WO2022070896A1 - 二次電池用正極活物質および二次電池 - Google Patents

二次電池用正極活物質および二次電池 Download PDF

Info

Publication number
WO2022070896A1
WO2022070896A1 PCT/JP2021/033791 JP2021033791W WO2022070896A1 WO 2022070896 A1 WO2022070896 A1 WO 2022070896A1 JP 2021033791 W JP2021033791 W JP 2021033791W WO 2022070896 A1 WO2022070896 A1 WO 2022070896A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
composite oxide
active material
lithium
metal composite
Prior art date
Application number
PCT/JP2021/033791
Other languages
English (en)
French (fr)
Inventor
晋 張
一成 池内
光宏 日比野
健祐 名倉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180067122.0A priority Critical patent/CN116325229A/zh
Priority to US18/028,929 priority patent/US20230335728A1/en
Priority to JP2022553788A priority patent/JPWO2022070896A1/ja
Priority to EP21875198.0A priority patent/EP4224577A4/en
Publication of WO2022070896A1 publication Critical patent/WO2022070896A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a positive electrode active material for a secondary battery and a secondary battery.
  • Secondary batteries are expected as power sources for small consumer applications, power storage devices and electric vehicles because they have high output and high energy density.
  • a composite oxide of lithium and a transition metal for example, cobalt
  • cobalt transition metal
  • Li excess type lithium metal composite oxides based on Li 1 + x Mn 1-x O 2 having a rock salt structure have been attracting attention.
  • Patent Document 1 has a crystal structure belonging to the space group Fm-3m and has a composition formula Li 1 + x Nby Me z App O 2 (Me is a transition metal containing Fe and / or Mn, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5, 0.25 ⁇ z ⁇ 1, A is an element other than Nb and Me, 0 ⁇ p ⁇ 0.2, where Li 1 + p Fe 1-q Nb q O 2 and 0.
  • a positive electrode active material containing a lithium transition metal composite oxide represented by (15 ⁇ p ⁇ 0.3, 0 ⁇ q ⁇ 0.3) is disclosed.
  • Patent Document 1 high capacity is possible by controlling the composition (that is, adding Nb). However, the effect of improving the capacity is insufficient, and there is still room for improvement.
  • one aspect of the present disclosure includes a lithium metal composite oxide having a crystal structure based on a rock salt structure belonging to the space group Fm-3m, and the lithium metal composite oxide includes Ti, Li and Ti.
  • the present invention relates to a positive electrode active material for a secondary battery, which comprises a metal element M 1 other than the above.
  • Another aspect of the present disclosure relates to a secondary battery comprising a positive electrode, a negative electrode, an electrolyte and a separator interposed between the positive electrode and the negative electrode, wherein the positive electrode contains the positive electrode active material for the secondary battery.
  • a secondary battery having a high energy density can be realized.
  • FIG. 1 is a schematic perspective view in which a part of the secondary battery according to the embodiment of the present disclosure is cut out.
  • the positive electrode active material for a secondary battery according to the embodiment of the present disclosure includes a lithium metal composite oxide having a crystal structure based on a rock salt structure belonging to the space group Fm-3m. That is, this lithium metal composite oxide has a crystal structure similar to the rock salt structure belonging to the space group Fm-3m.
  • This lithium metal composite oxide contains Ti and a metal element M 1 other than Li and Ti.
  • the above-mentioned lithium metal composite oxide has a crystal structure based on a rock salt structure represented by NaCl, for example, an oxygen atom is arranged at an anion site, and a Li atom and a metal atom other than Li are arranged at a cation site. It may have an irregularly arranged structure (including Ti and the metal element M1).
  • Ti increases the capacity of the lithium metal composite oxide having the above crystal structure.
  • Ti exists in the form of Ti 4+ with an empty d-orbital, so that the rock salt structure with high symmetry tends to be stable. Conceivable.
  • the local structure has a lower symmetry than the rock salt structure, so that the d-orbital (for example, (t 2 g ) 3 (eg) 1 , (t 2 g ) ).
  • the metal element M 1 preferably contains at least one selected from the group consisting of Fe, Ge, Si and Ga. In this case, the average discharge potential can be increased.
  • the cation site may have pores in which Li atoms and metal atoms (atoms of the transition metal element M 1 and the metal element M 2 ) are not arranged.
  • having pores means that in the positive electrode active material immediately after production or by disassembling and taking out a secondary battery in a discharged state, pores that are not filled with Li atoms or metal atoms are present in the lithium metal composite oxide.
  • the proportion of pores can be 0.5% or more, preferably 1% or more, more preferably 2% or more of the sites in which lithium or metal atoms can be arranged in the crystal structure.
  • the lithium metal composite oxide may contain fluorine (F). Fluorine can replace the oxygen atom of the anion site in the crystal structure. As a result, the state of excess Li is stabilized and a high capacity can be obtained. In addition, the average discharge potential rises due to the substitution of fluorine atoms.
  • the state of excess Li refers to a state in which the number of Li atoms in the composite oxide is larger than the number of transition metal atoms.
  • the arrangement of Li at the cation site is irregular and the bonding state of Li is various, so that the range of voltage distribution associated with Li emission is wide. Therefore, it may be difficult to use the hem portion on the low potential side of the voltage distribution as a capacitance.
  • the voltage distribution associated with Li emission moves to the high potential side, so that the hem portion can be easily used as a capacitance. This further increases the available capacity.
  • the lithium metal composite oxide preferably contains Mn as the transition metal element M1.
  • the molar ratio of Mn in the lithium-containing composite oxide may be larger than the total molar ratio of the metal elements M1 and Ti excluding Mn. That is, the lithium metal composite oxide may be based on the composite oxide of Li and Mn. Examples of such a composite oxide of Li and Mn include Li 1 + x Mn 1-x O 2 .
  • lithium metal composite oxide examples include the composition formula Li a Mn b Ti c M 2 d O 2-e Fe (where 0 ⁇ a ⁇ 1.35, 0.4 ⁇ b ⁇ 0.9, 0 ⁇ . c ⁇ 0.15, 0 ⁇ d ⁇ 0.1, 0 ⁇ e ⁇ 0.66, 1.75 ⁇ a + b + c + d ⁇ 2).
  • M 2 is the above-mentioned metal element M 1 minus Mn.
  • the Ti ratio c is more preferably 0.025 ⁇ c ⁇ 0.1, and even more preferably 0.025 ⁇ c ⁇ 0.075.
  • the molar ratio x of the pores is 0 ⁇ x ⁇ 0.25.
  • the molar ratio x of the pores is preferably x ⁇ 0.02, more preferably x ⁇ 0.05, and even more preferably x ⁇ 0.1.
  • a + b + c + d ⁇ 1.98 is preferable
  • a + b + c + d ⁇ 1.95 is more preferable
  • a + b + c + d ⁇ 1.9 is even more preferable.
  • the molar ratio x of the pores is more preferably x ⁇ 0.15 (a + b + c + d ⁇ 1.85).
  • the vacancies and the content ratio of vacancies can be derived based on the crystal structure and composition of the lithium metal composite oxide.
  • the crystal structure of the lithium metal composite oxide is identified from the X-ray diffraction pattern measured using a powder X-ray diffractometer (for example, desktop X-ray diffractometer MiniFlex manufactured by Rigaku Co., Ltd., X-ray source: CuK ⁇ ). To.
  • the composition of the lithium metal composite oxide can be measured using an ICP emission spectrophotometer (iCAP6300 manufactured by Thermo Fisher Scientific).
  • the vacancies and the content ratio of vacancies may be evaluated by a method utilizing positron annihilation.
  • a part of the oxygen atom in the anion site may be replaced with a fluorine atom.
  • the state of excess Li (a> 1) is stabilized, and a high capacity can be obtained.
  • the average discharge potential increases and the available capacity further increases.
  • the substitution ratio e of the fluorine atom in the composition formula of the lithium metal composite oxide may be 0.1 ⁇ e ⁇ 0.58, and 0.1 ⁇ e. It may be ⁇ 0.5, or 0.2 ⁇ e ⁇ 0.5.
  • the lithium metal composite oxide may contain an element M 2 other than Li, Mn, and Ti.
  • the lithium metal composite oxide has Fe, Ge, Si, Ga, Ni, Co, Sn, Cu, Nb, Mo, Bi, V, Cr, Y, Zr, Zn, Na, K, Ca as the metal element M2 .
  • Mg, Pt, Au, Ag, Ru, Ta, W, La, Ce, Pr, Sm, Eu, Dy, and Er may contain at least one selected from the group.
  • the metal element M 2 contains at least one selected from the group consisting of Fe, Ge, Si and Ga in that the average discharge potential can be increased.
  • the lithium metal composite oxide is, for example, lithium fluoride (LiF), an oxide of element M 1 (for example, lithium manganate (LiMnO 2 ) belonging to the space group Fm-3m), and an oxide of element M 2 .
  • LiF lithium fluoride
  • element M 1 for example, lithium manganate (LiMnO 2 ) belonging to the space group Fm-3m
  • an oxide of element M 2 can be synthesized by mixing with a planetary ball mill in an inert gas atmosphere such as Ar. Li 2 O and Mn 2 O 3 may be used as raw materials. Further, by adding lithium peroxide (Li 2 O 2 ) in addition to the above raw materials and performing a mixing treatment, a lithium metal composite oxide having pores can be synthesized.
  • a mixer capable of applying the same stirring shear force to the powder may be used, or the powder may be heated during the mixing process.
  • the composition of the composite oxide and the like can be adjusted to a target range by changing, for example, the mixing ratio of Li
  • the secondary battery includes, for example, the following positive electrode, negative electrode, electrolyte and separator.
  • the positive electrode includes a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector and containing a positive electrode active material.
  • the positive electrode the above-mentioned positive electrode for a secondary battery is used.
  • the positive electrode mixture layer can be formed, for example, by applying a positive electrode slurry in which a positive electrode mixture containing a positive electrode active material, a binder and the like is dispersed in a dispersion medium to the surface of a positive electrode current collector and drying it. The dried coating film may be rolled if necessary.
  • the positive electrode mixture layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the positive electrode mixture layer contains a positive electrode active material as an essential component, and may contain a binder, a thickener, a conductive agent, a positive electrode additive, etc. as optional components.
  • a binder a binder, a thickener, a conductive agent, a positive electrode additive, etc.
  • Known materials can be used as the binder, thickener, and conductive agent.
  • the positive electrode active material includes the above-mentioned lithium metal composite oxide having a crystal structure similar to the rock salt structure belonging to the space group Fm-3m.
  • the composite oxide is, for example, a secondary particle formed by aggregating a plurality of primary particles.
  • the particle size of the primary particles is generally 0.05 ⁇ m to 1 ⁇ m.
  • the average particle size of the composite oxide is, for example, 3 ⁇ m to 30 ⁇ m, preferably 5 ⁇ m to 25 ⁇ m.
  • the average particle size of the composite oxide means the median diameter (D50) at which the cumulative frequency is 50% in the volume-based particle size distribution, and is measured by a laser diffraction type particle size distribution measuring device.
  • the content of the elements constituting the composite oxide is measured by an inductively coupled plasma emission spectrophotometer (ICP-AES), an electron probe microanalyzer (EPMA), an energy dispersive X-ray analyzer (EDX), or the like. be able to.
  • ICP-AES inductively coupled plasma emission spectrophotometer
  • EPMA electron probe microanalyzer
  • EDX energy dispersive X-ray analyzer
  • the above-mentioned lithium metal composite oxide having a crystal structure similar to the above-mentioned rock salt structure may be mixed with a known lithium metal oxide other than the above-mentioned lithium metal composite oxide.
  • other lithium metal oxides include Li a CoO 2 , Li a NiO 2 , Li a MnO 2 , Li a Co b Ni 1-b O 2 , Li a Co b M 1-b O c , and Li a .
  • lithium transition metal composite oxides such as Ni 1-b M b O c , Li a Mn 2 O 4 , Li a Mn 2-b M b O 4, LiMePO 4, and Li 2 MePO 4 F.
  • M is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B.
  • Me contains at least a transition element (eg, includes at least one selected from the group consisting of Mn, Fe, Co, Ni).
  • the a value indicating the molar ratio of lithium increases or decreases depending on charging and discharging.
  • the shape and thickness of the positive electrode current collector can be selected from the shape and range according to the negative electrode current collector.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • the negative electrode includes, for example, a negative electrode current collector and a negative electrode active material layer formed on the surface of the negative electrode current collector.
  • the negative electrode active material layer can be formed, for example, by applying a negative electrode slurry in which a negative electrode mixture containing a negative electrode active material, a binder and the like is dispersed in a dispersion medium to the surface of a negative electrode current collector and drying it. The dried coating film may be rolled if necessary. That is, the negative electrode active material may be a mixture layer. Further, a lithium metal foil or a lithium alloy foil may be attached to the negative electrode current collector.
  • the negative electrode active material layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode active material layer contains a negative electrode active material as an essential component, and can contain a binder, a conductive agent, a thickener, and the like as optional components. Known materials can be used as the binder, the conductive agent, and the thickener.
  • the negative electrode active material includes a material that electrochemically stores and releases lithium ions, a lithium metal, and / or a lithium alloy.
  • a material that electrochemically occludes and releases lithium ions a carbon material, an alloy-based material, or the like is used.
  • the carbon material include graphite, easily graphitized carbon (soft carbon), and non-graphitized carbon (hard carbon). Of these, graphite, which has excellent charge / discharge stability and has a small irreversible capacity, is preferable.
  • the alloy-based material include those containing at least one kind of metal capable of forming an alloy with lithium, and examples thereof include silicon, tin, silicon alloys, tin alloys, and silicon compounds. Silicon oxide, tin oxide, or the like in which these are combined with oxygen may be used.
  • a lithium ion conductive phase and a silicon composite material in which silicon particles are dispersed in the lithium ion conductive phase can be used.
  • the lithium ion conductive phase for example, a silicon oxide phase, a silicate phase and / or a carbon phase can be used.
  • the main component of the silicon oxide phase eg, 95-100% by weight
  • a composite material composed of a silicate phase and silicon particles dispersed in the silicate phase is preferable in that it has a high capacity and a small irreversible capacity.
  • the silicate phase may include, for example, at least one selected from the group consisting of Group 1 elements and Group 2 elements in the long periodic table.
  • Group 1 elements of the long-period periodic table and Group 2 elements of the long-period periodic table include, for example, lithium (Li), potassium (K), sodium (Na), magnesium (Mg), and calcium (Ca).
  • Strontium (Sr), Barium (Ba) and the like can be used.
  • Other elements may include aluminum (Al), boron (B), lanthanum (La), phosphorus (P), zirconium (Zr), titanium (Ti) and the like.
  • a silicate phase containing lithium hereinafter, also referred to as a lithium silicate phase
  • a silicate phase containing lithium is preferable because the irreversible capacity is small and the initial charge / discharge efficiency is high.
  • the lithium silicate phase may be an oxide phase containing lithium (Li), silicon (Si), and oxygen (O), and may contain other elements.
  • Atomic ratio of O to Si in lithium silicate phase: O / Si is, for example, greater than 2 and less than 4.
  • O / Si is greater than 2 and less than 3.
  • Atomic ratio of Li to Si in lithium silicate phase: Li / Si is, for example, greater than 0 and less than 4.
  • Elements other than Li, Si and O that can be contained in the lithium silicate phase include, for example, iron (Fe), chromium (Cr), nickel (Ni), manganese (Mn), copper (Cu), molybdenum (Mo), and the like. Examples thereof include zinc (Zn) and aluminum (Al).
  • the carbon phase may be composed of, for example, amorphous carbon having low crystallinity (that is, amorphous carbon).
  • amorphous carbon may be, for example, hard carbon, soft carbon, or other carbon.
  • the negative electrode current collector As the negative electrode current collector, a non-perforated conductive substrate (metal foil, etc.) and a porous conductive substrate (mesh body, net body, punching sheet, etc.) are used. Examples of the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the electrolyte contains a solvent and a solute dissolved in the solvent.
  • the solute is an electrolyte salt that ionically dissociates in the electrolyte.
  • the solute may include, for example, a lithium salt.
  • the components of the electrolyte other than the solvent and solute are additives.
  • the electrolyte may contain various additives.
  • the electrolyte is usually used in a liquid state, but the fluidity may be restricted by a gelling agent or the like.
  • an aqueous solvent or a non-aqueous solvent is used.
  • a non-aqueous solvent for example, a cyclic carbonate ester, a chain carbonate ester, a cyclic carboxylic acid ester, a chain carboxylic acid ester and the like are used.
  • the cyclic carbonic acid ester include propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate (VC) and the like.
  • Examples of the chain carbonate ester include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • Examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate (EP) and the like.
  • As the non-aqueous solvent one type may be used alone, or two or more types may be used in combination.
  • non-aqueous solvent examples include cyclic ethers, chain ethers, nitriles such as acetonitrile, and amides such as dimethylformamide.
  • cyclic ethers are 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4-.
  • examples thereof include dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether and the like.
  • chain ethers examples include 1,2-dimethoxyethane, dimethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether and butyl phenyl ether.
  • Pentyl phenyl ether methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, Examples thereof include 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether.
  • These solvents may be fluorinated solvents in which a part of hydrogen atoms is replaced with fluorine atoms.
  • fluorination solvent fluoroethylene carbonate (FEC) may be used.
  • lithium salt examples include a lithium salt of a chlorine-containing acid (LiClO 4 , LiAlCl 4 , LiB 10 Cl 10 , etc.) and a lithium salt of a fluorine-containing acid (LiPF 6 , LiPF 2 O 2 , LiBF 4 , LiSbF 6 , LiAsF 6 ).
  • LiN (FSO 2 ) 2 LiN (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO) 2 ), LiN (C 2 F 5 SO 2 ) 2 , etc.
  • lithium halide LiCl, LiBr, LiI, etc.
  • the lithium salt one kind may be used alone, or two or more kinds may be used in combination.
  • the concentration of the lithium salt in the electrolyte may be 1 mol / liter or more and 2 mol / liter or less, or 1 mol / liter or more and 1.5 mol / liter or less.
  • the lithium salt concentration is not limited to the above.
  • the electrolyte may contain other known additives.
  • the additive include 1,3-propanesarton, methylbenzenesulfonate, cyclohexylbenzene, biphenyl, diphenyl ether, fluorobenzene and the like.
  • a separator is interposed between the positive electrode and the negative electrode.
  • the separator has high ion permeability and has moderate mechanical strength and insulation.
  • a microporous thin film, a woven fabric, a non-woven fabric, or the like can be used.
  • polyolefins such as polypropylene and polyethylene are preferable.
  • the structure of the secondary battery there is a structure in which an electrode group in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are housed in an exterior body.
  • an electrode group in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are housed in an exterior body.
  • another form of electrode group such as a laminated type electrode group in which a positive electrode and a negative electrode are laminated via a separator may be applied.
  • the secondary battery may be in any form such as a cylindrical type, a square type, a coin type, a button type, and a laminated type.
  • FIG. 1 is a schematic perspective view in which a part of a square secondary battery according to an embodiment of the present disclosure is cut out.
  • the battery includes a bottomed square battery case 4, an electrode group 1 housed in the battery case 4, and a non-aqueous electrolyte.
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator interposed between them.
  • the negative electrode current collector of the negative electrode is electrically connected to the negative electrode terminal 6 provided on the sealing plate 5 via the negative electrode lead 3.
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7.
  • the positive electrode current collector of the positive electrode is electrically connected to the back surface of the sealing plate 5 via the positive electrode lead 2. That is, the positive electrode is electrically connected to the battery case 4 that also serves as the positive electrode terminal.
  • the peripheral edge of the sealing plate 5 is fitted to the open end portion of the battery case 4, and the fitting portion is laser welded.
  • the sealing plate 5 has an injection hole for a non-aqueous electrolyte, and is closed by the sealing 8 after injection.
  • the structure of the secondary battery may be cylindrical, coin-shaped, button-shaped or the like provided with a metal battery case, and may be laminated with a laminated sheet battery case which is a laminate of a barrier layer and a resin sheet. It may be a type battery. In the present disclosure, the type, shape, etc. of the secondary battery are not particularly limited.
  • Lithium fluoride (LiF), lithium peroxide (Li 2 O 2 ), lithium manganate (LiMnO 2 ), and titanium oxide (TIO 2 ) were mixed in a predetermined mass ratio.
  • the mixed powder was put into a planetary ball mill (Premium-Line P7 manufactured by Fritzch, rotation speed: 600 rpm, container: 45 mL, ball: Zr ball of ⁇ 5 mm), and operated at room temperature for 35 hours (1 hour operation) in an Ar atmosphere. After that, a cycle of resting for 10 minutes was performed 35 times) to obtain a lithium metal composite oxide having a predetermined composition.
  • the obtained lithium metal composite oxide, acetylene black, and polyvinylidene fluoride were mixed at a solid content mass ratio of 7: 2: 1, and N-methyl-2-pyrrolidone (NMP) was used as a dispersion medium.
  • NMP N-methyl-2-pyrrolidone
  • Positive mixture mixture slurry was prepared.
  • a positive electrode mixture slurry was applied onto a positive electrode core made of aluminum foil, the coating film was dried and compressed, and then cut to a predetermined electrode size to obtain a positive electrode.
  • lithium metal composite oxides X1 to X7 having different compositions were synthesized in this way, and positive electrodes using lithium metal composite oxides X1 to X7 were obtained.
  • iron oxide Fe 2 O 3
  • lithium metal composite oxides X3 and X4 were further added to the raw materials and mixed at a predetermined mass ratio to obtain lithium metal composite oxides X3 and X4, respectively.
  • Example 5 silicon oxide (SiO 2 ) was further added to the raw material and mixed at a predetermined mass ratio to obtain a lithium metal composite oxide X5.
  • germanium oxide (GeO 2 ) was further added to the raw materials and mixed at a predetermined mass ratio to obtain lithium metal composite oxides X6 and X7, respectively.
  • LiPF 6 as a lithium salt was added to a mixed solvent in which ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed at a predetermined volume ratio to prepare a non-aqueous electrolyte.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • test cell A test cell was prepared using the above positive electrode and the negative electrode counter electrode made of lithium metal foil.
  • the positive electrode and the negative electrode counter electrode were arranged so as to face each other via a separator to form an electrode body, and the electrode body was housed in a coin-shaped outer can. After injecting the electrolyte into the outer can, the outer can was sealed to obtain a coin-shaped secondary battery for testing.
  • Secondary batteries A1 to A7 were produced using positive electrodes using lithium metal composite oxides X1 to X7 as positive electrode active materials.
  • the secondary batteries A1 to A7 correspond to Examples 1 to 7.
  • the composite oxide has a crystal structure based on the rock salt type belonging to the space group Fm-3m.
  • the time average of the battery voltage was obtained from the time change of the battery voltage at the time of constant current discharge, and the average discharge voltage was set to V0 .
  • Table 1 shows the evaluation results of the initial discharge capacity C 0 and the average discharge voltage V 0 together with the composition of the lithium metal composite oxide used as the positive electrode active material in each battery.
  • the batteries A1 to A7 of Examples 1 to 7 are compared with the batteries B1 to B4 of Comparative Examples 1 to 4 which do not contain Ti by including Ti in the lithium metal composite oxide. , The initial discharge capacity has improved.
  • the initial discharge capacity is slightly reduced, but the average discharge voltage tends to increase.
  • the batteries B2 to B4 when Ti is not contained in the lithium metal composite oxide and Fe, Si or Ge is contained alone, the effect of increasing the average discharge voltage is not observed.
  • the secondary battery according to the present disclosure it is possible to provide a secondary battery having a high capacity and excellent cycle characteristics.
  • the secondary battery according to the present disclosure is useful as a main power source for mobile communication devices, portable electronic devices, and the like.
  • Electrode group 2 Positive electrode lead 3 Negative electrode lead 4 Battery case 5 Sealing plate 6 Negative electrode terminal 7 Gasket 8 Sealing

Abstract

空間群Fm-3mに属する岩塩構造をベースとする結晶構造を有するリチウム金属複合酸化物を含む、二次電池用正極活物質を用いる。リチウム金属複合酸化物は、Tiと、LiおよびTi以外の金属元素Mと、を含む。金属元素Mは、Fe、Ge、SiおよびGaからなる群より選択される少なくとも1種をさらに含むことが好ましい。

Description

二次電池用正極活物質および二次電池
 本開示は、二次電池用正極活物質および二次電池に関する。
 二次電池、特にリチウムイオン二次電池は、高出力かつ高エネルギー密度を有するため、小型民生用途、電力貯蔵装置および電気自動車の電源として期待されている。リチウムイオン二次電池の正極活物質としては、リチウムと遷移金属(例えば、コバルト)との複合酸化物が用いられている。コバルトの一部をニッケルで置き換えることで、高容量化が可能である。
 一方で、近年では、高エネルギー密度の要請を受けて、岩塩構造のLi1+xMn1-xをベースとするLi過剰型のリチウム金属複合酸化物が注目されている。
 特許文献1には、空間群Fm-3mに属する結晶構造を有し、組成式Li1+xNbMe(MeはFeおよび/またはMnを含む遷移金属、0<x<1、0<y<0.5、0.25≦z<1、AはNb、Me以外の元素、0≦p≦0.2、但し、Li1+pFe1-qNbであって0.15<p≦0.3、0<q≦0.3であるものを除く)で表されるリチウム遷移金属複合酸化物を含む正極活物質が開示されている。
特許第6197029号明細書
 特許文献1では、組成の制御(すなわち、Nbの添加)によって高容量を可能としている。しかしながら、容量の向上効果は不十分であり、未だ改善の余地が有る。
 以上に鑑み、本開示の一側面は、空間群Fm-3mに属する岩塩構造をベースとする結晶構造を有するリチウム金属複合酸化物を含み、前記リチウム金属複合酸化物は、Tiと、LiおよびTi以外の金属元素Mと、を含む、二次電池用正極活物質に関する。
 本開示の他の側面は、正極、負極、電解質および前記正極と前記負極との間に介在するセパレータを備え、前記正極は、上記二次電池用正極活物質を含む、二次電池に関する。
 本開示によれば、高エネルギー密度の二次電池を実現できる。
図1は、本開示の一実施形態に係る二次電池の一部を切欠いた概略斜視図である。
 本開示の実施形態に係る二次電池用正極活物質は、空間群Fm-3mに属する岩塩構造をベースとする結晶構造を有するリチウム金属複合酸化物を含む。すなわち、このリチウム金属複合酸化物は、空間群Fm-3mに属する岩塩構造に類似した結晶構造を有する。このリチウム金属複合酸化物は、Tiと、LiおよびTi以外の金属元素Mと、を含む。
 上記のリチウム金属複合酸化物は、例えばNaClに代表される、岩塩構造をベースとする結晶構造を有し、アニオンサイトに酸素原子が配置されるとともに、カチオンサイトにLi原子およびLi以外の金属原子(Tiおよび金属元素Mを含む)が不規則に配置された構造を有し得る。
 Tiが含まれることで、上記結晶構造を有するリチウム金属複合酸化物の容量が増加する。この理由は明らかではないが、一因として、リチウム金属複合酸化物中において、Tiは、d軌道が空のTi4+の形で存在するため、対称性の高い岩塩構造が安定になり易いためと考えられる。一方、d軌道の一部を電子が占有している場合、岩塩構造より対称性の低い局所構造となることで、d軌道(例えば、(t2g(e、(t2g(e等の電子配置、あるいは摂動状態としてこれらの電子配置を取り得る場合)のエネルギー準位が分裂し、よりエネルギーの低い軌道を電子が占めることで、岩塩構造より対称性の低い結晶構造が安定になり得る。しかしながら、Ti4+はd軌道が空であるため、岩塩構造の対称性が低下し難く、充放電の繰り返しを経ても岩塩構造が安定化され得る。
 金属元素Mは、Fe、Ge、SiおよびGaからなる群より選択される少なくとも1種を含むことが好ましい。この場合、平均放電電位を高くできる。
 上記結晶構造において、カチオンサイトには、Li原子および金属原子(遷移金属元素Mおよび金属元素Mの原子)が配されていない空孔を有していてもよい。ここで、空孔を有するとは、製造直後あるいは放電状態の二次電池を分解し取り出した正極活物質において、Li原子または金属原子で埋められていない空孔がリチウム金属複合酸化物に存在することをいう。空孔の割合は、結晶構造におけるリチウム原子または金属原子が配され得るサイトの0.5%以上、好ましくは1%以上、さらに好ましくは2%以上であり得る。空孔を有することにより、空孔を介してリチウムイオンが移動し易くなるとともに、容量がさらに向上する。
 リチウム金属複合酸化物は、フッ素(F)を含んでいてもよい。フッ素は、上記結晶構造において、アニオンサイトの酸素原子を置換し得る。これにより、Li過剰の状態が安定化し、高容量が得られる。また、フッ素原子の置換により、平均放電電位が上昇する。なお、Li過剰の状態とは、複合酸化物に占めるLi原子の数が遷移金属原子の数よりも多い状態を指す。
 上記リチウム金属複合酸化物では、カチオンサイトにおけるLiの配置が不規則であり、Liの結合状態が様々であることから、Li放出に伴う電圧分布の幅が広い。このため、電圧分布の低電位側の裾部分については容量として利用することが困難になり得る。しかしながら、フッ素原子導入により、Li放出に伴う電圧分布が高電位側に移動するため、裾部分を容量として利用し易くなる。これにより、利用可能な容量がさらに増加する。
 リチウム金属複合酸化物は、遷移金属元素Mとして、Mnを含むものが好ましい。リチウム含有複合酸化物に占めるMnのモル比は、Mnを除く金属元素MとTiとの合計のモル比よりも大きくてもよい。つまり、リチウム金属複合酸化物は、LiおよびMnの複合酸化物をベースとするものであってもよい。このようなLiおよびMnの複合酸化物として、Li1+xMn1-xが挙げられる。
 リチウム金属複合酸化物としては、例えば、組成式LiMnTi 2-e(ただし、0<a≦1.35、0.4≦b≦0.9、0<c≦0.15、0≦d≦0.1、0≦e≦0.66、1.75≦a+b+c+d≦2を満たす)で表されるものが挙げられる。ここで、Mは上述の金属元素MからMnを除いたものである。Ti比率cは、0.025≦c≦0.1がより好ましく、0.025≦c≦0.075がさらに好ましい。
 上記組成式において、2-a-b-c-d(=x)で表されるx値は、カチオンサイトに存在する空孔のモル比を表している。上記組成式より、空孔のモル比xは、0≦x≦0.25である。空孔のモル比xは、x≧0.02が好ましく、x≧0.05がより好ましく、x≧0.1がさらに好ましい。換言すると、a+b+c+d≦1.98が好ましく、a+b+c+d≦1.95がより好ましく、a+b+c+d≦1.9がさらに好ましい。また、空孔のモル比xは、x≦0.15(a+b+c+d≧1.85)がより好ましい。
 空孔および空孔の含有割合は、リチウム金属複合酸化物の結晶構造および組成に基づき導出することができる。例えば、空間群Fm-3mに属する岩塩構造に類似した結晶構造の場合、リチウム金属複合酸化物の組成を求め、組成式からx=2-a-b-c-dを計算することで空孔の含有割合が求まる。リチウム金属複合酸化物の結晶構造は、粉体X線回折装置(例えば、株式会社リガク製のデスクトップX線回折装置 MiniFlex、X線源:CuKα)を用いて測定されるX線回折パターンから同定される。リチウム金属複合酸化物の組成は、ICP発光分光分析装置(Thermo Fisher Scientific製のiCAP6300)を用いて測定できる。
 また、陽電子消滅を利用する方法により、空孔および空孔の含有割合を評価してもよい。
 上記組成式に示すように、アニオンサイトにおける酸素原子の一部が、フッ素原子で置換されていてもよい。これにより、Liが過剰(a>1)の状態が安定化し、高容量が得られる。また、上述した通り、平均放電電位が上昇し、利用可能な容量がさらに増加する。酸素原子の一部をフッ素原子で置換する場合、リチウム金属複合酸化物の組成式におけるフッ素原子の置換割合eは、0.1≦e≦0.58であってもよく、0.1≦e≦0.5であってもよく、もしくは0.2≦e≦0.5であってもよい。
 リチウム金属複合酸化物は、Li、Mn、およびTi以外の元素Mを含んでいてもよい。リチウム金属複合酸化物は、金属元素Mとして、Fe、Ge、Si、Ga、Ni、Co、Sn、Cu、Nb、Mo、Bi、V、Cr、Y、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、Ta、W、La、Ce、Pr、Sm、Eu、Dy、およびErからなる群より選択される少なくとも1種を含むものであってもよい。これらのなかでも、金属元素Mとして、平均放電電位を高くできる点で、Fe、Ge、SiおよびGaからなる群より選択される少なくとも1種を含むことが好ましい。
 上記リチウム金属複合酸化物は、例えば、フッ化リチウム(LiF)、元素Mの酸化物(例えば、空間群Fm-3mに属するマンガン酸リチウム(LiMnO))、および、元素Mの酸化物を、Ar等の不活性ガス雰囲気中で、遊星ボールミルにより混合処理することで合成できる。原料には、LiOおよびMnを用いてもよい。また、上記原料に加えて過酸化リチウム(Li)を加えて混合処理を行うことで、空孔を有するリチウム金属複合酸化物を合成できる。遊星ボールミルの代わりに、同様の攪拌せん断力を粉体に与えることが可能な混合機を用いてもよく、混合処理中に粉体を加熱してもよい。複合酸化物の組成等は、例えば、LiFとLiMnOの混合比率、混合条件(回転数、処理時間、処理温度等)を変更することで目的とする範囲に調整され得る。
 次に、本開示の実施形態に係る二次電池について詳述する。二次電池は、例えば、以下のような正極、負極、電解質およびセパレータを備える。
 [正極]
 正極は、正極集電体と、正極集電体の表面に形成され、かつ正極活物質を含む正極合剤層とを具備する。正極としては、上記の二次電池用正極が用いられる。正極合剤層は、例えば、正極活物質、結着剤等を含む正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 正極合剤層は、正極活物質を必須成分として含み、任意成分として、結着剤、増粘剤、導電剤、正極添加剤などなどを含むことができる。結着剤、増粘剤、導電剤としては、公知の材料を利用できる。
 正極活物質としては、空間群Fm-3mに属する岩塩構造に類似した結晶構造を有する上述のリチウム金属複合酸化物を含む。複合酸化物は、例えば、複数の一次粒子が凝集してなる二次粒子である。一次粒子の粒径は、一般的に0.05μm~1μmである。複合酸化物の平均粒径は、例えば3μm~30μm、好ましくは5μm~25μmである。ここで、複合酸化物の平均粒径は、体積基準の粒度分布において頻度の累積が50%となるメジアン径(D50)を意味し、レーザー回折式の粒度分布測定装置により測定される。
 なお、複合酸化物を構成する元素の含有量は、誘導結合プラズマ発光分光分析装置(ICP-AES)、電子線マイクロアナライザー(EPMA)、あるいはエネルギー分散型X線分析装置(EDX)等により測定することができる。
 正極活物質として、上記の岩塩構造に類似した結晶構造を有する上述のリチウム金属複合酸化物に、上述のリチウム金属複合酸化物以外の他の公知のリチウム金属酸化物を混合して用いてもよい。他のリチウム金属酸化物としては、例えば、LiaCoO2、LiaNiO2、LiaMnO2、LiaCobNi1-b2、LiaCob1-bc、LiaNi1-bbc、LiaMn24、LiaMn2-bb4、LiMePO4、Li2MePO4Fなどのリチウム遷移金属複合酸化物が挙げられる。ここで、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、およびBよりなる群から選択される少なくとも1種である。Meは、少なくとも遷移元素を含む(例えば、Mn、Fe、Co、Niよりなる群から選択される少なくとも1種を含む)。ここで、0≦a≦1.2、0≦b≦0.9、2.0≦c≦2.3である。なお、リチウムのモル比を示すa値は、充放電により増減する。
 正極集電体の形状および厚みは、負極集電体に準じた形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。
 [負極]
 負極は、例えば、負極集電体と、負極集電体の表面に形成された負極活物質層とを具備する。負極活物質層は、例えば、負極活物質、結着剤等を含む負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。つまり、負極活物質は、合剤層であってもよい。また、リチウム金属箔あるいはリチウム合金箔を負極集電体に貼り付けてもよい。負極活物質層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 負極活物質層は、負極活物質を必須成分として含み、任意成分として、結着剤、導電剤、増粘剤などを含むことができる。結着剤、導電剤、増粘剤としては、公知の材料を利用できる。
 負極活物質は、電気化学的にリチウムイオンを吸蔵および放出する材料、リチウム金属、および/または、リチウム合金を含む。電気化学的にリチウムイオンを吸蔵および放出する材料としては、炭素材料、合金系材料などが用いられる。炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。合金系材料としては、リチウムと合金形成可能な金属を少なくとも1種類含むものが挙げられ、ケイ素、スズ、ケイ素合金、スズ合金、ケイ素化合物などが挙げられる。これらが酸素と結合した酸化ケイ素や酸化スズ等を用いてもよい。
 ケイ素を含む合金系材料としては、例えば、リチウムイオン導電相と、リチウムイオン導電相にケイ素粒子が分散したケイ素複合材料を用いることができる。リチウムイオン導電相としては、例えば、ケイ素酸化物相、シリケート相および/または炭素相等を用いることができる。ケイ素酸化物相の主成分(例えば95~100質量%)は二酸化ケイ素であり得る。なかでも、シリケート相とそのシリケート相に分散したケイ素粒子とで構成される複合材料は、高容量であり、かつ不可逆容量が少ない点で好ましい。
 シリケート相は、例えば、長周期型周期表の第1族元素および第2族元素からなる群より選択される少なくとも1種を含んでよい。長周期型周期表の第1族元素および長周期型周期表の第2族元素としては、例えば、リチウム(Li)、カリウム(K)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を用い得る。その他の元素としてアルミニウム(Al)、ホウ素(B)、ランタン(La)、リン(P)、ジルコニウム(Zr)、チタン(Ti)等を含んでも良い。中でも、不可逆容量が小さく、初期の充放電効率が高いことから、リチウムを含むシリケート相(以下、リチウムシリケート相とも称する。)が好ましい。
 リチウムシリケート相は、リチウム(Li)と、ケイ素(Si)と、酸素(O)とを含む酸化物相であればよく、他の元素を含んでもよい。リチウムシリケート相におけるSiに対するOの原子比:O/Siは、例えば、2より大きく、4未満である。好ましくは、O/Siは、2より大きく、3未満である。リチウムシリケート相におけるSiに対するLiの原子比:Li/Siは、例えば、0より大きく、4未満である。リチウムシリケート相は、式:Li2zSiO2+z(0<z<2)で表される組成を有し得る。zは、0<z<1の関係を満たすことが好ましく、z=1/2がより好ましい。リチウムシリケート相に含まれ得るLi、SiおよびO以外の元素としては、例えば、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)、亜鉛(Zn)、アルミニウム(Al)等が挙げられる。
 炭素相は、例えば、結晶性の低い無定形炭素(すなわちアモルファス炭素)で構成され得る。無定形炭素は、例えばハードカーボンでもよく、ソフトカーボンでもよく、それ以外でもよい。
 負極集電体としては、無孔の導電性基板(金属箔など)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシートなど)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。
 [電解質]
 電解質は、溶媒と、溶媒に溶解した溶質とを含む。溶質は、電解質中でイオン解離する電解質塩である。溶質は、例えば、リチウム塩を含み得る。溶媒および溶質以外の電解質の成分は添加剤である。電解質には、様々な添加剤が含まれ得る。電解質は、通常、液状のまま用いられるが、ゲル化剤などで流動性が制限された状態であってもよい。
 溶媒は、水系溶媒もしくは非水溶媒が用いられる。非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート(VC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。また、環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水溶媒として、他に、環状エーテル類、鎖状エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類などが挙げられる。
 環状エーテルの例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等が挙げられる。
 鎖状エーテルの例としては、1,2-ジメトキシエタン、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。
 これらの溶媒は、水素原子の一部がフッ素原子で置換されたフッ素化溶媒であってもよい。フッ素化溶媒としては、フルオロエチレンカーボネート(FEC)を用いてもよい。
 リチウム塩としては、例えば、塩素含有酸のリチウム塩(LiClO4、LiAlCl4、LiB10Cl10など)、フッ素含有酸のリチウム塩(LiPF6、LiPF、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiCF3CO2など)、フッ素含有酸イミドのリチウム塩(LiN(FSO22、LiN(CF3SO22、LiN(CF3SO2)(C49SO2)、LiN(C25SO22など)、リチウムハライド(LiCl、LiBr、LiIなど)などが使用できる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解質におけるリチウム塩の濃度は、1mol/リットル以上2mol/リットル以下であってもよく、1mol/リットル以上1.5mol/リットル以下であってもよい。リチウム塩濃度を上記範囲に制御することで、イオン伝導性に優れ、適度の粘性を有する電解質を得ることができる。ただし、リチウム塩濃度は上記に限定されない。
 電解質は、他の公知の添加剤を含有してもよい。添加剤としては、1,3-プロパンサルトン、メチルベンゼンスルホネート、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル、フルオロベンゼンなどが挙げられる。
 [セパレータ]
 正極と負極との間には、セパレータが介在している。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布などを用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。
 二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群など、他の形態の電極群が適用されてもよい。二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型など、いずれの形態であってもよい。
 図1は、本開示の一実施形態に係る角形の二次電池の一部を切欠いた概略斜視図である。
 電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在するセパレータとを有する。負極の負極集電体は、負極リード3を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製ガスケット7により封口板5から絶縁されている。正極の正極集電体は、正極リード2を介して、封口板5の裏面に電気的に接続されている。すなわち、正極は、正極端子を兼ねる電池ケース4に電気的に接続されている。封口板5の周縁は、電池ケース4の開口端部に嵌合し、嵌合部はレーザー溶接されている。封口板5には非水電解質の注入孔があり、注液後に封栓8により塞がれる。
 なお、二次電池の構造は、金属製の電池ケースを具備する円筒形、コイン形、ボタン形などでもよく、バリア層と樹脂シートとの積層体であるラミネートシート製の電池ケースを具備するラミネート型電池でもよい。本開示において、二次電池のタイプ、形状等は、特に限定されない。
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
 <実施例1~7>
 [正極の作製]
 フッ化リチウム(LiF)、過酸化リチウム(Li)、マンガン酸リチウム(LiMnO)、および、酸化チタン(TiO)を、所定の質量比で混合した。当該混合粉体を、遊星ボールミル(Fritsch製のPremium-Line P7、回転数:600rpm、容器:45mL、ボール:φ5mmのZr製ボール)に投入し、Ar雰囲気中、室温で35時間(1時間運転後、10分間休止するサイクルを35回)処理することにより、所定の組成を有するリチウム金属複合酸化物を得た。
 得られたリチウム金属複合酸化物と、アセチレンブラックと、ポリフッ化ビニリデンとを、7:2:1の固形分質量比で混合し、分散媒としてN-メチル-2-ピロリドン(NMP)を用いて、正極合材スラリーを調製した。次に、アルミニウム箔からなる正極芯体上に正極合材スラリーを塗布し、塗膜を乾燥、圧縮した後、所定の電極サイズに切断して正極を得た。
 実施例1~7では、このようにして、組成の異なるリチウム金属複合酸化物X1~X7を合成し、リチウム金属複合酸化物X1~X7をそれぞれ用いた正極を得た。
 実施例3および4では、上記原料に酸化鉄(Fe)をさらに加えたものを所定の質量比で混合し、リチウム金属複合酸化物X3およびX4をそれぞれ得た。
 実施例5では、上記原料に酸化シリコン(SiO)をさらに加えたものを所定の質量比で混合し、リチウム金属複合酸化物X5を得た。
 実施例6および7では、上記原料に酸化ゲルマニウム(GeO)をさらに加えたものを所定の質量比で混合し、リチウム金属複合酸化物X6およびX7をそれぞれ得た。
 [電解質の調製]
 エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、および、ジメチルカーボネート(DMC)を所定の体積比で混合した混合溶媒に、リチウム塩としてLiPF6を加え、非水電解質を調製した。
 [試験セルの作製]
 上記の正極と、リチウム金属箔からなる負極対極を用いて、試験セルを作製した。セパレータを介して上記正極と負極対極を対向配置して電極体を構成し、コイン形の外装缶に電極体を収容した。外装缶に電解質を注入した後、外装缶を封止してコイン形の試験用の二次電池を得た。
 リチウム金属複合酸化物X1~X7を正極活物質にそれぞれ用いた正極を用いて、二次電池A1~A7を作製した。二次電池A1~A7は実施例1~7に対応する。
 <比較例1、2>
 正極の作製において、フッ化リチウム(LiF)、および、マンガン酸リチウム(LiMnO)を、所定の質量比で混合した。当該混合粉体を、実施例1と同様にして、優勢ボールミルに投入し、Ar雰囲気中、室温で処理することにより、所定の組成を有するリチウム金属複合酸化物Y1を得た(比較例1)。
 比較例2では、上記原料に酸化鉄(Fe)をさらに加えたものを、所定の質量比で混合し、リチウム金属複合酸化物Y2を得た。
 得られたリチウム金属複合酸化物Y1、Y2をそれぞれ用いて、実施例1と同様にして正極を作製し、試験用の二次電池B1、B2を得た。
 <比較例3、4>
 正極の作製において、過酸化リチウム(Li)、フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、および、酸化シリコン(SiO)を、所定の質量比で混合した。当該混合粉体を、実施例1と同様にして、優勢ボールミルに投入し、Ar雰囲気中、室温で処理することにより、所定の組成を有するリチウム金属複合酸化物Y3を得た(比較例3)。
 比較例4では、上記原料において酸化シリコン(SiO)に代えて酸化ゲルマニウム(GeO)を加えたものを、所定の質量比で混合し、リチウム金属複合酸化物Y4を得た。
 得られたリチウム金属複合酸化物Y3、Y4をそれぞれ用いて、実施例1と同様にして正極を作製し、試験用の二次電池B3、B4を得た。
 リチウム金属複合酸化物X1~X7、およびY1~Y4について、それぞれ、粉体X線回折装置により複合酸化物のX線回折パターンの測定および解析を行ったところ、XRDピークの数およびピーク位置から、複合酸化物は、空間群Fm-3mに属する岩塩型をベースとした結晶構造を有していることが確認された。
 [評価]
 (初期放電容量)
 二次電池を、常温環境下、0.05Cの定電流で電池電圧4.95Vまで定電流充電を行った。その後、20分間休止し、0.2Cの定電流で電池電圧2.5Vまで定電流放電を行い、放電容量を測定した。正極活物質(リチウム金属複合酸化物)の質量当たりの放電容量を求め、初期放電容量Cとした。
 (平均放電電圧)
 上述の初期放電容量の測定において、定電流放電時の電池電圧の時間変化から、電池電圧の時間平均を求め、平均放電電圧Vとした。
 表1に、初期放電容量Cおよび平均放電電圧Vの評価結果を、各電池において正極活物質として用いたリチウム金属複合酸化物の組成と併せて示す。
 表1に示すように、実施例1~7の電池A1~A7では、リチウム金属複合酸化物にTiを含ませることにより、Tiを含まない比較例1~4の電池B1~B4と比較して、初期放電容量が向上した。
 電池A3~A7では、リチウム金属複合酸化物にTiに加えてFe、Si、Geを含ませることにより、初期放電容量は若干低下するものの、平均放電電圧が上昇する傾向がみられる。一方で、電池B2~B4に示すように、リチウム金属複合酸化物にTiを含ませず、Fe、SiまたはGeを単独で含ませた場合には、平均放電電圧の上昇効果はみられない。
Figure JPOXMLDOC01-appb-T000001
 本開示に係る二次電池によれば、高容量で、且つ、サイクル特性に優れた二次電池を提供することができる。本開示に係る二次電池は、移動体通信機器、携帯電子機器などの主電源に有用である。
1  電極群
2  正極リード
3  負極リード
4  電池ケース
5  封口板
6  負極端子
7  ガスケット
8  封栓

Claims (8)

  1.  空間群Fm-3mに属する岩塩構造をベースとする結晶構造を有するリチウム金属複合酸化物を含み、
     前記リチウム金属複合酸化物は、Tiと、LiおよびTi以外の金属元素Mと、を含む、二次電池用正極活物質。
  2.  前記金属元素Mは、Fe、Ge、SiおよびGaからなる群より選択される少なくとも1種を含む、請求項1に記載の二次電池用正極活物質。
  3.  前記リチウム金属複合酸化物は、前記結晶構造におけるカチオンサイトに空孔を有する、請求項1または2に記載の二次電池用正極活物質。
  4.  前記リチウム金属複合酸化物は、フッ素を含む、請求項1~3のいずれか1項に記載の二次電池用正極活物質。
  5.  前記金属元素Mは、Mnを含み、
     前記リチウム金属複合酸化物に占めるMnのモル比は、Mnを除く前記金属元素MとTiとの合計のモル比よりも大きい、請求項1~4のいずれか1項に記載の二次電池用正極活物質。
  6.  前記リチウム金属複合酸化物は、組成式LiMnTi 2-e(ただし、MはMnを除く少なくとも1種の前記金属元素Mであって、0<a≦1.35、0.4≦b≦0.9、0<c≦0.15、0≦d≦0.1、0≦e≦0.66、1.75≦a+b+c+d≦2を満たす)で表される、請求項1~5のいずれか1項に記載の二次電池用正極活物質。
  7.  前記リチウム金属複合酸化物において、前記元素Mは、Fe、Ge、Si、Ga、Ni、Co、Sn、Cu、Nb、Mo、Bi、V、Cr、Y、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、Ta、W、La、Ce、Pr、Sm、Eu、DyおよびErからなる群より選択される少なくとも1種を含む、請求項6に記載の二次電池用正極活物質。
  8.  正極、負極、電解質および前記正極と前記負極との間に介在するセパレータを備え、
     前記正極は、請求項1~7のいずれか1項に記載の二次電池用正極活物質を含む、二次電池。
PCT/JP2021/033791 2020-09-30 2021-09-14 二次電池用正極活物質および二次電池 WO2022070896A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180067122.0A CN116325229A (zh) 2020-09-30 2021-09-14 二次电池用正极活性物质及二次电池
US18/028,929 US20230335728A1 (en) 2020-09-30 2021-09-14 Positive electrode active material for secondary batteries, and secondary battery
JP2022553788A JPWO2022070896A1 (ja) 2020-09-30 2021-09-14
EP21875198.0A EP4224577A4 (en) 2020-09-30 2021-09-14 POSITIVE ELECTRODE ACTIVE MATERIAL FOR SECONDARY BATTERIES AND SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020166185 2020-09-30
JP2020-166185 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070896A1 true WO2022070896A1 (ja) 2022-04-07

Family

ID=80951408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033791 WO2022070896A1 (ja) 2020-09-30 2021-09-14 二次電池用正極活物質および二次電池

Country Status (5)

Country Link
US (1) US20230335728A1 (ja)
EP (1) EP4224577A4 (ja)
JP (1) JPWO2022070896A1 (ja)
CN (1) CN116325229A (ja)
WO (1) WO2022070896A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188567A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質
WO2023188766A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011688A (ja) * 2003-06-19 2005-01-13 Toyo Tanso Kk 非水電解液二次電池用正極活物質及びその製造方法
JP2012091982A (ja) * 2010-10-28 2012-05-17 National Institute Of Advanced Industrial Science & Technology 立方晶岩塩型構造を有するリチウムマンガン系複合酸化物およびその製造方法
WO2013118661A1 (ja) * 2012-02-06 2013-08-15 日本電気株式会社 リチウムイオン電池およびその製造方法
JP2015197979A (ja) * 2014-03-31 2015-11-09 日産自動車株式会社 非水電解質二次電池用正極活物質およびその製造方法
JP2017152370A (ja) * 2016-02-19 2017-08-31 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP6197029B2 (ja) 2013-03-27 2017-09-13 株式会社Gsユアサ 非水電解質蓄電素子用活物質

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691711B2 (ja) * 2006-03-20 2011-06-01 独立行政法人産業技術総合研究所 リチウムマンガン系複合酸化物およびその製造方法
JP2015022958A (ja) * 2013-07-22 2015-02-02 トヨタ自動車株式会社 正極活物質、及び当該正極活物質を含むリチウム電池
US10280092B2 (en) * 2016-07-28 2019-05-07 Wildcat Discovery Technologies, Inc Oxides for high energy cathode materials
JP6964246B2 (ja) * 2016-12-02 2021-11-10 パナソニックIpマネジメント株式会社 正極活物質、および、正極活物質を用いた電池
WO2018163519A1 (ja) * 2017-03-06 2018-09-13 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP7228773B2 (ja) * 2018-01-17 2023-02-27 パナソニックIpマネジメント株式会社 正極活物質、および、電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011688A (ja) * 2003-06-19 2005-01-13 Toyo Tanso Kk 非水電解液二次電池用正極活物質及びその製造方法
JP2012091982A (ja) * 2010-10-28 2012-05-17 National Institute Of Advanced Industrial Science & Technology 立方晶岩塩型構造を有するリチウムマンガン系複合酸化物およびその製造方法
WO2013118661A1 (ja) * 2012-02-06 2013-08-15 日本電気株式会社 リチウムイオン電池およびその製造方法
JP6197029B2 (ja) 2013-03-27 2017-09-13 株式会社Gsユアサ 非水電解質蓄電素子用活物質
JP2015197979A (ja) * 2014-03-31 2015-11-09 日産自動車株式会社 非水電解質二次電池用正極活物質およびその製造方法
JP2017152370A (ja) * 2016-02-19 2017-08-31 パナソニックIpマネジメント株式会社 正極活物質、および、電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224577A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188567A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質
WO2023188766A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質

Also Published As

Publication number Publication date
US20230335728A1 (en) 2023-10-19
CN116325229A (zh) 2023-06-23
JPWO2022070896A1 (ja) 2022-04-07
EP4224577A4 (en) 2024-04-03
EP4224577A1 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
JP6952247B2 (ja) 正極活物質、および、電池
WO2022070893A1 (ja) 二次電池用正極活物質および二次電池
CN115053360B (zh) 二次电池用正极和二次电池
JP6979586B2 (ja) 電池用正極活物質、および、電池用正極活物質を用いた電池
JP6414589B2 (ja) 非水電解質二次電池
JP6952251B2 (ja) 電池用正極活物質、および、電池
WO2018198410A1 (ja) 正極活物質、および、電池
WO2018163518A1 (ja) 正極活物質、および、電池
WO2022070896A1 (ja) 二次電池用正極活物質および二次電池
WO2022070897A1 (ja) 二次電池用正極活物質および二次電池
WO2022044554A1 (ja) 二次電池用正極活物質および二次電池
JP2001319653A (ja) 非水二次電池
JP2009043546A (ja) リチウム二次電池
US10811685B2 (en) Negative electrode active material and electrochemical device
WO2022045128A1 (ja) 二次電池用負極活物質および二次電池
WO2023032807A1 (ja) 二次電池用正極活物質および二次電池
WO2023120671A1 (ja) 二次電池用正極活物質および二次電池
WO2024024356A1 (ja) 二次電池用正極活物質および二次電池
WO2023120670A1 (ja) 二次電池用正極活物質および二次電池
JP6931796B2 (ja) 電気化学デバイス
WO2021039178A1 (ja) 非水電解質二次電池
EP4333120A1 (en) Positive electrode active material for secondary batteries, and secondary battery
WO2021153399A1 (ja) 非水電解液二次電池
JP2003317718A (ja) 正極材料、電極および電池
CN118043987A (en) Positive electrode for secondary battery, method for producing same, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553788

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021875198

Country of ref document: EP

Effective date: 20230502