WO2020049792A1 - 正極活物質およびそれを備えた電池 - Google Patents

正極活物質およびそれを備えた電池 Download PDF

Info

Publication number
WO2020049792A1
WO2020049792A1 PCT/JP2019/017894 JP2019017894W WO2020049792A1 WO 2020049792 A1 WO2020049792 A1 WO 2020049792A1 JP 2019017894 W JP2019017894 W JP 2019017894W WO 2020049792 A1 WO2020049792 A1 WO 2020049792A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
battery
composite oxide
Prior art date
Application number
PCT/JP2019/017894
Other languages
English (en)
French (fr)
Inventor
竜一 夏井
名倉 健祐
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020049792A1 publication Critical patent/WO2020049792A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material and a battery including the same.
  • Patent Literature 1 discloses a lithium composite transition metal oxide having a chemical composition represented by a general formula Li a MO x (where M is an element containing at least one selected from Ni element, Co element, and Mn element). It has been disclosed.
  • the ratio (I 020 / I 003 ) of the integrated intensity (I 020 ) of the peak of the (020) plane, which belongs to (0), is 0.02 to 0.3.
  • An object of the present disclosure is to provide a positive electrode active material used for a battery having a high capacity.
  • Positive electrode active material Including lithium composite oxide, The lithium composite oxide, A first phase having a crystal structure belonging to monoclinic, A second phase having a hexagonal crystal structure, and a third phase having a cubic crystal structure, And the following formula (I) is satisfied: 0.05 ⁇ integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) ⁇ 0.99 (I).
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) is equal to the ratio of the integrated intensity I (18 ° -20 °) to the integrated intensity I (43 ° -46 °)
  • the integrated intensity I (43 ° -46 °) is the integrated intensity of the first peak, which is the maximum peak in the diffraction angle 2 ⁇ range of 43 ° to 46 ° in the X-ray diffraction pattern of the lithium composite oxide.
  • the integrated intensity I (18 ° -20 °) is the maximum peak in the range of the diffraction angle 2 ⁇ between 18 ° and 20 ° in the X-ray diffraction pattern of the lithium composite oxide. This is the integrated intensity of the peak.
  • the present disclosure provides a positive electrode active material for realizing a high-capacity battery.
  • the present disclosure also provides a battery including a positive electrode including the positive electrode active material, a negative electrode, and an electrolyte.
  • the battery has a high capacity.
  • FIG. 1 shows a cross-sectional view of a battery 10 according to the second embodiment.
  • FIG. 2 is a graph showing X-ray diffraction patterns of the positive electrode active materials of Example 1 and Comparative Example 1.
  • the positive electrode active material in Embodiment 1 includes a lithium composite oxide.
  • the lithium composite oxide has a multiphase including a first phase having a monoclinic crystal structure, a second phase having a hexagonal crystal structure, and a third phase having a cubic crystal structure. It is a mixture. Further, the following expression (I) is satisfied. 0.05 ⁇ integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) ⁇ 0.99 (I).
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) is equal to the ratio of the integrated intensity I (18 ° -20 °) to the integrated intensity I (43 ° -46 °)
  • the integrated intensity I (43 ° -46 °) is the integrated intensity of the first peak, which is the maximum peak in the diffraction angle 2 ⁇ range of 43 ° to 46 ° in the X-ray diffraction pattern of the lithium composite oxide.
  • the integrated intensity I (18 ° -20 °) is the maximum peak in the range of the diffraction angle 2 ⁇ between 18 ° and 20 ° in the X-ray diffraction pattern of the lithium composite oxide. This is the integrated intensity of the peak.
  • the positive electrode active material according to the first embodiment is used for improving the capacity of a battery.
  • the lithium ion battery including the positive electrode active material in Embodiment 1 has an oxidation-reduction potential of about 3.4 V (Li / Li + reference).
  • the lithium ion battery generally has a capacity of 260 mAh / g or more.
  • the crystal structure belonging to a monoclinic has a structure in which Li layers and transition metal layers are alternately stacked.
  • the transition metal layer may contain not only a transition metal but also Li. Therefore, in the crystal structure belonging to the monoclinic, a larger amount of Li is occluded in the crystal structure than in LiCoO 2 which is a generally used conventional material.
  • LiCoO 2 which is a generally used conventional material.
  • rearrangement of atoms occurs with movement of Li in the transition metal layer. It is believed that the rearrangement of the atoms deteriorates the cycle characteristics of the battery.
  • the crystal structure belonging to a hexagonal crystal has a structure in which Li layers and transition metal layers are alternately stacked.
  • a crystal structure belonging to a hexagonal system since Li is desorbed and inserted at the time of charge and discharge in a two-dimensional plane of the Li layer, Li has high diffusivity. Therefore, it is considered that a battery having excellent rate characteristics can be realized.
  • the amount of Li in the transition metal layer included in the crystal structure belonging to the hexagonal system is smaller than that in the crystal structure belonging to the monoclinic system. Therefore, when only the crystal structure belonging to the hexagonal system is used, it is considered that the capacity of the battery is reduced.
  • a change in the crystal structure due to desorption and insertion of Li during charge and discharge is small.
  • the crystal structure belonging to the cubic system is strong. Therefore, the crystal structure belonging to the cubic system has excellent cycle characteristics.
  • the amount of Li that can be contained in the crystal structure is reduced, so that the battery capacity is considered to be reduced.
  • the lithium composite oxide according to Embodiment 1 has a first phase having a crystal structure belonging to monoclinic, a second phase having a crystal structure belonging to hexagonal, and a third phase having a crystal structure belonging to cubic.
  • the inclusion of the phases improves the capacity of the battery due to the synergistic effect of these three crystal structure features.
  • the monoclinic may have a space group C2 / m.
  • the lithium composite oxide whose monoclinic is in the space group C2 / m further improves the capacity of the battery.
  • the hexagonal crystal may have a space group of R-3m.
  • the lithium composite oxide whose hexagonal crystal belongs to the space group R-3m further improves the capacity of the battery.
  • the cubic crystal may be at least one selected from the group consisting of space group Fm-3m and space group Fd-3m. That is, the third phase may have a crystal structure belonging to the space group Fm-3m or the space group Fd-3m. The third phase may have both a crystal structure belonging to the space group Fm-3m and a crystal structure belonging to the space group Fd-3m.
  • the lithium composite oxide in which the cubic crystal is at least one of the space group Fm-3m and the space group Fd-3m further improves the capacity of the battery.
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) is 0.05 or more and 0.99 or less.
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) is calculated based on the total amount of the first phase and the second phase, and It is a parameter that can be used as an indicator of the abundance with the phase. It is considered that as the abundance ratio of the total amount of the first phase and the second phase increases, the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) increases. On the other hand, when the abundance ratio of the third phase increases, the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) is considered to decrease.
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) is a parameter that can serve as an index of cation mixing in the lithium composite oxide of the first embodiment.
  • “Cation mixing” in the present disclosure indicates a state in which a lithium ion and a cation of a transition metal are substituted with each other in a crystal structure of a lithium composite oxide.
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) increases.
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) decreases.
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) is less than 0.05, the abundance ratio of the total amount of the first phase and the second phase becomes small, so that Li The diffusivity decreases, and the amount of Li inserted and desorbed during charge and discharge decreases. As a result, the capacity of the battery is considered to decrease.
  • Patent Literature 1 discloses a lithium composite transition metal oxide.
  • the lithium composite transition metal oxide disclosed in Patent Document 1 is: Having both space groups R-3m and C2 / m,
  • the chemical composition is represented by a general formula LiaMOx (where M is an element containing at least one selected from Ni element, Co element and Mn element).
  • Patent Document 1 discloses a lithium composite oxide according to the first embodiment, that is, a first phase having a monoclinic crystal structure and a second phase having a hexagonal crystal structure. , And a third phase having a crystal structure belonging to a cubic system, and having an integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) of 0.05 or more and 0.99 or less. It does not disclose or suggest lithium composite oxides.
  • the lithium composite oxide in Embodiment 1 suppresses rearrangement of atoms at the time of Li elimination. Thereby, it is possible to insert and remove a large amount of Li while keeping the diffusivity of Li high, and the stability of the crystal structure is high. That is, the lithium composite oxide in the first embodiment has the following two items (i) and (ii) that cannot be easily conceived from the prior art. (I) the lithium composite oxide has first to third phases, and (ii) the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) is 0.05 or more and 0 .99 or less. Such a lithium composite oxide is used to obtain a high-capacity battery.
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) may be 0.11 or more and 0.95 or less.
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) may be 0.35 or more and 0.95 or less.
  • the following equation (II) may be satisfied. 0.08 ⁇ Integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) ⁇ 0.25 (II)
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is equal to the integrated intensity I (20 ° -23 °) with respect to the integrated intensity I (18 ° -20 °)
  • the integrated intensity I (20 ° to 23 °) is the integrated intensity of the third peak, which is the maximum peak in the range of the diffraction angle 2 ⁇ from 20 ° to 23 ° in the X-ray diffraction pattern of the lithium composite oxide. It is.
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is an index of the abundance ratio between the first phase and the second phase in the lithium composite oxide of Embodiment 1. Is a parameter that can be used as It is considered that as the abundance ratio of the first phase increases, the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) increases. On the other hand, it is considered that when the abundance ratio of the second phase increases, the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) decreases.
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is 0.08 or more, the ratio of the first phase becomes large, so that the amount of Li inserted and discharged during charge / discharge. It is considered that the separation amount increases and the capacity of the battery improves.
  • the integrated intensity of the X-ray diffraction peak can be calculated using, for example, software attached to the X-ray diffractometer (for example, software having a trade name PDXL attached to the powder X-ray diffractometer manufactured by Rigaku Corporation). it can.
  • the integrated intensity of the X-ray diffraction peak can be obtained, for example, by calculating the area from the height and the half width of the X-ray diffraction peak.
  • the maximum peak having a diffraction angle 2 ⁇ in the range of 18 ° or more and 20 ° or less has a (001) plane. Reflects.
  • the maximum peak in the range where the diffraction angle 2 ⁇ is 20 ° or more and 23 ° or less reflects the (020) plane.
  • the maximum peak in the range where the diffraction angle 2 ⁇ is 43 ° or more and 46 ° or less reflects the (114) plane.
  • the maximum peak having a diffraction angle 2 ⁇ in the range of 18 ° or more and 20 ° or less has a (003) plane. Reflects. No diffraction peak exists when the diffraction angle 2 ⁇ is in the range from 20 ° to 23 °. The maximum peak in the range where the diffraction angle 2 ⁇ is 43 ° or more and 46 ° or less reflects the (104) plane.
  • the maximum peak having a diffraction angle 2 ⁇ in the range of 18 ° to 20 ° is The (111) plane is reflected. No diffraction peak exists when the diffraction angle 2 ⁇ is in the range from 20 ° to 23 °.
  • the maximum peak in the range where the diffraction angle 2 ⁇ is 43 ° or more and 46 ° or less reflects the (400) plane.
  • the lithium composite oxide according to the first embodiment includes a first phase having a crystal structure belonging to space group C2 / m, a second phase having a crystal structure belonging to space group R-3m, and a space group Fm -3m or a third phase having a crystal structure belonging to Fd-3m.
  • the lithium composite oxide of Embodiment 1 Since the lithium composite oxide of Embodiment 1 has three phases, in the lithium composite oxide of Embodiment 1, the maximum peak and the diffraction angle 2 ⁇ whose diffraction angle 2 ⁇ is in the range of 18 ° to 20 ° are smaller. There is a problem that it is not always easy to completely specify the space group and the plane index that are reflected by the maximum peaks in the range of 43 ° to 46 °, respectively.
  • the lithium composite oxide according to Embodiment 1 has a first phase having a monoclinic crystal structure, a second phase having a hexagonal crystal structure, and a cubic crystal structure Can be confirmed to have a third phase.
  • the plurality of regions including the first phase, the plurality of regions including the second phase, and the plurality of regions including the third phase are three-dimensionally random. May be arranged.
  • the lithium composite oxide in Embodiment 1 is a multiphase mixture.
  • a layer structure including a bulk layer and a coat layer covering the bulk layer does not correspond to the multiphase mixture in the present disclosure.
  • a multiphase mixture refers to a material that contains multiple phases. A plurality of materials corresponding to the phases may be mixed during the production of the lithium composite oxide.
  • the lithium composite oxide is a multiphase mixture can be determined by an X-ray diffraction measurement method and an electron diffraction measurement method, as described later. Specifically, if the spectrum of the lithium composite oxide obtained by the X-ray diffraction measurement method and the electron diffraction measurement method contains peaks showing characteristics of a plurality of phases, the lithium composite oxide is a multiphase mixture. Is determined.
  • the lithium composite oxide in the first embodiment may be a three-phase mixture composed of a first phase, a second phase, and a third phase.
  • Three-phase mixture improves battery capacity.
  • the lithium composite oxide in Embodiment 1 includes not only lithium atoms but also atoms other than lithium atoms.
  • atoms other than lithium atoms include Mn, Co, Ni, Fe, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ag, Ru, W , B, Si, P, or Al.
  • the lithium composite oxide according to Embodiment 1 may include an atom other than one kind of lithium atom. Instead, the lithium composite oxide according to Embodiment 1 may include two or more types of atoms other than lithium atoms.
  • the lithium composite oxide in the first embodiment may include at least one 3d transition metal element selected from the group consisting of Mn, Co, Ni, Fe, Cu, V, Ti, Cr, and Zn.
  • a lithium composite oxide containing atoms other than lithium atoms further improves the capacity of the battery.
  • atoms other than lithium atoms may be selected from the group consisting of Mn, Co, Ni, Mg, and Al.
  • Atoms other than lithium atoms can be selected from the group consisting of Mn, Co, and Ni.
  • the lithium composite oxide containing an atom selected from the group consisting of Mn, Co, and Ni further improves the capacity of the battery.
  • the lithium composite oxide in Embodiment 1 may contain Mn.
  • the crystal structure is further stabilized in the crystal structure having the first phase, the second phase, and the third phase. For this reason, it is considered that more Li can be inserted and desorbed. For this reason, the capacity of the battery can be improved.
  • the lithium composite oxide in the first embodiment may include not only Mn but also Co and Ni.
  • Mn easily forms hybrid orbitals with oxygen. Co stabilizes the crystal structure. Ni promotes the elimination of Li. The crystal structure is further stabilized by these three effects, and the capacity of the battery can be improved.
  • the lithium composite oxide in the first embodiment may include at least one element selected from the group consisting of F, Cl, N, and S.
  • the crystal structure of the lithium composite oxide is stabilized by the at least one element.
  • a part of the oxygen atoms of the lithium composite oxide may be replaced by an electrochemically inactive anion.
  • a part of the oxygen atoms may be replaced by at least one anion selected from the group consisting of F, Cl, N, and S. It is considered that the substitution further stabilizes the crystal structure of the lithium composite oxide in Embodiment 1. It is considered that by replacing a part of oxygen with an anion having an ionic radius larger than the radius of the oxygen anion, the crystal lattice is expanded and the diffusivity of Li is improved.
  • An example of the anion having an ionic radius larger than the radius of the oxygen anion is at least one anion selected from the group consisting of F, Cl, N, and S.
  • the crystal structure is further stabilized in the crystal structure having the first phase, the second phase, and the third phase. For this reason, it is considered that more Li can be inserted and desorbed. In this way, the capacity of the battery is improved.
  • the lithium composite oxide in the first embodiment may contain F.
  • the average composition of the lithium composite oxide in the first embodiment may be represented by the following composition formula (I).
  • Q is at least one selected from the group consisting of F, Cl, N, and S.
  • the following formula can be satisfied. 1.05 ⁇ x ⁇ 1.5, 0.6 ⁇ y ⁇ 1.0, 1.2 ⁇ ⁇ ⁇ 2.0 and 0 ⁇ ⁇ ⁇ 0.8.
  • the above lithium composite oxide improves the capacity of the battery.
  • ⁇ The“ average composition ”of the lithium composite oxide in Embodiment 1 is a composition obtained by analyzing the elements of the lithium composite oxide without considering the difference in the composition of each phase of the lithium composite oxide. Typically, it means a composition obtained by performing an elemental analysis using a sample of the same size as or larger than the primary particles of the lithium composite oxide.
  • the first phase, the second phase, and the third phase may have the same chemical composition as one another. Alternatively, the first phase, the second phase, and the third phase may have different compositions from each other.
  • the above average composition can be determined by inductively coupled plasma emission spectroscopy, inert gas melting-infrared absorption method, ion chromatography, or a combination of these analysis methods.
  • Me is at least one 3d transition metal selected from the group consisting of Mn, Co, Ni, Fe, Cu, V, Ti, Cr, and Zn to increase the capacity of the battery. It may contain an element.
  • Me may include at least one metal element selected from the group consisting of Mn, Co, Ni, Mg, and Al to increase the capacity of the battery.
  • Me may include at least one selected from the group consisting of Mn, Co, and Ni.
  • Me may include Mn. That is, Me may be Mn.
  • Me is not only Mn, but also Co, Ni, Fe, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ag, Ru, W, It may include at least one selected from the group consisting of B, Si, P, and Al.
  • the hybrid orbital of Mn and oxygen is easily formed, so that the desorption of oxygen during charging is suppressed.
  • the crystal structure is further stabilized in the crystal structure having the first phase, the second phase, and the third phase. For this reason, it is considered that more Li can be inserted and desorbed. For this reason, the capacity of the battery can be improved.
  • the molar ratio of Mn to Me may be 60% or more. That is, the molar ratio of Mn (that is, the molar ratio of Mn / Me) to the whole Me including Mn may be 0.6 or more and 1.0 or less.
  • the hybrid orbital of Mn and oxygen is easily formed, so that the desorption of oxygen during charging is suppressed.
  • the crystal structure is further stabilized in the crystal structure having the first phase, the second phase, and the third phase. For this reason, it is considered that more Li can be inserted and desorbed. For this reason, the capacity of the battery can be improved.
  • Me may include not only Mn but also Co and Ni.
  • Mn easily forms hybrid orbitals with oxygen. Co stabilizes the crystal structure. Ni promotes the elimination of Li. The crystal structure is further stabilized by these three effects. For this reason, the capacity of the battery can be improved.
  • Me represents at least one element selected from the group consisting of B, Si, P, and Al such that the molar ratio of the at least one element to Me is 20% or less. May be included.
  • the lithium composite oxide represented by the composition formula (I) may include Q (that is, at least one selected from the group consisting of F, Cl, N, and S).
  • Q that is, at least one selected from the group consisting of F, Cl, N, and S.
  • the crystal structure of the lithium composite oxide is stabilized by the at least one element.
  • a part of the oxygen atoms of the lithium composite oxide may be replaced by an electrochemically inactive anion.
  • a part of the oxygen atoms may be replaced by at least one anion selected from the group consisting of F, Cl, N, and S. It is thought that the substitution further stabilizes the crystal structure of the lithium composite oxide represented by the composition formula (I). It is considered that by replacing a part of oxygen with an anion having an ionic radius larger than the radius of the oxygen anion, the crystal lattice is expanded and the diffusivity of Li is improved. As described above, the crystal structure is further stabilized in the crystal structure having the first phase, the second phase, and the third phase. For this reason, it is considered that more Li can be inserted and desorbed. In this way, the capacity of the battery is improved.
  • Q may include F.
  • Q may be F.
  • Or Q may include not only F but also at least one element selected from the group consisting of Cl, N, and S.
  • the molar ratio of Li to Me is represented by a mathematical formula (x / y).
  • the molar ratio (x / y) may be 1.4 or more and 2.0 or less.
  • a molar ratio (x / y) of not less than 1.4 and not more than 2.0 further improves the capacity of the battery.
  • the Li atom number in the lithium composite oxide according to the first embodiment is higher than the Li atom number ratio in the conventional positive electrode active material represented by the composition formula LiMnO 2. High ratio of numbers. For this reason, it becomes possible to insert and remove more Li.
  • the molar ratio (x / y) is 1.4 or more, a large amount of Li can be used, so that a Li diffusion path is appropriately formed. Therefore, when the molar ratio (x / y) is 1.4 or more, the capacity of the battery is further improved.
  • the molar ratio (x / y) may be 1.4 or more and 1.5 or less.
  • the molar ratio of O to Q is represented by the equation ( ⁇ / ⁇ ).
  • the molar ratio ( ⁇ / ⁇ ) may be 2 or more and 19 or less.
  • the molar ratio ( ⁇ / ⁇ ) is 2 or more, it is possible to prevent a decrease in the amount of charge compensation due to redox of oxygen. Further, since the influence of electrochemically inactive Q can be reduced, the electron conductivity is improved. For this reason, the capacity of the battery is further improved.
  • the lithium composite oxide in Embodiment 1 may have an average composition represented by the composition formula Li x Me y O ⁇ Q ⁇ . Therefore, the lithium composite oxide according to the first embodiment includes a cation portion and an anion portion.
  • the cation moiety is composed of Li and Me.
  • the anion moiety is composed of O and Q.
  • the molar ratio of the cation moiety composed of Li and Me to the anion moiety composed of O and Q is represented by the formula ((x + y) / ( ⁇ + ⁇ )).
  • the molar ratio ((x + y) / ( ⁇ + ⁇ )) may be 0.75 or more and 1.2 or less.
  • the molar ratio ((x + y) / ( ⁇ + ⁇ )) of not less than 0.75 and not more than 1.2 further improves the capacity of the battery.
  • the molar ratio ((x + y) / ( ⁇ + ⁇ )) is 0.75 or more, generation of a large amount of impurities during synthesis of the lithium composite oxide can be prevented, and the capacity of the battery can be further improved.
  • the molar ratio ((x + y) / ( ⁇ + ⁇ )) may be 1.0 or more and 1.2 or less.
  • a molar ratio of (1.0 to 1.2) ((x + y) / ( ⁇ + ⁇ )) further improves the capacity of the battery.
  • part of Li may be replaced with an alkali metal such as Na or K.
  • the positive electrode active material in the first embodiment may include the above-described lithium composite oxide as a main component.
  • the positive electrode active material in the first embodiment may include the above-described lithium composite oxide such that the mass ratio of the above-described lithium composite oxide to the entire positive electrode active material is 50% or more.
  • Such a positive electrode active material further improves the capacity of the battery.
  • the mass ratio may be 70% or more.
  • the mass ratio may be 90% or more.
  • the positive electrode active material in the first embodiment may contain not only the above-described lithium composite oxide but also unavoidable impurities.
  • the positive electrode active material in the first embodiment may include the starting material as an unreacted material.
  • the positive electrode active material in the first embodiment may include a by-product generated during the synthesis of the lithium composite oxide.
  • the positive electrode active material in the first embodiment may include a decomposition product generated by decomposition of a lithium composite oxide.
  • the positive electrode active material according to the first embodiment may include only the above-described lithium composite oxide except for inevitable impurities.
  • the positive electrode active material containing only the lithium composite oxide further improves the capacity of the battery.
  • the lithium composite oxide according to Embodiment 1 is produced, for example, by the following method.
  • a raw material containing Li, a raw material containing Me, and a raw material containing Q are prepared.
  • Examples of the raw material containing Li include a lithium oxide such as Li 2 O or Li 2 O 2 , a lithium salt such as LiF, Li 2 CO 3 , or LiOH, or a lithium salt such as LiMeO 2 or LiMe 2 O 4 . And a lithium composite oxide.
  • a metal oxide such as Me 2 O 3
  • a metal salt such as MeCO 3 or MeNO 3
  • a metal hydroxide such as Me (OH) 2 or MeOOH
  • LiMeO 2 LiMeO 2
  • a lithium composite oxide such as LiMe 2 O 4
  • MnO 2 or Mn 2 O 3 manganese oxide
  • manganese salt such as MnCO 3 or MnNO 3
  • Mn (OH) 2 or MnOOH manganese composite oxide
  • LiMnO 2 or LiMn 2 O 4 lithium manganese composite oxide
  • Examples of the raw material containing Q include lithium halide, transition metal halide, transition metal sulfide, and transition metal nitride.
  • the raw material containing F includes, for example, LiF or a transition metal fluoride.
  • the weight of these raw materials is measured, for example, so that the molar ratio of Li ions to cations of transition metals is 0.5 or more and 2.0 or less.
  • the first precursor is obtained by mixing the raw materials by, for example, a dry method or a wet method, and then reacting each other mechanochemically in a mixing apparatus such as a planetary ball mill for 30 hours or more.
  • a second precursor having a composition ratio different from that of the first precursor is obtained.
  • the second precursor is obtained by mixing the raw materials by, for example, a dry method or a wet method, and then reacting each other mechanochemically for 30 hours or more in a mixing device such as a planetary ball mill. .
  • first precursor and the second precursor are prepared so as to have a composition ratio represented by the composition formula (I) and mixed.
  • the mixed first precursor and second precursor are mixed by, for example, a dry method or a wet method, and then reacted with each other mechanochemically in a mixing device such as a planetary ball mill for 1 hour or more to obtain a final product.
  • a precursor is obtained.
  • the method for obtaining the final precursor is not limited to the above-described manufacturing method.
  • the method may further include obtaining a third precursor having a different molar ratio than the first precursor and the second precursor.
  • the first precursor, the second precursor, and the third precursor prepared to have the molar ratio shown in the composition formula (I) are mixed by a dry method or a wet method, and
  • the final precursor may be obtained by reacting mechanochemically for more than an hour.
  • composition formula (I) the values of x, y, ⁇ , and ⁇ can be changed within the range shown in composition formula (I).
  • the final precursor is heat treated.
  • the conditions of the heat treatment are set as appropriate so as to obtain the lithium composite oxide in Embodiment 1.
  • the optimal conditions for the heat treatment differ depending on other manufacturing conditions and the target composition, but the present inventors consider, for example, that the lower the temperature of the heat treatment or the shorter the time required for the heat treatment, the higher the integrated intensity ratio. It has been found that the value of I (18 ° -20 °) / I (43 ° -46 °) tends to decrease. The manufacturer can use this tendency as a guide to determine heat treatment conditions.
  • the temperature and time of the heat treatment may be selected from, for example, a range of 200 to 900 ° C. and a range of 1 minute to 20 hours.
  • Examples of the atmosphere for the heat treatment are an air atmosphere, an oxygen atmosphere, or an inert atmosphere (for example, a nitrogen atmosphere or an argon atmosphere).
  • the lithium composite oxide in Embodiment 1 can be obtained by adjusting the raw materials, the mixing conditions of the raw materials, and the heat treatment conditions.
  • the space group of the crystal structure of the obtained lithium composite oxide can be specified by, for example, X-ray diffraction measurement or electron diffraction measurement.
  • the obtained lithium composite oxide has, for example, a first phase having a crystal structure belonging to monoclinic, a second phase having a crystal structure belonging to hexagonal, and a crystal structure belonging to cubic. It can be confirmed that it contains the third phase.
  • the average composition of the obtained lithium composite oxide can be determined by, for example, ICP emission spectroscopy, inert gas melting-infrared absorption method, ion chromatography, or a combination of these analysis methods.
  • the raw material may be a mixed raw material, and in the mixed raw material, the ratio of Li to Me may be 1.4 or more and 2.0 or less.
  • the lithium compound used as a raw material may be produced by a known method.
  • step (b) reacting the raw material mechanochemically using a ball mill may be repeated twice or three times.
  • a raw material eg, LiF, Li 2 O, a transition metal oxide, or a lithium composite transition metal
  • the precursor may be obtained by mixing by a mechanochemical reaction, and then the obtained precursor may be heat-treated.
  • Embodiment 2 Hereinafter, Embodiment 2 will be described. Items described in the first embodiment may be omitted as appropriate.
  • the battery according to the second embodiment includes the positive electrode including the positive electrode active material according to the first embodiment, a negative electrode, and an electrolyte.
  • the battery according to the second embodiment has a high capacity.
  • the positive electrode may include a positive electrode active material layer.
  • the positive electrode active material layer may include the positive electrode active material in Embodiment 1 as a main component. That is, the mass ratio of the positive electrode active material to the entire positive electrode active material layer is 50% or more.
  • Such a positive electrode active material layer further improves the capacity of the battery.
  • the mass ratio may be 70% or more.
  • Such a positive electrode active material layer further improves the capacity of the battery.
  • the mass ratio may be 90% or more.
  • Such a positive electrode active material layer further improves the capacity of the battery.
  • the battery in the second embodiment is, for example, a lithium ion secondary battery, a non-aqueous electrolyte secondary battery, or an all-solid battery.
  • the negative electrode may contain a negative electrode active material capable of inserting and extracting lithium ions.
  • the negative electrode may include a material which is a material in which lithium metal dissolves in the electrolyte from the material during discharging and the lithium metal precipitates in the material during charging.
  • the electrolyte may be a non-aqueous electrolyte (for example, a non-aqueous electrolyte).
  • the electrolyte may be a solid electrolyte.
  • FIG. 1 shows a cross-sectional view of a battery 10 according to the second embodiment.
  • the battery 10 includes a positive electrode 21, a negative electrode 22, a separator 14, a case 11, a sealing plate 15, and a gasket 18.
  • the separator 14 is disposed between the positive electrode 21 and the negative electrode 22.
  • the positive electrode 21, the negative electrode 22, and the separator 14 are impregnated with, for example, a non-aqueous electrolyte (for example, a non-aqueous electrolyte).
  • a non-aqueous electrolyte for example, a non-aqueous electrolyte
  • An electrode group is formed by the positive electrode 21, the negative electrode 22, and the separator 14.
  • the electrode group is housed in the case 11.
  • the positive electrode 21 includes the positive electrode current collector 12 and the positive electrode active material layer 13 disposed on the positive electrode current collector 12.
  • the positive electrode current collector 12 is made of, for example, a metal material (for example, at least one selected from the group consisting of aluminum, stainless steel, nickel, iron, titanium, copper, palladium, gold, and platinum) or an alloy thereof. I have.
  • the positive electrode current collector 12 may not be provided.
  • the case 11 is used as a positive electrode current collector.
  • Positive electrode active material layer 13 contains the positive electrode active material in the first embodiment.
  • the positive electrode active material layer 13 may contain an additive (a conductive agent, an ion conduction auxiliary agent, or a binder) as necessary.
  • the negative electrode 22 includes the negative electrode current collector 16 and the negative electrode active material layer 17 disposed on the negative electrode current collector 16.
  • the negative electrode current collector 16 is made of, for example, a metal material (for example, at least one selected from the group consisting of aluminum, stainless steel, nickel, iron, titanium, copper, palladium, gold, and platinum) or an alloy thereof. ing.
  • a metal material for example, at least one selected from the group consisting of aluminum, stainless steel, nickel, iron, titanium, copper, palladium, gold, and platinum
  • the negative electrode current collector 16 may not be provided.
  • the sealing plate 15 is used as a negative electrode current collector.
  • the negative electrode active material layer 17 contains the negative electrode active material.
  • the negative electrode active material layer 17 may contain an additive (a conductive agent, an ion conduction auxiliary agent, or a binder) as necessary.
  • Examples of the material of the negative electrode active material include a metal material, a carbon material, an oxide, a nitride, a tin compound, and a silicon compound.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metal materials include lithium metal or lithium alloy.
  • Examples of carbon materials include natural graphite, coke, graphitizing carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon.
  • silicon that is, Si
  • tin that is, Sn
  • a silicon compound that is, Sn
  • a silicon compound or a tin compound
  • the silicon compound and the tin compound may be an alloy or a solid solution.
  • silicon compound is SiO x (where 0.05 ⁇ x ⁇ 1.95).
  • Compounds obtained by substituting some silicon atoms of SiO x with other elements can also be used.
  • the compound is an alloy or a solid solution.
  • Other elements include boron, magnesium, nickel, titanium, molybdenum, cobalt, calcium, chromium, copper, iron, manganese, niobium, tantalum, vanadium, At least one element selected from the group consisting of tungsten, zinc, carbon, nitrogen, and tin.
  • tin compounds include Ni 2 Sn 4 , Mg 2 Sn, SnO x (where 0 ⁇ x ⁇ 2), SnO 2 , or SnSiO 3 .
  • One tin compound selected from these may be used alone. Alternatively, a combination of two or more tin compounds selected from these may be used.
  • the shape of the negative electrode active material is not limited.
  • a negative electrode active material having a known shape for example, a particle shape or a fibrous shape
  • a known shape for example, a particle shape or a fibrous shape
  • the method for supplementing (ie, storing) lithium into the negative electrode active material layer 17 is not limited. Examples of this method include, specifically, (a) a method in which lithium is deposited on the negative electrode active material layer 17 by a vapor phase method such as a vacuum evaporation method, or (b) a method in which lithium metal foil and the negative electrode active material layer 17 are combined. Are brought into contact with each other to heat them. In either method, lithium diffuses into the negative electrode active material layer 17 by heat.
  • a method of electrochemically storing lithium in the negative electrode active material layer 17 can also be used. Specifically, a battery is assembled using the negative electrode 22 having no lithium and a lithium metal foil (negative electrode). Thereafter, the battery is charged such that lithium is stored in the negative electrode 22.
  • binder for the positive electrode 21 and the negative electrode 22 examples include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, Polyacrylic acid ethyl ester, polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexa It is fluoropolypropylene, styrene butadiene rubber, or carboxymethyl cellulose.
  • binder examples include tetrafluoroethylene, hexafluoroethane, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, It is a copolymer of two or more materials selected from the group consisting of hexadiene. A mixture of two or more binders selected from the above-mentioned materials may be used.
  • Examples of the conductive agent of the positive electrode 21 and the negative electrode 22 are graphite, carbon black, conductive fiber, graphite fluoride, metal powder, conductive whisker, conductive metal oxide, or organic conductive material.
  • Examples of graphite include natural graphite or artificial graphite.
  • carbon black examples include acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black.
  • metal powder examples include aluminum powder.
  • Examples of the conductive whiskers include zinc oxide whiskers and potassium titanate whiskers.
  • Examples of the conductive metal oxide include titanium oxide.
  • organic conductive material examples include a phenylene derivative.
  • At least a part of the surface of the binder may be coated with a conductive agent.
  • the surface of the binder may be coated with carbon black. Thereby, the capacity of the battery can be improved.
  • the material of the separator 14 is a material having high ion permeability and sufficient mechanical strength.
  • Examples of the material of the separator 14 include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • the separator 14 is desirably made of a polyolefin such as polypropylene or polyethylene.
  • the separator 14 made of polyolefin has not only excellent durability but also can exhibit a shutdown function when excessively heated.
  • the thickness of the separator 14 is, for example, in the range of 10 to 300 ⁇ m (or 10 to 40 ⁇ m).
  • the separator 14 may be a single-layer film made of one kind of material.
  • the separator 14 may be a composite film (or a multilayer film) composed of two or more materials.
  • the porosity of the separator 14 is, for example, in the range of 30 to 70% (or 35 to 60%).
  • porosity means the ratio of the volume of the pores to the entire volume of the separator 14. The porosity is measured, for example, by a mercury intrusion method.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • non-aqueous solvent examples include a cyclic carbonate solvent, a chain carbonate solvent, a cyclic ether solvent, a chain ether solvent, a cyclic ester solvent, a chain ester solvent, and a fluorine solvent.
  • cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
  • chain carbonate solvent examples include dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • cyclic ether solvents examples include tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • chain ether solvent examples include 1,2-dimethoxyethane and 1,2-diethoxyethane.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • chain ester solvent is methyl acetate.
  • fluorine solvent examples include fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethylmethyl carbonate, and fluorodimethylene carbonate.
  • non-aqueous solvent one kind of non-aqueous solvent selected from these may be used alone. Alternatively, a combination of two or more non-aqueous solvents selected from these may be used as the non-aqueous solvent.
  • the non-aqueous electrolyte may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate.
  • the oxidation resistance of the non-aqueous electrolyte is improved.
  • the battery 10 can be operated stably.
  • the electrolyte may be a solid electrolyte.
  • solid electrolytes examples include organic polymer solid electrolytes, oxide solid electrolytes, or sulfide solid electrolytes.
  • organic polymer solid electrolyte is a compound of a polymer compound and a lithium salt.
  • An example of such a compound is lithium polystyrene sulfonate.
  • the polymer compound may have an ethylene oxide structure.
  • a large amount of a lithium salt can be contained. As a result, the ionic conductivity can be further increased.
  • oxide solid electrolytes are: (I) a NASICON solid electrolyte such as LiTi 2 (PO 4 ) 3 or a substitute thereof, (Ii) a perovskite solid electrolyte such as (LaLi) TiO 3 , (Iii) a LIICON solid electrolyte such as Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 , or a substitute thereof, (Iv) a garnet solid electrolyte, such as Li 7 La 3 Zr 2 O 12 or a substitute thereof, (V) Li 3 N or an H-substituted product thereof, or (vi) Li 3 PO 4 or an N-substituted product thereof.
  • NASICON solid electrolyte such as LiTi 2 (PO 4 ) 3 or a substitute thereof
  • a perovskite solid electrolyte such as (LaLi) TiO 3
  • LIICON solid electrolyte such as Li 14 ZnGe
  • Examples of the sulfide solid electrolyte include Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , and Li 3.25 Ge 0.25 P 0 .75 S 4 , or Li 10 GeP 2 S 12 .
  • the sulfide solid electrolyte is rich in moldability and has high ion conductivity. For this reason, the energy density of the battery can be further improved by using a sulfide solid electrolyte as the solid electrolyte.
  • Li 2 SP 2 S 5 has high electrochemical stability and high ionic conductivity. Therefore, when Li 2 SP 2 S 5 is used as the solid electrolyte, the energy density of the battery can be further improved.
  • the solid electrolyte layer containing the solid electrolyte may further contain the above-mentioned non-aqueous electrolyte.
  • the solid electrolyte layer contains a non-aqueous electrolyte, lithium ions can easily move between the active material and the solid electrolyte. As a result, the energy density of the battery can be further improved.
  • the solid electrolyte layer may include a gel electrolyte or an ionic liquid.
  • a gel electrolyte is a polymer material impregnated with a non-aqueous electrolyte.
  • polymeric materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, or polymethyl methacrylate.
  • Another example of a polymeric material is a polymer having ethylene oxide linkages.
  • Examples of cations contained in the ionic liquid are (I) a cation of an aliphatic chain quaternary ammonium salt such as a tetraalkylammonium, (Ii) a cation of an aliphatic chain quaternary phosphonium salt such as a tetraalkylphosphonium, (Iii) an aliphatic cyclic ammonium such as pyrrolidinium, morpholinium, imidazolinium, tetrahydropyrimidinium, piperazinium or piperidinium, or (iv) a nitrogen-containing heterocyclic aromatic cation such as pyridinium or imidazolium.
  • an aliphatic chain quaternary ammonium salt such as a tetraalkylammonium
  • a cation of an aliphatic chain quaternary phosphonium salt such as a tetraalkylphosphonium
  • the anions constituting the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 — , N (SO 2 CF 3 ) (SO 2 C 4 F 9 ) — , or C (SO 2 CF 3 ) 3 — .
  • the ionic liquid may contain a lithium salt.
  • lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) and LiC (SO 2 CF 3 ) 3 .
  • the lithium salt one lithium salt selected from these can be used alone.
  • the lithium salt a mixture of two or more lithium salts selected from these can be used.
  • the concentration of the lithium salt is, for example, in the range of 0.5 to 2 mol / liter.
  • the battery is a coin battery, a cylindrical battery, a square battery, a sheet battery, a button battery (that is, a button cell), a flat battery, or a stacked battery. .
  • Example 1 [Preparation of positive electrode active material] LiF, LiMnO 2 , LiCoO 2 , and so on to have a Li / Mn / Co / Ni / O / F molar ratio of 1.25 / 0.56 / 0.12 / 0.12 / 1.9 / 0.1. And LiNiO 2 were obtained.
  • the mixture was placed in a container having a volume of 45 ml together with an appropriate amount of zirconia balls having a diameter of 3 mm and sealed in an argon glove box.
  • the container was made of zirconia.
  • the container was taken out of the argon glove box.
  • the mixture contained in the container was treated with a planetary ball mill at 600 rpm for 30 hours under an argon atmosphere to prepare a first precursor.
  • Powder X-ray diffraction measurement was performed on the first precursor.
  • the space group of the first precursor was identified as Fm-3m.
  • LiF, LiMnO 2 , MnO 2 , and so on have a Li / Mn / Ni / O / F molar ratio of 1.0 / 1.5 / 0.5 / 3.8 / 0.2.
  • a mixture of NiO was obtained.
  • the mixture was placed in a container having a volume of 45 ml together with an appropriate amount of zirconia balls having a diameter of 3 mm and sealed in an argon glove box.
  • the container was made of zirconia.
  • the container was taken out of the argon glove box.
  • the mixture contained in the container was treated in an argon atmosphere with a planetary ball mill at 600 rpm for 5 hours to produce a second precursor.
  • Powder X-ray diffraction measurement was performed on the second precursor.
  • the space group of the second precursor was identified as Fm-3m.
  • LiF so as to have a Li / Mn / Co / Ni / O / F molar ratio of 1.0 / 0.15 / 0.5 / 0.35 / 1.9 / 0.1.
  • the mixture was placed in a container having a volume of 45 ml together with an appropriate amount of zirconia balls having a diameter of 3 mm and sealed in an argon glove box.
  • the container was made of zirconia.
  • the container was taken out of the argon glove box.
  • the mixture contained in the container was subjected to a planetary ball mill at 600 rpm for 5 hours under an argon atmosphere to prepare a third precursor.
  • Powder X-ray diffraction measurement was performed on the third precursor.
  • the space group of the third precursor was identified as Fm-3m.
  • the first precursor and the second precursor have a Li / Mn / Co / Ni / O / F molar ratio of 1.2 / 0.54 / 0.13 / 0.13 / 1.9 / 0.1. And a mixture of the third precursor was obtained.
  • the mixture was placed in a container having a volume of 45 ml together with an appropriate amount of zirconia balls having a diameter of 3 mm and sealed in an argon glove box.
  • the container was made of zirconia.
  • the container was taken out of the argon glove box.
  • the mixture contained in the container was treated with a planetary ball mill at 450 rpm for 5 hours under an argon atmosphere to prepare a final precursor.
  • the final precursor was heat treated at 700 degrees Celsius for 1 hour in air atmosphere.
  • a positive electrode active material according to Example 1 was obtained.
  • FIG. 2 shows the results of powder X-ray diffraction measurement.
  • the positive electrode active material according to Example 1 was determined to be a three-phase mixture including a phase belonging to the space group C2 / m, a phase belonging to the space group R-3m, and a phase belonging to the space group Fm-3m. .
  • the integrated intensity of the X-ray diffraction peak can be determined by software (trade name) attached to the X-ray diffractometer. : PDXL).
  • the positive electrode active material according to Example 1 had an integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) of 0.91.
  • a positive electrode mixture slurry was applied to one surface of a positive electrode current collector formed of an aluminum foil having a thickness of # 20 micrometers.
  • a positive electrode plate having a positive electrode active material layer and a thickness of 60 micrometers was obtained by drying and rolling the positive electrode mixture slurry.
  • the obtained positive electrode plate was punched out to obtain a circular positive electrode having a diameter of 12.5 mm.
  • a lithium metal foil having a thickness of about 300 micrometers was punched out to obtain a circular negative electrode having a diameter of 14 mm.
  • FEC fluoroethylene carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 was dissolved in this non-aqueous solvent at a concentration of 1.0 mol / liter to obtain a non-aqueous electrolyte.
  • the obtained non-aqueous electrolyte was impregnated into a separator.
  • the separator was a product of Celgard (product number 2320, thickness 25 micrometers).
  • the separator was a three-layer separator formed of a polypropylene layer, a polyethylene layer, and a polypropylene layer.
  • a coin-type battery having a diameter of 20 mm and a thickness of 3.2 mm was produced in a dry box in which the dew point was maintained at minus 50 degrees Celsius. .
  • Example 2 to 10 positive electrode active materials were obtained in the same manner as in Example 1 except for the following items (i) and (ii).
  • the mixture ratio of the mixture that is, the mixture ratio of Li / Me / O / F
  • the heating conditions were changed within the range of 500 to 900 ° C. and 10 minutes to 5 hours.
  • Table 1 shows the average compositions of the positive electrode active materials of Examples 2 to 10.
  • the positive electrode active materials according to Examples 2 to 10 were determined to be a three-phase mixture including a phase belonging to the space group C2 / m, a phase belonging to the space group R-3m, and a phase belonging to the space group Fm-3m.
  • Comparative Example 1 a cathode active material having a composition represented by the chemical formula LiCoO 2 (that is, lithium cobalt oxide) was obtained by using a known method.
  • the obtained positive electrode active material was subjected to powder X-ray diffraction measurement.
  • the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) of the positive electrode active material according to Comparative Example 1 was 1.27.
  • a coin-type battery of Comparative Example 1 was produced in the same manner as in Example 1 using the positive electrode active material of Comparative Example 1.
  • Example 1 Thereafter, the battery of Example 1 was discharged at a current density of 0.5 mA / cm 2 until a voltage of 2.5 V was reached.
  • the initial discharge capacity of the battery of Example 1 was 284 mAh / g.
  • the battery of Comparative Example 1 was charged at a current density of 0.5 mA / cm 2 until a voltage of 4.3 V was reached.
  • the initial discharge capacity of the battery of Comparative Example 1 was 150 mAh / g.
  • the batteries of Examples 1 to 10 have an initial discharge capacity of 260 to 284 mAh / g.
  • the initial discharge capacity of the batteries of Examples 1 to 10 is larger than the initial discharge capacity of the battery of Comparative Example 1.
  • the lithium composite oxide in the positive electrode active material has a first phase having a monoclinic crystal structure and a second phase having a hexagonal crystal structure.
  • Integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) comprising a phase and a third phase having a crystal structure belonging to a cubic system, and not less than 0.05 and not more than 0.99 . It is conceivable to have Therefore, it is considered that a large amount of Li can be inserted and removed, and that the Li diffusivity and the crystal structure stability are high. Therefore, it is considered that the initial discharge capacity was greatly improved.
  • Comparative Example 1 the integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) is larger than 0.99, and the crystal structure is a single phase of the space group R-3m. Therefore, it is considered that the insertion amount and the desorption amount of Li at the time of charge and discharge decreased, and the stability of the crystal structure also decreased. Further, in Comparative Example 1, the value of (x / y) is equal to 1. The value of (x / y) is comparatively small. For this reason, it is considered that the amount of Li that can participate in the reaction decreased, and the diffusivity of Li ions decreased. For these reasons, it is considered that the initial discharge capacity was greatly reduced.
  • the initial discharge capacity of the batteries of Examples 2 and 3 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 2 and Example 3 have a smaller integrated intensity ratio I (18 ° -20 °) / I (43 ° -46 °) than the battery of Example 1. Can be For this reason, it is considered that the diffusion amount of Li during charge / discharge was reduced by increasing the amount of cation mixing. For this reason, it is considered that the initial discharge capacity decreased.
  • the initial discharge capacity of the batteries of Examples 4 and 5 is smaller than the initial discharge capacity of the battery of Example 1.
  • the initial discharge capacity of the battery of Example 6 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 7 it is considered that the electron conductivity is lower than that in Example 1. Furthermore, the diffusivity of Li bonded to F in the crystal structure may have been reduced. For this reason, it is considered that the initial discharge capacity decreased.
  • the initial discharge capacity of the batteries of Examples 7 and 8 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 9 the initial discharge capacity of the batteries of Example 9 and Example 10 was smaller than the initial discharge capacity of the battery of Example 1.
  • the batteries of Examples 9 and 10 have smaller (x / y) values than the batteries of Example 1. Therefore, it is considered that the crystal structure after Li elimination was destabilized. Further, as another reason, it is conceivable that the batteries of Example 9 and Example 10 have a higher F content (that is, a smaller value of ( ⁇ / ⁇ )) than the battery of Example 1. . Therefore, it is considered that the electron conductivity was reduced. It is possible that the diffusivity of Li bonded to F in the crystal structure has decreased. For this reason, it is considered that the initial discharge capacity decreased.
  • the positive electrode active material of the present disclosure can be used for batteries such as secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本開示による正極活物質は、リチウム複合酸化物を含む。リチウム複合酸化物は、単斜晶に属する結晶構造を有する第1の相、六方晶に属する結晶構造を有する第2の相、および立方晶に属する結晶構造を有する第3の相を含む多相混合物であり、その積分強度比I(18°-20°)/I(43°-46°)は、0.08以上0.25以下である。

Description

正極活物質およびそれを備えた電池
 本開示は、正極活物質およびそれを備えた電池に関する。
 特許文献1には、一般式LiMO(ここで、MはNi元素、Co元素およびMn元素から選ばれる少なくとも一種を含む元素)で表される化学組成を有するリチウム複合遷移金属酸化物が開示されている。当該リチウム複合遷移金属酸化物においては、X線回折パターンにおける、空間群R-3mの結晶構造に帰属する(003)面のピークの積分強度(I003)に対する、空間群C2/mの結晶構造に帰属する(020)面のピークの積分強度(I020)の比(I020/I003)が0.02~0.3である。
国際公開第2014/192759号
 本開示の目的は、高い容量を有する電池のために用いられる正極活物質を提供することにある。
 本開示による正極活物質は、
 リチウム複合酸化物
 を含み、
 前記リチウム複合酸化物は、
  単斜晶に属する結晶構造を有する第1の相、
  六方晶に属する結晶構造を有する第2の相、および
  立方晶に属する結晶構造を有する第3の相、
 を含む多相混合物であり、かつ
 以下の数式(I)が充足される、
 0.05≦積分強度比I(18°-20°)/I(43°-46°)≦0.99  (I)。
 ここで、
 積分強度比I(18°-20°)/I(43°-46°)は、積分強度I(43°-46°)に対する積分強度I(18°-20°)の比に等しく、
 積分強度I(43°-46°)は、前記リチウム複合酸化物のX線回析パターンにおいて、43°以上46°以下の回折角2θの範囲に存在する最大ピークである第1ピークの積分強度であり、かつ
 積分強度I(18°-20°)は、前記リチウム複合酸化物のX線回析パターンにおいて、18°以上20°以下の回折角2θの範囲に存在する最大ピークである第2ピークの積分強度である。
 本開示は、高容量の電池を実現するための正極活物質を提供する。本開示は当該正極活物質を含む正極、負極、および電解質を具備する電池も提供する。当該電池は、高い容量を有する。
図1は、実施の形態2における電池10の断面図を示す。 図2は、実施例1および比較例1の正極活物質のX線回析パターンを示すグラフである。
 以下、本開示の実施の形態が、説明される。
 (実施の形態1)
 実施の形態1における正極活物質は、リチウム複合酸化物を含む。リチウム複合酸化物は、単斜晶に属する結晶構造を有する第1の相、六方晶に属する結晶構造を有する第2の相、および立方晶に属する結晶構造を有する第3の相を含む多相混合物である。さらに、以下の数式(I)が充足される。
 0.05≦積分強度比I(18°-20°)/I(43°-46°)≦0.99  (I)。
 ここで、
 積分強度比I(18°-20°)/I(43°-46°)は、積分強度I(43°-46°)に対する積分強度I(18°-20°)の比に等しく、
 積分強度I(43°-46°)は、前記リチウム複合酸化物のX線回析パターンにおいて、43°以上46°以下の回折角2θの範囲に存在する最大ピークである第1ピークの積分強度であり、かつ
 積分強度I(18°-20°)は、前記リチウム複合酸化物のX線回析パターンにおいて、18°以上20°以下の回折角2θの範囲に存在する最大ピークである第2ピークの積分強度である。
 実施の形態1による正極活物質は、電池の容量を向上させるために用いられる。
 実施の形態1における正極活物質を具備するリチウムイオン電池は、3.4V程度の酸化還元電位(Li/Li基準)を有する。当該リチウムイオン電池は、概ね、260mAh/g以上の容量を有する。
 単斜晶(例えば、空間群C2/m)に属する結晶構造は、Li層と遷移金属層とが交互に積層した構造を有する。遷移金属層には、遷移金属だけでなく、Liが含有されていてもよい。そのため、単斜晶に属する結晶構造には、一般的に用いられる従来材料であるLiCoOよりも、より多くの量のLiが結晶構造の内部に吸蔵される。しかし、単斜晶に属する結晶構造のみが用いられる場合、遷移金属層におけるLiの移動に伴い、原子の再配列が起こる。当該原子の再配列が電池のサイクル特性を低下させると考えられる。
 六方晶(例えば、空間群R-3m)に属する結晶構造は、Li層と遷移金属層とが交互に積層した構造を有する。六方晶に属する結晶構造では、充放電時のLiの脱離および挿入がLi層の二次元平面で起こるため、Liの拡散性が高い。そのため、レート特性に優れた電池を実現できると考えられる。しかし、単斜晶に属する結晶構造と比較して、六方晶に属する結晶構造に含まれる遷移金属層におけるLi量が少ない。そのため、六方晶に属する結晶構造のみが用いられる場合、電池の容量が低くなると考えられる。
 立方晶(例えば、空間群Fm-3m又は空間群Fd-3m)に属する結晶構造においては、充放電時のLiの脱離および挿入に伴う結晶構造の変化が少ない。このように、立方晶に属する結晶構造は、強固である。そのため、立方晶に属する結晶構造は、サイクル特性に優れる。しかし、立方晶に属する結晶構造のみが用いられる場合、結晶構造内に含有され得るLi量が少なくなるため、電池の容量が低くなると考えられる。
 実施の形態1におけるリチウム複合酸化物は、単斜晶に属する結晶構造を有する第1の相、六方晶に属する結晶構造を有する第2の相、および立方晶に属する結晶構造を有する第3の相を含むことで、これら3つの結晶構造の特徴の相乗効果によって電池の容量を向上させる。
 実施の形態1におけるリチウム複合酸化物において、単斜晶は、空間群C2/mであってもよい。
 単斜晶が空間群C2/mであるリチウム複合酸化物は、電池の容量をさらに向上させる。
 実施の形態1におけるリチウム複合酸化物において、六方晶は、空間群R-3mであってもよい。
 六方晶が空間群R-3mであるリチウム複合酸化物は、電池の容量をさらに向上させる。
 実施の形態1におけるリチウム複合酸化物において、立方晶は、空間群Fm-3m及び空間群Fd-3mからなる群から選択される少なくとも一方であってもよい。すなわち、第3の相は、空間群Fm-3m又は空間群Fd-3mに属する結晶構造を有してもよい。第3の相は、空間群Fm-3mに属する結晶構造および空間群Fd-3mに属する結晶構造の両方を有してもよい。
 立方晶が空間群Fm-3m及び空間群Fd-3mのうち少なくとも一方であるリチウム複合酸化物は、電池の容量をさらに向上させる。
 積分強度比I(18°-20°)/I(43°-46°)は、0.05以上0.99以下である。
 積分強度比I(18°-20°)/I(43°-46°)は、実施の形態1のリチウム複合酸化物において、第1の相と第2の相との総量と、第3の相との存在比の指標として用いられ得るパラメータである。第1の相と第2の相との総量の存在比が大きくなると、積分強度比I(18°-20°)/I(43°-46°)は大きくなると考えられる。一方、第3の相の存在比が大きくなると、積分強度比I(18°-20°)/I(43°-46°)は小さくなると考えられる。
 積分強度比I(18°-20°)/I(43°-46°)は、実施の形態1のリチウム複合酸化物における、カチオンミキシングの指標となり得るパラメータである。本開示における「カチオンミキシング」とは、リチウム複合酸化物の結晶構造において、リチウムイオンと遷移金属のカチオンとが互いに置換されている状態を示す。カチオンミキシングが少なくなると、積分強度比I(18°-20°)/I(43°-46°)は大きくなる。カチオンミキシングが多くなると、積分強度比I(18°-20°)/I(43°-46°)は小さくなる。
 積分強度比I(18°-20°)/I(43°-46°)が0.05未満の場合、第1の相と第2の相との総量の存在比が小さくなるため、Liの拡散性が低下し、かつ充放電時のLiの挿入量および脱離量が低下する。その結果、電池の容量が低下すると考えられる。
 積分強度比I(18°-20°)/I(43°-46°)が0.99を超える場合、第3の相の存在比が小さくなるため、結晶構造の安定性が低下すると考えられる。その結果、Liを引き抜いた際に、原子の再配列が促進され、リチウムの三次元的な拡散経路が減少すると考えられる。このため、電池の容量が低下すると考えられる。
 特許文献1は、リチウム複合遷移金属酸化物を開示している。
 特許文献1に開示されたリチウム複合遷移金属酸化物は、
  空間群R-3mおよびC2/mの両方を有し、
  化学組成が一般式LiaMOx(ただし、MはNi元素、Co元素およびMn元素から選ばれる少なくとも一種を含む元素)で表される。
 しかし、特許文献1のような従来技術は、実施の形態1におけるリチウム複合酸化物、すなわち、単斜晶に属する結晶構造を有する第1の相、六方晶に属する結晶構造を有する第2の相、および立方晶に属する結晶構造を有する第3の相を全て含み、かつ0.05以上0.99以下の積分強度比I(18°-20°)/I(43°-46°)を有するリチウム複合酸化物、を開示も示唆もしていない。
 実施の形態1におけるリチウム複合酸化物では、Li脱離時の原子の再配列を抑制していると考えられる。これにより、Liの拡散性を高く保ちつつ、多くのLiを挿入および脱離させることが可能で、かつ、結晶構造の安定性が高い。すなわち、実施の形態1におけるリチウム複合酸化物は、従来技術からは容易に想到できない以下の2つの事項(i)および(ii)を有する。
 (i)リチウム複合酸化物は、第1~第3の相を有すること、および
 (ii)積分強度比I(18°-20°)/I(43°-46°)が0.05以上0.99以下であること。
 このようなリチウム複合酸化物は、高容量の電池を得るために用いられる。
 電池の容量をさらに向上させるために、積分強度比I(18°-20°)/I(43°-46°)は、0.11以上0.95以下であってもよい。
 電池の容量をさらに向上させるために、積分強度比I(18°-20°)/I(43°-46°)は、0.35以上0.95以下であってもよい。
 実施の形態1においては、以下の数式(II)が充足されてもよい。
 0.08≦積分強度比I(20°-23°)/I(18°-20°)≦0.25  (II)
 ここで、積分強度比I(20°-23°)/I(18°-20°)は、積分強度I(18°-20°)に対する積分強度I(20°-23°)に等しく、
 積分強度I(20°-23°)は、前記リチウム複合酸化物のX線回析パターンにおいて、20°以上23°以下の回折角2θの範囲に存在する最大ピークである第3ピークの積分強度である。
 積分強度比I(20°-23°)/I(18°-20°)は、実施の形態1のリチウム複合酸化物において、第1の相と第2の相との間の存在比の指標として用いられ得るパラメータである。第1の相の存在比が大きくなると、積分強度比I(20°-23°)/I(18°-20°)は大きくなると考えられる。一方、第2の相の存在比が大きくなると、積分強度比I(20°-23°)/I(18°-20°)は小さくなると考えられる。
 積分強度比I(20°-23°)/I(18°-20°)が0.08以上の場合、第1の相の存在比が大きくなるため、充放電時のLiの挿入量および脱離量が増加し、電池の容量が向上すると考えられる。
 積分強度比I(20°-23°)/I(18°-20°)が0.25以下の場合、第2の相の存在比が大きくなるため、Liの拡散性が向上し、電池の容量が向上すると考えられる。
 X線回折ピークの積分強度は、例えば、X線回折装置に付属のソフトウェア(例えば、株式会社リガク社製、粉末X線回折装置に付属の商品名PDXLを有するソフトウェア)を用いて算出することができる。その場合、X線回折ピークの積分強度は、例えば、X線回折ピークの高さと半値幅から面積を算出することで得られる。
 一般的には、CuKα線を使用したXRDパターンでは、空間群C2/mに属する結晶構造の場合、回折角2θが18°以上20°以下の範囲に存在する最大ピークは、(001)面を反映している。回折角2θが20°以上23°以下の範囲に存在する最大ピークは、(020)面を反映している。回折角2θが43°以上46°以下の範囲に存在する最大ピークは、(114)面を反映している。
 一般的には、CuKα線を使用したXRDパターンでは、空間群R-3mに属する結晶構造の場合、回折角2θが18°以上20°以下の範囲に存在する最大ピークは、(003)面を反映している。回折角2θが20°以上23°以下の範囲には、回折ピークは存在しない。回折角2θが43°以上46°以下の範囲に存在する最大ピークは、(104)面を反映している。
 一般的には、CuKα線を使用したXRDパターンでは、空間群Fm-3mに属する結晶構造の場合、回折角2θが18°以上20°以下の範囲には、回折ピークは存在しない。回折角2θが20°以上23°以下の範囲には、回折ピークは存在しない。回折角2θが43°以上46°以下の範囲に存在する最大ピークは、(200)面を反映している。
 一般的には、CuKα線を使用したXRDパターンでは、立方晶、例えば、空間群Fd-3mに属する結晶構造の場合、回折角2θが18°以上20°以下の範囲に存在する最大ピークは、(111)面を、反映している。回折角2θが20°以上23°以下の範囲には、回折ピークは存在しない。回折角2θが43°以上46°以下の範囲に存在する最大ピークは、(400)面を反映している。
 実施の形態1におけるリチウム複合酸化物は、例えば、空間群C2/mに属する結晶構造を有する第1の相と、空間群R-3mに属する結晶構造を有する第2の相と、空間群Fm-3m又はFd-3mに属する結晶構造を有する第3の相とを有する。
 実施の形態1のリチウム複合酸化物は3つの相を有するので、実施の形態1のリチウム複合酸化物において、回折角2θが18°以上20°以下の範囲に存在する最大ピーク及び回折角2θが43°以上46°以下の範囲に存在する最大ピークがそれぞれ反映している空間群および面指数を完全に特定することは、必ずしも容易ではないという問題がある。
 この問題を解決するため、上述のX線回折測定に加えて、透過型電子顕微鏡(以下、「TEM」)を用いた電子線回折測定が行われてもよい。公知の手法により電子線回折パターンを観察することで、実施の形態1におけるリチウム複合酸化物が有する空間群を特定することが可能である。このようにして、実施の形態1におけるリチウム複合酸化物が、単斜晶に属する結晶構造を有する第1の相、六方晶に属する結晶構造を有する第2の相、および立方晶に属する結晶構造を有する第3の相を有することを確認できる。
 実施の形態1におけるリチウム複合酸化物において、第1の相からなる複数の領域と、第2の相からなる複数の領域と、第3の相からなる複数の領域とが、3次元的にランダムに配列していてもよい。
 3次元的なランダム配列は、Liの3次元的な拡散経路を拡大させるため、より多くの量のリチウムを挿入および脱離させることが可能となる。その結果、電池の容量が向上する。
 実施の形態1におけるリチウム複合酸化物は、多相混合物である。例えば、バルク層と、それを被覆するコート層とからなる層構造は、本開示における多相混合物に該当しない。多相混合物は、複数の相を含んだ物質を意味する。リチウム複合酸化物の製造時にそれらの相に対応する複数の材料が混合されてもよい。
 リチウム複合酸化物が多相混合物であるかどうかは、後述するように、X線回折測定法および電子線回折測定法によって判定されうる。具体的には、X線回折測定法および電子線回折測定法によって取得されたリチウム複合酸化物のスペクトルに複数の相の特徴を示すピークが含まれるならば、そのリチウム複合酸化物は多相混合物であると判定される。
 実施の形態1におけるリチウム複合酸化物は、第1の相、第2の相、および第3の相から構成される三相混合物であってもよい。
 三相混合物は、電池の容量を向上させる。
 実施の形態1におけるリチウム複合酸化物は、リチウム原子だけでなく、リチウム原子以外の原子をも含む。リチウム原子以外の原子の例は、Mn、Co、Ni、Fe、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、P、またはAlである。実施の形態1におけるリチウム複合酸化物は、1種類のリチウム原子以外の原子を含んでいてもよい。これに代えて、実施の形態1におけるリチウム複合酸化物は、2種類以上のリチウム原子以外の原子を含んでいてもよい。
 実施の形態1におけるリチウム複合酸化物は、Mn、Co、Ni、Fe、Cu、V、Ti、Cr、及びZnからなる群より選択される少なくとも1種の3d遷移金属元素を含んでもよい。
 リチウム原子以外の原子を含むリチウム複合酸化物は、電池の容量をさらに向上させる。
 電池の容量をさらに向上させるために、リチウム原子以外の原子は、Mn、Co、Ni、Mg、及びAlからなる群から選択され得る。
 リチウム原子以外の原子は、Mn、Co、およびNiからなる群から選択され得る。
 Mn、Co、およびNiからなる群から選択される原子を含むリチウム複合酸化物は、電池の容量をさらに向上させる。
 実施の形態1におけるリチウム複合酸化物は、Mnを含んでもよい。
 Mnおよび酸素の混成軌道は容易に形成されるので、充電時における酸素脱離が抑制される。上述のように第1の相、第2の相、および第3の相を有する結晶構造内において、さらに結晶構造が安定化する。このため、より多くのLiを挿入および脱離させることが可能になると考えられる。このため、電池の容量を向上できる。
 実施の形態1におけるリチウム複合酸化物は、Mnだけでなく、CoおよびNiをも含んでもよい。
 Mnは酸素との混成軌道を容易に形成する。Coは結晶構造を安定化させる。NiはLiの脱離を促進する。これら3つの効果により結晶構造はさらに安定化し、電池の容量を向上できる。
 実施の形態1におけるリチウム複合酸化物は、F、Cl、N、及びSからなる群より選択される少なくとも1種の元素を含んでもよい。当該少なくとも1種の元素により、リチウム複合酸化物の結晶構造が安定化する。
 電気化学的に不活性なアニオンによって、リチウム複合酸化物の酸素原子の一部を置換してもよい。言い換えれば、F、Cl、N、及びSからなる群より選択される少なくとも一種のアニオンによって酸素原子の一部を置換してもよい。この置換により、実施の形態1におけるリチウム複合酸化物の結晶構造はさらに安定化すると考えられる。酸素アニオンの半径よりも大きなイオン半径を有するアニオンによって酸素の一部を置換することで、結晶格子が広がり、Liの拡散性が向上すると考えられる。酸素アニオンの半径よりも大きなイオン半径を有するアニオンの例は、F、Cl、N、及びSからなる群より選択される少なくとも一種のアニオンである。上述のように、第1の相、第2の相、および第3の相を有する結晶構造内において、さらに結晶構造が安定化する。このため、より多くのLiを挿入および脱離させることが可能になると考えられる。このようにして、電池の容量が向上する。
 実施の形態1におけるリチウム複合酸化物は、Fを含んでもよい。
 フッ素原子は電気陰性度が高いため、酸素の一部をフッ素原子で置換することにより、カチオンとアニオンとの相互作用が大きくなり、放電容量または動作電圧が向上する。同様の理由により、Fが含まれない場合と比較して、Fの固溶により電子が局在化する。このため、充電時の酸素脱離が抑制され、結晶構造が安定する。以上のように、第1の相、第2の相、および第3の相を有する結晶構造では、結晶構造がさらに安定化する。このため、より多くのLiを挿入および脱離することが可能となる。これらの効果が総合的に作用することで、電池の容量がさらに向上する。
 次に、実施の形態1におけるリチウム複合酸化物の化学組成の一例を説明する。
 実施の形態1におけるリチウム複合酸化物の平均組成は、下記の組成式(I)で表されてもよい。
 LiMeαβ ・・・式(1)
 ここで、
 Meは、Mn、Co、Ni、Fe、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、P、及びAlからなる群より選択される少なくとも一つである。
 Qは、F、Cl、N、及びSからなる群より選択される少なくとも1つである。
 組成式(I)において、下記の数式が充足され得る。
 1.05≦x≦1.5、
 0.6≦y≦1.0、
 1.2≦α≦2.0、かつ
 0≦β≦0.8。
 上記のリチウム複合酸化物は、電池の容量を向上させる。
 Meが化学式Me’y1Me’’y2(ここで、Me’およびMe’’は、それぞれ独立して、Meのために選択される当該少なくとも1つである)によって表される場合、「y=y1+y2」が充足される。例えば、MeがMn0.6Co0.2であれば、「y=0.6+0.2=0.8」が充足される。Qが2以上の元素からなる場合であっても、Meの場合と同様に計算できる。
 xの値が1.05以上の場合、正極活物質に挿入および脱離可能なLi量が多くなる。このため、容量が向上する。
 xの値が1.5以下である場合、Meの酸化還元反応により正極活物質に挿入および脱離するLiの量が多くなる。この結果、酸素の酸化還元反応を多く利用する必要がなくなる。これにより、結晶構造が安定化する。このため、容量が向上する。
 yの値が0.6以上である場合、Meの酸化還元反応により正極活物質に挿入および脱離するLiの量が多くなる。この結果、酸素の酸化還元反応を多く利用する必要がなくなる。これにより、結晶構造が安定化する。このため、容量が向上する。
 yの値が1.0以下である場合、正極活物質に挿入および脱離可能なLi量が多くなる。このため、容量が向上する。
 αの値が1.2以上である場合、酸素の酸化還元による電荷補償量が低下することを防ぐことができる。このため、容量が向上する。
 αの値が2.0以下である場合、酸素の酸化還元による容量が過剰となることを防ぐことができ、Liが脱離しても結晶構造は安定なままである。このため、容量が向上する。
 βの値が0.8以下である場合、Qの電気化学的に不活性な影響が大きくなることを防ぐことができるため、電子伝導性が向上する。このため、容量が向上する。
 実施の形態1におけるリチウム複合酸化物の「平均組成」とは、リチウム複合酸化物の各相の組成の違いを考慮せずにリチウム複合酸化物の元素を分析することによって得られる組成である。典型的には、リチウム複合酸化物の一次粒子のサイズと同程度、または、それよりも大きな試料を用いて元素分析を行なうことによって得られる組成を意味する。第1の相、第2の相、および第3の相は、互いに同一の化学組成を有してもよい。もしくは、第1の相、第2の相、および第3の相は、互いに異なる組成を有していてもよい。
 上述の平均組成は、誘導結合プラズマ発光分光分析法、不活性ガス溶融-赤外線吸収法、イオンクロマトグラフィー、またはそれら分析方法の組み合わせにより決定することができる。
 電池の容量を高めるために、組成式(I)において、Meは、Mn、Co、Ni、Fe、Cu、V、Ti、Cr、及びZnからなる群より選択される少なくとも1種の3d遷移金属元素を含んでもよい。
 電池の容量を高めるために、組成式(I)において、Meは、Mn、Co、Ni、Mg、及びAlからなる群より選択される少なくとも1つの金属元素を含んでもよい。
 電池の容量を高めるために、Meは、Mn、Co、及びNiからなる群より選択される少なくとも1つを含んでもよい。
 組成式(I)において、Meは、Mnを含んでもよい。すなわち、Meは、Mnであってもよい。
 もしくは、Meは、Mnだけでなく、Co、Ni、Fe、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、P、及びAlからなる群より選択される少なくとも一つを含んでもよい。
 すでに説明したように、Mnおよび酸素の混成軌道は容易に形成されるので、充電時における酸素脱離が抑制される。第1の相、第2の相、および第3の相を有する結晶構造内において、さらに結晶構造が安定化する。このため、より多くのLiを挿入および脱離させることが可能になると考えられる。このため、電池の容量を向上できる。
 組成式(I)において、Meに対するMnのモル比は、60%以上であってもよい。すなわち、Mnを含むMe全体に対する、Mnのモル比(すなわち、Mn/Meのモル比)が、0.6以上1.0以下であってもよい。
 すでに説明したように、Mnおよび酸素の混成軌道は容易に形成されるので、充電時における酸素脱離が抑制される。第1の相、第2の相、および第3の相を有する結晶構造内において、さらに結晶構造が安定化する。このため、より多くのLiを挿入および脱離させることが可能になると考えられる。このため、電池の容量を向上できる。
 組成式(I)において、Meは、Mnだけでなく、CoおよびNiをも含んでもよい。
 Mnは酸素との混成軌道を容易に形成する。Coは結晶構造を安定化させる。NiはLiの脱離を促進する。これら3つの効果により結晶構造はさらに安定化する。このため、電池の容量を向上できる。
 組成式(I)において、Meは、B、Si、P、及びAlからなる群より選択される少なくとも一種の元素を、Meに対する当該少なくとも一種の元素のモル比が20%以下となるように、含んでもよい。
 B、Si、P、及びAlは、高い共有結合性を有するので、実施の形態1におけるリチウム複合酸化物の結晶構造が安定化する。その結果、サイクル特性が向上し、電池の寿命をさらに伸ばすことができる。
 以下の2つの数式が充足されてもよい。
 1.166≦x≦1.33、かつ
 0.67≦y≦0.834。
 上記の2つの数式が充足されると、電池の容量をさらに向上できる。
 以下の2つの数式が充足されてもよい。
 1.2≦α<2.0、かつ
 0<β≦0.8。
 上記の2つの数式が充足されると、電池の容量をさらに向上できる。
 組成式(I)で表されるリチウム複合酸化物は、Q(すなわち、F、Cl、N、及びSからなる群より選択される少なくとも1つ)を含んでもよい。当該少なくとも1種の元素により、リチウム複合酸化物の結晶構造が安定化する。
 電気化学的に不活性なアニオンによって、リチウム複合酸化物の酸素原子の一部を置換してもよい。言い換えれば、F、Cl、N、及びSからなる群より選択される少なくとも一種のアニオンによって酸素原子の一部を置換してもよい。この置換により、組成式(I)で表されるリチウム複合酸化物の結晶構造はさらに安定化すると考えられる。酸素アニオンの半径よりも大きなイオン半径を有するアニオンによって酸素の一部を置換することで、結晶格子が広がり、Liの拡散性が向上すると考えられる。上述のように、第1の相、第2の相、および第3の相を有する結晶構造内において、さらに結晶構造が安定化する。このため、より多くのLiを挿入および脱離させることが可能になると考えられる。このようにして、電池の容量が向上する。
 Qは、Fを含んでもよい。
 すなわち、Qは、Fであってもよい。
 もしくは、Qは、Fだけでなく、Cl、N、及びSからなる群より選択される少なくとも一種の元素を含んでもよい。
 フッ素原子は電気陰性度が高いため、酸素の一部をフッ素原子で置換することにより、カチオンとアニオンとの相互作用が大きくなり、放電容量または動作電圧が向上する。同様の理由により、Fが含まれない場合と比較して、Fの固溶により電子が局在化する。このため、充電時の酸素脱離が抑制され、結晶構造が安定化する。以上のように、第1の相、第2の相、および第3の相を有する結晶構造では、結晶構造がさらに安定化する。このため、より多くのLiを挿入および脱離することが可能となる。これらの効果が総合的に作用することで、電池の容量がさらに向上する。
 以下2つの数式が充足されてもよい。
 1.33≦α≦1.9、かつ
 0.1≦β≦0.67。
 上記2つの数式が充足されると、酸素の酸化還元によって容量が過剰となることを防ぐことができる。その結果、電気化学的に不活性なQの影響が十分に発揮されることにより、Liが脱離した際でも、結晶構造は安定なままである。このようにして、電池の容量をさらに向上できる。
 LiのMeに対するモル比は、数式(x/y)で示される。
 モル比(x/y)は、1.4以上2.0以下であってもよい。
 1.4以上2.0以下のモル比(x/y)は、電池の容量をさらに向上させる。
 モル比(x/y)が1よりも大きい場合では、例えば、組成式LiMnOで示される従来の正極活物質におけるLi原子数の比よりも、実施の形態1によるリチウム複合酸化物におけるLi原子数の比が高い。このため、より多くのLiを挿入および脱離させることが可能となる。
 モル比(x/y)が1.4以上の場合、利用できるLi量が多いので、Liの拡散パスが適切に形成される。このため、モル比(x/y)が1.4以上の場合、電池の容量がさらに向上する。
 モル比(x/y)が2.0以下の場合、利用できるMeの酸化還元反応が少なくなることを防ぐことができる。この結果、酸素の酸化還元反応を多く利用する必要がなくなる。充電時のLi脱離時の結晶構造の不安定化を原因とする放電時のLi挿入効率の低下が抑制される。このため、電池の容量がさらに向上する。
 電池の容量をさらに向上させるために、モル比(x/y)は、1.4以上1.5以下であってもよい。
 OのQに対するモル比は、数式(α/β)で示される。
 電池の容量をさらに向上させるために、モル比(α/β)は、2以上19以下でもよい。
 モル比(α/β)が2以上である場合、酸素の酸化還元による電荷補償量が低下することを防ぐことができる。さらに、電気化学的に不活性なQの影響を小さくできるため、電子伝導性が向上する。このため、電池の容量がさらに向上する。
 モル比(α/β)が19以下の場合、酸素の酸化還元による容量が過剰となることを防ぐことができる。これにより、Liが脱離した際に結晶構造が安定化する。さらに、電気化学的に不活性なQの影響が発揮されることにより、Liが脱離した際に結晶構造が安定化する。このため、より高容量の電池を実現できる。
 上述されたように、実施の形態1におけるリチウム複合酸化物は、組成式LiMeαβで表される平均組成を有していてもよい。したがって、実施の形態1におけるリチウム複合酸化物は、カチオン部分およびアニオン部分から構成される。カチオン部分は、LiおよびMeから構成される。アニオン部分は、OおよびQから構成される。LiおよびMeから構成されるカチオン部分の、OおよびQから構成されるアニオン部分に対するモル比は、数式((x+y)/(α+β))で示される。
 モル比((x+y)/(α+β))は、0.75以上1.2以下であってもよい。
 0.75以上1.2以下であるモル比((x+y)/(α+β))は、電池の容量をさらに向上させる。
 モル比((x+y)/(α+β))が0.75以上である場合、リチウム複合酸化物の合成時に不純物が多く生成することを防ぐことができ、電池の容量がさらに向上する。
 モル比((x+y)/(α+β))が1.2以下の場合、リチウム複合酸化物のアニオン部分の欠損量が少なくなるので、充電によってリチウムがリチウム複合酸化物から離脱した後でも、結晶構造は安定に維持される。
 モル比((x+y)/(α+β))は、1.0以上1.2以下であってもよい。
 1.0以上1.2以下のモル比((x+y)/(α+β))は、電池の容量をさらに向上させる。
 実施の形態1におけるリチウム複合酸化物において、Liの一部は、NaあるいはKのようなアルカリ金属で置換されていてもよい。
 実施の形態1における正極活物質は、上述のリチウム複合酸化物を主成分として含んでもよい。言い換えれば、実施の形態1における正極活物質は、上述のリチウム複合酸化物を、正極活物質の全体に対する上述のリチウム複合酸化物の質量比が50%以上となるように、含んでもよい。このような正極活物質は、電池の容量をさらに向上させる。
 電池の容量をさらに向上させるために、当該質量比は70%以上であってもよい。
 電池の容量をさらに向上させるために、当該質量比は90%以上であってもよい。
 実施の形態1における正極活物質は、上述のリチウム複合酸化物だけでなく不可避的な不純物をも含んでもよい。
 実施の形態1における正極活物質は、未反応物質として、その出発物質を含んでいてもよい。実施の形態1における正極活物質は、リチウム複合酸化物の合成時に発生する副生成物を含んでいてもよい。実施の形態1における正極活物質は、リチウム複合酸化物の分解により発生する分解生成物を含んでいてもよい。
 実施の形態1における正極活物質は、不可避的な不純物を除いて、上述のリチウム複合酸化物のみを含んでもよい。
 リチウム複合酸化物のみを含む正極活物質は、電池の容量をさらに向上させる。
 <リチウム複合酸化物の作製方法>
 以下に、実施の形態1の正極活物質に含まれるリチウム複合酸化物の製造方法の一例が、説明される。
 実施の形態1におけるリチウム複合酸化物は、例えば、次の方法により、作製される。
 Liを含む原料、Meを含む原料、および、Qを含む原料を用意する。
 Liを含む原料としては、例えば、LiOまたはLiのようなリチウム酸化物、LiF、LiCO、またはLiOHのようなリチウム塩、あるいはLiMeOまたはLiMeのようなリチウム複合酸化物が挙げられる。
 Meを含む原料としては、例えば、Meのような金属酸化物、MeCOまたはMeNOのような金属塩、Me(OH)またはMeOOHのような金属水酸化物、あるいはLiMeOまたはLiMeのようなリチウム複合酸化物が挙げられる。
 例えば、MeがMnの場合には、Mnを含む原料としては、例えば、MnOまたはMnのような酸化マンガン、MnCOまたはMnNOのようなマンガン塩、Mn(OH)またはMnOOHのような水酸化マンガン、あるいはLiMnOまたはLiMnのようなリチウムマンガン複合酸化物、が挙げられる。
 Qを含む原料としては、例えば、ハロゲン化リチウム、遷移金属ハロゲン化物、遷移金属硫化物、または遷移金属窒化物が挙げられる。
 QがFの場合には、Fを含む原料としては、例えば、LiFまたは遷移金属フッ化物が挙げられる。
 これらの原料の重さが、例えば、Liイオンの遷移金属のカチオンに対するモル比が0.5以上2.0以下となるように、測定される。原料を、例えば、乾式法または湿式法で混合し、次いで遊星型ボールミルのような混合装置内で30時間以上メカノケミカルに互いに反応させることで、第1の前駆体が得られる。
 これとは別に、第1の前駆体とは異なる組成比を有する第2の前駆体を得る。上記と同様に、原料を、例えば、乾式法または湿式法で混合し、次いで遊星型ボールミルのような混合装置内で30時間以上メカノケミカルに互いに反応させることで、第2の前駆体が得られる。
 さらに、第1前駆体および第2前駆体を、組成式(I)により示された組成比を有するように用意し、混合する。混合された第1前駆体および第2前駆体を例えば、乾式法または湿式法で混合し、次いで遊星型ボールミルのような混合装置内で1時間以上メカノケミカルに互いに反応させることで、最終的な前駆体が得られる。
 最終的な前駆体を得るための方法は、上述の作製方法に限られない。例えば、当該方法は、第一の前駆体および第二の前駆体とは異なるモル比を有する第三の前駆体を得る工程をさらに含んでもよい。この場合、組成式(I)に示したモル比を有するように用意された第一の前駆体、第二の前駆体、および第三の前駆体を、乾式法または湿式法で混合し、1時間以上メカノケミカルに反応させることで、最終的な前駆体を得てもよい。
 このようにして、x、y、α、およびβの値を、組成式(I)において示された範囲内で変化させることができる。
 最終的な前駆体を熱処理する。熱処理の条件は、実施の形態1におけるリチウム複合酸化物が得られるように適宜設定される。熱処理の最適な条件は、他の製造条件および目標とする組成に依存して異なるが、本発明者らは、例えば、熱処理の温度が低いほど、または熱処理に要する時間が短いほど、積分強度比I(18°-20°)/I(43°-46°)の値が小さくなる傾向を見出している。製造者は、この傾向を指針として用いて熱処理の条件を定めることができる。熱処理の温度および時間は、例えば、200~900℃の範囲、及び、1分~20時間の範囲からそれぞれ選択されてもよい。熱処理の雰囲気の例は、大気雰囲気、酸素雰囲気、または不活性雰囲気(例えば、窒素雰囲気またはアルゴン雰囲気)である。
 以上のように、原料、原料の混合条件、および熱処理条件を調整することにより、実施の形態1におけるリチウム複合酸化物を得ることができる。
 得られたリチウム複合酸化物が有する結晶構造の空間群は、例えば、X線回折測定または電子線回折測定により、特定することができる。これにより、得られたリチウム複合酸化物が、例えば、単斜晶に属する結晶構造を有する第1の相、六方晶に属する結晶構造を有する第2の相、および立方晶に属する結晶構造を有する第3の相を含むことを確認できる。
 得られたリチウム複合酸化物の平均組成は、例えば、ICP発光分光分析法、不活性ガス溶融-赤外線吸収法、イオンクロマトグラフィー、またはそれら分析方法の組み合わせにより、決定され得る。
 原料としてリチウム遷移金属複合酸化物を用いることで、元素のミキシングのエネルギーを低下させることができる。これにより、実施の形態1におけるリチウム複合酸化物の純度を高められる。
 以上のように、実施の形態1のリチウム複合酸化物の製造方法は、原料を用意する工程(a)、原料をメカノケミカルに反応させることによりリチウム複合酸化物の前駆体を得る工程(b)、および前駆体を熱処理することによりリチウム複合酸化物を得る工程(c)を具備する。
 原料は、混合原料であってもよく、当該混合原料では、LiのMeに対する比は1.4以上2.0以下であってもよい。
 原料として用いられるリチウム化合物は、公知の方法で作製されてもよい。
 上述の工程(b)では、ボールミルを用いてメカノケミカルに原料を反応させることを2回または3回繰り返してもよい。
 以上のように、実施の形態1において、リチウム複合酸化物を得るためには、原料(例えば、LiF、LiO、酸化遷移金属、またはリチウム複合遷移金属)を、遊星型ボールミルを用いて、メカノケミカル反応により混合して前駆体を得て、次いで得られた前駆体を熱処理してもよい。
 (実施の形態2)
 以下、実施の形態2が説明される。実施の形態1において説明された事項は、適宜、省略され得る。
 実施の形態2における電池は、上述の実施の形態1における正極活物質を含む正極と、負極と、電解質と、を備える。
 実施の形態2における電池は、高い容量を有する。
 実施の形態2における電池において、正極は、正極活物質層を備えてもよい。正極活物質層は、実施の形態1における正極活物質を主成分として含んでいてもよい。すなわち、正極活物質層の全体に対する正極活物質の質量比は50%以上である。
 このような正極活物質層は、電池の容量をさらに向上させる。
 当該質量比は、70%以上であってもよい。
 このような正極活物質層は、電池の容量をさらに向上させる。
 当該質量比は、90%以上であってもよい。
 このような正極活物質層は、電池の容量をさらに向上させる。
 実施の形態2における電池は、例えば、リチウムイオン二次電池、非水電解質二次電池、または全固体電池である。
 実施の形態2における電池において、負極は、リチウムイオンを吸蔵および放出可能な負極活物質を含有していてもよい。あるいは、負極は、材料であって、放電時にリチウム金属が当該材料から電解質に溶解し、かつ充電時に前記リチウム金属が当該材料に析出する材料を含有していてもよい。
 実施の形態2における電池において、電解質は、非水電解質(例えば、非水電解液)であってもよい。
 実施の形態2における電池において、電解質は、固体電解質であってもよい。
 図1は、実施の形態2における電池10の断面図を示す。
 図1に示されるように、電池10は、正極21と、負極22と、セパレータ14と、ケース11と、封口板15と、ガスケット18と、を備えている。
 セパレータ14は、正極21と負極22との間に、配置されている。
 正極21と負極22とセパレータ14とには、例えば、非水電解質(例えば、非水電解液)が含浸されている。
 正極21と負極22とセパレータ14とによって、電極群が形成されている。
 電極群は、ケース11の中に収められている。
 ガスケット18と封口板15とにより、ケース11が閉じられている。
 正極21は、正極集電体12と、正極集電体12の上に配置された正極活物質層13と、を備えている。
 正極集電体12は、例えば、金属材料(例えば、アルミニウム、ステンレス、ニッケル、鉄、チタン、銅、パラジウム、金、及び白金からなる群より選択される少なくとも一種)又はそれらの合金で作られている。
 正極集電体12は設けられないことがある。この場合、ケース11を正極集電体として使用する。
 正極活物質層13は、実施の形態1における正極活物質を含む。
 正極活物質層13は、必要に応じて、添加剤(導電剤、イオン伝導補助剤、または結着剤)を含んでいてもよい。
 負極22は、負極集電体16と、負極集電体16の上に配置された負極活物質層17と、を備えている。
 負極集電体16は、例えば、金属材料(例えば、アルミニウム、ステンレス、ニッケル、鉄、チタン、銅、パラジウム、金、及び白金からなる群より選択される少なくとも一種)又はそれらの合金)で作られている。
 負極集電体16は設けられないことがある。この場合、封口板15を負極集電体として使用する。
 負極活物質層17は、負極活物質を含んでいる。
 負極活物質層17は、必要に応じて、添加剤(導電剤、イオン伝導補助剤、または結着剤)を含んでいてもよい。
 負極活物質の材料の例は、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物である。
 金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属またはリチウム合金が挙げられる。
 炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、または非晶質炭素が挙げられる。
 容量密度の観点から、負極活物質として、珪素(すなわち、Si)、錫(すなわち、Sn)、珪素化合物、または錫化合物を使用できる。珪素化合物および錫化合物は、合金または固溶体であってもよい。
 珪素化合物の例として、SiO(ここで、0.05<x<1.95)が挙げられる。SiOの一部の珪素原子を他の元素で置換することによって得られた化合物も使用できる。当該化合物は、合金又は固溶体である。他の元素とは、ホウ素、マグネシウム、ニッケル、チタン、モリブデン、コバルト、カルシウム、クロム、銅、鉄、マンガン、ニオブ、タンタル、バナジウム、
タングステン、亜鉛、炭素、窒素、及び錫からなる群より選択される少なくとも1種の元素である。
 錫化合物の例として、NiSn、MgSn、SnO(ここで、0<x<2)、SnO、またはSnSiOが挙げられる。これらから選択される1種の錫化合物が、単独で使用されてもよい。もしくは、これらから選択される2種以上の錫化合物の組み合わせが、使用されてもよい。
 負極活物質の形状は限定されない。負極活物質としては、公知の形状(例えば、粒子状または繊維状)を有する負極活物質が使用されうる。
 リチウムを負極活物質層17に補填する(すなわち、吸蔵させる)ための方法は、限定されない。この方法の例は、具体的には、(a)真空蒸着法のような気相法によってリチウムを負極活物質層17に堆積させる方法、または(b)リチウム金属箔と負極活物質層17とを接触させて両者を加熱する方法である。いずれの方法においても、熱によってリチウムは負極活物質層17に拡散する。リチウムを電気化学的に負極活物質層17に吸蔵させる方法も用いられ得る。具体的には、リチウムを有さない負極22およびリチウム金属箔(負極)を用いて電池を組み立てる。その後、負極22にリチウムが吸蔵されるように、その電池を充電する。
 正極21および負極22の結着剤の例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、またはカルボキシメチルセルロースである。
 結着剤の他の例は、テトラフルオロエチレン、ヘキサフルオロエタン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、ヘキサジエン、からなる群より選択される2種以上の材料の共重合体である。上述の材料から選択される2種以上の結着剤の混合物が用いられてもよい。
 正極21および負極22の導電剤の例は、グラファイト、カーボンブラック、導電性繊維、フッ化黒鉛、金属粉末、導電性ウィスカー、導電性金属酸化物、または有機導電性材料である。
 グラファイトの例としては、天然黒鉛または人造黒鉛が挙げられる。
 カーボンブラックの例としては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、またはサーマルブラックが挙げられる。
 金属粉末の例としては、アルミニウム粉末が挙げられる。
 導電性ウィスカーの例としては、酸化亜鉛ウィスカーまたはチタン酸カリウムウィスカーが挙げられる。
 導電性金属酸化物の例としては、酸化チタンが挙げられる。
 有機導電性材料の例としては、フェニレン誘導体が挙げられる。
 導電剤を用いて、結着剤の表面の少なくとも一部を被覆してもよい。例えば、結着剤の表面は、カーボンブラックにより被覆されてもよい。これにより、電池の容量を向上させることができる。
 セパレータ14の材料は、大きいイオン透過度および十分な機械的強度を有する材料である。セパレータ14の材料の例は、微多孔性薄膜、織布、または不織布が挙げられる。具体的には、セパレータ14は、ポリプロピレンまたはポリエチレンのようなポリオレフィンで作られていることが望ましい。ポリオレフィンで作られたセパレータ14は、優れた耐久性を有するだけでなく、過度に加熱されたときにシャットダウン機能を発揮できる。セパレータ14の厚さは、例えば、10~300μm(又は10~40μm)の範囲にある。セパレータ14は、1種の材料で構成された単層膜であってもよい。もしくは、セパレータ14は、2種以上の材料で構成された複合膜(または、多層膜)であってもよい。セパレータ14の空孔率は、例えば、30~70%(又は35~60%)の範囲にある。用語「空孔率」とは、セパレータ14の全体の体積に占める空孔の体積の割合を意味する。空孔率は、例えば、水銀圧入法によって測定される。
 非水電解液は、非水溶媒と、非水溶媒に溶けたリチウム塩と、を含む。
 非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。
 環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。
 鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。
 環状エーテル溶媒の例は、テトラヒドロフラン、1、4-ジオキサン、または1、3-ジオキソランである。
 鎖状エーテル溶媒の例としては、1、2-ジメトキシエタンまたは1、2-ジエトキシエタンである。
 環状エステル溶媒の例は、γ-ブチロラクトンである。
 鎖状エステル溶媒の例は、酢酸メチルである。
 フッ素溶媒の例としては、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。
 非水溶媒として、これらから選択される1種の非水溶媒が、単独で、使用されうる。もしくは、非水溶媒として、これらから選択される2種以上の非水溶媒の組み合わせが、使用されうる。
 非水電解液は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、およびフルオロジメチレンカーボネートからなる群より選択される少なくとも1種のフッ素溶媒を含んでいてもよい。
 当該少なくとも1種のフッ素溶媒が非水電解液に含まれていると、非水電解液の耐酸化性が向上する。
 その結果、高い電圧で電池10を充電する場合にも、電池10を安定して動作させることが可能となる。
 実施の形態2における電池において、電解質は、固体電解質であってもよい。
 固体電解質の例は、有機ポリマー固体電解質、酸化物固体電解質、または硫化物固体電解質である。
 有機ポリマー固体電解質の例は、高分子化合物と、リチウム塩との化合物である。このような化合物の例は、ポリスチレンスルホン酸リチウムである。
 高分子化合物はエチレンオキシド構造を有していてもよい。高分子化合物がエチレンオキシド構造を有することで、リチウム塩を多く含有することができる。その結果、イオン導電率をより高めることができる。
 酸化物固体電解質の例は、
 (i) LiTi(POまたはその置換体のようなNASICON固体電解質、
 (ii) (LaLi)TiOのようなペロブスカイト固体電解質、
 (iii) Li14ZnGe16、LiSiO、LiGeO、またはその置換体のようなLISICON固体電解質、
 (iv) LiLaZr12またはその置換体のようなガーネット固体電解質、
 (v) LiNまたはそのH置換体、もしくは
 (vi) LiPOまたはそのN置換体
である。
 硫化物固体電解質の例は、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、またはLi10GeP12である。硫化物固体電解質に、LiX(XはF、Cl、Br、またはIである)、MO、またはLiMO(Mは、P、Si、Ge、B、Al、Ga、またはInのいずれかであり、かつxおよびyはそれぞれ独立して自然数である)が添加されてもよい。
 これらの中でも、硫化物固体電解質は、成形性に富み、かつ高いイオン伝導性を有する。このため、固体電解質として硫化物固体電解質を用いることで、電池のエネルギー密度をさらに向上できる。
 硫化物固体電解質の中でも、LiS-Pは、高い電気化学的安定性および高いイオン伝導性を有する。このため、固体電解質として、LiS-Pを用いると、電池のエネルギー密度をさらに向上できる。
 固体電解質が含まれる固体電解質層には、さらに上述の非水電解液が含まれてもよい。
 固体電解質層が非水電解液を含むので、活物質と固体電解質との間でのリチウムイオンの移動が容易になる。その結果、電池のエネルギー密度をさらに向上できる。
 固体電解質層は、ゲル電解質またはイオン液体を含んでもよい。
 ゲル電解質の例は、非水電解液が含浸したポリマー材料である。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、またはポリメチルメタクリレートである。ポリマー材料の他の例は、エチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、
 (i) テトラアルキルアンモニウムのような脂肪族鎖状第4級アンモニウム塩のカチオン、
 (ii) テトラアルキルホスホニウムのような脂肪族鎖状第4級ホスホニウム塩のカチオン、
 (iii) ピロリジニウム、モルホリニウム、イミダゾリニウム、テトラヒドロピリミジニウム、ピペラジニウム、またはピペリジニウムのような脂肪族環状アンモニウム、または
 (iv)ピリジニウムまたはイミダゾリウムのような窒素含有ヘテロ環芳香族カチオン
である。
 イオン液体を構成するアニオンは、PF 、BF 、SbF 、AsF 、SOCF 、N(SOCF 、N(SO 、N(SOCF)(SO、またはC(SOCF である。イオン液体はリチウム塩を含有してもよい。
 リチウム塩の例は、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCFである。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。リチウム塩の濃度は、例えば、0.5~2mol/リットルの範囲にある。
 実施の形態2における電池の形状について、電池は、コイン型電池、円筒型電池、角型電池、シート型電池、ボタン型電池(すなわち、ボタン型セル)、扁平型電池、または積層型電池である。
 (実施例)
 <実施例1>
 [正極活物質の作製]
 1.25/0.56/0.12/0.12/1.9/0.1のLi/Mn/Co/Ni/O/Fモル比を有するように、LiF、LiMnO、LiCoO、およびLiNiOの混合物を得た。
 混合物を、3mmの直径を有する適量のジルコニア製ボールと共に、45ミリリットルの容積を有する容器に入れ、アルゴングローブボックス内で密閉した。容器はジルコニア製であった。
 次に、容器をアルゴングローブボックスから取り出した。容器に含有されている混合物は、アルゴン雰囲気下で、遊星型ボールミルで、600rpmで30時間処理することで、第1の前駆体を作製した。
 第1の前駆体に対して、粉末X線回折測定を実施した。粉末X線回折測定の結果、第1の前駆体の空間群はFm-3mとして特定された。
 これとは別に、1.0/1.5/0.5/3.8/0.2のLi/Mn/Ni/O/Fモル比を有するように、LiF、LiMnO、MnO、およびNiOの混合物を得た。
 混合物を、3mmの直径を有する適量のジルコニア製ボールと共に、45ミリリットルの容積を有する容器に入れ、アルゴングローブボックス内で密閉した。容器はジルコニア製であった。
 次に、容器をアルゴングローブボックスから取り出した。容器に含有されている混合物は、アルゴン雰囲気下で、遊星型ボールミルで、600rpmで5時間処理することで、第2の前駆体を作製した。
 第2の前駆体に対して、粉末X線回折測定を実施した。粉末X線回折測定の結果、第2の前駆体の空間群はFm-3mとして特定された。
 さらにこれとは別に、1.0/0.15/0.5/0.35/1.9/0.1のLi/Mn/Co/Ni/O/Fモル比を有するように、LiF、LiMnO、LiNiO、およびLiCoOの混合物を得た。
 混合物を、3mmの直径を有する適量のジルコニア製ボールと共に、45ミリリットルの容積を有する容器に入れ、アルゴングローブボックス内で密閉した。容器はジルコニア製であった。
 次に、容器をアルゴングローブボックスから取り出した。容器に含有されている混合物は、アルゴン雰囲気下で、遊星型ボールミルで、600rpmで5時間処理することで、第3の前駆体を作製した。
 第3の前駆体に対して、粉末X線回折測定を実施した。粉末X線回折測定の結果、第3の前駆体の空間群はFm-3mとして特定された。
 1.2/0.54/0.13/0.13/1.9/0.1のLi/Mn/Co/Ni/O/Fモル比を有するように、第1の前駆体、第2の前駆体、および第3の前駆体の混合物を得た。
 混合物を、3mmの直径を有する適量のジルコニア製ボールと共に、45ミリリットルの容積を有する容器に入れ、アルゴングローブボックス内で密閉した。容器はジルコニア製であった。
 次に、容器をアルゴングローブボックスから取り出した。容器に含有されている混合物は、アルゴン雰囲気下で、遊星型ボールミルで、450rpmで5時間処理することで、最終的な前駆体を作製した。
 最終的な前駆体を、摂氏700度で1時間、大気雰囲気において熱処理した。このようにして、実施例1による正極活物質を得た。
 実施例1による正極活物質に対して、粉末X線回折測定を実施した。
 図2は、粉末X線回析測定の結果を示す。
 実施例1による正極活物質に対して、電子回折測定も行った。粉末X線回折測定および電子回折測定の結果に基づいて、実施例1による正極活物質の結晶構造を解析した。
 その結果、実施例1による正極活物質は、空間群C2/mに属する相、空間群R-3mに属する相、および空間群Fm-3mに属する相を含む三相混合物であると判定された。
 X線回析装置(株式会社リガク社製)を用いて得られた粉末X線回折測定の結果から、X線回析ピークの積分強度を、当該X線回析装置に付属のソフトウェア(商品名:PDXL)を用いて算出した。実施例1による正極活物質は、0.91の積分強度比I(18°-20°)/I(43°-46°)を有していた。
 [電池の作製]
 次に、70質量部の実施例1による正極活物質、20質量部のアセチレンブラック、10質量部のポリフッ化ビニリデン(以下、「PVDF」という)、および適量のN-メチル-2-ピロリドン(以下、「NMP」という)を混合した。これにより、正極合剤スラリーを得た。アセチレンブラックは導電剤として機能した。ポリフッ化ビニリデンは結着剤として機能した。
 20マイクロメートルの厚さのアルミニウム箔で形成された正極集電体の片面に、正極合剤スラリーを塗布した。
 正極合剤スラリーを乾燥および圧延することによって、正極活物質層を備えた厚さ60マイクロメートルの正極板を得た。
 得られた正極板を打ち抜いて、直径12.5mmの円形状の正極を得た。
 300マイクロメートルの厚みを有するリチウム金属箔を打ち抜いて、直径14mmの円形状の負極を得た。
 これとは別に、フルオロエチレンカーボネート(以下、「FEC」という)とエチレンカーボネート(以下、「EC」という)とエチルメチルカーボネート(以下、「EMC」という)とを、1:1:6の体積比で混合して、非水溶媒を得た。
 この非水溶媒に、LiPFを、1.0mol/リットルの濃度で、溶解させることによって、非水電解液を得た。
 得られた非水電解液を、セパレータに、染み込ませた。セパレータは、セルガード社の製品(品番2320、厚さ25マイクロメートル)であった。当該セパレータは、ポリプロピレン層とポリエチレン層とポリプロピレン層とで形成された、3層セパレータであった。
 上述の正極と負極とセパレータとを用いて、露点がマイナス摂氏50度に維持されたドライボックスの中で、直径が20ミリであり、かつ厚みが3.2ミリのコイン型電池を、作製した。
 <実施例2~10>
 実施例2~実施例10では、以下の事項(i)および(ii)を除き、実施例1の場合と同様に正極活物質を得た。
 (i) 混合物の混合比(すなわち、Li/Me/O/Fの混合比)を変化させたこと。
 (ii) 加熱条件を、500~900℃かつ10分~5時間の範囲内で変えたこと。
 表1に、実施例2~10の正極活物質の平均組成が示される。
 実施例2~10による正極活物質は、空間群C2/mに属する相、空間群R-3mに属する相、および空間群Fm-3mに属する相を含む三相混合物であると判定された。
 実施例2~10の正極活物質を用いて、実施例1と同様にして、実施例2~10のコイン型電池を作製した。
 <比較例1>
 比較例1では、公知の手法を用いて、化学式LiCoO(すなわち、コバルト酸リチウム)で表される組成を有する正極活物質を得た。
 得られた正極活物質に対して、粉末X線回折測定を実施した。
 粉末X線回折測定の結果が、図2に示される。
 粉末X線回折測定の結果から、比較例1による正極活物質の空間群は、空間群R-3mとして特定された。
 比較例1による正極活物質における積分強度比I(18°-20°)/I(43°-46°)は、1.27であった。
 比較例1による正極活物質を用いて、実施例1の場合と同様にして、比較例1のコイン型電池を作製した。
 <電池の評価>
 0.5mA/cmの電流密度で、4.7Vの電圧に達するまで、実施例1の電池を充電した。
 その後、0.5mA/cmの電流密度で、2.5Vの電圧に達するまで、実施例1の電池を放電させた。
 実施例1の電池の初回放電容量は、284mAh/gであった。
 0.5mA/cmの電流密度で、4.3Vの電圧に達するまで、比較例1の電池を充電した。
 その後、0.5mA/cmの電流密度で、2.5Vの電圧に達するまで、比較例1の電池を放電させた。
 比較例1の電池の初回放電容量は、150mAh/gであった。
 実施例2~実施例10のコイン型電池の初回放電容量を同様に測定した。
 以下の表1~表3は、実施例1~実施例10および比較例1の結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3に示されるように、実施例1~10の電池は、260~284mAh/gの初回放電容量を有する。
 すなわち、実施例1~10の電池の初回放電容量は、比較例1の電池の初回放電容量よりも、大きい。
 この理由としては、実施例1~10の電池では、正極活物質におけるリチウム複合酸化物が、単斜晶に属する結晶構造を有する第1の相と、六方晶に属する結晶構造を有する第2の相と、立方晶に属する結晶構造を有する第3の相と、を含み、かつ0.05以上0.99以下の積分強度比I(18°-20°)/I(43°-46°)を有することが考えられる。このため、多くのLiを挿入および脱離させることが可能で、かつ、Liの拡散性および結晶構造の安定性が高いと考えられる。このため、初回放電容量が大きく向上したと考えられる。
 比較例1では、積分強度比I(18°-20°)/I(43°-46°)が0.99よりも大きく、かつ結晶構造が空間群R-3mの単相である。そのため、充放電時のLiの挿入量および脱離量が低下し、かつ結晶構造の安定性も低下したと考えられる。さらに、比較例1では、(x/y)の値は1に等しい。この(x/y)の値は、比較定小さい。このため、反応に関与できるLiの量が少なくなり、Liイオンの拡散性が低下したと考えられる。これらの理由のため、初回放電容量が大きく低下したと考えられる。
 表1に示されるように、実施例2および実施例3の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例2および実施例3の電池は、実施例1の電池よりも、小さい積分強度比I(18°-20°)/I(43°-46°)を有することが考えられる。このため、カチオンミキシングの量が大きくなることで、充放電時のLiの拡散性が低下したと考えられる。このため、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例4および実施例5の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例4および実施例5では、実施例1と比較して、(x/y)の値が小さいことが考えられる。このため、充放電に関与できるLiの量が減少したことが考えられる。このため、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例6の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例6では、実施例1と比較して、F含有量が多いことが考えられる。このため、実施例7では、実施例1と比較して電子伝導性が低いと考えられる。さらに、結晶構造内でFと結合したLiの拡散性が低下した可能性がある。このため、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例7および実施例8の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例7および実施例8による電池は、実施例1による電池よりも、小さいCo含有量および小さいNi含有量を有することが考えられる。このため、結晶構造が不安定化し、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例9および実施例10の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例9および実施例10の電池は、実施例1の電池よりも、小さい(x/y)の値を有することが考えられる。このため、Li脱離後の結晶構造が不安定化したと考えられる。さらに、他の理由として、実施例9および実施例10の電池は、実施例1の電池よりも、大きなF含有量を有する(すなわち、小さい(α/β)の値を有する)ことも考えられる。このため、電子伝導性が低下したと考えられる。結晶構造内でFと結合したLiの拡散性が低下した可能性が考えられる。このため、初回放電容量が低下したと考えられる。
 本開示の正極活物質は、二次電池のような電池のために用いられ得る。
 10  電池
 11  ケース
 12  正極集電体
 13  正極活物質層
 14  セパレータ
 15  封口板
 16  負極集電体
 17  負極活物質層
 18  ガスケット
 21  正極
 22  負極

Claims (24)

  1.  正極活物質であって、
     リチウム複合酸化物
     を含み、
     前記リチウム複合酸化物は、
      単斜晶に属する結晶構造を有する第1の相、
      六方晶に属する結晶構造を有する第2の相、および
      立方晶に属する結晶構造を有する第3の相、
     を含む多相混合物であり、かつ
     以下の数式(I)が充足される、
     0.05≦積分強度比I(18°-20°)/I(43°-46°)≦0.99  (I)。
     ここで、
     積分強度比I(18°-20°)/I(43°-46°)は、積分強度I(43°-46°)に対する積分強度I(18°-20°)の比に等しく、
     積分強度I(43°-46°)は、前記リチウム複合酸化物のX線回析パターンにおいて、43°以上46°以下の回折角2θの範囲に存在する最大ピークである第1ピークの積分強度であり、かつ
     積分強度I(18°-20°)は、前記リチウム複合酸化物のX線回析パターンにおいて、18°以上20°以下の回折角2θの範囲に存在する最大ピークである第2ピークの積分強度である、
     正極活物質。
  2.  前記単斜晶は、空間群C2/mである、
     請求項1に記載の正極活物質。
  3.  前記六方晶は、空間群R-3mである、
     請求項1または2に記載の正極活物質。
  4.  前記立方晶は、空間群Fm-3m及び空間群Fd-3mからなる群から選択される少なくとも1種の空間群である、
     請求項1から3のいずれか一項に記載の正極活物質。
  5.  前記積分強度比I(18°-20°)/I(43°-46°)が0.11以上0.95以下である、
     請求項1から4のいずれか一項に記載の正極活物質。
  6.  前記積分強度比I(18°-20°)/I(43°-46°)は、0.35以上0.95以下である、
     請求項5に記載の正極活物質。
  7.  前記リチウム複合酸化物は、Mnを含有する、
     請求項1から6のいずれか一項に記載の正極活物質。
  8.  前記リチウム複合酸化物は、F、Cl、N、及びSからなる群より選択される少なくとも1つを含有する、
     請求項1から7のいずれか一項に記載の正極活物質。
  9.  前記リチウム複合酸化物は、Fを含有する、
     請求項8に記載の正極活物質。
  10.  前記リチウム複合酸化物は、以下の組成式(I)
      LiMeαβ (I)
     で表される平均組成を有する、
     請求項1から6のいずれか一項に記載の正極活物質。
     ここで、
     Meは、Mn、Co、Ni、Fe、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、P、及びAlからなる群より選択される少なくとも一つであり、
     Qは、F、Cl、N、及びSからなる群より選択される少なくとも1つであり、
     xの値は、1.05以上1.5以下であり、
     yの値は、0.6以上1.0以下であり、
     αの値は、1.2以上2.0以下であり、かつ、
     βの値は、0以上0.8以下である。
  11.  前記Meは、Mn、Co、及びNiからなる群より選択される少なくとも1つを含む、
     請求項10に記載の正極活物質。
  12.  前記Meは、Mnを含む、
     請求項11に記載の正極活物質。
  13.  Meに対するMnのモル比が、0.6以上である、
     請求項12に記載の正極活物質。
  14.  Qは、Fを含む、
     請求項10から13のいずれか一項に記載の正極活物質。
  15.  xの値は、1.166以上1.33以下であり、かつ
     yの値は、0.67以上0.834以下である、
     請求項10から14のいずれか一項に記載の正極活物質。
  16.  αの値は、1.2以上2.0未満であり、かつ
     βの値は、0よりも大きく0.8以下である、
     請求項10から15のいずれか一項に記載の正極活物質。
  17.  αの値は、1.33以上1.9以下であり、かつ
     βの値は、0.1以上0.67以下である、
     請求項16に記載の正極活物質。
  18.  (x/y)の値は、1.4以上2.0以下である、
     請求項10から17のいずれか一項に記載の正極活物質。
  19.  (α/β)の値は、2以上19以下である、
     請求項10から18のいずれか一項に記載の正極活物質。
  20.  前記リチウム複合酸化物を、主成分として含む、
     請求項1から19のいずれか一項に記載の正極活物質。
  21.  前記多相混合物は、前記第1の相、前記第2の相、および前記第3の相から構成される三相混合物である、
     請求項1から20のいずれか一項に記載の正極活物質。
  22.  請求項1から21のいずれか一項に記載の正極活物質を含む正極、
     負極、および
     電解質、
     を備える、
     電池。
  23.  請求項22に記載の電池であって、
     前記負極は、
    (i)リチウムイオンを吸蔵および放出可能な負極活物質、および
    (ii)材料であって、放電時にリチウム金属が当該材料から電解質に溶解し、かつ充電時に前記リチウム金属が当該材料に析出する材料
     からなる群から選択される少なくとも1つを含み、かつ
     前記電解質は、非水電解質である、
     電池。
  24.  請求項22に記載の電池であって、
     前記負極は、
    (i)リチウムイオンを吸蔵および放出可能な負極活物質、および
    (ii)材料であって、放電時にリチウム金属が当該材料から電解質に溶解し、かつ充電時に前記リチウム金属が当該材料に析出する材料
     からなる群から選択される少なくとも1つを含み、かつ
     前記電解質は、固体電解質である、
     電池。
PCT/JP2019/017894 2018-09-05 2019-04-26 正極活物質およびそれを備えた電池 WO2020049792A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018165568 2018-09-05
JP2018-165568 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020049792A1 true WO2020049792A1 (ja) 2020-03-12

Family

ID=69721526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017894 WO2020049792A1 (ja) 2018-09-05 2019-04-26 正極活物質およびそれを備えた電池

Country Status (1)

Country Link
WO (1) WO2020049792A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137758A1 (ja) * 2020-12-25 2022-06-30 パナソニックIpマネジメント株式会社 固体電解質材料および電池
WO2023188766A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063211A (ja) * 2006-03-20 2008-03-21 National Institute Of Advanced Industrial & Technology リチウムマンガン系複合酸化物およびその製造方法
JP2009274940A (ja) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology 陽イオン規則構造を有する単斜晶系リチウムマンガン系複合酸化物およびその製造方法
JP2013018660A (ja) * 2011-07-07 2013-01-31 Sharp Corp 複無機化合物系およびその利用、並びに、複無機化合物系の製造方法
JP2017027881A (ja) * 2015-07-27 2017-02-02 株式会社Gsユアサ 非水電解質電池用正極活物質

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063211A (ja) * 2006-03-20 2008-03-21 National Institute Of Advanced Industrial & Technology リチウムマンガン系複合酸化物およびその製造方法
JP2009274940A (ja) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology 陽イオン規則構造を有する単斜晶系リチウムマンガン系複合酸化物およびその製造方法
JP2013018660A (ja) * 2011-07-07 2013-01-31 Sharp Corp 複無機化合物系およびその利用、並びに、複無機化合物系の製造方法
JP2017027881A (ja) * 2015-07-27 2017-02-02 株式会社Gsユアサ 非水電解質電池用正極活物質

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137758A1 (ja) * 2020-12-25 2022-06-30 パナソニックIpマネジメント株式会社 固体電解質材料および電池
WO2023188766A1 (ja) * 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質

Similar Documents

Publication Publication Date Title
US11271200B2 (en) Positive-electrode active material containing lithium composite oxide, and battery including the same
US11605814B2 (en) Positive-electrode active material containing lithium composite oxide, and battery including the same
WO2018100792A1 (ja) 正極活物質、および、正極活物質を用いた電池
US11233237B2 (en) Positive electrode active material containing lithium composite oxide and battery including the same
JPWO2018092359A1 (ja) 電池用正極活物質、および、電池
WO2020049803A1 (ja) 正極活物質およびそれを備えた電池
WO2020044652A1 (ja) 正極活物質およびそれを備えた電池
JPWO2018163518A1 (ja) 正極活物質、および、電池
US11955622B2 (en) Positive electrode active material and battery comprising the same
JPWO2018198410A1 (ja) 正極活物質、および、電池
CN112005409B (zh) 正极活性物质及具备该正极活性物质的电池
JP2020043052A (ja) 正極活物質およびそれを備えた電池
WO2020049794A1 (ja) 正極活物質およびそれを備えた電池
WO2020049793A1 (ja) 正極活物質およびそれを備えた電池
JP7142302B2 (ja) 正極活物質およびそれを備えた電池
WO2020049792A1 (ja) 正極活物質およびそれを備えた電池
WO2020012739A1 (ja) 正極活物質およびそれを備えた電池
US12080872B2 (en) Positive electrode active material and battery comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19856883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP