WO2023188766A1 - 非水電解質二次電池用正極活物質 - Google Patents

非水電解質二次電池用正極活物質 Download PDF

Info

Publication number
WO2023188766A1
WO2023188766A1 PCT/JP2023/002641 JP2023002641W WO2023188766A1 WO 2023188766 A1 WO2023188766 A1 WO 2023188766A1 JP 2023002641 W JP2023002641 W JP 2023002641W WO 2023188766 A1 WO2023188766 A1 WO 2023188766A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
composite oxide
oxide
electrolyte secondary
soc
Prior art date
Application number
PCT/JP2023/002641
Other languages
English (en)
French (fr)
Inventor
正悟 江崎
元治 斉藤
光宏 日比野
健祐 名倉
純子 松下
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023188766A1 publication Critical patent/WO2023188766A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/06Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy

Definitions

  • the present disclosure relates to technology of positive electrode active materials for non-aqueous electrolyte secondary batteries.
  • An example of a high-output, high-energy-density secondary battery is a non-aqueous electrolyte secondary battery that includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and charges and discharges by moving lithium ions between the positive and negative electrodes. Widely used.
  • Patent Document 1 describes a composite material that has a crystal structure belonging to the space group Fm-3m, contains lithium and molybdenum, and is substantially free of chromium, as a positive electrode active material used in non-aqueous electrolyte secondary batteries. Oxides are disclosed.
  • An object of the present disclosure is to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that has a high discharge voltage.
  • a positive electrode active material for a nonaqueous electrolyte secondary battery which is an embodiment of the present disclosure, has a crystal structure belonging to the space group Fm-3m, and is represented by the general formula: Li x TM tm M y O 2-f F f
  • TM is a transition metal
  • M is a non-transition metal
  • Q 2 ⁇ tm ⁇ 1-(1-f/2) 5 ⁇ , Q ⁇ 1
  • the composite oxide is made into a half cell by the following method, the half cell is charged at 25°C with a charging current of 0.1C to a final voltage in the range of 4.7 to 4.95V.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery which has one or more peaks in the range of SOC from 40% to 70%.
  • This slurry for the positive electrode composite layer is applied to an aluminum foil, and after drying, it is rolled so that the film thickness is in the range of 20 to 50 ⁇ m.Then, the positive electrode is cut out into a size of 20 mm x 20 mm.
  • the electrode body with a separator interposed between the positive electrode and the metal lithium foil (thickness 0.3 mm) as the negative electrode was housed in an aluminum laminate film exterior body, and a mixed solvent of fluoroethylene carbonate and methyl propionate was added.
  • a non-aqueous electrolyte in which LiPF 6 is dissolved at a concentration of 1 mol/liter in a volume ratio of 1:3 is injected into the exterior body and sealed to create a half cell.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery that has a high discharge voltage.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment.
  • 3 is a diagram showing the X-ray diffraction results of Example 1.
  • FIG. 3 is a diagram showing the X-ray diffraction results of Example 3.
  • FIG. 6 is a diagram showing the X-ray diffraction results of Example 6.
  • FIG. 7 is a diagram showing the X-ray diffraction results of Example 13.
  • FIG. 7 is a diagram showing the X-ray diffraction results of Example 14.
  • FIG. 7 is a diagram showing the X-ray diffraction results of Example 15.
  • FIG. 7 is a diagram showing the X-ray diffraction results of Example 17.
  • FIG. 3 is a diagram showing the X-ray diffraction results of Comparative Example 1.
  • FIG. 3 is a diagram showing the X-ray diffraction results of Comparative Example 2.
  • FIG. 3 is a diagram showing the X-ray diffraction results of Comparative Example 3.
  • FIG. 3 is a diagram showing the X-ray diffraction results of Comparative Example 4.
  • FIG. 2 is a dV/dq-SOC curve of half cells of Examples 1 and 2 and Comparative Examples 1 and 2.
  • 3 is a dV/dq-SOC curve of half cells of Examples 4, 5, 6, and 8.
  • 3 is a dV/dq-SOC curve of half cells of Examples 10, 13, and 14.
  • 3 is a dV/dq-SOC curve of half cells of Examples 15, 16, and 17.
  • FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery that is an example of an embodiment.
  • the non-aqueous electrolyte secondary battery 10 shown in FIG. It includes arranged insulating plates 18 and 19 and a battery case 15 that accommodates the above-mentioned members.
  • the battery case 15 includes a case body 16 and a sealing body 17 that closes the opening of the case body 16.
  • other forms of electrode bodies may be applied, such as a laminated type electrode body in which positive electrodes and negative electrodes are alternately laminated with separators interposed therebetween.
  • examples of the battery case 15 include a metal case having a cylindrical shape, a square shape, a coin shape, a button shape, etc., a resin case formed by laminating resin sheets (laminated battery), and the like.
  • the non-aqueous electrolyte includes, for example, a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents include esters, ethers, nitriles, amides, and mixed solvents of two or more of these.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a portion of hydrogen in these solvents is replaced with a halogen atom such as fluorine.
  • a lithium salt such as LiPF 6 is used as the electrolyte salt.
  • the non-aqueous electrolyte is not limited to a liquid electrolyte, and may be a solid electrolyte using a gel-like polymer or the like.
  • the case body 16 is, for example, a cylindrical metal container with a bottom.
  • a gasket 28 is provided between the case body 16 and the sealing body 17 to ensure airtightness inside the battery.
  • the case main body 16 has an overhanging portion 22 that supports the sealing body 17 and has, for example, a part of a side surface overhanging inward.
  • the projecting portion 22 is preferably formed in an annular shape along the circumferential direction of the case body 16, and supports the sealing body 17 on its upper surface.
  • the sealing body 17 has a structure in which a filter 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are stacked in order from the electrode body 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at their central portions, and an insulating member 25 is interposed between their respective peripheral portions.
  • the lower valve body 24 deforms and ruptures so as to push the upper valve body 26 toward the cap 27, and the lower valve body 24 and the upper valve body The current path between bodies 26 is interrupted.
  • the upper valve body 26 breaks and gas is discharged from the opening of the cap 27.
  • the positive electrode lead 20 attached to the positive electrode 11 extends toward the sealing body 17 side through the through hole of the insulating plate 18, and the negative electrode lead 21 attached to the negative electrode 12 is insulated. It passes through the outside of the plate 19 and extends to the bottom side of the case body 16.
  • the positive electrode lead 20 is connected by welding or the like to the lower surface of the filter 23, which is the bottom plate of the sealing body 17, and the cap 27, which is the top plate of the sealing body 17 and electrically connected to the filter 23, serves as a positive terminal.
  • the negative electrode lead 21 is connected to the bottom inner surface of the case body 16 by welding or the like, and the case body 16 serves as a negative electrode terminal.
  • the positive electrode 11, negative electrode 12, and separator 13 will be explained in detail below.
  • the positive electrode 11 includes a positive electrode current collector and a positive electrode composite material layer disposed on the positive electrode current collector.
  • a positive electrode current collector a metal foil such as aluminum that is stable in the positive electrode potential range, a film having the metal disposed on the surface layer, or the like can be used.
  • the thickness of the positive electrode current collector is preferably in a range of, for example, 1 ⁇ m or more and 20 ⁇ m or less.
  • the positive electrode composite material layer contains a positive electrode active material, and further contains a binder, a conductive material, and the like.
  • the thickness of the positive electrode composite material layer is preferably in a range of, for example, 10 ⁇ m or more and 300 ⁇ m or less.
  • the positive electrode 11 is made by forming a positive electrode composite layer on the positive electrode current collector by, for example, applying and drying a positive electrode composite layer slurry containing a positive electrode active material, a binder, a conductive material, etc. onto the positive electrode current collector. It is obtained by forming the positive electrode composite material layer and rolling the positive electrode composite material layer.
  • the positive electrode active material includes a composite oxide having a crystal structure belonging to space group Fm-3m.
  • a crystal structure belonging to space group Fm-3m means that it has a peak that can be assigned to space group Fm-3m in a diffraction pattern obtained by X-ray diffraction (XRD) measurement.
  • XRD X-ray diffraction
  • "-3" in the space group “Fm-3m” represents the target element of the three-fold rotational axis, and should originally be written with a bar "-" above "3.”
  • the X-ray diffraction pattern of the composite oxide is determined by powder X-ray diffraction measurement using an X-ray diffraction device (Rigaku's "MiniFlex II") using CuK ⁇ rays as the radiation source, tube voltage of 40 kV, and tube current of 15 mA. Can be done.
  • the diffracted X-rays pass through a K ⁇ filter with a thickness of 30 ⁇ m and are detected by a high-speed one-dimensional detector (D/teX Ultra 2). Further, the sampling width is 0.02°, the scanning speed is 10°/min, the divergent slit width is 0.625°, the light receiving slit width is 13 mm (OPEN), and the scattering slit width is 8 mm.
  • the crystal structure of the composite oxide was determined based on the obtained X-ray diffraction pattern using the "RIETAN-FP" program (F. Izumi and K. Momma, Solid State Phenom., 130, 15-20 (2007). ) can be identified using Rietveld analysis.
  • the X-ray diffraction device is not limited to the above device, and the X-ray source is not limited either.
  • the X-ray diffraction measurement conditions are not limited to the above conditions.
  • the method for analyzing the obtained X-ray diffraction pattern is not limited to the above method.
  • a composite oxide having a crystal structure belonging to the space group Fm-3m is represented by the general formula: Li x TM tm M y O 2-f F f , where TM is a transition metal and M is a non-transition metal.
  • TM is a transition metal
  • M is a non-transition metal.
  • Q indicates the number of oxygen atoms bonded to the transition metal bonded to fluorine.
  • a half-cell battery using this composite oxide as a positive electrode active material is obtained by charging the half-cell at 25°C with a charging current of 0.1C to a final voltage in the range of 4.7 to 4.95V.
  • the SOC is 40% or more and 70% or less. Has one or more peaks in the range.
  • the number of peaks is not limited as long as there is one or more peaks in the SOC range of 40% to 70%. Alternatively, there may be only one. Further, it is better that no peak exists in the range of less than 40% SOC.
  • a dV/dq-SOC curve showing the relationship between SOC and dV/dq can be obtained based on these calculation results.
  • a dV/dQ-SOC curve can be obtained by graphing these values calculated at predetermined time intervals, with the horizontal axis representing the SOC value and the vertical axis representing the dV/dq value. can.
  • Whether or not the dV/dq-SOC curve has one or more peaks in the SOC range of 40% to 70% is influenced by the composition of the composite oxide.
  • x, tm, y, and f preferably satisfy 1.75 ⁇ x+tm+y ⁇ 2, 0 ⁇ f ⁇ 0.7, and 1.0 ⁇ x ⁇ 1.4, 0 It is preferable to satisfy .4 ⁇ tm ⁇ 1.0, 0 ⁇ y ⁇ 0.2, and 0.25 ⁇ f ⁇ 0.6.
  • the above crystal structure may have vacancies in which Li atoms, TM atoms, and M atoms are not arranged.
  • having vacancies means that in the positive electrode active material taken out immediately after manufacture or by disassembling a secondary battery in a discharged state, vacancies that are not filled with Li atoms, TM atoms, and M atoms are formed in the composite oxide. It means to exist.
  • the molar ratio of pores is preferably 0.05 or more and 0.25 or less.
  • the half cell is charged at a constant current of 0.1 C at 25° C. to a final voltage in the range of 4.7 to 4.95 V, and then the final voltage is After charging at a constant voltage until the current value reaches 0.05C, the discharge capacity is 100mAh/g or more when the battery is discharged to a final voltage of 3.0 to 3.5V at a discharge current of 0.1C.
  • the discharge capacity is the capacity per unit mass of the positive electrode active material.
  • the half cell was charged at a constant current of 0.1 C at 25° C. to a final voltage in the range of 4.7 to 4.95 V. After charging at a constant voltage until the current value reaches 0.05C at the final voltage, the discharge capacity is 200mAh/g or more when discharging at a discharge current of 0.1C to a final voltage of 2.5 to 3.0V. .
  • the composite oxide preferably contains Mn as a transition metal (TM) in that a high discharge voltage can be obtained, and in the general formula, the molar ratio tm_Mn of Mn in tm is 0.6 ⁇ It is preferable that tm_Mn ⁇ 0.8.
  • TM transition metal
  • the composite oxide preferably contains Mn and a transition metal other than Mn, for example, since a high discharge voltage can be obtained.
  • transition metals other than Mn include Ni, Co, Fe, Ti, Y, Zr, Nb, Mo, Sc, W, V, Gd, Ce, Ta, and Ag.
  • non-transition metal (M) contained in the composite oxide examples include Al, Mg, Sb, Bi, Ca, Sr, Mg, K, Ga, Sn, and Zn.
  • composition of the composite oxide can be confirmed by Rietveld analysis of parameters obtained by inductively coupled plasma emission spectroscopy, X-ray photoelectron spectroscopy, and powder X-ray diffraction.
  • the method for producing the composite oxide is not particularly limited and may be any known method for synthesizing positive electrode active materials, but it can be obtained, for example, by treating a lithium source, an additive element source, a fluorine source, etc. using a mechanochemical method.
  • the mechanochemical method (also referred to as mechanochemical processing) refers to a synthesis method that utilizes mechanochemical reactions.
  • Mechanochemical reactions refer to chemical reactions such as crystallization reactions, solid solution reactions, and phase transition reactions that utilize high energy locally generated by mechanical energy such as friction and compression during the crushing process of solid materials.
  • Examples of devices for carrying out the mechanochemical method include crushing and dispersing machines such as ball mills, bead mills, vibration mills, turbo mills, mechanofusions, and disc mills. Among these, a ball mill is preferred.
  • the mechanochemical treatment may be performed in an inert gas atmosphere such as argon gas, or in an oxygen-containing atmosphere.
  • the lithium source examples include lithium carbonate and lithium hydroxide.
  • the additive element source is a transition metal-containing compound and a non-transition metal-containing compound, such as a transition metal-containing oxide or hydroxide, a non-transition metal-containing oxide or hydroxide, a transition metal- and non-transition metal-containing composite oxide. substances or hydroxides, etc.
  • the fluorine source is a fluoride such as lithium fluoride, molybdenum fluoride, or magnesium fluoride.
  • Lithium fluoride may be used as a lithium source
  • transition metal fluorides such as molybdenum fluoride may be used as a transition metal-containing compound as an additive element source
  • non-transition metal fluorides such as magnesium fluoride may be used as a lithium source.
  • Metal fluorides may be used as non-transition metal-containing compounds that are sources of additive elements.
  • the composite oxide obtained by mechanochemical treatment may be heat treated.
  • the heating temperature is not particularly limited, but is, for example, in the range of 500°C to 1000°C.
  • the heating time is not particularly limited, but is, for example, 1 hour to 20 hours. Heating may be performed in an inert gas atmosphere such as argon gas, or in an oxygen-containing atmosphere.
  • the positive electrode active material may be composed only of the above composite oxide, but may also contain other active materials other than the above complex oxide.
  • Other active materials include, for example, complex oxides represented by Li x MO y (M represents at least one type of transition metal) (Li x CoO 2 having a layered ⁇ -NaFeO 2 type crystal structure, Li Li x Mn 2 having a spinel crystal structure, such as x NiO 2 , Li x MnO 2 , Li x Ni ⁇ Co (1- ⁇ ) O 2 , Li x Ni ⁇ Mn ⁇ Co (1- ⁇ - ⁇ ) O 2 O 4 , Li x Ni ⁇ Mn (2- ⁇ ) O 4 etc.), Li w M' x (XO y ) z (M' represents at least one kind of transition metal, and X is, for example, P, Si, B, V, etc.) (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V
  • the content of the composite oxide having the following is preferably 50% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more, based on the total mass of the positive electrode active material.
  • Examples of the conductive material included in the positive electrode composite layer include carbon powder such as carbon black, acetylene black, Ketjen black, and graphite. These may be used alone or in combination of two or more.
  • binder included in the positive electrode composite layer examples include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), PAN, polyimide resins, acrylic resins, polyolefin resins, and styrene.
  • fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), PAN, polyimide resins, acrylic resins, polyolefin resins, and styrene.
  • SBR butadiene rubber
  • CMC CMC or its salt
  • PAA polyacrylic acid
  • PAA-Na, PAA-K, etc. polyvinyl alcohol
  • PVA polyvinyl alcohol
  • the negative electrode 12 includes a negative electrode current collector such as a metal foil, and a negative electrode composite material layer formed on the negative electrode current collector.
  • a negative electrode current collector such as a metal foil
  • a negative electrode composite material layer formed on the negative electrode current collector.
  • the negative electrode composite material layer includes, for example, a negative electrode active material, a binder, and the like.
  • the negative electrode active material included in the negative electrode composite layer is not particularly limited as long as it is a material that can absorb and release lithium ions, and for example, it can be a carbon material or can form an alloy with lithium. Examples include elements such as these or compounds containing those elements.
  • the carbon material natural graphite, non-graphitizable carbon, graphite such as artificial graphite, coke, etc. can be used. Examples of elements capable of forming an alloy with lithium and compounds containing such elements include silicon, tin, and silicon oxide and tin oxide in which these are combined with oxygen.
  • materials such as lithium titanate, which have a higher charging/discharging potential with respect to metal lithium than carbon materials can also be used.
  • the binder contained in the negative electrode composite material layer the same binder as in the case of the positive electrode can be mentioned.
  • a porous sheet having ion permeability and insulation properties is used.
  • porous sheets include microporous thin films, woven fabrics, and nonwoven fabrics.
  • Suitable materials for the separator 13 include olefin resins such as polyethylene and polypropylene, cellulose, and the like.
  • the separator 13 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin, or the surface of the separator 13 may be coated with an aramid resin or the like.
  • Example 1 [Preparation of positive electrode active material] Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), gallium oxide (Ga 2 O 3 ), niobium oxide (Nb 2 O 5 ), cerium oxide (CeO 2 ) was used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Ga:Nb:Ce:F was 1.126:0.695:0.048:0.038. :0.005:0.431 and mixed.
  • the mixed powder was put into a planetary ball mill (Premium-Line P7 manufactured by Fritsch, rotation speed: 600 rpm, container: 45 mL pot made of zirconia, ball: ⁇ 3 mm ball made of zirconia), and operated for 35 hours (1 hour operation) at room temperature in an Ar atmosphere. After that, the treatment was repeated 35 times with a 10-minute pause. In this way, a composite oxide represented by Li 1.126 Mn 0.695 Ga 0.048 Nb 0.038 Ce 0.005 O 1.569 F 0.431 was obtained.
  • the obtained composite oxide was subjected to powder X-ray diffraction measurement, and the results are shown in FIG. 2.
  • the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belongs to the space group Fm-3m.
  • the conditions for powder X-ray diffraction measurement are as described above (other Examples and Comparative Examples have similar conditions).
  • a positive electrode composite layer was prepared by mixing 70 parts by mass of the above composite oxide, 20 parts by mass of acetylene black, and 10 parts by mass of polyvinylidene fluoride, and using N-methyl-2-pyrrolidone (NMP) as a dispersion medium.
  • NMP N-methyl-2-pyrrolidone
  • a slurry was prepared.
  • the slurry for the positive electrode composite layer was applied to a 15 ⁇ m thick aluminum foil, dried, and then rolled to a film thickness in the range of 20 to 50 ⁇ m. Thereafter, it was die-cut into a size of 20 mm x 20 mm to obtain a positive electrode in which positive electrode mixture layers were formed on both sides of the aluminum foil.
  • LiPF 6 Lithium hexafluorophosphate
  • FEC fluoroethylene carbonate
  • FMP methyl propionate
  • Electrode leads were attached to each of the metal lithium foils (thickness: 0.3 mm) serving as the positive electrode and negative electrode. Then, an electrode body with a separator interposed between the positive electrode and the negative electrode was produced, this electrode body was housed in an aluminum laminate film exterior body, the above-mentioned non-aqueous electrolyte was injected, and the exterior body was sealed. This was used as a half cell (non-aqueous electrolyte secondary battery) of Comparative Example 1.
  • Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), magnesium oxide (MgO), gadolinium oxide (Gd 2 O 3 ) ), niobium oxide (Nb 2 O 5 ) is used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Mg:Gd:Nb:F is 1.139:0.678:0.024:0.025: Li 1.139 Mn 0.678 Mg 0.024 Gd 0.025 Nb 0.048 O
  • a composite oxide represented by 1.564 F 0.436 was obtained. When the obtained composite oxide was subjected to powder X-ray diffraction measurement and the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belonged to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the composite oxide represented by Li 1.139 Mn 0.678 Mg 0.024 Gd 0.025 Nb 0.048 O 1.564 F 0.436 . was created.
  • Example 3 Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), gallium oxide (Ga 2 O 3 ), niobium oxide (Nb 2 O 5 ), cerium oxide (CeO 2 ) was used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Ga:Nb:Ce:F was 1.2:0.58:0.05:0.01. :0.01:0.6, Li 1.2 Mn 0.58 Ga 0.05 Nb 0.01 Ce 0.01 A composite oxide represented by O 1.4 F 0.6 was obtained. The obtained composite oxide was subjected to powder X-ray diffraction measurement, and the results are shown in FIG. When the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belongs to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the composite oxide represented by Li 1.2 Mn 0.58 Ga 0.05 Nb 0.01 Ce 0.01 O 1.4 F 0.6 . was created.
  • Example 4 Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), magnesium oxide (MgO), niobium oxide (Nb 2 O 5 ) ), cerium oxide (CeO 2 ) is used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Mg:Nb:Ce:F is 1.217:0.696:0.015:0.01:0. 005:0.596, Li 1.217 Mn 0.696 Mg 0.015 Nb 0.01 Ce 0.005 O 1.
  • a composite oxide represented by 404 F 0.596 was obtained. When the obtained composite oxide was subjected to powder X-ray diffraction measurement and the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belonged to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the composite oxide represented by Li 1.217 Mn 0.696 Mg 0.015 Nb 0.01 Ce 0.005 O 1.404 F 0.596 . was created.
  • Example 5 Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), magnesium oxide (MgO), gallium oxide (Ga 2 O 3 ) ), cerium oxide (CeO 2 ) is used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Mg:Ga:Ce:F is 1.15:0.745:0.025:0.025:0. 005:0.4, Li 1.15 Mn 0.745 Mg 0.025 Ga 0.025 Ce 0.005 O 1.
  • a composite oxide represented by 6 F 0.4 was obtained. When the obtained composite oxide was subjected to powder X-ray diffraction measurement and the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belonged to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the complex oxide represented by Li 1.15 Mn 0.745 Mg 0.025 Ga 0.025 Ce 0.005 O 1.6 F 0.4 . was created.
  • Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), magnesium oxide (MgO), gadolinium oxide (Gd 2 O 3 ) ), cerium oxide (CeO 2 ) is used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Mg:Gd:Ce:F is 1.225:0.705:0.005:0.01:0. 005:0.6, Li 1.225 Mn 0.705 Mg 0.005 Gd 0.01 Ce 0.005 O 1.
  • a composite oxide represented by 4F 0.6 was obtained. The obtained composite oxide was subjected to powder X-ray diffraction measurement, and the results are shown in FIG. When the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belongs to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the complex oxide represented by Li 1.225 Mn 0.705 Mg 0.005 Gd 0.01 Ce 0.005 O 1.4 F 0.6 . was created.
  • Example 7 Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), magnesium oxide (MgO), gallium oxide (Ga 2 O 3 ) ), niobium oxide (Nb 2 O 5 ) is used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Mg:Ga:Nb:F is 1.225:0.7:0.01:0.01: Li 1.225 Mn 0.7 Mg 0.01 Ga 0.01 Nb 0.005 O A composite oxide represented by 1.4 F 0.6 was obtained. When the obtained composite oxide was subjected to powder X-ray diffraction measurement and the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belonged to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the composite oxide represented by Li 1.225 Mn 0.7 Mg 0.01 Ga 0.01 Nb 0.005 O 1.4 F 0.6 . was created.
  • Example 8 Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), magnesium oxide (MgO), niobium oxide (Nb 2 O 5 ) ), cerium oxide (CeO 2 ) is used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Mg:Nb:Ce:F is 1.143:0.765:0.02:0.01:0. 005:0.447, Li 1.143 Mn 0.765 Mg 0.02 Nb 0.01 Ce 0.005 O 1. A composite oxide represented by 553 F 0.447 was obtained. When the obtained composite oxide was subjected to powder X-ray diffraction measurement and the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belonged to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the composite oxide represented by Li 1.143 Mn 0.765 Mg 0.02 Nb 0.01 Ce 0.005 O 1.553 F 0.447 . was created.
  • Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), gadolinium oxide (Gd 2 O 3 ), niobium oxide (Nb 2 O 5 ), cerium oxide (CeO 2 ) was used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Gd:Nb:Ce:F was 1.168:0.755:0.005:0.01.
  • Example 2 the same operation as in Example 1 was performed to obtain Li 1.168 Mn 0.755 Gd 0.005 Nb 0.01 Ce 0.005 A composite oxide represented by O 1.553 F 0.447 was obtained.
  • the obtained composite oxide was subjected to powder X-ray diffraction measurement and the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belonged to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the composite oxide represented by Li 1.168 Mn 0.755 Gd 0.005 Nb 0.01 Ce 0.005 O 1.553 F 0.447 . was created.
  • Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), gallium oxide (Ga 2 O 3 ), niobium oxide (Nb 2 O 5 ), cerium oxide (CeO 2 ) was used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Ga:Nb:Ce:F was 1.175:0.76:0.005:0.005.
  • Example 2 but the same operation as in Example 1 was performed to obtain Li 1.175 Mn 0.76 Ga 0.005 Nb 0.005 Ce 0.005 A composite oxide represented by O 1.55 F 0.45 was obtained.
  • the obtained composite oxide was subjected to powder X-ray diffraction measurement and the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belonged to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using a composite oxide represented by Li 1.175 Mn 0.76 Ga 0.005 Nb 0.005 Ce 0.005 O 1.55 F 0.45 . was created.
  • Example 11 Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), gallium oxide (Ga 2 O 3 ), niobium oxide (Nb 2 O 5 ), cerium oxide (CeO 2 ) was used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Ga:Nb:Ce:F was 1.2:0.685:0.005:0.005. Li 1.2 Mn 0.685 Ga 0.005 Nb 0.005 Ce 0.005 A composite oxide represented by O 1.5 F 0.5 was obtained. When the obtained composite oxide was subjected to powder X-ray diffraction measurement and the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belonged to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using a composite oxide represented by Li 1.2 Mn 0.685 Ga 0.005 Nb 0.005 Ce 0.005 O 1.5 F 0.5 . was created.
  • Example 12 Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), magnesium oxide (MgO), gallium oxide (Ga 2 O 3 ) ), cerium oxide (CeO 2 ) is used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Mg:Ga:Ce:F is 1.175:0.7:0.025:0.025:0. Li 1.175 Mn 0.7 Mg 0.025 Ga 0.025 Ce 0.025 O 1. A composite oxide represented by 55 F 0.45 was obtained. When the obtained composite oxide was subjected to powder X-ray diffraction measurement and the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belonged to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using a composite oxide represented by Li 1.175 Mn 0.7 Mg 0.025 Ga 0.025 Ce 0.025 O 1.55 F 0.45 . was created.
  • Example 13 Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), magnesium oxide (MgO), gadolinium oxide (Gd 2 O 3 ) ), niobium oxide (Nb 2 O 5 ) is used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Mg:Gd:Nb:F is 1.143:0.775:0.01:0.005: Li 1.143 Mn 0.775 Mg 0.01 Gd 0.005 Nb 0.01 O
  • a composite oxide represented by 1.553 F 0.447 was obtained. Powder X-ray diffraction measurements were performed on the obtained composite oxide, and the results are shown in FIG. When the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belongs to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the composite oxide represented by Li 1.143 Mn 0.775 Mg 0.01 Gd 0.005 Nb 0.01 O 1.553 F 0.447 . was created.
  • Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), gallium oxide (Ga 2 O 3 ), niobium oxide (Nb 2 O 5 ), cerium oxide (CeO 2 ) was used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Ga:Nb:Ce:F was 1.213:0.703:0.01:0.01.
  • Example 2 the same operation as in Example 1 was performed to obtain Li 1.213 Mn 0.703 Ga 0.01 Nb 0.01 Ce 0.005
  • a composite oxide represented by O 1.455 F 0.545 was obtained.
  • the obtained composite oxide was subjected to powder X-ray diffraction measurement, and the results are shown in FIG. When the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belongs to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the complex oxide represented by Li 1.213 Mn 0.703 Ga 0.01 Nb 0.01 Ce 0.005 O 1.455 F 0.545 . was created.
  • Example 15 Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese(III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), and potassium superoxide (KO 2 ) are used as starting materials for composite oxides.
  • LiF lithium manganate
  • Mn 2 O 3 manganese(III) oxide
  • Li 2 O 2 lithium peroxide
  • K 2 potassium superoxide
  • Example 2 a test cell was produced in the same manner as in Example 1 using a composite oxide represented by Li 1.075 Mn 0.7 K 0.025 O 1.3 F 0.7 .
  • Starting complex oxides include lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), and silver oxide (Ag 2 O).
  • LiF lithium fluoride
  • LiMnO 2 lithium manganate
  • III manganese oxide
  • Li 2 O 3 lithium peroxide
  • silver oxide Ag 2 O
  • Li:Mn:Ag:F molar ratio was 1.15:0.725:0.025:0.65.
  • Li 1.15 Mn 0.725 Ag 0.025 O 1.35 F 0.65 was obtained.
  • the obtained composite oxide was subjected to powder X-ray diffraction measurement and the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belonged to the space group Fm-3m.
  • Example 2 a test cell was produced in the same manner as in Example 1 using a composite oxide represented by Li 1.15 Mn 0.725 Ag 0.025 O 1.35 F 0.65 .
  • Starting complex oxides include lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), and silver oxide (Ag 2 O).
  • LiF lithium fluoride
  • LiMnO 2 lithium manganate
  • Mn 2 O 3 manganese oxide
  • Li 2 O 2 lithium peroxide
  • silver oxide Ag 2 O.
  • the same operation as in Example 1 was carried out except that the molar ratio of Li:Mn:Ag:F was 1.1:0.75:0.1:0.5. , Li 1.1 Mn 0.75 Ag 0.1 O 1.5 F 0.5 was obtained.
  • the obtained composite oxide was subjected to powder X-ray diffraction measurement, and the results are shown in FIG. When the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belongs to the space group Fm-3m.
  • Example 2 a test cell was produced in the same manner as in Example 1 using a composite oxide represented by Li 1.1 Mn 0.75 Ag 0.1 O 1.5 F 0.5 .
  • Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), magnesium oxide (MgO), gadolinium oxide (Gd 2 O 3 ) ), niobium oxide (Nb 2 O 5 ) is used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Mg:Gd:Nb:F is 1.192:0.73:0.005:0.005: Li 1.192 Mn 0.73 Mg 0.005 Gd 0.005 Nb 0.01 O
  • a composite oxide represented by 1.702 F 0.298 was obtained. Powder X-ray diffraction measurements were performed on the obtained composite oxide, and the results are shown in FIG. When the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belongs to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using the complex oxide represented by Li 1.192 Mn 0.73 Mg 0.005 Gd 0.005 Nb 0.01 O 1.702 F 0.298 . was created.
  • Example 2 a half cell was produced in the same manner as in Example 1 using a composite oxide represented by Li 1.225 Mn 0.625 Mg 0.025 Ce 0.025 O 1.5 F 0.5 .
  • Lithium fluoride (LiF), lithium manganate (LiMnO 2 ), manganese (III) oxide (Mn 2 O 3 ), lithium peroxide (Li 2 O 2 ), gallium oxide (Ga 2 O 3 ), niobium oxide (Nb 2 O 5 ), cerium oxide (CeO 2 ) was used as the starting source of the composite oxide, and the molar ratio of Li:Mn:Ga:Nb:Ce:F was 1.25:0.485:0.005:0.005. : 0.005: 0.5, Li 1.25 Mn 0.485 Ga 0.005 Nb 0.005 Ce 0.005 A composite oxide represented by O 1.5 F 0.5 was obtained. The obtained composite oxide was subjected to powder X-ray diffraction measurement, and the results are shown in FIG. When the crystal structure was analyzed, it was confirmed that the crystal structure of the composite oxide belongs to the space group Fm-3m.
  • Example 2 a test cell was prepared in the same manner as in Example 1 using a composite oxide represented by Li 1.25 Mn 0.485 Ga 0.005 Nb 0.005 Ce 0.005 O 1.5 F 0.5 . was created.
  • Example 2 a test cell was produced in the same manner as in Example 1 using a composite oxide represented by Li 1.25 Mn 0.45 Mg 0.025 Ce 0.025 O 1.5 F 0.5 .
  • the half cells of Examples 1 and 2 had one peak in the SOC range of 40% or more and 70% or less in the dV/dq-SOC curve.
  • the half cells of Comparative Examples 1 and 2 had one peak in the SOC range of 10% or more and less than 40% in the dV/dq-SOC curve.
  • the half cells of Examples 4, 5, 6, and 8 had two peaks in the dV/dq-SOC curve in the SOC range of 40% or more and 70% or less.
  • the half cells of Examples 10, 13, and 14 had two peaks in the dV/dq-SOC curve in the SOC range of 40% or more and 70% or less.
  • the half cells of Examples 15, 16, and 17 had one peak in the SOC range of 40% to 70% in the dV/dq-SOC curve.
  • Example 18 The half cell of Example 1 was charged at a constant current of 0.1 C in a temperature environment of 25° C. until the final voltage (battery voltage) reached 4.7 V. During this charging, the SOC and dV/dq of the half cell were calculated at predetermined intervals to obtain a dV/dq-SOC curve.
  • Example 19 The half cell of Example 2 was charged at a constant current of 0.1 C in a temperature environment of 25° C. until the final voltage (battery voltage) reached 4.7 V. During this charging, the SOC and dV/dq of the half cell were calculated at predetermined intervals to obtain a dV/dq-SOC curve.
  • Example 20 The half cell of Example 7 was charged at a constant current of 0.1 C in a temperature environment of 25° C. until the final voltage (battery voltage) reached 4.7 V. During this charging, the SOC and dV/dq of the half cell were calculated at predetermined intervals to obtain a dV/dq-SOC curve.
  • Example 21 The half cell of Example 9 was charged at a constant current of 0.1 C in a temperature environment of 25° C. until the final voltage (battery voltage) reached 4.7 V. During this charging, the SOC and dV/dq of the half cell were calculated at predetermined intervals to obtain a dV/dq-SOC curve.
  • Example 22 The half cell of Example 11 was charged at a constant current of 0.1 C in a temperature environment of 25° C. until the final voltage (battery voltage) reached 4.7 V. During this charging, the SOC and dV/dq of the half cell were calculated at predetermined intervals to obtain a dV/dq-SOC curve.
  • Example 23 The half cell of Example 16 was charged at a constant current of 0.1 C in a temperature environment of 25° C. until the final voltage (battery voltage) reached 4.7 V. During this charging, the SOC and dV/dq of the half cell were calculated at predetermined intervals to obtain a dV/dq-SOC curve.
  • Table 2 shows the compositions of the composite oxides of Examples 18 to 23 and Comparative Examples 5 to 6, and the compositions (Li x TM tm M y O 2-f F f : TM is a transition metal, M is a non-transition metal).
  • TM is a transition metal
  • M is a non-transition metal
  • Examples 18 to 23 all showed higher discharge voltages than Comparative Examples 5 and 6. Furthermore, the discharge capacities D1 of Examples 18 to 23 exceeded 100 mAh/g, and the discharge capacities D2 exceeded 200 mAh/g, indicating not only high discharge voltage but also high discharge capacity.
  • Nonaqueous electrolyte secondary battery 11 Positive electrode, 12 Negative electrode, 13 Separator, 14 Electrode body, 15 Battery case, 16 Case body, 17 Sealing body, 18, 19 Insulating plate, 20 Positive electrode lead, 21 Negative electrode lead, 22 Overhang part , 23 filter, 24 lower valve body, 25 insulating member, 26 upper valve body, 27 cap, 28 gasket.

Abstract

非水電解質二次電池用正極活物質は、空間群Fm-3mに属する結晶構造を有し、一般式:LiTMtm2-fで表される複合酸化物であり、前記一般式中、TMは遷移金属、Mは非遷移金属であり、Q=2×tm×{1-(1-f/2)}とするとき、Q≧1を満たし、前記複合酸化物を含む半電池を、25℃で、0.1Cの充電電流で終止電圧4.7~4.95Vの範囲まで充電した時に得られる前記半電池のdV/dqと充電率SOCとの関係であるdV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを有する。

Description

非水電解質二次電池用正極活物質
 本開示は、非水電解質二次電池用正極活物質の技術に関する。
 高出力、高エネルギー密度の二次電池として、例えば、正極、負極、及び非水電解質を備え、正極と負極との間でリチウムイオン等を移動させて充放電を行う非水電解質二次電池が広く利用されている。
 例えば、特許文献1には、非水電解質二次電池に使用される正極活物質として、空間群Fm-3mに属する結晶構造を有し、リチウム及びモリブデンを含み、クロムを実質的に含まない複合酸化物が開示されている。
特開2017―202954号公報
 本開示の目的は、放電電圧の高い非水電解質二次電池用正極活物質を提供することを目的とする。
 本開示の一態様である非水電解質二次電池用正極活物質は、空間群Fm-3mに属する結晶構造を有し、一般式:LiTMtm2-fで表される複合酸化物であり、前記一般式中、TMは遷移金属、Mは非遷移金属であり、Q=2×tm×{1-(1-f/2)}とするとき、Q≧1を満たし、前記複合酸化物を下記方法で半電池とした場合、当該半電池を、25℃で、0.1Cの充電電流で終止電圧4.7~4.95Vの範囲まで充電した時に得られる、前記半電池の電池容量qの変化量dqに対する前記半電池の電圧Vの変化量dVの割合であるdV/dqと前記半電池の充電率SOCとの関係であるdV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを有する、非水電解質二次電池用正極活物質。(方法:前記複合酸化物と、アセチレンブラックと、ポリフッ化ビニリデンとを、7:2:1の質量比で混合し、N - メチル- 2 - ピロリドンを用いて分散させ、正極合材層用スラリーを調製する。この正極合材層用スラリーを、アルミニウム箔に塗布し、乾燥後、膜厚が20~50μmの範囲になるように圧延する。その後、20mm×20mmに型抜きして、正極を得る。この正極と負極としての金属リチウム箔(厚さ0.3mm)との間にセパレータを介在させた電極体をアルミラミネートフィルムの外装体に収容し、フルオロエチレンカーボネートとプロピオン酸メチルの混合溶媒(体積比1:3)にLiPFを1モル/リットルの濃度になるように溶解した非水電解質を前記外装体に注入し、密閉して半電池を作成する。)
 本開示の一態様によれば、放電電圧の高い非水電解質二次電池用正極活物質を提供することができる。
実施形態の一例である非水電解質二次電池の断面図である。 実施例1のX線回折結果を示す図である。 実施例3のX線回折結果を示す図である。 実施例6のX線回折結果を示す図である。 実施例13のX線回折結果を示す図である。 実施例14のX線回折結果を示す図である。 実施例15のX線回折結果を示す図である。 実施例17のX線回折結果を示す図である。 比較例1のX線回折結果を示す図である。 比較例2のX線回折結果を示す図である。 比較例3のX線回折結果を示す図である。 比較例4のX線回折結果を示す図である。 実施例1~2及び比較例1~2の半電池のdV/dq-SOC曲線である。 実施例4、5、6及び8の半電池のdV/dq-SOC曲線である。 実施例10、13及び14の半電池のdV/dq-SOC曲線である。 実施例15、16及び17の半電池のdV/dq-SOC曲線である。
 以下、本開示の非水電解質二次電池用正極活物質を使用した非水電解質二次電池の一例について説明する。
 図1は、実施形態の一例である非水電解質二次電池の断面図である。図1に示す非水電解質二次電池10は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の電極体14と、非水電解質と、電極体14の上下にそれぞれ配置された絶縁板18、19と、上記部材を収容する電池ケース15と、を備える。電池ケース15は、ケース本体16と、ケース本体16の開口部を塞ぐ封口体17とにより構成される。なお、巻回型の電極体14の代わりに、正極及び負極がセパレータを介して交互に積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。また、電池ケース15としては、円筒形、角形、コイン形、ボタン形等の金属製ケース、樹脂シートをラミネートして形成された樹脂製ケース(ラミネート型電池)などが例示できる。
 非水電解質は、例えば、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、ニトリル類、アミド類、及びこれらの2種以上の混合溶媒等が用いられる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。電解質塩には、例えばLiPF等のリチウム塩が使用される。なお、非水電解質は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。
 ケース本体16は、例えば有底円筒形状の金属製容器である。ケース本体16と封口体17との間にはガスケット28が設けられ、電池内部の密閉性が確保される。ケース本体16は、例えば側面部の一部が内側に張出した、封口体17を支持する張り出し部22を有する。張り出し部22は、ケース本体16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。
 封口体17は、電極体14側から順に、フィルタ23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在している。内部短絡等による発熱で非水電解質二次電池10の内圧が上昇すると、例えば下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 図1に示す非水電解質二次電池10では、正極11に取り付けられた正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極リード21が絶縁板19の外側を通ってケース本体16の底部側に延びている。正極リード20は封口体17の底板であるフィルタ23の下面に溶接等で接続され、フィルタ23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21はケース本体16の底部内面に溶接等で接続され、ケース本体16が負極端子となる。
 以下に、正極11、負極12、セパレータ13について詳述する。
<正極>
 正極11は、正極集電体と、正極集電体上に配置された正極合材層とを備える。正極集電体には、アルミニウムなどの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極集電体の厚みは、例えば、1μm以上20μm以下の範囲であることが好ましい。
 正極合材層は、正極活物質を含み、さらに結着材や導電材等を含むことが好ましい。正極合材層の厚みは、例えば、10μm以上300μm以下の範囲であることが好ましい。
 正極11は、例えば、正極活物質、結着材、導電材等を含む正極合材層用スラリーを正極集電体上に塗布・乾燥することによって、正極集電体上に正極合材層を形成し、当該正極合材層を圧延することにより得られる。
 正極活物質は、空間群Fm-3mに属する結晶構造を有する複合酸化物を含む。
 空間群Fm-3mに属する結晶構造とは、X線回折(XRD)測定により得られる回折パターンにおいて、空間群Fm-3mに帰属可能なピークを有することをいう。なお、空間群「Fm-3m」における「-3」は3回回反軸の対象要素を表し、本来「3 」の上にバー「-」を付して表記すべきものである。複合酸化物のX線回折パターンは、X線回折装置(Rigaku社の「MiniFlexII」)を用いた粉末X線回折測定によって、線源はCuKα線、管電圧は40kV、管電流は15mAとして行うことができる。このとき、回折X線は、厚み30μmのKβフィルタを通り、高速一次元検出器(D/teX Ultra 2)にて検出される。また、サンプリング幅は0.02°、スキャンスピードは10°/min、発散スリット幅は0.625°、受光スリット幅は13mm(OPEN)、散乱スリット幅は8mmとする。そして、複合酸化物の結晶構造は、得られたX線回折パターンに基づいて、「RIETAN-FP」プログラム(F.Izumi and K.Momma,Solid State Phenom.,130,15-20(2007).)を用いたリートベルト解析により特定することができる。なお、X線回折装置は上記装置に限定されず、X線源も限定されない。X線回折測定条件は上記条件に限定されない。また、得られたX線回折パターンの解析方法は上記方法に限定されない。
 空間群Fm-3mに属する結晶構造を有する複合酸化物は、一般式:LiTMtm2-fで表され、一般式中、TMは遷移金属、Mは非遷移金属であり、Q=2×tm×{1-(1-f/2)}とするとき、Q≧1を満たす。ここで、Qは、フッ素と結合する遷移金属が結合する酸素の個数を示している。また、この複合酸化物を正極活物質として使用した半電池を、25℃で、0.1Cの充電電流で終止電圧4.7~4.95Vの範囲まで充電した時に得られる、半電池の電池容量qの変化量dqに対する半電池の電圧Vの変化量dVの割合であるdV/dqと半電池の充電率SOCとの関係であるdV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを有する。このような複合酸化物を使用することにより、高い放電電圧が得られる。複合酸化物を正極活物質として使用した半電池の作製条件については実施例で説明する。
 複合酸化物を正極活物質として使用した半電池のdV/dq-SOC曲線において、SOC40%以上70%以下の範囲に存在するピークは1つ以上あればピークの個数は制限されない。また、1つのみであっても良い。また、SOC40%未満の範囲にはピークが存在しない方がよい。
(dV/dq-SOC曲線)
 上記条件で半電池の充電を開始したら、所定時間毎に半電池の電池電圧V及び電流値Iを測定し、電池電圧Vに基づいてSOC(充電率)を算出する。また、この時の電池電圧V及び電流値Iの測定値から、半電池の電池容量(充電容量)qの変化量dqと電池電圧Vの変化量dVを算出し、これらの算出結果に基づいてdV/dqを算出する。半電池のSOC及びdV/dqを所定時間ごとに算出したら、これらの算出結果を基にして、SOCとdV/dqの関係を示すdV/dq-SOC曲線を得ることができる。具体的には、横軸をSOCの値とし、縦軸をdV/dqの値として、所定時間ごとに算出されたこれらの値をグラフ化することで、dV/dQ-SOC曲線を得ることができる。
 dV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを有するか否かは、複合酸化物の組成が影響する。dV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを有するには、例えば、Q≧1の範囲内で、上記一般式中のtm及びfを制御することが好ましい。さらに、一般式中、x、tm、y、及びfが、1.75≦x+tm+y≦2、0<f≦0.7を満たすことが好ましく、また、1.0<x≦1.4、0.4≦tm<1.0、0≦y≦0.2、0.25≦f≦0.6を満たすことが好ましい。なお、上記結晶構造において、Li原子、TM原子、M原子が配されていない空孔を有してもよい。ここで、空孔を有するとは、製造直後あるいは放電状態の二次電池を分解して取り出した正極活物質において、Li原子、TM原子、M原子で埋められていない空孔が複合酸化物に存在することをいう。空孔のモル比は、0.05以上、0.25以下であることが好ましい。
 本実施形態の複合酸化物を使用した半電池では、半電池を、25℃で、0.1Cの充電電流で、終止電圧4.7~4.95Vの範囲まで定電流充電し、前記終止電圧で電流値が0.05Cになるまで定電圧充電した後、0.1Cの放電電流で、終止電圧3.0~3.5Vまで放電した時の放電容量は、100mAh/g以上となる。なお、放電容量は、正極活物質の単位質量当たりの容量である。
 また、本実施形態の複合酸化物を使用した半電池では、半電池を、25℃で、0.1Cの充電電流で、終止電圧4.7~4.95Vの範囲まで定電流充電し、前記終止電圧で電流値が0.05Cになるまで定電圧充電した後、0.1Cの放電電流で、終止電圧2.5~3.0Vまで放電した時の放電容量は、200mAh/g以上である。
 複合酸化物は、例えば、高い放電電圧を得ることができる点で、遷移金属(TM)としてMnを含むことが好ましく、一般式中、tmのうち、Mnのモル比tm_Mnは、0.6<tm_Mn<0.8であることが好ましい。
 複合酸化物は、例えば、高い放電電圧が得られる点で、Mn及びMn以外の遷移金属を含むことが好ましい。Mn以外の遷移金属としては、例えば、Ni、Co、Fe、Ti、Y、Zr、Nb、Mo、Sc、W、V、Gd、Ce、Ta、Ag等が挙げられる。
 複合酸化物に含まれる非遷移金属(M)は、例えば、Al、Mg、Sb、Bi、Ca、Sr、Mg、K、Ga、Sn、Zn等が挙げられる。
 複合酸化物の組成の確認は、誘導結合プラズマ発光分析、X線光電子分光分析、及び粉末X線回折により得られたパラメータをリートベルト解析すること等により行うことができる。
 複合酸化物の製造方法は、特に限定されず、正極活物質合成における公知の方法でよいが、例えば、リチウム源、添加元素源、フッ素源等をメカノケミカル法により処理することにより得られる。メカノケミカル法(メカノケミカル処理などともいう)とは、メカノケミカル反応を利用した合成法をいう。メカノケミカル反応とは、固体物質の破砕過程での摩擦、圧縮等の機械エネルギーにより局部的に生じる高いエネルギーを利用する結晶化反応、固溶反応、相転移反応等の化学反応をいう。メカノケミカル法を行う装置としては、ボールミル、ビーズミル、振動ミル、ターボミル、メカノフュージョン、ディスクミルなどの粉砕・分散機が挙げられる。これらの中ではボールミルが好ましい。メカノケミカル処理は、アルゴンガス等の不活性ガス雰囲気で行ってもよいし、酸素含有雰囲気等で行ってもよい。
 リチウム源は、炭酸リチウム、水酸化リチウム等が挙げられる。添加元素源は、遷移金属含有化合物及び非遷移金属含有化合物であり、例えば、遷移金属含有酸化物又は水酸化物、非遷移金属含有酸化物又は水酸化物、遷移金属及び非遷移金属含有複合酸化物又は水酸化物等である。フッ素源は、フッ化リチウム、フッ化モリブデン、フッ化マグネシウム等のフッ化物等である。なお、フッ化リチウムはリチウム源として利用してもよいし、フッ化モリブデン等の遷移金属フッ化物は添加元素源である遷移金属含有化合物として利用してもよいし、フッ化マグネシウム等の非遷移金属フッ化物は添加元素源である非遷移金属含有化合物として利用してもよい。
 メカノケミカル処理により得られた複合酸化物を加熱処理してもよい。加熱温度は特に制限されないが、例えば、500℃~1000℃の範囲である。また、加熱時間は特に限定されないが、例えば、1時間~20時間である。加熱は、アルゴンガス等の不活性ガス雰囲気で行ってもよいし、酸素含有雰囲気等で行ってもよい。
 正極活物質は、上記複合酸化物のみから構成されてもよいが、上記複合酸化物以外の他の活物質が含まれていてもよい。他の活物質としては、例えば、LiMO(Mは、少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα-NaFeO型結晶構造を有するLiCoO、LiNiO、LiMnO、LiNiαCo(1-α)、LiNiαMnβCo(1-α-β)等、スピネル型結晶構造を有するLiMn、LiNiαMn(2-α)等)、LiM’(XO(M’は、少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等) が挙げられる。
 空間群Fm-3mに属する結晶構造を有し、一般式:LiTMtm2-fで表され、一般式中、TMは遷移金属、Mは非遷移金属であり、Q=2×tm×{1-(1-f/2)}とするとき、Q≧1を満たし、上記dV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを有する複合酸化物の含有量は、正極活物質の総質量に対して、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上がさらに好ましい。
 正極合材層に含まれる導電材としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素粉末等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて用いてもよい。
 正極合材層に含まれる結着材としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、スチレン-ブタジエンゴム(SBR)、CMC又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等)、ポリビニルアルコール(PVA)等を用いることができる。これらは、1種単独でもよいし、2種以上を組み合わせて使用してもよい。
<負極>
 負極12は、例えば金属箔等の負極集電体と、負極集電体上に形成された負極合材層とを備える。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、例えば、負極活物質、結着材等を含む。
 負極合材層に含まれる負極活物質としては、リチウムイオンを吸蔵・放出することが可能な材料であれば特に制限されるものではなく、例えば、炭素材料、リチウムと合金を形成することが可能な元素またはその元素を含む化合物等が挙げられる。炭素材料としては、天然黒鉛、難黒鉛化性炭素、人造黒鉛等のグラファイト類、コークス類等を用いることができる。リチウムと合金形成可能な元素や当該元素を含む化合物としては、例えば、ケイ素やスズ、これらが酸素と結合した酸化ケイ素や酸化スズ等が挙げられる。また、上記の他、チタン酸リチウム等の金属リチウムに対する充放電の電位が、炭素材料等より高いものも用いることができる。負極合材層に含まれる結着材としては、正極の場合と同様のものが挙げられる。
<セパレータ>
 セパレータ13は、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータ13は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよく、セパレータ13の表面にアラミド樹脂等が塗布されたものを用いてもよい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
<実施例1>
[正極活物質の作製]
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化ガリウム(Ga)、酸化ニオブ(Nb)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Ga:Nb:Ce:Fのモル比が1.126:0.695:0.048:0.038:0.005:0.431となるように秤量し、混合した。混合粉体を、遊星ボールミル(Fritsch製のPremium-LineP7、回転数:600rpm、容器:ジルコニア製45mLポット、ボール:ジルコニア製φ3mmボール)に投入し、Ar雰囲気中、室温で35時間(1時間運転後、10分間休止するサイクルを35回)処理した。このようにして、Li1.126Mn0.695Ga0.048Nb0.038Ce0.0051.5690.431で表される複合酸化物を得た。
 得られた複合酸化物について粉末X線回折測定を行い、その結果を図2に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。粉末X線回折測定の条件は前述の通りである(他の実施例及び比較例も同様の条件である)。
 得られた複合酸化物を正極活物質として使用し、以下の方法で半電池を作製した。
[正極の作製]
 上記複合酸化物を70質量部、アセチレンブラックを20質量部、ポリフッ化ビニリデンを10質量部の割合で混合し、分散媒としてN-メチル-2-ピロリドン(NMP)を用いて、正極合材層用スラリーを調製した。次いで、正極合材層用スラリーを厚さ15μmのアルミニウム箔に塗布・乾燥後、膜厚が20~50μmの範囲になるように圧延した。その後、20mm×20mmの大きさに型抜きし、アルミニウム箔の両面に正極合材層が形成された正極を得た。
[非水電解質の調製]
 フルオロエチレンカーボネート(FEC)と、プロピオン酸メチル(FMP)とを、1:3の体積比で混合した混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度になるように溶解して、非水電解質を調製した。
[試験セルの作製]
 上記正極及び負極としての金属リチウム箔(厚さ0.3mm)それぞれに電極リードを取り付けた。そして、正極と負極との間にセパレータを介在させた電極体を作製し、この電極体をアルミラミネートフィルムの外装体に収容し、上記の非水電解質を注入し、外装体を密閉した。これを比較例1の半電池(非水電解質二次電池)とした。
<実施例2>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化ガドリニウム(Gd)、酸化ニオブ(Nb)を複合酸化物の出発源とし、Li:Mn:Mg:Gd:Nb:Fのモル比が1.139:0.678:0.024:0.025:0.048:0.436となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.139Mn0.678Mg0.024Gd0.025Nb0.0481.5640.436で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.139Mn0.678Mg0.024Gd0.025Nb0.0481.5640.436で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例3>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化ガリウム(Ga)、酸化ニオブ(Nb)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Ga:Nb:Ce:Fのモル比が1.2:0.58:0.05:0.01:0.01:0.6となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.2Mn0.58Ga0.05Nb0.01Ce0.011.40.6で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、その結果を図3に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.2Mn0.58Ga0.05Nb0.01Ce0.011.40.6で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例4>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化ニオブ(Nb)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Mg:Nb:Ce:Fのモル比が1.217:0.696:0.015:0.01:0.005:0.596となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.217Mn0.696Mg0.015Nb0.01Ce0.0051.4040.596で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.217Mn0.696Mg0.015Nb0.01Ce0.0051.4040.596で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例5>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化ガリウム(Ga)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Mg:Ga:Ce:Fのモル比が1.15:0.745:0.025:0.025:0.005:0.4となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.15Mn0.745Mg0.025Ga0.025Ce0.0051.60.4で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.15Mn0.745Mg0.025Ga0.025Ce0.0051.60.4で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例6>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化ガドリニウム(Gd)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Mg:Gd:Ce:Fのモル比が1.225:0.705:0.005:0.01:0.005:0.6となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.225Mn0.705Mg0.005Gd0.01Ce0.0051.40.6で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、その結果を図4に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.225Mn0.705Mg0.005Gd0.01Ce0.0051.40.6で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例7>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化ガリウム(Ga)、酸化ニオブ(Nb)を複合酸化物の出発源とし、Li:Mn:Mg:Ga:Nb:Fのモル比が1.225:0.7:0.01:0.01:0.005:0.6となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.225Mn0.7Mg0.01Ga0.01Nb0.0051.40.6で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.225Mn0.7Mg0.01Ga0.01Nb0.0051.40.6で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例8>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化ニオブ(Nb)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Mg:Nb:Ce:Fのモル比が1.143:0.765:0.02:0.01:0.005:0.447となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.143Mn0.765Mg0.02Nb0.01Ce0.0051.5530.447で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.143Mn0.765Mg0.02Nb0.01Ce0.0051.5530.447で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例9>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化ガドリニウム(Gd)、酸化ニオブ(Nb)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Gd:Nb:Ce:Fのモル比が1.168:0.755:0.005:0.01:0.005:0.447となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.168Mn0.755Gd0.005Nb0.01Ce0.0051.5530.447で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.168Mn0.755Gd0.005Nb0.01Ce0.0051.5530.447で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例10>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化ガリウム(Ga)、酸化ニオブ(Nb)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Ga:Nb:Ce:Fのモル比が1.175:0.76:0.005:0.005:0.005:0.45となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.175Mn0.76Ga0.005Nb0.005Ce0.0051.550.45で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.175Mn0.76Ga0.005Nb0.005Ce0.0051.550.45で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例11>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化ガリウム(Ga)、酸化ニオブ(Nb)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Ga:Nb:Ce:Fのモル比が1.2:0.685:0.005:0.005:0.005:0.5となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.2Mn0.685Ga0.005Nb0.005Ce0.0051.50.5で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.2Mn0.685Ga0.005Nb0.005Ce0.0051.50.5で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例12>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化ガリウム(Ga)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Mg:Ga:Ce:Fのモル比が1.175:0.7:0.025:0.025:0.025:0.45となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.175Mn0.7Mg0.025Ga0.025Ce0.0251.550.45で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.175Mn0.7Mg0.025Ga0.025Ce0.0251.550.45で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例13>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化ガドリニウム(Gd)、酸化ニオブ(Nb)を複合酸化物の出発源とし、Li:Mn:Mg:Gd:Nb:Fのモル比が1.143:0.775:0.01:0.005:0.01:0.447となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.143Mn0.775Mg0.01Gd0.005Nb0.011.5530.447で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、その結果を図5に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.143Mn0.775Mg0.01Gd0.005Nb0.011.5530.447で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例14>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化ガリウム(Ga)、酸化ニオブ(Nb)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Ga:Nb:Ce:Fのモル比が1.213:0.703:0.01:0.01:0.005:0.545となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.213Mn0.703Ga0.01Nb0.01Ce0.0051.4550.545で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、その結果を図6に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.213Mn0.703Ga0.01Nb0.01Ce0.0051.4550.545で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例15>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、超酸化カリウム(KO)を複合酸化物の出発源とし、Li:Mn:K:Fのモル比が1.075:0.7:0.025:0.7となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.075Mn0.70.0251.30.7で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、その結果を図7に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.075Mn0.70.0251.30.7で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例16>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化銀(AgO)を複合酸化物の出発源とし、Li:Mn:Ag:Fのモル比が1.15:0.725:0.025:0.65となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.15Mn0.725Ag0.0251.350.65で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.15Mn0.725Ag0.0251.350.65で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<実施例17>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化銀(AgO)を複合酸化物の出発源とし、Li:Mn:Ag:Fのモル比が1.1:0.75:0.1:0.5となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.1Mn0.75Ag0.11.50.5で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、その結果を図8に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.1Mn0.75Ag0.11.50.5で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<比較例1>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化ガドリニウム(Gd)、酸化ニオブ(Nb)を複合酸化物の出発源とし、Li:Mn:Mg:Gd:Nb:Fのモル比が1.192:0.73:0.005:0.005:0.01:0.298となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.192Mn0.73Mg0.005Gd0.005Nb0.011.7020.298で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、その結果を図9に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.192Mn0.73Mg0.005Gd0.005Nb0.011.7020.298で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<比較例2>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Mg:Ce:Fのモル比が1.225:0.625:0.025:0.025:0.5となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.225Mn0.625Mg0.025Ce0.0251.50.5で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、その結果を図10に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.225Mn0.625Mg0.025Ce0.0251.50.5で表される複合酸化物を用いて、実施例1と同様に、半電池を作製した。
<比較例3>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化ガリウム(Ga)、酸化ニオブ(Nb)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Ga:Nb:Ce:Fのモル比が1.25:0.485:0.005:0.005:0.005:0.5となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.25Mn0.485Ga0.005Nb0.005Ce0.0051.50.5で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、その結果を図11に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.25Mn0.485Ga0.005Nb0.005Ce0.0051.50.5で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
<比較例4>
 フッ化リチウム(LiF)、マンガン酸リチウム(LiMnO)、酸化マンガン(III)(Mn)、過酸化リチウム(Li)、酸化マグネシウム(MgO)、酸化セリウム(CeO)を複合酸化物の出発源とし、Li:Mn:Mg:Ce:Fのモル比が1.25:0.45:0.025:0.025:0.5となるように秤取したこと以外は、実施例1と同様の操作をして、Li1.25Mn0.45Mg0.025Ce0.0251.50.5で表される複合酸化物を得た。得られた複合酸化物について粉末X線回折測定を行い、その結果を図12に示す。結晶構造の解析を行ったところ、複合酸化物の結晶構造は、空間群Fm-3mに属することが確認された。
 そして、Li1.25Mn0.45Mg0.025Ce0.0251.50.5で表される複合酸化物を用いて、実施例1と同様に、試験セルを作製した。
[dV/dq-SOC曲線]
 各実施例及び各比較例の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.95Vになるまで定電流充電を行った。この充電中に、半電池のSOC及びdV/dqを所定時間ごとに算出し、dV/dq-SOC曲線を得た。その結果を、図13~16に示す。
 図13に示すように、実施例1及び2の半電池では、dV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つのピークを有していた。一方、比較例1及び2の半電池では、dV/dq-SOC曲線において、SOC10%以上40%未満の範囲に1つのピークを有していた。
 図14に示すように、実施例4、5、6及び8の半電池では、dV/dq-SOC曲線において、SOC40%以上70%以下の範囲に2つのピークを有していた。
 図15に示すように、実施例10、13及び14の半電池では、dV/dq-SOC曲線において、SOC40%以上70%以下の範囲に2つのピークを有していた。
 図16に示すように、実施例15、16及び17の半電池では、dV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つのピークを有していた。
 なお、実施例3、7、9、11及び実施例12の半電池では、dV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを有することを確認した。また、比較例3及び4の半電池では、dV/dq-SOC曲線において、SOC10%以上40%未満の範囲に1つのピークを有することを確認した。
[充放電試験1]
 各実施例及び各比較例の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.95Vになるまで定電流充電を行い、4.95Vで電流値が0.05Cになるまで定電圧充電を行った。その後、0.1Cの定電流で終止電圧(電池電圧)が2.5Vになるまで定電流放電を行った。そして、放電時の全電力量を全電流で除した値を放電電圧として求めた。
 表1に、各実施例及び各比較例の複合酸化物の組成、当該組成(LiTMtm2-f:TMは遷移金属、Mは非遷移金属)のtm、f、Q(=2×tm×{1-(1-f/2)})の値、及び放電電圧の結果をまとめた。
Figure JPOXMLDOC01-appb-T000001
 実施例1~17はいずれも、比較例1~4に比べて、高い放電電圧を示した。これらの結果から、空間群Fm-3mに属する結晶構造を有し、一般式:LiTMtm2-fで表される複合酸化物であって、前記一般式中、TMは遷移金属、Mは非遷移金属であり、Q=2×tm×{1-(1-f/2)}とするとき、Q≧1を満たし、半電池のdV/dqとSOCとの関係であるdV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを与える複合酸化物を使用することにより、高い放電電圧が得られると言える。
<実施例18>
 実施例1の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。この充電中に、半電池のSOC及びdV/dqを所定時間ごとに算出し、dV/dq-SOC曲線を得た。
<実施例19>
 実施例2の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。この充電中に、半電池のSOC及びdV/dqを所定時間ごとに算出し、dV/dq-SOC曲線を得た。
<実施例20>
 実施例7の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。この充電中に、半電池のSOC及びdV/dqを所定時間ごとに算出し、dV/dq-SOC曲線を得た。
<実施例21>
 実施例9の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。この充電中に、半電池のSOC及びdV/dqを所定時間ごとに算出し、dV/dq-SOC曲線を得た。
<実施例22>
 実施例11の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。この充電中に、半電池のSOC及びdV/dqを所定時間ごとに算出し、dV/dq-SOC曲線を得た。
<実施例23>
 実施例16の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。この充電中に、半電池のSOC及びdV/dqを所定時間ごとに算出し、dV/dq-SOC曲線を得た。
<比較例5>
 比較例2の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。この充電中に、半電池のSOC及びdV/dqを所定時間ごとに算出し、dV/dq-SOC曲線を得た。
<比較例6>
 比較例3の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。この充電中に、半電池のSOC及びdV/dqを所定時間ごとに算出し、dV/dq-SOC曲線を得た。
 実施例18~23及び比較例5~6のdV/dq-SOC曲線を確認したところ、実施例18~23の半電池では、dV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを有していた。一方、比較例5及び6の半電池では、dV/dq-SOC曲線において、SOC10%以上40%未満の範囲に1つ以上のピークを有していた。
[充放電試験2]
 実施例18~23及び比較例5~6の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。その後、0.1Cの定電流で終止電圧(電池電圧)が3.0Vになるまで定電流放電を行った。上記定電流放電を行った時の放電容量D1(mAh/g)を求めた。
[充放電試験3]
 実施例18~23及び比較例5~6の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。その後、0.1Cの定電流で終止電圧(電池電圧)が2.5Vになるまで定電流放電を行った。上記定電流放電を行った時の放電容量D2(mAh/g)を求めた。
[充放電試験4]
 実施例18~23及び比較例5~6の半電池を、25℃の温度環境下、0.1Cの定電流で終止電圧(電池電圧)が4.7Vになるまで定電流充電を行った。その後、0.1Cの定電流で終止電圧(電池電圧)が1.5Vになるまで定電流放電を行った。そして、放電時の全電力量を全電流で除した値を放電電圧V2として求めた。
 表2に、実施例18~23及び比較例5~6の複合酸化物の組成、当該組成(LiTMtm2-f:TMは遷移金属、Mは非遷移金属)のtm、f、Q(=2×tm×{1-(1-f/2)})の値、及び放電容量D1、放電容量D2及び放電電圧V2の結果をまとめた。
Figure JPOXMLDOC01-appb-T000002
 実施例18~23はいずれも、比較例5及び6に比べて、高い放電電圧を示した。さらに、実施例18~23の放電容量D1は100mAh/gを超え、放電容量D2は200mAh/gを超え、高い放電電圧だけではなく、高い放電容量を示した。これらの結果から、空間群Fm-3mに属する結晶構造を有し、一般式:LiTMtm2-fで表される複合酸化物であって、前記一般式中、TMは遷移金属、Mは非遷移金属であり、Q=2×tm×{1-(1-f/2)}とするとき、Q≧1を満たし、半電池のdV/dqとSOCとの関係であるdV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを与える複合酸化物を使用することにより、高い放電電圧が得られると言える。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極体、15 電池ケース、16 ケース本体、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 張り出し部、23 フィルタ、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット。

Claims (7)

  1.  空間群Fm-3mに属する結晶構造を有し、一般式:LiTMtm2-fで表される複合酸化物であり、前記一般式中、TMは遷移金属、Mは非遷移金属であり、Q=2×tm×{1-(1-f/2)}とするとき、Q≧1を満たし、
     前記複合酸化物を下記方法で半電池とした場合、当該半電池を、25℃で、0.1Cの充電電流で終止電圧4.7~4.95Vの範囲まで充電した時に得られる、前記半電池の電池容量qの変化量dqに対する前記半電池の電圧Vの変化量dVの割合であるdV/dqと前記半電池の充電率SOCとの関係であるdV/dq-SOC曲線において、SOC40%以上70%以下の範囲に1つ以上のピークを有する、非水電解質二次電池用正極活物質。
    (方法:前記複合酸化物と、アセチレンブラックと、ポリフッ化ビニリデンとを、7:2:1の質量比で混合し、N - メチル- 2 - ピロリドンを用いて分散させ、正極合材層用スラリーを調製する。この正極合材層用スラリーを、アルミニウム箔に塗布し、乾燥後、膜厚が20~50μmの範囲になるように圧延する。その後、20mm×20mmに型抜きして、正極を得る。この正極と負極としての金属リチウム箔(厚さ0.3mm)との間にセパレータを介在させた電極体をアルミラミネートフィルムの外装体に収容し、フルオロエチレンカーボネートとプロピオン酸メチルの混合溶媒(体積比1:3)にLiPFを1モル/リットルの濃度になるように溶解した非水電解質を前記外装体に注入し、密閉して半電池を作成する。)
  2.  前記半電池を、25℃で、0.1Cの充電電流で、終止電圧4.7~4.95Vの範囲まで定電流充電し、前記終止電圧で電流値が0.05Cになるまで定電圧充電した後、0.1Cの放電電流で、終止電圧3.0~3.5Vまで放電した時の放電容量が、100mAh/g以上である、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記半電池を、25℃で、0.1Cの充電電流で、終止電圧4.7~4.95Vの範囲まで定電流充電し、前記終止電圧で電流値が0.05Cになるまで定電圧充電した後、0.1Cの放電電流で、終止電圧2.5~3.0Vまで放電した時の放電容量が、200mAh/g以上である、請求項1に記載の非水電解質二次電池用正極活物質。
  4.  前記一般式中、x、tm、y、及びfは、1.75≦x+tm+y≦2、0<f≦0.7を満たす、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極活物質。
  5.  前記一般式中、x、tm、y、及びfは、1.0<x≦1.4、0.4≦tm<1.0、0≦y≦0.2、0.25≦f≦0.6を満たす、請求項1~4のいずれか1項に記載の非水電解質二次電池用正極活物質。
  6.  前記複合酸化物は、前記遷移金属(TM)としてMnを含み、
     前記一般式中、tmのうち、Mnのモル比tm_Mnは、0.6<tm_Mn<0.8である、請求項1~5のいずれか1項に記載の非水電解質二次電池用正極活物質。
  7.  前記複合酸化物は、前記遷移金属(TM)として、Mn及びMn以外の遷移金属を含む、請求項6に記載の非水電解質二次電池用正極活物質。
PCT/JP2023/002641 2022-03-31 2023-01-27 非水電解質二次電池用正極活物質 WO2023188766A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-058597 2022-03-31
JP2022058597 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023188766A1 true WO2023188766A1 (ja) 2023-10-05

Family

ID=88200745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002641 WO2023188766A1 (ja) 2022-03-31 2023-01-27 非水電解質二次電池用正極活物質

Country Status (1)

Country Link
WO (1) WO2023188766A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047016A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 正極活物質、および、電池
WO2017047017A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 正極活物質、および、電池
WO2018100792A1 (ja) * 2016-12-02 2018-06-07 パナソニックIpマネジメント株式会社 正極活物質、および、正極活物質を用いた電池
WO2018163519A1 (ja) * 2017-03-06 2018-09-13 パナソニックIpマネジメント株式会社 正極活物質、および、電池
WO2020049792A1 (ja) * 2018-09-05 2020-03-12 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池
JP2020523754A (ja) * 2017-06-12 2020-08-06 カリフォルニア大学The Regents of the University of California リチウムイオン電池のカソード用としての金属および酸素のレドックスの組合せによる高容量のリチウム金属オキシフッ化物
WO2021153527A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021171843A1 (ja) * 2020-02-26 2021-09-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2022044554A1 (ja) * 2020-08-31 2022-03-03 パナソニックIpマネジメント株式会社 二次電池用正極活物質および二次電池
WO2022070893A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 二次電池用正極活物質および二次電池
WO2022070896A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 二次電池用正極活物質および二次電池
WO2022070897A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 二次電池用正極活物質および二次電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047016A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 正極活物質、および、電池
WO2017047017A1 (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 正極活物質、および、電池
WO2018100792A1 (ja) * 2016-12-02 2018-06-07 パナソニックIpマネジメント株式会社 正極活物質、および、正極活物質を用いた電池
WO2018163519A1 (ja) * 2017-03-06 2018-09-13 パナソニックIpマネジメント株式会社 正極活物質、および、電池
JP2020523754A (ja) * 2017-06-12 2020-08-06 カリフォルニア大学The Regents of the University of California リチウムイオン電池のカソード用としての金属および酸素のレドックスの組合せによる高容量のリチウム金属オキシフッ化物
WO2020049792A1 (ja) * 2018-09-05 2020-03-12 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池
WO2021153527A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2021171843A1 (ja) * 2020-02-26 2021-09-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
WO2022044554A1 (ja) * 2020-08-31 2022-03-03 パナソニックIpマネジメント株式会社 二次電池用正極活物質および二次電池
WO2022070893A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 二次電池用正極活物質および二次電池
WO2022070896A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 二次電池用正極活物質および二次電池
WO2022070897A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 二次電池用正極活物質および二次電池

Similar Documents

Publication Publication Date Title
US10818911B2 (en) Positive-electrode active material and battery
JPWO2018163519A1 (ja) 正極活物質、および、電池
KR20130098372A (ko) 금속 할라이드 코팅된 리튬 이온 전지 양극 물질들 및 이에 상응하는 전지들
JP6251042B2 (ja) 電極及び非水電解質電池
JP2010129471A (ja) 正極活物質および非水電解質電池
JP6096985B1 (ja) 非水電解質電池及び電池パック
US20180090745A1 (en) Positive-electrode active material and battery
JP2019160782A (ja) 負極及びリチウムイオン二次電池
JP3683144B2 (ja) フィルム外装非水電解液二次電池
WO2022044720A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018139172A (ja) 非水電解質蓄電素子、電気機器及び非水電解質蓄電素子の使用方法
JP7006108B2 (ja) 負極活物質、負極、及び非水電解質蓄電素子
US20180097227A1 (en) Positive-electrode active material and battery
JP4232488B2 (ja) フィルム外装非水電解液二次電池
JP2023093555A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
JP7024386B2 (ja) 負極活物質、負極、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法
JP6609217B2 (ja) 複合酸化物、非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池及び複合酸化物の製造方法
WO2023188766A1 (ja) 非水電解質二次電池用正極活物質
WO2023188578A1 (ja) 非水電解質二次電池用正極活物質
WO2023188567A1 (ja) 非水電解質二次電池用正極活物質
JP7226521B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池
KR20230008070A (ko) 리튬 금속 복합 산화물, 리튬 이차 전지용 정극 활물질, 리튬 이차 전지용 정극 및 리튬 이차 전지
JP2017216211A (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、非水電解質二次電池用負極活物質の製造方法及び非水電解質二次電池の製造方法
JP6911545B2 (ja) 負極及び非水電解質蓄電素子
JP7164006B2 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778803

Country of ref document: EP

Kind code of ref document: A1