게 벗어나지 않도록 적절히 희석하여 glass tube에 넣어 준비하고, 측정방법은 Auto-dilution하여 flow cell로 측정하며, 측정모드는 동적 광산란법(dynamic light scattering)법/Intensity 300KHz/Intensity-weight Gaussian Analysis로 하고, setting 값은 온도 23℃, 측정 파장 632.8nm, channel width 10μsec으로 하여 측정할 수 있다.
상기 그라프트 공중합체는 바람직하게는 공액디엔 고무 40 내지 60 중량%, (메트)아크릴산 알킬 에스테르 화합물 25 내지 40 중량%, 방향족 비닐 화합물 5 내지 15 중량% 및 비닐시안 화합물 3 내지 10 중량%를 포함하여 이루어진 그라프트 공중합체, 보다 바람직하게는 공액디엔 고무 45 내지 55 중량%, (메트)아크릴산 알킬 에스테르 화합물 30 내지 35 중량%, 방향족 비닐 화합물 7 내지 15 중량% 및 비닐시안 화합물 5 내지 10 중량%를 포함하여 이루어진 그라프트 공중합체일 수 있으며, 이 범위 내에서 충격강도 등의 기계적 물성과 내화학성이 우수한 효과가 있다.
본 기재에서 중합체 내 단량체의 함량은 중합체 제조시 투입된 단량체의 중량% 또는 중합체 내 단위의 단량체 환산 중량%를 의미할 수 있다.
상기 그라프트 공중합체의 투명성은 사용되는 고무의 굴절률과 그라프팅되는 고분자의 굴절률에 의해서 결정되며, 고분자의 굴절률은 단량체의 혼합비에 의해서 조절된다. 즉 공액디엔 고무 라텍스의 굴절률과 나머지 성분 전체의 굴절률을 유사한 정도로 맞추어야 하므로, 단량체의 혼합비가 매우 중요하다. 따라서 투명성을 가지지 위해서는 그라프트 시키기 위하여 코어로 사용되는 공액디엔 고무의 굴절률과 여기에 그라프팅되는 성분 전체의 굴절률이 비슷해야 하며, 공액디엔 화합물의 굴절률과 그라프팅되는 성분 전체의 굴절률이 일치하는 것이 가장 좋다.
일례로 공액디엔 고무 라텍스와 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체와의 굴절률 차이가 0.01 이하, 바람직하게는 0.01 미만일 수 있고, 이 범위 내에서 투명성 및 착색성이 우수하여 색상 안정성이 뛰어난 효과가 있다.
상기 그라프트 중합체는 중량평균분자량이 일례로 80,000 내지 300,000 g/mol, 바람직하게는 100,000 내지 200,000 g/mol, 보다 바람직하게는 130,000 내지 170,000 g/mol일 수 있고, 이 범위 내에서 충격강도, 내화학성 및 유동성이 우수한 효과가 있다.
본 기재에서 중량평균 분자량은 별도로 정의하지 않는 이상 GPC(Gel Permeation Chromatography, waters breeze)를 이용하여 측정할 수 있고, 구체적인 예로 용출액으로 THF(테트라하이드로퓨란)을 사용하여 GPC(Gel Permeation Chromatography, waters breeze)를 통해 표준 PS(standard polystyrene) 시료에 대한 상대 값으로 측정할 수 있다. 이때 구체적인 측정예로, 용매: THF, 컬럼온도: 40℃, 유속: 0.3ml/min, 시료 농도: 20mg/ml, 주입량: 5㎕, 컬럼 모델: 1xPLgel 10㎛ MiniMix-B(250x4.6mm) + 1xPLgel 10㎛ MiniMix-B(250x4.6mm) + 1xPLgel 10㎛ MiniMix-B Guard(50x4.6mm), 장비명: Agilent 1200 series system, Refractive index detector: Agilent G1362 RID, RI 온도: 35℃, 데이터 처리: Agilent ChemStation S/W, 시험방법(Mn, Mw 및 PDI): OECD TG 118 조건으로 측정할 수 있다.
상기 그라프트 공중합체는 일례로 유화중합에 의해 제조될 수 있다. 각 성분의 첨가 방법은 각 성분을 일괄투여하는 방법과 전량 또는 일부를 연속적으로(순차적으로) 투여하는 방법 등을 사용할 수 있으나, 크게 제한되지 않는다.
상기 그라프트 중합 중에 모노머와 함께 분자량 조절제를 함께 투입하여 분자량을 조정할 수 있다. 이때 사용될 수 있는 분자량 조절제로는 일례로 터셔리도데실메르탑탄, 노르말도데실메르캅탄 등의 도데실 메르캅탄 류가 이용될 수 있다.
본 발명에서 (메트)아크릴산 알킬 에스테르 화합물은 일례로 메타크릴산 알킬 에스테르 화합물, 아크릴산 알킬 에스테르 화합물 또는 이들의 혼합일 수 있고, 구체적으로 (메트)아크릴산 메틸 에스테르, (메트)아크릴산 에틸 에스테르, (메트)아크릴산 프로필 에스테르, (메트)아크릴산 2-에틸헥실 에스테르, (메트)아크릴산 데실 에스테르 및 (메트)아크릴산 라우릴 에스테르로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 메틸메타크릴레이트일 수 있다.
본 기재에서 "(메트)아크릴산 알킬 에스테르 화합물"은 아크릴산 알킬 에스테르 화합물 및 메타크릴산 알킬 에스테르 화합물을 지칭한다.
본 발명에서 방향족 비닐 화합물은 일례로 스티렌, α-메틸 스티렌, ο-메틸 스티렌, ρ-메틸 스티렌, m-메틸 스티렌, 에틸 스티렌, 이소부틸 스티렌, t-부틸 스티렌, ο-브로보 스티렌, ρ-브로모 스티렌, m-브로모 스티렌, ο-클로로 스티렌, ρ-클로로 스티렌, m-클로로 스티렌, 비닐톨루엔, 비닐크실렌, 플루오로스티렌 및 비닐나프탈렌으로 이루어지는 군으로부터 선택되는 1 종 이상일 수 있고, 바람직하게는 스티렌일 수 있다.
본 발명에서 비닐시안 화합물은 일례로 아크릴로니트릴, 메타크릴로니트릴, 에틸아크릴로니트릴 및 이소프로필아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 아크릴로니트릴이다.
본 발명의 그라프트 공중합체에 사용되는 화합물의 굴절률은 부타디엔 1.518, 메틸메타크릴레이트 1.49, 스티렌 1.59, 아크릴로니트릴 1.52, 아크릴산 1.527, 폴리에틸렌글리콜 모노메타크릴레이트 1.49~1.52이다.
또한, 상기 그라프트 공중합체의 공액디엔 고무에 그라프트되는 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체의 굴절률은 하기 수학식 1로 계산될 수 있다.
