WO2022062677A1 - 一种三元单晶正极材料及其制备方法和应用 - Google Patents

一种三元单晶正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022062677A1
WO2022062677A1 PCT/CN2021/110332 CN2021110332W WO2022062677A1 WO 2022062677 A1 WO2022062677 A1 WO 2022062677A1 CN 2021110332 W CN2021110332 W CN 2021110332W WO 2022062677 A1 WO2022062677 A1 WO 2022062677A1
Authority
WO
WIPO (PCT)
Prior art keywords
ternary
single crystal
positive electrode
sintering
preparation
Prior art date
Application number
PCT/CN2021/110332
Other languages
English (en)
French (fr)
Inventor
李飞龙
阮丁山
韩帅
马文柱
王雀乐
方庆城
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to EP21871054.9A priority Critical patent/EP4202089A4/en
Priority to US18/245,886 priority patent/US11888145B2/en
Publication of WO2022062677A1 publication Critical patent/WO2022062677A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of positive electrode materials for lithium ion batteries, in particular to a ternary single crystal positive electrode material and a preparation method and application thereof.
  • ternary cathode materials with higher Ni content have become the focus of research. People generally call this ternary cathode material with a Ni content greater than 0.6. It is a "high-nickel ternary cathode material". This material has a relatively high content of Ni, and its energy density can meet the short-term market demand to a certain extent, so as to alleviate the anxiety of battery life of electric vehicles, and because the content of cobalt is relatively low, it has better performance cost advantage. In the production of ternary cathode materials, some by-products will inevitably appear, for example, 1-10% of micropowder will be generated in the production process of mechanical grinding.
  • the output of 1 to 10% of the micropowder is quite considerable.
  • the specifications of the micropowder itself are much smaller than the normal material.
  • the collection speed in the production process is slow, and the packaging is not timely, resulting in a particularly high residual alkali content in the product, especially the Li 2 CO 3 content is particularly high, and the high Li 2 CO 3 content will cause water content.
  • Exceeding the standard will cause gas production in the battery cycle process and affect the safety performance of the product. If it is directly scrapped, it will cause greater economic damage and environmental pollution.
  • micropowder In response to the country's call for cost reduction and efficiency improvement, energy conservation and emission reduction, promoting cleaner production, developing a circular economy, accelerating energy-saving technological transformation, and developing a recycling process for by-products is imperative.
  • each batch of micropowder has different physical and chemical properties due to different processes or different processes, especially the residual alkali content and deduction capacity. Therefore, it is necessary to develop a recovery process suitable for most micropowders.
  • the research shows that with the increase of the number of cycles of polycrystalline ternary cathode materials, due to the different crystal plane orientation and slip plane of the primary particles in the secondary sphere, the anisotropy of lattice expansion and contraction between the grains leads to its In the later stage of the cycle, the secondary particles may be broken and microcracks will be generated between the primary particles, which will increase the contact area between the material and the electrolyte, aggravate the side reaction with the electrolyte, and cause serious capacity fading.
  • Single-crystal materials can avoid this situation and maintain structural integrity during repeated cycling, thereby improving cycling stability.
  • the low specific surface area and excellent structural stability of the single crystal material work together to improve the cycle stability and maintain the original morphology of the particles after long cycles.
  • the surface properties of the ternary material can be improved by coating and sintering, the surface transfer resistance can be reduced, the ionic conductivity can be improved, the water absorption performance of the material can be reduced, and the side reaction between the material and the electrolyte can be reduced. Therefore, there is an urgent need to develop a ternary single crystal cathode material with few side reactions and low resistivity and a preparation method thereof.
  • the purpose of the present invention is to provide a ternary single crystal positive electrode material and a preparation method thereof.
  • the raw material is ternary polycrystalline micropowder, which improves the material utilization rate and increases the product benefit.
  • the prepared ternary single crystal positive electrode material can not only reduce the lithium ion
  • the diffusion length of the ternary material can provide a channel for the rapid transport of lithium ions, and it can also improve the capacity retention rate of the material under high charge cut-off voltage; the surface properties of the ternary material can be improved by coating and sintering, reducing the surface transfer resistance, and improving the ionic conductivity. Reducing the water absorption performance of the material can reduce the side reaction between the material and the electrolyte.
  • the present invention adopts the following technical solutions:
  • a preparation method of a ternary single crystal positive electrode material comprising the following steps:
  • the intermediate is pulverized by air flow to obtain a single crystal material, washed with water, centrifuged, and dried to obtain a material with a residual alkali content lower than 1500ppm;
  • the coating agent is a metal oxide, hydroxide, salt or non-metallic oxide.
  • metal oxides, fluorides or acids and salts corresponding to non-metals the metal being Al, Ce, Y, Zn, Si, Cr, Nb, Mg, La, Sr, Zr, Sn, Na , at least one of Ca, Sb, V, and W, and the non-metal is at least one of B, P, F, C, and S, but does not include aluminum hydroxide.
  • the single-crystal nickel-cobalt-manganese ternary cathode material LiNi x Co y Mn z O 2 can not only reduce the diffusion length of lithium ions and provide a channel for fast lithium ion transport, but also improve the capacity retention rate of the material at high charge cut-off voltages. And it can effectively improve the cycle, flatulence, capacity recovery and other problems of the material at high temperature, thereby effectively improving the electrochemical performance of the material.
  • the single-crystal nickel-cobalt-manganese ternary positive electrode material has high mechanical strength, and the large compaction density makes the material less brittle during the electrode compaction process.
  • the specific surface area is small, which can greatly reduce the contact area between the material and the electrolyte. , which can effectively suppress the occurrence of side reactions during the cycling process and enhance the structural stability of the material, thereby significantly improving the battery cycle life. Therefore, the preparation of ternary polycrystalline micropowder into ternary single crystal positive electrode material through a new process can not only recycle by-products, improve material utilization, increase product efficiency, but also improve product cycle performance, safety performance, electrochemical performance, Produces single crystal products with higher energy density. Among them, the polycrystalline material is opened into small single crystal particles by the jet crushing equipment to improve the electrochemical performance of the material.
  • washing and centrifugal drying process to remove excess residual alkali can improve the processing performance and safety performance of the material; finally, coating and sintering can improve the three The surface properties of the element material, reduce the surface transfer resistance, improve the ionic conductivity, reduce the water absorption performance of the material, and reduce the side reaction between the material and the electrolyte.
  • the ternary polycrystalline micropowder is an unqualified product produced by mechanical grinding of the ternary polycrystalline material during pulverization, and is a by-product produced by the ternary polycrystalline material during the pulverization process.
  • the size of the polycrystalline micropowder is 2.0-4.0 ⁇ m.
  • the equipment used for mixing is a coulter mixer, a screw mixer, a gravity-free mixer, a V-type mixer, a double helix cone mixer, a three-dimensional mixer, and a powder mixer. , a high-speed mixer or a ball mill.
  • the residual LiOH , Li2CO3 and doped additives in the micropowder are more uniform, and the particle size uniformity of the micropowder is poor.
  • the mixing can make the sintering raw materials uniform, which is conducive to the growth of the primary particles of the micropowder to be full and round at high temperature. Small particles of uniform size.
  • the mixing time is 0.5-4h.
  • the temperature of the first sintering is 600°C-900°C, and the time is 4-30 h.
  • the heating rate is 3-5°C/min; the cooling rate is 2-5°C/min.
  • the atmosphere of the first sintering is one of air or oxygen.
  • the ventilation rate of the first sintering is 5-15 m3/h.
  • the equipment used in the pulverizing process is a fluidized bed jet mill;
  • the fluid bed jet mill includes an induced draft fan, a grinding chamber, a classification wheel, and a cyclone separator.
  • the classification frequency of the air pulverization is 60-150Hz
  • the induced wind pressure is -15KPa-0KPa
  • the air pressure is 0.20-0.50KPa
  • the grinding bottom material is 2-10kg.
  • the particle size requirements of the single crystal material are as follows: D v 50 is 2.0-4.0 ⁇ m, and D v 99 is ⁇ 10 ⁇ m.
  • the mass ratio of the water in the washing process and the single-feed material is (0.5-3.0): 1; the rotating speed of the washing is 150-450rpm; the time of the washing is 1 -30min.
  • the rotational speed of the centrifugation is 30-80 Hz; the centrifugation time is 30-60 min.
  • the drying temperature is 60°C-200°C; the drying time is 4-10 h.
  • the temperature of the second sintering is 200°C-400°C, and the time of the second sintering is 4-20h.
  • the atmosphere of the second sintering is one of air or oxygen.
  • the ventilation rate of the second sintering is 5-15m3/h.
  • the volume concentration of the oxygen atmosphere is 50-99.9%.
  • the heating rate is 3-5°C/min; the cooling rate is 2-5°C/min.
  • the chemical formula of the ternary single crystal cathode material is LiNi 0.8 Co 0.1 Mn 0.1 BO 2 , LiNi 0.6 Co 0.2 Mn 0.2 BO 2 , and LiNi 0.8 Co 0.1 Mn 0.1 SnO 2 .
  • the resistivity of the ternary single crystal positive electrode material is 450-650 ⁇ cm
  • the first discharge specific capacity is 200-206 mAh/g
  • the capacity retention rate after 50 cycles is greater than 96%
  • the compaction density is 3.3-3.5 g/cm 3 .
  • the specific capacity was measured at a voltage of 4.25V and a current of 0.1C.
  • the present invention also provides a lithium ion battery, comprising the ternary single crystal positive electrode material.
  • the polycrystalline material is opened into small single crystal particles by using an air-jet pulverizing device, the electrochemical performance of the material is improved, the energy density of the material is improved, and the excess residual alkali is washed away by the washing and centrifugal drying process, which effectively solves the problem of gas production in the battery cycle process. problems, and the homogenate coating process forms a "jelly" that improves the material's processability and cycle stability.
  • the ternary polycrystalline micropowder is prepared into a ternary single crystal positive electrode material by the preparation method of the present invention, so as to improve the utilization rate of the material and increase the product benefit.
  • the single crystal nickel-cobalt-manganese ternary cathode material LiNi x Co y Mn z MO 2 of the present invention can not only reduce the diffusion length of lithium ions, provide a channel for fast lithium ion transmission, but also improve the material’s high charge cut-off voltage
  • the capacity retention rate of the ternary material can be improved by coating and sintering.
  • the surface properties of the ternary material can be improved, the surface transfer resistance can be reduced, the ionic conductivity can be improved, and the water absorption performance of the material can be reduced, which can reduce the side reaction between the material and the electrolyte.
  • Fig. 1 is the SEM image of ternary polycrystalline micropowder raw material
  • Example 2 is the XRD pattern of the ternary single crystal positive electrode material prepared in Example 1;
  • Example 3 is a SEM image of the ternary single crystal positive electrode material prepared in Example 1;
  • Example 4 is a SEM image of the ternary single crystal positive electrode material prepared in Example 2;
  • FIG. 7 is a SEM image of the ternary single crystal cathode material prepared in Comparative Example 3.
  • FIG. 7 is a SEM image of the ternary single crystal cathode material prepared in Comparative Example 3.
  • the conventional conditions or the conditions suggested by the manufacturer are used.
  • the raw materials, reagents, etc., which are not specified by the manufacturer, are all conventional products that can be purchased from the market.
  • a ternary single crystal positive electrode material whose chemical formula is LiNi 0.8 Co 0.1 Mn 0.1 BO 2 .
  • a preparation method of a ternary single crystal positive electrode material comprising the following steps:
  • the material after washing is dry-coated, and the additive used in the coating is H 3 BO 3 (wherein the content of B is 1500 ppm), and at an oxygen pressure of 0.2 MPa, the volume concentration of the oxygen atmosphere is 50 ⁇ 99.9% condition
  • the heating rate was 3 °C/min, the temperature was raised to 300 °C, the coating was sintered, the temperature was continued to rise to 340 °C, the heating rate was 1 °C/min, the temperature was maintained for 10 h, and the ternary single crystal cathode material LiNi was obtained.
  • 0.8 Co 0.1 Mn 0.1 BO 2 was obtained.
  • the ternary single crystal positive electrode material prepared in Example 1, the conductive agent SP and the binder PVDF were mixed in a ratio of 18:1:1 (total mass 20g), and then 20g of NMP organic solvent solution was added to obtain a mixed solution.
  • the liquid was stirred to obtain a slurry with a thickness of 200 ⁇ m, which was evenly spread on 8 ⁇ m aluminum foil, dried in a vacuum drying oven at 120 ° C for 4 hours, and then the dried pole piece was compacted on a 30 T roller press, and finally cut into A circular positive plate with a diameter of 14mm, the mass of the active material in the disc is about 14.85g, the cut positive plate, electrolyte and separator are assembled into a button battery, and the electrochemical performance of the battery is tested after static, and the current is 0.1C
  • the specific capacity of the first discharge was 201.1mAh/g, and the first charge-discharge efficiency was 91.9%. Under the current condition of 0.1C, the specific capacity remained at 195.3mAh/g
  • a ternary single crystal positive electrode material whose chemical formula is LiNi 0.8 Co 0.1 Mn 0.1 BO 2 .
  • a preparation method of a ternary single crystal positive electrode material comprising the following steps:
  • the material after washing is carried out dry coating, and the additive used for coating is H 3 BO 3 (wherein the content of B is 1500ppm), at the air pressure of 0.2MPa, the heating rate is 3° C./min, and the temperature is raised to 300° C. , carry out cladding and sintering, continue to heat up to 340 °C, the heating rate is 1 °C/min, hold for 10 h, and naturally cool to room temperature to obtain a ternary single crystal cathode material LiNi 0.8 Co 0.1 Mn 0.1 BO 2 .
  • the positive electrode material prepared in Example 2 the conductive agent SP and the binder PVDF were mixed in a ratio of 18:1:1 (total mass 20g), and then 20g of NMP organic solvent solution was added to obtain a mixed solution, and the mixed solution was stirred to obtain The slurry was evenly spread on 8 ⁇ m aluminum foil with a thickness of 200 ⁇ m, dried in a vacuum drying oven at 120 ° C for 4 h, and then the dried pole piece was compacted on a 30 T roller press, and finally cut into a circle with a diameter of 14 mm.
  • the active material in the disc is about 14.85g.
  • the cut positive electrode, electrolyte and separator are assembled into a button battery.
  • the electrochemical performance of the battery is tested, and the first discharge is tested at a current of 0.1C.
  • the specific capacity is 200.4mAh/g, and the first charge-discharge efficiency is 90.8%; the specific capacity remains at 193.7mAh/g for 50 cycles under the current condition of 0.1C, and the capacity retention rate for the 50th cycle is 96.68%.
  • Comparative Example 1 The steps of Comparative Example 1 are almost the same as those of Example 1, except that step (1) is changed to the following step (1).
  • Comparative Example 2 The steps of Comparative Example 2 are almost the same as those of Example 1, except that the conditions of step (2) are changed to the following step (2) process.
  • Comparative Example 3 The steps of Comparative Example 3 are almost the same as those of Example 1, except that the condition of step (3) is changed to the following step (3) process.
  • the material after washing is carried out dry coating, and the additive used in the coating is Al(OH) 3 (wherein the content of Al is 1500ppm), under the air pressure of 0.2MPa, the coating is sintered, and the temperature is raised to 300 ° C, The heating rate is 3 °C/min, the temperature is continued to rise to 340 °C, the heating rate is 1 °C/min, the temperature is maintained for 10 h, and then naturally cooled to room temperature to obtain a ternary single crystal cathode material.
  • the additive used in the coating is Al(OH) 3 (wherein the content of Al is 1500ppm)
  • Figure 1 is the SEM image of the recovered ternary polycrystalline micropowder raw material. It can be seen from the figure that there is a lot of residual lithium on the surface of the polycrystalline micropowder.
  • the micropowder particles are smaller than the normal material, and the shape and size are not uniform and the distribution is not uniform, indicating that the premix is re-sintered necessity.
  • Figure 2 is the XRD pattern of the ternary single crystal cathode material prepared in Example 1, in which the (006)/(102) and (108)/(110) crystal plane peaks are clearly separated, indicating that the ternary single crystal cathode material has higher The crystallinity and layered structure are good; the crystal plane peak intensity ratio of (003)/(104) in XRD is greater than 1.42, indicating that the ternary single crystal cathode material maintains a good crystal structure and low cation mixing, which is conducive to improving the Ion utilization.
  • Fig. 3 is the SEM image of the oxygen sintered ternary single crystal positive electrode material prepared in Example 1.
  • Fig. 4 is the SEM image of the air-sintered ternary single crystal cathode material prepared in Example 2, the surface is relatively smooth, the particle size is relatively uniform, and the agglomeration is less;
  • Figure 5 is the ternary single crystal obtained by a short sintering holding time For the positive electrode material, the primary particles are small, and there are many agglomerates, so the capacity cannot be exerted;
  • Figure 6 shows the ternary single crystal material prepared with relatively low washing strength.
  • FIG. 7 shows the ternary cathode material obtained by coating and sintering with different coating additives (Al(OH) 3 ). The surface is relatively smooth and the coating effect is good.
  • Table 1 is a comparison of the electrochemical properties and physical properties of the ternary cathode materials of Examples 1-2 and Comparative Examples 1-3.
  • the raw material data shows that due to improper storage of ternary polycrystalline micropowder, the residual lithium is high, the powder resistivity is high, and the corresponding charge capacity is low.
  • Example 1 Under the condition of voltage 4.25V and current 0.1C, the first discharge specific capacity is 201.1mAh/g, and the first charge-discharge efficiency is 91.9%; after 50 cycles, the discharge specific capacity is 195.3mAh/g, and the capacity retention rate is 97.11 %, which is obviously better than the electrochemical performance of the ternary cathode material of Comparative Examples 1-3, and its powder resistivity is greatly reduced compared to the raw material, and is also relatively low compared to the Comparative Example.
  • Example 2 Under the condition of voltage 4.25V and current 0.1C, the first discharge specific capacity is 200.4mAh/g, and the first charge-discharge efficiency is 90.8%; after 50 cycles, the discharge specific capacity is 193.7mAh/g, and the capacity retention rate is 96.68 %, the performance is slightly worse than that of Example 1, but compared with Comparative Examples 1-3, the electrochemical performance is good, and the powder resistivity is low. In Comparative Example 1, due to the short holding time, the particles did not grow up, and there were many agglomerations, and the corresponding deduction capacity was low and the powder resistivity price was high, and the capacity retention rate was low. Comparative Example 2 has weaker washing strength than Example 1, more weak agglomeration, lower buckling capacity, and slightly higher powder resistivity. In Comparative Example 3, different coating additives were used, and the obtained single crystal ternary cathode material powder had high resistivity, which affected its electrochemical performance.
  • the preparation of ternary polycrystalline micropowder into ternary single crystal positive electrode material by the method of the present invention can not only recycle by-products, improve material utilization rate, increase product benefit, but also improve product cycle performance, safety performance, electrochemical performance performance, resulting in a single crystal ternary cathode material with higher energy density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inert Electrodes (AREA)

Abstract

一种三元单晶正极材料及其制备方法和应用,该制备方法包括以下步骤:将三元多晶微粉混合,升温,进行第一次烧结,降温,得到中间体;将中间体进行气流粉碎,得到单晶材料,水洗,离心,干燥,得到残碱含量低于1500ppm的物料;将包覆剂加入物料中,升温,进行第二次烧结,降温,即得三元单晶正极材料。利用气流粉碎设备将多晶物料打开成单晶小颗粒,提高物料电化学性能,提高材料的能量密度。

Description

一种三元单晶正极材料及其制备方法和应用 技术领域
本发明涉及锂离子电池正极材料领域,特别涉及一种三元单晶正极材料及其制备方法和应用。
背景技术
随着电动汽车对续航里程的要求越来越高,更高的Ni含量的三元正极材料(如NCM811)成为了人们研究的重点,人们普遍把这种Ni含量大于0.6的三元正极材料称为“高镍三元正极材料”,这种材料Ni的含量比较高,能量密度能够在一定程度上满足短期市场需求,缓解电动汽车的续航焦虑,并且因为钴的含量比较低,故而具有较好的成本优势。在三元正极材料生产中,不可避免的会出现一些副产品,例如机械磨粉碎生产过程中会产生1~10%的微粉。在工业化的大批量生产过程中,1~10%的微粉产出量是相当可观的。但是微粉自身规格远小于正常料,加上生产过程中收集速度慢,包装不及时导致产品的残碱含量特别高,尤其是Li 2CO 3含量特别高,Li 2CO 3含量高会造成水含量超标,致使电池循环过程产气,影响产品的安全性能,如果直接报废将造成较大的经济损伤和环境污染。为了响应国家降本提效,节能减排的号召,推动清洁生产,发展循环经济,加快节能技术改造,开发副产品的回收利用工艺志在必行。但是每一批微粉由于工艺不同或过程处理不同,理化性质存在差异,尤其是残碱含量及扣电容量均存在较大的差异,因此需要开发一种适用于绝大部分微粉的回收工艺。
随着新能源行业的不断发展,人们对动力电池的要求也越来越高,随之而来的三元材料中镍含量的提升,但由此带来的正极材料稳定性问题、电解液匹配问题、大电流充电温升过高等引发的电池失效也越来越受到人们的关注,因此,单晶材料应运而生,不仅仅增强了正极材料的稳定性,也可以将整个体系的电压提升到一个新的高度,为更高能量密度的需求提出了一个解决方案。
研究表明,多晶三元正极材料随着循环次数的增加,由于二次球中的一次颗粒有着不同的晶面取向和滑移面,晶粒间晶格膨胀和收缩的各向异性,导致其在循环后期可能会出现二次颗粒的破碎,并在一次颗粒间产生微裂纹,这将使材料与电解液的接触面积增大,加剧与电解液的副反应,发生严重的容量衰减。而单晶材料则可避免这 种情况的发生,在反复的循环过程中保持结构的完整性,从而提升循环稳定性。单晶材料其较低的比表面积和优异的结构稳定性共同作用,提升了循环稳定性,在经过长循环后仍能保持颗粒原本的形貌。
目前通过包覆烧结可以改善三元材料的表面性质,降低表面转移电阻,提高离子导电率还降低材料的吸水性能,减少材料与电解液的副反应。因此,亟需开发一种副反应少且电阻率小的三元单晶正极材料及其制备方法。
发明内容
本发明的目的在于提供一种三元单晶正极材料及其制备方法,原料为三元多晶微粉,提高材料利用率,增加产品效益,制备的三元单晶正极材料不仅能减小锂离子的扩散长度,提供锂离子快速传输的通道,还能提高材料在高充电截止电压下的容量保持率;通过包覆烧结可以改善三元材料的表面性质,降低表面转移电阻,提高离子导电率还降低材料的吸水性能,可以减少材料与电解液的副反应。
为实现上述目的,本发明采用以下技术方案:
一种三元单晶正极材料的制备方法,包括以下步骤:
(1)将三元多晶微粉混合,升温,进行第一次烧结,降温,得到中间体;
(2)将中间体进行气流粉碎,得到单晶材料,水洗,离心,干燥,得到残碱含量低于1500ppm的物料;
(3)将包覆剂加入物料中,升温,进行第二次烧结,降温,即得所述三元单晶正极材料;所述包覆剂为金属的氧化物、氢氧化物、盐或非金属的氧化物、氟化物或非金属对应的酸、盐中的至少一种,所述金属为Al、Ce、Y、Zn、Si、Cr、Nb、Mg、La、Sr、Zr、Sn、Na、Ca、Sb、V、W中的至少一种,所述非金属为B、P、F、C、S中的至少一种,但不包括氢氧化铝。
单晶镍钴锰三元正极材料LiNi xCo yMn zO 2不仅能减小锂离子的扩散长度,提供锂离子快速传输的通道,还能提高材料在高充电截止电压下的容量保持率,并且可有效改善材料在高温下的循环、胀气、容量恢复等问题,从而有效提高材料的电化学性能。单晶镍钴锰三元正极材料机械强度高,较大的压实密度使得材料在电极压实过程中不易碎,同时比表面积较小,可大幅度地减小材料与电解液间的接触面积,有效抑制循环过程中副反应的发生,使材料的结构稳定性增强,从而显著提高电池循环寿命。因此,将三元多晶的微粉通过新工艺制备成三元单晶正极材料不仅可以回收利用副产品,提高材料利用率,增加产品效益,还可以改善产品的循环性能、安全性能、电化 学性能,生成更高能量密度的单晶产品。其中利用气流粉碎设备将多晶物料打开成单晶小颗粒,提高物料电化学性能,其次水洗离心干燥工艺洗去多余残碱可以改善材料的加工性能和安全性能;最后通过包覆烧结可以改善三元材料的表面性质,降低表面转移电阻,提高离子导电率还降低材料的吸水性能,减少材料与电解液的副反应。
优选地,步骤(1)中,所述三元多晶微粉为三元多晶材料在粉碎中机械磨产生的不合格品,是三元多晶材料在粉碎过程中产生的副产物,三元多晶微粉的尺寸为2.0-4.0μm。
优选地,步骤(1)中,所述三元多晶微粉的化学式为LiNi xCo yMn zO 2,其中0.5≤x≤0.95,0≤y≤0.4,0.05≤z≤0.4,x+y+z=1。
优选地,步骤(1)中,所述混合使用的设备为犁刀混合机、螺旋混合机、无重力混合机、V型混合机、双螺旋锥形混合机、三维混合机、粉体混合机、高速混合机或球磨机中的一种。通过混合使微粉中残余的LiOH,Li 2CO 3以及掺杂的添加剂更加均匀,而且微粉的粒度均匀性较差,混合可以使得烧结原料均匀,利于微粉的一次粒子在高温烧结长成饱满圆润,大小均匀的小颗粒。
优选地,步骤(1)中,所述混合的时间为0.5-4h。
优选地,步骤(1)中,所述第一次烧结的温度为600℃-900℃,时间为4-30h。
优选地,步骤(1)中,所述升温的速率为3-5℃/min;所述降温的速率为2-5℃/min。
优选地,步骤(1)中,所述第一次烧结的气氛为空气或氧气中的一种。
优选地,步骤(1)中,所述第一次烧结的通气量为5-15m3/h。
优选地,步骤(2)中,所述粉碎的过程中使用的设备为流化床式气流磨;所述流化床式气流磨包括引风机、研磨腔、分级轮、旋风分离器。
更优选地,所述气流粉碎的分级频率为60-150Hz,引风风压为-15KPa-0KPa,气压为0.20-0.50KPa,磨底料为2-10kg。
优选地,步骤(2)中,所述单晶材料的粒度要求为:D v50为2.0-4.0μm,D v99为<10μm。
优选地,步骤(2)中,所述水洗过程中的水和单进材料(水料比)的质量比为(0.5-3.0):1;水洗的转速为150-450rpm;水洗的时间为1-30min。
优选地,步骤(2)中,所述离心的转速为30-80Hz;离心的时间为30-60min。
优选地,步骤(2)中,所述干燥的温度为60℃-200℃;干燥的时间为4-10h。
优先地,步骤(3)中,所述第二次烧结的温度为200℃-400℃,第二次烧结的时间为4-20h。
优先地,步骤(3)中,所述第二次烧结的气氛为空气或氧气中的一种。
优先地,步骤(3)中,所述第二次烧结的通气量为5-15m3/h。
优先地,步骤(3)中,所述氧气气氛的体积浓度为50-99.9%。
优选地,步骤(3)中,所述升温的速率为3-5℃/min;所述降温的速率为2-5℃/min。
一种三元单晶正极材料,其化学式为LiNi xCo yMn zMO 2,所述M为Al、Ce、Y、Zn、Si、W、B、Cr、Nb、Mg、V、P、La、Sr、Zr、Sn、F、C、Na、Ca、S、Sb中的至少一种,其中0.5≤x≤0.95,0≤y≤0.4,0.05≤z≤0.4,且x+y+z=1。
优选地,所述三元单晶正极材料的化学式为LiNi 0.8Co 0.1Mn 0.1BO 2、LiNi 0.6Co 0.2Mn 0.2BO 2、LiNi 0.8Co 0.1Mn 0.1SnO 2
优选地,所述三元单晶正极材料的电阻率为450-650Ω·cm,首次放电比容量为200~206mAh/g,50圈循环后容量保持率大于96%,压实密度为3.3~3.5g/cm 3。比容量是在电压为4.25V,0.1C的电流下测定的。
本发明还提供一种锂离子电池,包括所述的三元单晶正极材料。
本发明的优点:
(1)本发明利用气流粉碎设备将多晶物料打开成单晶小颗粒,提高物料电化学性能,提高材料的能量密度,水洗离心干燥工艺洗去多余残碱,有效解决了电池循环过程中产气的问题,以及匀浆涂布过程形成“果冻”从而改善材料的加工性能和循环稳定性。
(2)将三元多晶的微粉通过本发明的制备方法制备成三元单晶正极材料,提高材料利用率,增加产品效益。
(3)本发明的单晶镍钴锰三元正极材料LiNi xCo yMn zMO 2不仅能减小锂离子的扩散长度,提供锂离子快速传输的通道,还能提高材料在高充电截止电压下的容量保持率;通过包覆烧结可以改善三元材料的表面性质,降低表面转移电阻,提高离子导电率还降低材料的吸水性能,可以减少材料与电解液的副反应。
附图说明
图1是三元多晶微粉原料的SEM图;
图2是实施例1制备的三元单晶正极材料的XRD图;
图3是实施例1制备的三元单晶正极材料的SEM图;
图4是实施例2制备的三元单晶正极材料的SEM图;
图5是对比例1制备的三元单晶正极材料的SEM图;
图6是对比例2制备的三元单晶正极材料的SEM图;
图7是对比例3制备的三元单晶正极材料的SEM图。
具体实施方式
为了对本发明进行深入的理解,下面结合实例对本发明优选实验方案进行描述,以进一步的说明本发明的特点和优点,任何不偏离本发明主旨的变化或者改变能够为本领域的技术人员理解,本发明的保护范围由所属权利要求范围确定。
本发明实施例中未注明具体条件者,按照常规条件或者制造商建议的条件进行。所用未注明生产厂商者的原料、试剂等,均为可以通过市售购买获得的常规产品。
实施例1
一种三元单晶正极材料,其化学式为LiNi 0.8Co 0.1Mn 0.1BO 2
一种三元单晶正极材料的制备方法,包括以下步骤:
(1)将三元多晶微粉通过犁刀混混合1h,得到微粉原料,将微粉原料放进箱式炉中,在0.2MPa的氧气压力,氧气气氛的体积浓度为50~99.9%的条件下,升温速率为3℃/min,升温至820℃,进行一次烧结,保温12h,降温至500℃,降温速度为2℃/min,自然冷却至室温得到中间体;
(2)将中间体通过流化床式气流磨粉碎得到粒径分布D50=2.6-3.4μm,D99<10.0μm的单晶材料,将单晶材料进行水洗离心干燥,纯水与物料的质量比为2.0:1,水洗时间为20min,然后将水洗后物料进行130℃真空烘干,得到残碱含量低于1500ppm的物料;
(3)将水洗后物料进行干法包覆,包覆所用添加剂为H 3BO 3(其中B的含量为1500ppm),在0.2MPa的氧气压力,氧气气氛的体积浓度为50~99.9%的条件下,升温速率为3℃/min,升温至300℃,进行包覆烧结,继续升温至340℃,升温速率为1℃/min,保温10h,自然冷却至室温,得到三元单晶正极材料LiNi 0.8Co 0.1Mn 0.1BO 2
将实施例1制备的三元单晶正极材料、导电剂SP和粘结剂PVDF以18:1:1的比例(总质量20g)混合后加入20g的NMP有机溶剂溶液,得到混合液,将混合液搅拌,得到料浆以200μm的厚度均匀地涂抹在8μm的铝箔上,在120℃的真空干燥箱 中干燥4h,随后将干燥的极片在30T的辊压机上压实,最后剪切成直径14mm的圆形正极片,圆片中的活性物质质量大约为14.85g,将切好的正极片、电解液和隔膜组装成纽扣电池,静止后测试电池的电化学性能,在0.1C的电流下测试首次放电比容量为201.1mAh/g,首次充放电效率为91.9%;在0.1C的电流条件下50圈比容量保持在195.3mAh/g,第50圈容量保持率为97.11%。
实施例2
一种三元单晶正极材料,其化学式为LiNi 0.8Co 0.1Mn 0.1BO 2
一种三元单晶正极材料的制备方法,包括以下步骤:
(1)将三元多晶微粉通过犁刀混混合1h,得到微粉原料,将微粉原料放进箱式炉中,在0.2MPa的空气压力下,升温速率为3℃/min,升温至820℃,进行一次烧结,保温12h,降温至500℃,降温速度为2℃/min,自然冷却至室温得到中间体;
(2)将中间体通过流化床式气流磨粉碎得到粒径分布D50=2.6-3.4μm,D99<10.0μm的单晶材料,将单晶材料进行水洗离心干燥,纯水与物料的质量比为2.0:1,水洗时间为20min,然后将水洗后物料进行130℃真空烘干,得到残碱含量低于1500ppm的物料;
(3)将水洗后物料进行干法包覆,包覆所用添加剂为H 3BO 3(其中B的含量为1500ppm),在0.2MPa的空气压力,升温速率为3℃/min,升温至300℃,进行包覆烧结,继续升温至340℃,升温速率为1℃/min,保温10h,自然冷却至室温,得到三元单晶正极材料LiNi 0.8Co 0.1Mn 0.1BO 2
将实施例2制备的正极材料、导电剂SP和粘结剂PVDF以18:1:1的比例(总质量20g)混合后加入20g的NMP有机溶剂溶液,得到混合液,将混合液搅拌,得到料浆以200μm的厚度均匀地涂抹在8μm的铝箔上,在120℃的真空干燥箱中干燥4h,随后将干燥的极片在30T的辊压机上压实,最后剪切成直径14mm的圆形正极片,圆片中的活性物质质量大约为14.85g,将切好的正极片、电解液和隔膜组装成纽扣电池,静止后测试电池的电化学性能,在0.1C的电流下测试首次放电比容量为200.4mAh/g,首次充放电效率为90.8%;在0.1C的电流条件下50圈比容量保持在193.7mAh/g,第50圈容量保持率为96.68%。
对比例1
对比例1步骤与实施例1几乎相同,只是步骤(1)改为下面步骤(1)过程。
(1)将三元多晶微粉通过犁刀混混合1h,得到微粉原料,将微粉原料放进箱式 炉中,在0.2MPa的氧气压力,氧气气氛的体积浓度为50~99.9%的条件下,进行一次烧结,升温至820℃,升温速率为3℃/min,保温3h,降温至500℃,降温速度为2℃/min,继续自然冷却至室温得到中间品,再经过气流粉碎、过筛、水洗离心干燥和包覆烧结后得到三元单晶正极材料,形貌如图5所示。
对比例2
对比实例2步骤与实施例1几乎相同,只是步骤(2)条件改为改为下面步骤(2)过程。
(2)将微粉单晶材料进行水洗离心干燥,纯水与微粉单晶材料的质量比为1.0,水洗时间为1min,然后将水洗后物料进行130℃真空烘干,得到残碱含量较低的物料,再经过包覆烧结后得到三元单晶正极材料,形貌如图6所示。
对比例3
对比实例3步骤与实施例1几乎相同,只是步骤(3)条件改为改为下面步骤(3)过程。
(3)将水洗后物料进行干法包覆,包覆所用添加剂为Al(OH) 3(其中Al的含量为1500ppm),在0.2MPa的空气压力下,进行包覆烧结,升温至300℃,升温速率为3℃/min,继续升温至340℃,升温速率为1℃/min,保温10h,然后自然冷却至室温得到三元单晶正极材料。
图1为回收的三元多晶微粉原料的SEM图,图中可以看出多晶微粉表面残余锂较多,微粉颗粒较正常物料小,形状大小不均一且分布不均匀,说明预混再烧结的必要性。图2为实施例1制备的三元单晶正极材料的XRD图,其中(006)/(102)和(108)/(110)晶面峰分离明显,说明三元单晶正极材料具有较高的结晶度及层状结构好;XRD中(003)/(104)的晶面峰强度比大于1.42,说明三元单晶正极材料保持着较好的晶体结构以及阳离子混排低,有利于提高离子利用率。图3为实施例1制备的氧气烧结的三元单晶正极材料的SEM图,从图中可以看出三元单晶正极材料颗粒表面光滑,大部分颗粒尺寸粒度在2.0~4μm之间;图4为实施例2制备的空气烧结的三元单晶正极材料的SEM图,表面相对光滑,颗粒大小较为均匀,类团聚较少;图5为一次烧结保温时间较短而得到的三元单晶正极材料,一次颗粒较小,且类团聚较多,容量没法发挥出来;图6为水洗强度相对较低而制备出来的三元单晶材料,水洗强度低,部分弱团聚没有打开,表面相对均匀光滑;图7为不同包覆添加剂(Al(OH) 3)包覆烧结得到的三元正极材料,表面相对光滑,包覆效果较好。
原料和实施例1-2以及对比例1-3的三元正极材料的电化学性能和物理性能的比较结果,如表1所示:
表1
Figure PCTCN2021110332-appb-000001
表1为实施例1~2和对比例1~3的三元正极材料的电化学性能和物理性能的比较。原料数据显示,三元多晶微粉由于保存不当,残余锂高,粉末电阻率高,相应扣电容量较低。实施例1在电压4.25V,电流0.1C的条件下首次放电比容量为201.1mAh/g,首次充放电效率为91.9%;50圈循环后放电比容量为195.3mAh/g,容量保持率为97.11%,这明显优于对比例1-3的三元正极材料的电化学性能,且其粉末电阻率相对于原料,大幅度下降,相对于对比例也相对较低。实施例2在电压4.25V,电流0.1C的条件下首次放电比容量为200.4mAh/g,首次充放电效率为90.8%;50圈循环后放电比容量为193.7mAh/g,容量保持率为96.68%,性能相对于实施例1略差,但相对于对比例1-3,电化学性能好,粉末电阻率低。对比例1由于保温时间短,粒子没长大,团聚多,相应扣电容量低及粉末电阻率价高,容量保持率低。对比例2水洗强度比实施例1弱,弱团聚较多,其扣电容量较低,粉末电阻率略高。对比例3采用不同的包覆添加剂,得到的单晶三元正极材料粉末电阻率很高,影响其电化学性能。
因此,将三元多晶的微粉通过本发明的方法制备成三元单晶正极材料不仅可以回收利用副产品,提高材料利用率,增加产品效益,还可以改善产品的循环性能、安全性能、电化学性能,生成更高能量密度的单晶三元正极材料。
以上对本发明提供的一种三元单晶正极材料及其制备方法和应用进行了详细的介绍,本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本发明,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。本发明专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种三元单晶正极材料的制备方法,其特征在于,包括以下步骤:
    (1)将三元多晶微粉混合,升温,进行第一次烧结,降温,得到中间体;
    (2)将中间体进行气流粉碎,得到单晶材料,水洗,离心,干燥,得到残碱含量低于1500ppm的物料;
    (3)将包覆剂加入物料中,升温,进行第二次烧结,降温,即得所述三元单晶正极材料;所述包覆剂为金属的氧化物、氢氧化物、盐或非金属的氧化物、氟化物或非金属对应的酸、盐中的至少一种,所述金属为Al、Ce、Y、Zn、Si、Cr、Nb、Mg、La、Sr、Zr、Sn、Na、Ca、Sb、V、W中的至少一种,所述非金属为B、P、F、C、S中的至少一种,但不包括氢氧化铝。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述三元多晶微粉为三元多晶材料在粉碎中机械磨产生的不合格品,是三元多晶材料在粉碎过程中产生的副产物;所述三元多晶微粉的化学式为LiNi xCo yMn zO 2,其中0.5≤x≤0.95,0≤y≤0.4,0.05≤z≤0.4,x+y+z=1。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述第一次烧结的温度为600℃-900℃,时间为4-30h。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述第一次烧结的气氛为空气或氧气中的一种;所述第一次烧结的通气量为5-15m3/h。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述单晶材料的粒度要求为:D v50为2.0-4.0μm,D v99为<10μm。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述水洗过程中的水和单进材料的质量比为(0.5-3.0):1;水洗的转速为150-450rpm;水洗的时间为1-30min。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中,所述第二次烧结的温度为200℃-400℃,第二次烧结的时间为4-20h;所述第二次烧结的气氛为空气或氧气中的一种。
  8. 一种三元单晶正极材料,其特征在于,是由权利要求1-7任一项所述的制备方法制得,所述三元单晶正极材料的化学式为LiNi xCo yMn zMO 2,所述M为Al、Ce、Y、Zn、Si、W、B、Cr、Nb、Mg、V、P、La、Sr、Zr、Sn、F、C、Na、Ca、S、Sb中的至少一种,其中0.5≤x≤0.95,0≤y≤0.4,0.05≤z≤0.4,且x+y+z=1。
  9. 根据权利要求8所述的三元单晶正极材料,其特征在于,所述三元单晶正极材料的电 阻率为450-650Ω·cm,首次放电比容量为200~206mAh/g,50圈循环后容量保持率大于96%,压实密度为3.3~3.5g/cm 3
  10. 一种锂离子电池,其特征在于,包括权利要求8-9任一项所述的三元单晶正极材料。
PCT/CN2021/110332 2020-09-24 2021-08-03 一种三元单晶正极材料及其制备方法和应用 WO2022062677A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21871054.9A EP4202089A4 (en) 2020-09-24 2021-08-03 TERNARY SINGLE CRYSTAL POSITIVE ELECTRODE MATERIAL, PREPARATION METHOD AND APPLICATION THEREOF
US18/245,886 US11888145B2 (en) 2020-09-24 2021-08-03 Ternary single crystal positive electrode material, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011013341.4A CN112301428B (zh) 2020-09-24 2020-09-24 一种三元单晶正极材料及其制备方法和应用
CN202011013341.4 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022062677A1 true WO2022062677A1 (zh) 2022-03-31

Family

ID=74488962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110332 WO2022062677A1 (zh) 2020-09-24 2021-08-03 一种三元单晶正极材料及其制备方法和应用

Country Status (5)

Country Link
US (1) US11888145B2 (zh)
EP (1) EP4202089A4 (zh)
CN (1) CN112301428B (zh)
CL (1) CL2023000833A1 (zh)
WO (1) WO2022062677A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114937773A (zh) * 2022-06-02 2022-08-23 桂林理工大学 一种高度单分散的单晶型高镍三元正极材料的合成方法及其应用
CN115557542A (zh) * 2022-09-27 2023-01-03 万华化学(四川)电池材料科技有限公司 一种低残碱的高镍三元正极材料的制备方法
CN115849467A (zh) * 2023-02-28 2023-03-28 宜宾锂宝新材料有限公司 高镍材料除残碱的方法与三元材料及其制备方法和应用
WO2023221624A1 (zh) * 2022-05-19 2023-11-23 广东邦普循环科技有限公司 熔融盐制备三元正极材料的方法及其应用
US11888145B2 (en) 2020-09-24 2024-01-30 Guangdong Brunp Recycling Technology Co., Ltd. Ternary single crystal positive electrode material, preparation method therefor and use thereof
GB2622915A (en) * 2022-05-19 2024-04-03 Guangdong Brunp Recycling Technology Co Ltd Method for preparing ternary cathode material from molten salt and use thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112479267B (zh) * 2020-11-27 2022-10-18 广东邦普循环科技有限公司 一种三元正极材料及其制备方法和应用
CN113764641B (zh) * 2021-09-07 2022-10-25 蜂巢能源科技(马鞍山)有限公司 正极材料及其制备方法和锂离子电池
CN114232103B (zh) * 2021-12-21 2023-11-07 青岛乾运高科新材料股份有限公司 利用三元材料微粉制备单晶三元颗粒的方法
CN114477286A (zh) * 2021-12-28 2022-05-13 苏州拉瓦锂能源科技有限公司 一种钼酸锂的制备方法
CN114477307A (zh) * 2021-12-28 2022-05-13 苏州拉瓦锂能源科技有限公司 新型单晶型镍钴锰三元前驱体及其制备方法和应用
CN114361443B (zh) * 2022-01-10 2024-06-04 宜宾锂宝新材料有限公司 一种单晶三元材料及其制备方法、锂电池
CN114597395A (zh) * 2022-03-15 2022-06-07 昆明理工大学 一种单晶型高镍三元正极材料的制备方法
CN114843502B (zh) * 2022-05-16 2023-08-01 北京卫蓝新能源科技有限公司 一种高倍率单晶高镍正极材料及其制备方法和应用
CN114695878A (zh) * 2022-06-01 2022-07-01 四川新能源汽车创新中心有限公司 一种单晶三元正极材料及其制备方法和应用
CN116169261A (zh) * 2022-12-22 2023-05-26 北京当升材料科技股份有限公司 单晶型多元正极材料及其制备方法和锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029418A (ja) * 2003-07-11 2005-02-03 Mitsubishi Materials Corp LiF蒸着材及びその製造方法
CN101621125A (zh) * 2009-02-13 2010-01-06 成都晶元新材料技术有限公司 一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法
CN110436531A (zh) * 2019-06-20 2019-11-12 浙江美都海创锂电科技有限公司 低表面残碱的高镍单晶三元正极材料及其制备方法
CN110534733A (zh) * 2019-07-21 2019-12-03 浙江美都海创锂电科技有限公司 一种大单晶锂离子电池镍钴锰酸锂正极材料制备方法
CN112301428A (zh) * 2020-09-24 2021-02-02 广东邦普循环科技有限公司 一种三元单晶正极材料及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394160B (zh) * 2017-07-24 2019-09-10 合肥国轩高科动力能源有限公司 一种锂离子电池正极材料及其制备方法
CN108428871A (zh) * 2018-03-21 2018-08-21 苏州林奈新能源有限公司 一种镍钴铝三元锂离子电池正极材料制备方法
WO2019185349A1 (en) * 2018-03-29 2019-10-03 Umicore Methods for preparing positive electrode material for rechargeable lithium ion batteries
CN111384372B (zh) * 2018-12-29 2021-03-23 宁德时代新能源科技股份有限公司 一种高压实密度正极材料及电化学储能装置
US20200343550A1 (en) * 2019-04-26 2020-10-29 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN112151789B (zh) * 2019-06-28 2021-10-01 宁德时代新能源科技股份有限公司 一种正极材料及其制备方法和用途
CN110790323A (zh) * 2019-11-12 2020-02-14 乳源东阳光磁性材料有限公司 一种高镍三元正极材料及其制备方法和应用
CN111092202B (zh) * 2019-11-29 2021-01-08 合肥国轩高科动力能源有限公司 一种高镍三元正极材料及其制备方法和应用
CN111172582A (zh) * 2019-12-31 2020-05-19 浙江美都海创锂电科技有限公司 一种碳包覆单晶型镍钴锰酸锂三元正极材料的制备方法
CN111422921A (zh) * 2019-12-31 2020-07-17 蜂巢能源科技有限公司 多晶高镍三元正极材料及其制备方法、正极片和锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029418A (ja) * 2003-07-11 2005-02-03 Mitsubishi Materials Corp LiF蒸着材及びその製造方法
CN101621125A (zh) * 2009-02-13 2010-01-06 成都晶元新材料技术有限公司 一种镍钴锰多元掺杂锂离子电池正极材料及其制备方法
CN110436531A (zh) * 2019-06-20 2019-11-12 浙江美都海创锂电科技有限公司 低表面残碱的高镍单晶三元正极材料及其制备方法
CN110534733A (zh) * 2019-07-21 2019-12-03 浙江美都海创锂电科技有限公司 一种大单晶锂离子电池镍钴锰酸锂正极材料制备方法
CN112301428A (zh) * 2020-09-24 2021-02-02 广东邦普循环科技有限公司 一种三元单晶正极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4202089A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11888145B2 (en) 2020-09-24 2024-01-30 Guangdong Brunp Recycling Technology Co., Ltd. Ternary single crystal positive electrode material, preparation method therefor and use thereof
WO2023221624A1 (zh) * 2022-05-19 2023-11-23 广东邦普循环科技有限公司 熔融盐制备三元正极材料的方法及其应用
GB2622915A (en) * 2022-05-19 2024-04-03 Guangdong Brunp Recycling Technology Co Ltd Method for preparing ternary cathode material from molten salt and use thereof
CN114937773A (zh) * 2022-06-02 2022-08-23 桂林理工大学 一种高度单分散的单晶型高镍三元正极材料的合成方法及其应用
CN114937773B (zh) * 2022-06-02 2023-04-07 桂林理工大学 一种高度单分散的单晶型高镍三元正极材料的合成方法及其应用
CN115557542A (zh) * 2022-09-27 2023-01-03 万华化学(四川)电池材料科技有限公司 一种低残碱的高镍三元正极材料的制备方法
CN115557542B (zh) * 2022-09-27 2023-12-29 万华化学(四川)电池材料科技有限公司 一种低残碱的高镍三元正极材料的制备方法
CN115849467A (zh) * 2023-02-28 2023-03-28 宜宾锂宝新材料有限公司 高镍材料除残碱的方法与三元材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112301428A (zh) 2021-02-02
CL2023000833A1 (es) 2023-09-08
EP4202089A4 (en) 2024-03-13
CN112301428B (zh) 2022-01-07
EP4202089A1 (en) 2023-06-28
US11888145B2 (en) 2024-01-30
US20230299264A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2022062677A1 (zh) 一种三元单晶正极材料及其制备方法和应用
JP6574222B2 (ja) 球形又は類球形層状構造のリチウムニッケルコバルトマンガン複合酸化物正極材料、製造方法、正極、リチウムイオン電池、エネルギー貯蔵発電所又は携帯式記憶設備、及び、使用
WO2020043135A1 (zh) 三元正极材料及其制备方法、锂离子电池
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
CN112366301A (zh) 一种锂离子电池用硅/硅氧化物/碳复合负极材料及其制备方法
CN106784795B (zh) 一种单晶类球形锰酸锂材料及其制备方法、正极材料
WO2023179245A1 (zh) 一种高镍三元正极材料及其制备方法和应用
CN110518209B (zh) 正极材料制备方法及制备的正极材料
CN110391417B (zh) 一种类单晶富锂锰基正极材料的制备方法
CN102983326A (zh) 一种球形锂镍钴复合氧化物正极材料的制备方法
CN111509192B (zh) 一种从废旧锂电池中回收利用正极材料的方法、得到的产品和用途
CN112086628B (zh) 一种单晶高电压多元复合正极材料的制备方法
WO2023056767A1 (zh) 一种高倍率磷酸铁锂正极材料的制备方法
CN113113590B (zh) 一种核壳结构的单晶正极材料及其制备方法
WO2021073583A1 (zh) 锂电池正极材料前驱体、其制备方法及应用
CN112736233B (zh) 一种锂离子电池电极活性物质、制备方法及其电极和电池
CN111017958A (zh) 一种纳米球状普鲁士蓝化合物的制备方法
CN106784820B (zh) 锂离子电池用纳米钛酸锂负极材料及其制法和应用
WO2023165130A1 (zh) 一种改性的单晶型高镍三元材料及其制备方法与应用
CN112794371A (zh) 低成本高镍三元锂离子电池正极材料及其制备方法
CN113571697A (zh) 一种筛分分级提高低温性能的纳米级磷酸铁锂正极材料及其制备方法
CN117059796A (zh) 钠电层状氧化物正极材料及其制备方法、正极片、钠离子电池和用电设备
CN115386946A (zh) 一种长循环高镍单晶正极材料的制备方法
CN111682170B (zh) 一种单晶三元正极材料及其制备方法和应用
CN111082022B (zh) 一种高倍率球状氧化合金复合电极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871054

Country of ref document: EP

Effective date: 20230323

NENP Non-entry into the national phase

Ref country code: DE