[수학식 1]
RI = Σ Wti * RIi
Wti = 공중합체에서 각 성분의 중량분율(%)
RIi = 공중합체의 각 성분의 고분자의 굴절률
비그라프트 공중합체
상기 비그라프트 공중합체는 일례로 (메트)아크릴산 알킬 에스테르 화합물 60 내지 80 중량%, 방향족 비닐 화합물 15 내지 35 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 공중합체, 바람직하게는 (메트)아크릴산 알킬 에스테르 화합물 65 내지 75 중량%, 방향족 비닐 화합물 20 내지 30 중량% 및 비닐시안 화합물 3 내지 10 중량%를 포함하여 이루어진 공중합체일 수 있고, 이 범위 내에서 충격강도 등의 기계적 물성이 우수하면서 내화학성이 우수한 효과가 있다.
상기 비그라프트 공중합체는 일례로 중량평균 분자량이 80,000 내지 300,000 g/mol, 바람직하게는 100,000 내지 200,000 g/mol, 보다 바람직하게는 110,000 내지 150,000 g/mol 일 수 있고, 이 범위 내에서 충격강도, 내화학성 및 유동성이 우수한 효과가 있다.
상기 비그라프트 공중합체의 제조방법은 일례로 현탁중합 또는 괴상중합일 수 있고, 특히 연속 괴상중합은 제조원가 측면에서 가장 바람직하다.
상기 비그라프트 공중합체는 일례로 상기 그라프트 공중합체와 굴절률이 유사하고, 바람직하게는 굴절률 차이가 0.01 미만인 것이 바람직하며, 이 경우에 투명성이 우수하여 색상 안정성이 뛰어난 이점이 있다.
베이스 수지
상기 베이스 수지는 일례로 상기 그라프트 공중합체 30 내지 50 중량% 및 상기 비그라프트 공중합체 50 내지 70 중량%로 이루어질 수 있고, 바람직하게는 상기 그라프트 공중합체 35 내지 45 중량% 및 상기 비그라프트 공중합체 55 내지 65 중량%로 이루어질 수 있고, 이 범위 내에서 충격강도 등의 기계적 강도, 유동성 및 내화학성이 우수한 이점이 있다.
상기 베이스 수지는 일례로 총 공액디엔 고무 함량이 10 내지 30 중량%, 총 (메트)아크릴산 알킬 에스테르 화합물 함량이 50 내지 60 중량%, 총 방향족 비닐 화합물 함량이 15 내지 25 중량% 및 총 비닐시안 화합물 함량이 3 내지 13 중량%일 수 있고, 바람직하게는 총 공액디엔 고무 함량이 15 내지 25 중량%, 총 (메트)아크릴산 알킬 에스테르 화합물 함량이 52 내지 57 중량%, 총 방향족 비닐 화합물 함량이 17 내지 23 중량% 및 총 비닐시안 화합물 함량이 5 내지 10 중량%일 수 있고, 이 범위 내에서 투명성, 착색성, 내화학성 및 대전방지성이 모두 우수한 효과가 있다.
폴리에테르-아미드 블록 공중합체
상기 폴리에테르-아미드 블록 공중합체는 일례로 베이스 수지 100 중량부를 기준으로 6 내지 15 중량부, 바람직하게는 7 내지 14 중량부, 보다 바람직하게는 8 내지 13 중량부, 더욱 바람직하게는 10 내지 13 중량부일 수 있고, 이 범위 내에서 투명성이 뛰어나 색상 안정성이 우수하면서 대전방지성 및 내화학성이 우수하여 의료용 제품에 적합한 효과가 있다.
또 다른 예로, 상기 폴리에테르-아미드 블록 공중합체는 바람직하게는 베이스 수지 100 중량부를 기준으로 6 내지 15 중량부, 보다 바람직하게는 6 내지 13 중량부, 더욱 바람직하게는 6 내지 10 중량부, 보다 더 바람직하게는 7 내지 10 중량부일 수 있고, 이 범위 내에서 투명성이 보다 뛰어나 색상 안정성이 우수하면서 착색성 및 내화학성이 우수하여 의료용 제품에 적합한 효과가 있다.
상기 폴리에테르-아미드 블록 공중합체는 일례로 말단에 카르복실기를 보유하는 수평균 분자량이 100 내지 6,000 g/mol인 폴리아미드 올리고머 및 옥시알킬렌 단위를 함유하는 수평균 분자량이 200 내지 4,000 g/mol인 비스페놀 화합물의 2 성분을 포함하여 이루어진 것일 수 있고, 바람직하게는 말단에 카르복실기를 보유하는 수평균 분자량이 200 내지 5,000 g/mol인 폴리아미드 올리고머 및 옥시알킬렌 단위를 함유하는 수평균 분자량이 300 내지 3,000 g/mol인 비스페놀 화합물의 2 성분을 포함하여 이루어진 것이며, 보다 바람직하게는 말단에 카르복실기를 보유하는 수평균 분자량이 1.000 내지 4,000 g/mol인 폴리아미드 올리고머 및 옥시알킬렌 단위를 함유하는 수평균 분자량이 500 내지 2,500 g/mol인 비스페놀 화합물의 2 성분을 포함하여 이루어진 것으로, 이 경우에 투명성 및 대전방지성이 뛰어난 효과가 있다.
상기 폴리에테르-아미드 블록 공중합체는 일례로 융점이 100 내지 260℃이고, 바람직하게는 186 내지 204℃일 수 있고, 이 범위 내에서 투명성 및 대전방지성이 뛰어난 효과가 있다.
본 기재에서 융점은 시차주사열량계(Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 중합체의 용융점을 측정한다. 구체적으로, 중합체를 220℃까지 가열한 후 5분 동안 그 온도를 유지하고, 다시 20℃까지 냉각한 후 다시 온도를 증가시키며, 이때 온도의 상승 속도와 하강 속도는 각각 10℃로 조절한다.
상기 폴리아미드 올리고머 및 비스페놀 화합물은 이 기술분야에서 일반적으로 사용될 수 있는 것인 경우 특별히 제한되지 않는다.
금속 스테아르산염
상기 금속 스테아르산염은 일례로 베이스 수지 100 중량부를 기준으로 0.2 내지 0.9 중량부, 바람직하게는 0.25 내지 0.85 중량부, 보다 바람직하게는 0.3 내지 0.8 중량부일 수 있고, 이 범위 내에서 투명성이 뛰어나고 색상 안정성이 우수하면서 내화학성이 우수하여 의료용 제품에 적용가능한 이점이 있다.
상기 금속 스테아르산염은 일례로 칼슘 스테아레이트, 마그네슘 스테아레이트, 알루미늄 스테아레이트, 포타슘 스테아레이트 및 바륨 스테아레이트로 이루어지는 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 마그네슘 스테아레이트일 수 있고, 이 경우에 투명성 및 대전방지성이 개선되는 효과가 있다.
상기 금속 스테아르산염에 바람직하게 상기 폴리에테르-아미드 블록 공중합체를 포함하는 경우, 이들의 조합에 따른 시너지 효과에 의해 투과도, 투명성이 개선되면서 내화학성 및 대전방지성이 향상된다.
유기 염료
상기 유기염료는 일례로 베이스 수지 100 중량부를 기준으로 유기 염료 0.001 내지 0.006 중량부, 바람직하게는 0.001 내지 0.005 중량부, 보다 바람직하게는 0.001 내지 0.003 중량부를 포함할 수 있고, 이 경우에 투명성, 내화학성 및 대전방지성이 우수하면서 블루 색상 발현이 우수하여 의료용 제품에 적용 가능한 이점이 있다.
상기 유기 염료는 바람직하게는 엔트라퀴논계 염료일 수 있고, 보다 바람직하게는 1-히드록시-4-(p-톨루딘)엔트라퀴논(1-hydroxy-4-(p-toluidin)anthraquinone), 1,4-비스(메스틸아미노)안트라퀴논(1,4-bis(mesitylamino)anthraquinone), 1,4-비스(메틸아미노)안트라퀴논 (1,4-bis(methylamino)anthraquinone), 및 1,4-비스[(2-에틸-6-메틸페닐)아미노)안트라퀴논(1,4-bis[(2-ethyl-6-methylphenyl)amino]anthraquinone)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 1-히드록시-4-(p-톨루딘)엔트라퀴논일 수 있고, 이 경우에 투명성, 내화학성 및 대전방지성이 우수하면서 블루 색상 발현이 우수하여 의료용 제품에 적용 가능한 이점이 있다.
상기 엔트라퀴논계 염료는 블루 색상을 띄고, 종래의 열가소성 수지 조성물은 색상 발현, 특히 블루 색상 발현이 미흡하나 본 발명의 베이스 수지는 색상 발현이 우수한 효과가 있다. 의료용품에 블루 색상을 사용하는 것은 블루 색상이 마음을 안정시키는 효과가 있고 음성 잔상에 따른 실수를 방지하기 위해 사용된다.
상기 유기 염료에 바람직하게 금속 스테아르산염을 포함하는 경우, 이들의 조합에 따른 시너지 효과 의해 투과도, 투명성이 더욱 개선되면서 색상 발현이 향상된다.
열가소성 수지 조성물
상기 열가소성 수지 조성물은 바람직하게는 ASTM D1003에 의거하여 두께 3mm인 시트로 측정한 투명도(Haze Value)가 4.0% 이하, 보다바람직하게는 3.8% 이하, 더욱 바람직하게는 3.7% 이하, 보다 더 바람직하게는 3 내지 3.7%일 수 있고, 이 경우에 물성 밸런스가 우수하면서 색상 발현이 우수하고 색상 안정성이 뛰어난 효과가 있다.
상기 열가소성 수지 조성물은 바람직하게는 ASTM D1003에 의거하여 두께 3 mm 인 시트로 측정한 투과도가 63% 이상, 보다 바람직하게는 64% 이상, 더욱 바람직하게는 64 내지 70%일 수 있고, 이 경우에 물성 밸런스, 색상 발현 및 색상 안정성이 뛰어난 효과가 있다.
상기 열가소성 수지 조성물은 바람직하게는 ASTM D1003에 의거하여 두께 3mm인 시트로 헌터랩 칼라미터를 사용하여 측정한 L(백색도)값이 65 이상, 보다 바람직하게는 67 이상, 더욱 바람직하게는 67 내지 77, 보다 더 바람직하게는 68 내지 75일 수 있고, 이 범위 내에서 물성 밸런스가 우수하면서 색상 발현이 우수하고 색상 안정성이 뛰어난 효과가 있다.
상기 열가소성 수지 조성물은 바람직하게는 ASTM D1003에 의거하여 두께 3mm인 시트로 헌터랩 칼라미터를 사용하여 측정한 a값이 -2.1 내지 -3.1, 보다 바람직하게는 -2.15 내지 -2.7, 더욱 바람직하게는 -2.3 내지 -2.7일 수 있고, 이 범위 내에서 블루 색상이 발현되는 효과가 있다.
상기 열가소성 수지 조성물은 바람직하게는 ASTM D1003에 의거하여 두께 3mm인 시트로 헌터랩 칼라미터를 사용하여 측정한 b값이 -16.5 내지 -20.15, 보다 바람직하게는 -17 내지 -20, 더욱 바람직하게는 -18 내지 -19, 보다 더 바람직하게는 -18.5 내지 -19일 수 있고, 이 범위 내에서 블루 색상이 발현되는 효과가 있다.
상기 열가소성 수지 조성물은 바람직하게는 비저항 기기(Keithley社 8009)로 측정한 표면 저항이 1.5 X 1011 Ω/square 이하, 보다 바람직하게는 7 X 1010 Ω/square 이하, 더욱 바람직하게는 5 X 1010 Ω/square 이하, 보다 더 바람직하게는 1 X 1010 내지 4 X 1010 Ω/square 일 수 있고, 이 범위 내에서 물성 밸런스가 우수하면서 정전기 발생을 억제하고 특히, 정밀한 의료기기에 오작동을 방지하는 효과가 있다.
상기 열가소성 수지 조성물은 바람직하게는 1.2% 지그 위에 인장 시편을 고정한 후 70% 이소프로필알콜(IPA) 용액으로 도포한 후 1 시간 경과 후 변화가 없는 것일 수 있고, 이 범위 내에서 물성 밸런스가 우수하면서 내화학성이 뛰어나 의료용 제품에 적용 가능한 효과가 있다. 의료용 제품은 주로 IPA 용액으로 살균 후 사용하는데, IPA 용액에 의한 내화학성 테스트에서 시편에 크랙이 발생하거나 파단되는 경우, 의료용 제품에 적용이 불가능하다.
상기 열가소성 수지 조성물은 바람직하게는 1/8인치 시편에 대하여 ASTM D256에 의거하여 측정한 노치 아이조드(Notched Izod) 충격강도가 10 kgf·cm/cm 이상, 보다 바람직하게는 11 kgf·cm/cm 이상, 더욱 바람직하게는 11 내지 15 kgf·cm/cm, 보다 더 바람직하게는 12 내지 15 kgf·cm/cm일 수 있고, 이 범위 내에서 물성 밸런스가 우수하면서 투명성 및 착색성이 뛰어난 효과가 있다.
상기 열가소성 수지 조성물은 바람직하게는 220℃, 10kg 조건 하에서 ASTM D1238에 의거하여 측정한 유동지수가 28 g/10min 이상, 보다 바람직하게는 28 내지 33 g/10min, 더욱 바람직하게는 29 내지 32 g/10min일 수 있고, 이 범위 내에서 물성 밸런스가 우수하면서 성형성이 뛰어난 효과가 있다.
상기 열가소성 수지 조성물은 일례로 열안정제, 자외선 안정제, 활제 및 산화방지제로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 이 경우 이 경우에 본 기재의 열가소성 수지 조성물 본연의 물성을 저하시키지 않으면서도 필요한 물성이 잘 구현되는 효과가 있다.
상기 열안정제는 일례로 페놀계 열안정제, 포스파이트계 열안정제 또는 이들의 혼합일 수 있고, 상기 페놀계 열안정제는 바람직하게는 2,6-디-티-부틸-4-메틸페놀, 2,2'-에틸렌-비스(4-메틸-6-티-부틸)-페놀 또는 이들의 혼합일 수 있고, 상기 포스파이트계 열안정제로는 바람직하게는 페닐 포스파이트, 트리스(2,4-t-부틸 페닐)포스파이트 및 트리스-(노닐페닐)포스파이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 변색을 방지하는 효과가 있다.
상기 열안정제는 일례로 베이스 수지 100 중량부에 대하여 0.1 내지 3 중량부, 바람직하게는 0.5 내지 1.5 중량부일 수 있고, 이 경우에 변색을 방지하는 효과가 있다.
상기 자외선 안정제는 일례로 힌더드 아민계 자외선 안정제(hindered amine light stabilizer, HALS)일 수 있고, 바람직하게 1,1-비스(2,2,6,6-테트라메틸-4-피페리딜)숙시네이트, 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이트, 비스(1,2,2,6,6-펜타메틸-4-피페리딜)세바케이트, 비스(1-옥틸옥시-2,2,6,6-테트라메틸-4-피페리딜)세바케이트, 비스(1,2,2,6,6-펜타메틸-4-피페리딜)-N-부틸-3,5-디-tert-부틸-4-하이드록시벤질말로네이트, 1-(2-하이드록시에틸)-2,2,6,6-테트라메틸-4-하이드록시피페리딘과 숙신산의 축합 생성물, N,N'-비스(2,2,6,6-테트라메틸-4-피페리딜)헥사메틸렌 디아민과 4-tert-옥틸아미노-2,6-디-클로로-1,3,5-트리아진의 선형 또는 고리형 축합 생성물, 트리스(2,2,6,6-테트라메틸-4-피페리딜)니트릴로트리아세테이트, 테트라키스(2,2,6,6-테트라메틸-4-피페리딜)-1,2,3,4-부탄 테트라카복실레이트, 1,1'-(1,2-에탄디일)-비스(3,3,5,5-테트라메틸피페라진온), 4-벤조일-2,2,6,6-테트라메틸피페리딘, 4-스테아릴옥시-2,2,6,6-테트라메틸피페리딘, N,N'-비스(2,2,6,6-테트라메틸-4-피페리딜)헥사메틸렌 디아민과 4-모르포리노-2,6-디클로로-1,3,5-트리아진의 선형 또는 고리형 축합 생성물, 7,7,9,9-테트라메틸-2-사이클로운데실-1-옥사-3,8-디아자-4-옥소스피로-[4,5]데칸과 에피클로로하이드린의 반응 생성물, 및 폴리[[6-(1,1,3,3-테트라메틸부틸)아미노]-1,3,5-트리아진-2,4-디일][(2,2,6,6-테트라메틸-4-피페리디닐)이미노]-1,6-헥산디일[(2,2,6,6-테트라메틸-4-피페리딘닐)이미노]로 이루어진 군으로부터 선택된 1종 이상일 수 있고 이러한 경우 충격강도 및 유동성을 저해하지 않으면서 내후성을 크게 개선시키는 이점이 있다.
보다 바람직하게는 상기 힌더드 아민계 자외선 안정제는, 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이드(Bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate), 2-(2H-벤조트리아졸-2-yl)-4-(-(1,1,3,3-테트라메틸뷰틸)페놀(2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol), 폴리[[6-(1,1,3,3-테트라메틸부틸)아미노]-1,3,5-트리아진-2,4-디일][(2,2,6,6-테트라메틸-4-피페리디닐)이미노]-1,6-헥산디일[(2,2,6,6-테트라메틸-4-피페리딘닐)이미노] 또는 이들의 혼합일 수 있으며, 보다 더 바람직하게는 비스(2,2,6,6-테트라메틸-4-피페리딜)세바케이드(Bis(2,2,6,6-tetramethyl-4-piperidyl) 및 폴리[[6-(1,1,3,3-테트라메틸부틸)아미노]-1,3,5-트리아진-2,4-디일][(2,2,6,6-테트라메틸-4-피페리디닐)이미노]-1,6-헥산디일[(2,2,6,6-테트라메틸-4-피페리딘닐)이미노]로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 이러한 경우 충격강도 및 유동성을 저해하지 않으면서 내후성을 크게 개선시키는 이점이 있다.
상기 자외선 안정제는 일례로 베이스 수지 100 중량부에 대하여 0.1 내지 3 중량부, 바람직하게는 0.5 내지 1.5 중량부일 수 있고, 이 경우에 내후성이 개선되는 효과가 있다.
상기 활제는 일례로 에틸렌비스스테아르아미드, 산화폴리에틸렌 왁스 또는 이들의 조합이 사용될 수 있으며, 그 사용량은 상기 베이스 수지 100 중량부에 대하여 0.1 내지 3 중량부, 바람직하게는 0.1 내지 1 중량부일 수 있다.
또한, 상기 산화방지제는 일례로 힌더드 페놀계 산화방지제일 수 있고, 바람직하게는 [3-[3-(4-히드록시-3,5-디터셔리-부틸-페닐)프로파노일옥시]-2,2-비스[3-(4-히드록시-3,5-디터셔리-부틸 페닐)프로파노일옥시메틸]프로필]3-(4-히드록시-3,5-디터셔리-부틸-페닐)프로파노에이트([3-[3-(4-hydroxy-3,5-ditert-butyl-phenyl)propanoyloxy]-2,2-bis[3-(4-hydroxy-3,5-ditert-butyl-phenyl)propanoyloxymethyl]propyl]3-(4-hydroxy-3,5-ditert-butyl-phenyl)propanoate)일 수 있고, 이러한 경우 충격강도 및 유동성을 저해하지 않으면서 내후성을 크게 개선시키는 이점이 있다.
또한, 상기 산화방지제는 일례로 베이스 수지 100 중량부에 대해 0.1 내지 2 중량부, 바람직하게는 0.3 내지 1.5 중량부, 보다 바람직하게는 0.3 내지 1 중량부로 포함할 수 있다.
열가소성 수지 조성물의 제조방법
본 기재의 열가소성 수지 조성물의 제조방법은 (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 30 내지 50 중량%; 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체 50 내지 70 중량%;로 이루어진 베이스 수지 100 중량부에, 폴리에테르-아미드 블록 공중합체 6 내지 15 중량부, 금속 스테아르산염 0.2 내지 0.9 중량부, 및 유기 안료 0.001 내지 0.006 중량부를 포함하여 200 내지 300℃ 및 100 내지 300 rpm 조건 하에서 혼련 및 압출하여 펠릿으로 제조하는 단계를 포함하되, 상기 그라프트 공중합체는 평균입경 150 내지 450nm인 공액디엔 고무 30 내지 70 중량%, (메트)아크릴산 알킬 에스테르 화합물 20 내지 40 중량%, 방향족 비닐 화합물 5 내지 20 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 그라프트 공중합체이고, 상기 비그라프트 공중합체는 (메트)아크릴산 알킬 에스테르 화합물 60 내지 80 중량%, 방향족 비닐 화합물 15 내지 35 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 공중합체인 것을 특징으로 한다. 이러한 경우, 투명성 및 착색성이 뛰어나고 색상 안정성이 우수하면서 내화학성 및 대전방지성이 우수하여 의료용 제품으로 적합한 이점이 있다.
상기 열가소성 수지 조성물의 제조방법은 전술한 열가소성 수지 조성물의 모든 기술적인 특징을 공유한다. 따라서 중첩되는 부분에 대한 설명은 생략하기로 한다.
상기 압출 혼련기를 사용하여 펠렛을 제조하는 단계는 바람직하게는 200 내지 300℃ 하에 20 내지 80 파이 규격으로 실시하는 것일 수 있고, 보다 바람직하게는 210 내지 260℃ 하에 25 내지 75 파이 규격으로 실시하는 것일 수 있으며, 이 범위 내에서 안정된 압출이 가능하며 혼련 효과가 우수하다. 이때 온도는 실린더에 설정된 온도이고, 파이는 외경(단위: mm)을 의미한다.
상기 압출 혼련기를 사용하여 펠렛을 제조하는 단계는 바람직하게는 스크류 회전수가 150 내지 300 rpm, 보다 바람직하게는 200 내지 300 rpm 조건 하에서 실시할 수 있고, 이 범위 내에서 안정된 압출이 가능하며 혼련 효과가 우수하다.
상기 압출 혼련기는 본 발명이 속한 기술분야에서 통상적으로 사용되는 압출 혼련기인 경우 특별히 제한되지 않으며, 바람직하게는 2축 압출 혼련기일 수 있다.
성형품
본 기재의 성형품은 상기 열가소성 수지 조성물을 포함할 수 있고, 이 경우에 투명성이 뛰어나 색상 안정성이 우수하면서 내화학성이 우수한 효과가 있다.
상기 성형품은 일례로 의료용 제품일 수 있고, 구체적으로 주사기, 튜브 커넥터 등일 수 있다.
상기 성형품의 제조방법은 (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 30 내지 50 중량%; 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체 50 내지 70 중량%;로 이루어진 베이스 수지 100 중량부에, 폴리에테르-아미드 블록 공중합체 6 내지 15 중량부, 금속 스테아르산염 0.2 내지 0.9 중량부, 및 유기 안료 0.001 내지 0.006 중량부를 포함하여 200 내지 300℃ 및 100 내지 300 rpm 조건 하에서 혼련 및 압출하여 펠릿으로 제조하는 단계; 및 제조된 펠렛을 성형온도 180 내지 300℃에서 시트 성형 또는 사출성형하여 성형품을 제조하는 단계를 포함하는 것을 특징으로 한다. 이러한 경우, 가공성이 뛰어난 열가소성 수지 제품을 제조할 수 있는 이점이 있다.
본 기재의 열가소성 수지 조성물, 이의 제조방법 및 성형품을 설명함에 있어서, 명시적으로 기재하지 않은 다른 조건이나 장비 등은 당업계에서 통상적으로 실시되는 범위 내에서 적절히 선택할 수 있고, 특별히 제한되지 않음을 명시한다.
이하, 본 기재의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
하기 실시예 및 비교예에서 사용된 물질은 다음과 같다.
* 폴리에테르-아미드 블록 공중합체: SANYO Chemical의 Pelestat NC 6321 또는 Pelestat NC 6500 (굴절률 1.514)
* 유기 염료: Mitsubishi Chemical Corporation의 DIARESIN Blue G(CAS No. 81-48-1)
* 금속 스테아르산염: Mg-st
* 산화방지제: ADK STAB PEP-8 (ADEKA社)
제조예 1: 그라프트 공중합체 제조
공액디엔계 고무 라텍스로 평균입경 300 nm이고 굴절률이 1.516인 폴리부타디엔 고무라텍스를 사용하였다. 상기 폴리부타디엔 고무라텍스 50 중량부(고형분 기준)에 이온교환수 100 중량부, 유화제로서 소듐도데실벤제설포네이트 1.0 중량부, 메틸메타크릴레이트 32 중량부, 스티렌 11 중량부, 아크릴로니트릴 7.0 중량부, 3급 도데실 메르캅탄 0.3 중량부, 소듐포름알데히드 술폭실레이트 0.048 중량부, 에틸렌디아민테트라에스테르산나트륨 0.012 중량부, 황화제1철 0.001 중량부 및 큐멘하이드로퍼옥사이드 0.04 중량부를 75℃에서 5시간 동안 연속 투여하여 반응시켰다. 반응 후 80℃로 승온한 다음 1시간 동안 숙성시키고 전환율 99%에서 반응을 종료하였다. 생성된 라텍스를 염화칼슘 수용액으로 응집시키고 세척하여 분말상 그라프트 공중합체를 수득하였다. 이 때, 그라프트 공중합체의 굴절률은 1.515이었다. 상기 그라프트 공중합체의 굴절률은 상기 수학식 1로 계산하였다.
제조예 2: 비그라프트 공중합체 제조
반응조에 메틸메타크릴레이트 69 중량부, 스티렌 24 중량부, 아크릴로니트릴 7 중량부에 용매로서 톨루엔 30 중량부와 분자량 조절제로서 3급 도데실 메르캅탄 0.15 중량부를 혼합한 원료를 평균 반응 시간이 3시간이 되도록 반응조에 연속 투입한 후 반응 온도를 148℃로 유지하였다. 반응조에서 배출된 중합액은 예비 가열조에서 가열하고 휘발조에서 미반응 단량체를 휘발시키고 폴리머의 온도가 210℃를 유지하도록 하여 폴리머 이송 펌프 압출 가공기를 이용하여 펠렛 형태의 공중합체를 제조하였다. 이렇게 수득된 공중합체의 중량평균분자량은 120,000g/mol이었으며, 수득된 펠렛의 최종 굴절률은 1.516이었다. 상기 비그라프트 공중합체의 굴절률은 상기 수학식 1로 계산하였다.
실시예 1
상기에서 제조된 그라프트 공중합체 40 중량부 및 비그라프트 공중합체 60 중량부를 포함하는 베이스 수지 100 중량부에 폴리에테르-아미드 블록 공중합체 12 중량부, Mg-st 0.3 중량부, 유기 염료 0.002 중량부, 산화방지제 0.2 중량부를 투입하여 230℃의 실린더 온도에서 2축 압축 혼련기를 사용하여 펠렛 형태로 제조하였다. 나아가, 제조된 펠렛으로 사출기의 배럴온도 230℃에서 사출하여 물성 측정용 시편을 제작하였고, 상기 사출된 시편을 25℃, 50±5% 상대습도 조건 하에서 12시간 동안 에이징(aging)하고, 하기와 같은 방법으로 물성을 측정하여 표 1에 나타내었다.
실시예 2 내지 6 및 비교예 1 내지 9
실시예 1에서 하기 표 1 내지 2에 기재된 성분 및 함량으로 변경한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.
[시험예]
상기 실시예 1 내지 6 및 비교예 1 내지 9에서 제조된 시편의 특성을 하기의 방법으로 측정하였고, 그 결과를 하기의 표 1 내지 2에 나타내었다.
측정방법
* 굴절률: 시편을 소량 절단하고 압착 후 0.2 mm 두께의 필름 형태로 만든 후 25℃에서 아베 굴절률계(Abbe-MARK-II)로 측정하였다.
* 투과도(Tt, %) 및 투명도(Haze, %): ASTM D1003에 의거하여 두께 3mm인 시트로 각각 투과도 및 투명도를 측정하였다.
* L(백색도)값, a값, b값: ASTM D1003에 의거하여 두께 3mm인 시트로 헌터랩 칼라미터를 사용하여 L(백색도)값, a값, b 값을 측정하였다.
상기 L(백색도)값은 흰색-검정색, a값은 적색-녹색, b 값은 황색-청색의 정도를 설명하는 것으로 +L값이 클수록 흰색이 많고 -L값이 클수록 검정색이 많으며, +a값이 클수록 적색이 많고 -a값이 클수록 녹색이 많으며, +b값이 클수록 황색이 많고 -b값이 클수록 파란색이 많은 것을 의미한다.
* 내화학성: 1.2% 지그 위에 인장 시편을 고정한 후 70% IPA 용액으로 도포한 후 1시간 후 변화를 관찰하였다.
* 표면 저항(Ω/square): Keithley社의 8009 비저항 기기로 표면 저항을 측정하였다.
* 내충격성(kgf·cm/cm): 1/8인치 시편에 대하여 ASTM D256의 방법으로 노치 아이조드(Notched Izod) 충격강도를 측정하였다.
* 유동성(MI, g/10min): 220℃, 10kg 조건 하에서 ASTM D1238에 의거하여 측정하였다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6
Mg-st 0.3 0.8 0.3 0.3 0.3 0.8
폴리에테르-아미드블록 공중합체 12 12 8 14 12 12
유기 염료 0.002 0.002 0.002 0.002 0.004 0.004
물성
굴절률 1.515 1.515 1.515 1.515 1.515 1.515
투과도 64.6 64.7 65.6 64.1 64.3 64.9
투명도 3.7 3.6 3.5 3.8 3.9 3.7
L값 68.65 68.42 68.65 68.42 68.15 68.22
a값 -2.69 -2.65 -2.49 -2.85 -2.23 -2.15
b값 -18.65 -18.71 -18.95 -18.21 -19.65 -20.11
내화학성 변화없음 변화없음 변화없음 변화없음 변화없음 변화없음
표면 저항 6.6*1010 3.6*1010 1.3*1011 1.1*1010 6.2*1010 3.3*1010
충격강도 12.0 11.2 12.2 10.5 12.0 11.1
유동지수 29.2 29.9 28.1 30.9 29.3 30.3
구분 비교예
1 2 3 4 5 6 7 8 9
Mg-st 0 0.1 1.0 0.3 0.3 0.3 0.3 0.3 0.3
폴리에테르-아미드
블록
중합체
12 12 12 12 0 3 18 18 12
유기염료 0.002 0.002 0.002 0 0.002 0.002 0.002 0.004 0.01
물성
굴절률 1.515 1.515 1.515 1.515 1.515 1.515 1.515 1.515 1.515
투과도 60.2 61.1 59.5 64.9 65.3 65.0 61.4 58.4 50.2
투명도 6.1 5.5 10.7 3.5 3.4 3.5 4.8 6.7 8.3
L값 65.67 66.28 61.98 67.94 70.85 69.65 64.42 62.43 59.77
a값 -1.68 -2.06 -2.84 -0.91 -2.32 -2.40 -1.45 -1.65 -1.97
b값 -12.88 -13.47 -16.99 5.79 -19.97 -19.10 -15.21 -16.21 -30.76
내화학성 변화
없음
변화
없음
변화
없음
변화
없음
절단 심한 균열 변화
없음
변화
없음
변화
없음
표면저항 2.4*
1013
1.1*
1012
1.6*
1010
5.6*
1010
4.0*
1016
3.3*
1012
8.2*109 6.5*109 5.6*
1010
충격강도 12.1 12.1 10.1 11.9 12.9 12.2 9.9 9.5 11.0
유동지수 28.9 28.9 30.1 29.1 27.7 28.1 31.5 32.0 29.5
상기 표 1 내지 2에 나타낸 바와 같이, 본 발명에 따른 실시예 1 내지 6은, 비교예 1 내지 9 대비 대전방지성, 투명성 및 내화학성이 우수한 효과를 확인할 수 있었다.
또한, 유기 염료를 0.002 내지 0.004 중량부를 포함한 실시예 1 내지 6은 헌터랩 칼라미터를 사용하여 측정한 a값이 -2.15 내지 -2.69, b값이 -18.21 내지 -20.11 범위 내에 있어 블루 색상이 선명하게 발현되어 색상 안정성이 우수하면서 대전방지성, 투명성 및 내화학성이 우수하였다.
구체적으로, 폴리에테르-아미드 블록 공중합체 또는 Mg-st 단독으로 포함한 비교예 1 및 5는, 실시예 1 내지 6 대비 대전방지성 뿐 아니라 투명성 또는 내화학성이 저하되어 의료용 제품에 적용할 수 없었다.
또한, Mg-st를 본 발명의 범위 밖으로 사용한 비교예 2 및 3은 투과율, 투명도 및 L값이 모두 저하되었고, 특히, Mg-st를 본 발명의 범위 미만으로 포함한 비교예 3은 대전방지성도 저하되었다.
또한, 폴리에테르-아미드 블록 공중합체를 본 발명의 범위 미만으로 포함한 비교예 6 및 7은 내화학성이 매우 열악해졌고, 폴리에테르-아미드 블록 공중합체를 본 발명의 범위를 초과하여 포함한 비교예 7 및 8은 투과도, 투명도 및 L값이 열악해지고 블루 색상 발현이 부족하며 충격강도가 저하되었다.
또한, 유기염료를 본 발명의 범위를 초과하여 포함한 비교예 9는 b값이 크게 낮아져 블루 색상이 과하게 발현되고 투과도, 투명도 및 L값이 낮아져 투명성이 저하되었다.
결론적으로, 본 발명에 따른 (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체를 포함하는 베이스 수지에 폴리에테르-아미드 블록 공중합체, 금속 스테아르산염 및 유기 안료를 소정 함량비로 포함하는 열가소성 수지 조성물은 내화학성, 투명성 및 색상 발현이 모두 우수함을 확인할 수 있었다.

Claims (14)

  1. (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 30 내지 50 중량%; 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체 50 내지 70 중량%;로 이루어진 베이스 수지 100 중량부에,
    폴리에테르-아미드 블록 공중합체 6 내지 15 중량부,
    금속 스테아르산염 0.2 내지 0.9 중량부, 및
    유기 안료 0.001 내지 0.006 중량부를 포함하되,
    상기 그라프트 공중합체는 평균입경 150 내지 450nm인 공액디엔 고무 30 내지 70 중량%, (메트)아크릴산 알킬 에스테르 화합물 20 내지 40 중량%, 방향족 비닐 화합물 5 내지 20 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 그라프트 공중합체이고,
    상기 비그라프트 공중합체는 (메트)아크릴산 알킬 에스테르 화합물 60 내지 80 중량%, 방향족 비닐 화합물 15 내지 35 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 공중합체인 것을 특징으로 하는
    열가소성 수지 조성물.
  2. 제1항에 있어서,
    상기 베이스 수지는 총 공액디엔 고무 함량이 10 내지 30 중량%, 총 (메트)아크릴산 알킬 에스테르 화합물 함량이 50 내지 60 중량%, 총 방향족 비닐 화합물 함량이 15 내지 25 중량% 및 총 비닐시안 화합물 함량이 3 내지 13 중량%인 것을 특징으로 하는
    열가소성 수지 조성물.
  3. 제1항에 있어서,
    상기 그라프트 공중합체는 공액디엔 고무와 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 공중합체와의 굴절률 차이가 0.01 이하인 것을 특징으로 하는
    열가소성 수지 조성물.
  4. 제1항에 있어서,
    상기 (메트)아크릴산 알킬 에스테르 화합물은, (메트)아크릴산 메틸 에스테르, (메트)아크릴산 에틸 에스테르, (메트)아크릴산 프로필 에스테르, (메트)아크릴산 2-에틸헥실 에스테르, (메트)아크릴산 데실 에스테르 및 (메트)아크릴산 라우릴 에스테르로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  5. 제1항에 있어서,
    상기 그라프트 공중합체 수지 및 비그라프트 공중합체 수지와의 굴절률 차이가 0.01 미만인 것을 특징으로 하는
    열가소성 수지 조성물.
  6. 제1항에 있어서,
    상기 폴리에테르-아미드 블록 공중합체는 말단에 카르복실기를 보유하는 수평균 분자량이 100 내지 6,000 g/mol인 폴리아미드 올리고머 및 옥시알킬렌 단위를 함유하는 수평균 분자량이 200 내지 4,000 g/mol인 비스페놀 화합물의 2 성분을 포함하여 이루어진 것을 특징으로 하는
    열가소성 수지 조성물.
  7. 제1항에 있어서,
    상기 금속 스테아르산염은 칼슘 스테아레이트, 마그네슘 스테아레이트, 알루미늄 스테아레이트, 포타슘 스테아레이트 및 바륨 스테아레이트로 이루어지는 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  8. 제1항에 있어서,
    상기 유기 염료는 1-히드록시-4-(p-톨루딘)엔트라퀴논(1-hydroxy-4-(p-toluidin)anthraquinone), 1,4-비스(메시틸아미노)안트라퀴논(1,4-bis(mesitylamino)anthraquinone), 1,4-비스(메틸아미노)안트라퀴논(1,4-bis(methylamino)anthraquinone), 및 1,4-비스[(2-에틸-6-메틸페닐)아미노)안트라퀴논(1,4-bis[(2-ethyl-6-methylphenyl)amino]anthraquinone)으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  9. 제1항에 있어서,
    상기 열가소성 수지 조성물은 열안정제, 자외선 안정제, 활제 및 산화방지제로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는
    열가소성 수지 조성물.
  10. 제1항에 있어서,
    상기 열가소성 수지 조성물은 ASTM D1003에 의거하여 두께 3mm인 시트로 측정한 투명도(Haze Value)가 4.0 이하인 것을 특징으로 하는
    열가소성 수지 조성물.
  11. 제1항에 있어서,
    상기 열가소성 수지 조성물은 ASTM D1003에 의거하여 두께 3mm인 시트로 헌터랩 칼라미터를 사용하여 측정한 L(백색도)값이 65 이상인 것을 특징으로 하는
    열가소성 수지 조성물.
  12. 제1항에 있어서,
    상기 열가소성 수지 조성물은 1.2% 지그 위에 인장 시편을 고정한 후 70% 이소프로필알콜(IPA) 용액으로 도포한 후 1시간 후 변화가 없는 것을 특징으로 하는
    열가소성 수지 조성물.
  13. (메트)아크릴산 알킬 에스테르 화합물-공액디엔 고무-방향족 비닐 화합물-비닐시안 화합물 그라프트 공중합체 30 내지 50 중량%; 및 (메트)아크릴산 알킬 에스테르 화합물-방향족 비닐 화합물-비닐시안 화합물 비그라프트 공중합체 50 내지 70 중량%;로 이루어진 베이스 수지 100 중량부에, 폴리에테르-아미드 블록 공중합체 6 내지 15 중량부, 금속 스테아르산염 0.2 내지 0.9 중량부, 및 유기 안료 0.001 내지 0.006 중량부를 포함하여 200 내지 300℃ 및 100 내지 300 rpm 조건 하에서 혼련 및 압출하여 펠릿으로 제조하는 단계를 포함하되,
    상기 그라프트 공중합체는 평균입경 150 내지 450nm인 공액디엔 고무 30 내지 70 중량%, (메트)아크릴산 알킬 에스테르 화합물 20 내지 40 중량%, 방향족 비닐 화합물 5 내지 20 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 그라프트 공중합체이고,
    상기 비그라프트 공중합체는 (메트)아크릴산 알킬 에스테르 화합물 60 내지 80 중량%, 방향족 비닐 화합물 15 내지 35 중량% 및 비닐시안 화합물 1 내지 15 중량%를 포함하여 이루어진 공중합체인 것을 특징으로 하는
    열가소성 수지 조성물의 제조방법.
  14. 제1항 내지 제12항 중 어느 한 항에 의한 열가소성 수지 조성물을 포함하는 것을 특징으로 하는
    성형품.
PCT/KR2021/009254 2020-10-16 2021-07-19 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품 WO2022080631A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180005384.4A CN114641528B (zh) 2020-10-16 2021-07-19 热塑性树脂组合物、其制备方法和包含其的模制品
EP21856896.2A EP4011971B1 (en) 2020-10-16 2021-07-19 Thermoplastic resin composition, method for preparing same, and molded article comprising same
US17/640,282 US20220411557A1 (en) 2020-10-16 2021-07-19 Thermoplastic resin composition, method of preparing the same, and molded article including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200134309 2020-10-16
KR10-2020-0134309 2020-10-16
KR10-2021-0093001 2021-07-15
KR1020210093001A KR20220050751A (ko) 2020-10-16 2021-07-15 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Publications (1)

Publication Number Publication Date
WO2022080631A1 true WO2022080631A1 (ko) 2022-04-21

Family

ID=81209059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/009254 WO2022080631A1 (ko) 2020-10-16 2021-07-19 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Country Status (4)

Country Link
US (1) US20220411557A1 (ko)
EP (1) EP4011971B1 (ko)
CN (1) CN114641528B (ko)
WO (1) WO2022080631A1 (ko)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767833A (en) 1985-10-09 1988-08-30 Japan Synthetic Rubber Co., Ltd. Transparent, impact-resistant, thermoplastic resin composition having excellent chemical resistance and process for producing same
EP0703252A2 (en) 1994-09-20 1996-03-27 Mitsui Toatsu Chemicals, Incorporated Transparent, rubber-modified styrene resin and production process thereof
JPH08199008A (ja) 1995-01-27 1996-08-06 Densen Sogo Gijutsu Center 低煙・低毒性難燃ポリオレフィンコンパゥンド
JPH11147020A (ja) 1997-11-17 1999-06-02 Ishikawajima Harima Heavy Ind Co Ltd 排煙脱硫装置の吸収塔循環ポンプ起動・停止時における吸収剤スラリー流量制御方法及び装置
KR20130018118A (ko) * 2011-08-11 2013-02-20 주식회사 엘지화학 알킬 〔메트〕아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
KR20160075415A (ko) * 2014-10-02 2016-06-29 주식회사 엘지화학 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR20170103726A (ko) * 2013-10-30 2017-09-13 롯데첨단소재(주) 내후성이 향상된 열가소성 수지 조성물
KR20190064989A (ko) * 2017-12-01 2019-06-11 주식회사 엘지화학 열가소성 수지 조성물 및 이를 이용한 열가소성 수지 성형품
JP2019210303A (ja) * 2018-05-31 2019-12-12 三菱ケミカル株式会社 熱可塑性樹脂組成物、成形体及び車両用部品
KR20200134309A (ko) 2018-05-08 2020-12-01 닛폰세이테츠 가부시키가이샤 전자 교반 장치
KR20210093001A (ko) 2020-01-17 2021-07-27 박영학 조립식 층간소음 차단장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595616B2 (ja) * 2005-03-25 2010-12-08 テクノポリマー株式会社 熱可塑性樹脂組成物及び成形品
KR20080039890A (ko) * 2005-08-04 2008-05-07 도레이 가부시끼가이샤 수지조성물 및 이것으로 이루어진 성형품
WO2016052832A1 (ko) * 2014-10-02 2016-04-07 (주) 엘지화학 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4767833A (en) 1985-10-09 1988-08-30 Japan Synthetic Rubber Co., Ltd. Transparent, impact-resistant, thermoplastic resin composition having excellent chemical resistance and process for producing same
EP0703252A2 (en) 1994-09-20 1996-03-27 Mitsui Toatsu Chemicals, Incorporated Transparent, rubber-modified styrene resin and production process thereof
JPH08199008A (ja) 1995-01-27 1996-08-06 Densen Sogo Gijutsu Center 低煙・低毒性難燃ポリオレフィンコンパゥンド
JPH11147020A (ja) 1997-11-17 1999-06-02 Ishikawajima Harima Heavy Ind Co Ltd 排煙脱硫装置の吸収塔循環ポンプ起動・停止時における吸収剤スラリー流量制御方法及び装置
KR20130018118A (ko) * 2011-08-11 2013-02-20 주식회사 엘지화학 알킬 〔메트〕아크릴레이트계 열가소성 수지 조성물, 및 내스크래치성과 황색도가 조절된 열가소성 수지
KR20170103726A (ko) * 2013-10-30 2017-09-13 롯데첨단소재(주) 내후성이 향상된 열가소성 수지 조성물
KR20160075415A (ko) * 2014-10-02 2016-06-29 주식회사 엘지화학 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
KR20190064989A (ko) * 2017-12-01 2019-06-11 주식회사 엘지화학 열가소성 수지 조성물 및 이를 이용한 열가소성 수지 성형품
KR20200134309A (ko) 2018-05-08 2020-12-01 닛폰세이테츠 가부시키가이샤 전자 교반 장치
JP2019210303A (ja) * 2018-05-31 2019-12-12 三菱ケミカル株式会社 熱可塑性樹脂組成物、成形体及び車両用部品
KR20210093001A (ko) 2020-01-17 2021-07-27 박영학 조립식 층간소음 차단장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4011971A4

Also Published As

Publication number Publication date
EP4011971A1 (en) 2022-06-15
US20220411557A1 (en) 2022-12-29
EP4011971A4 (en) 2022-11-30
CN114641528B (zh) 2023-07-18
EP4011971B1 (en) 2024-04-03
CN114641528A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2018084558A2 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2016052832A1 (ko) 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2018124517A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하여 제조되는 성형품
WO2017082649A1 (ko) 저광 특성, 내후성 및 기계적 물성이 우수한 열가소성 수지 조성물 및 이로부터 제조되는 압출 물품
WO2022080631A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022065625A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2017111337A1 (ko) 열가소성 수지 조성물 및 이를 포함하는 성형품
WO2020149504A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022019411A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2022158720A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022158709A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022019410A1 (ko) 열가소성 수지 조성물 및 이의 성형품
WO2022059896A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
KR20220050751A (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2020091371A1 (ko) 열가소성 수지 조성물
WO2022085899A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2022075579A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2015016464A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
WO2020050639A1 (ko) 열가소성 수지 조성물
WO2019112239A1 (ko) 열가소성 수지 조성물
WO2022065630A1 (ko) Abs계 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2022019471A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021856896

Country of ref document: EP

Effective date: 20220221

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21856896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE